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A DIRECT COMPUTATION OF THE COHOMOLOGY OF THE BRACES OPERAD

VASILY DOLGUSHEV AND THOMAS WILLWACHER

Abstract. We give a self-contained and purely combinatorial proof of the well known fact that the coho-
mology of the braces operad is the operad Ger governing Gerstenhaber algebras.
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1. Introduction

It is a well known fact [7] that the Hochschild cohomology of an associative (or A∞) algebra
A carries the structure of a Gerstenhaber algebra. In 1993, P. Deligne [3] asked whether this
Gerstenhaber algebra structure is induced by an action of some version of the chains operad of the
little disks operad on the Hochschild cochain complex C•(A,A) of A. This question became known
as the Deligne conjecture and was answered affirmatively by various authors including C. Berger
and B. Fresse [1], R.M. Kaufmann [10], [11], M. Kontsevich and Y. Soibelman [15], J. E. McClure
and J. H. Smith [19], and D. Tamarkin [23], [24].

A key role in the proof of the Deligne conjecture is played by the braces operad Br, which
encodes a set of natural operations on the Hochschild cochain complex C•(A,A) of any A∞ algebra
A. In the form used here, this differential graded (dg) operad was introduced by Kontsevich
and Soibelman [15], where it is called the “minimal operad”. Its (quasi-isomorphic) variant1 for
associative algebras was considered by McClure and Smith, [20], and both constructions go back
to earlier work of Getzler [8] (cf. also [9]).

The goal of this note is to give a purely combinatorial proof of the fact that the operad H•(Br)
is isomorphic to the operad Ger which governs Gerstenhaber algebras.

Concretely, the n-th space Br(n) of the braces operad is spanned2 by planar rooted trees (called
brace trees) with n vertices labeled by 1, 2, . . . , n and some (possibly zero) number of unlabeled (or
neutral) vertices. The grading on Br(n) is obtained by declaring that each non-root edge carries
degree −1 and each neural vertex carries degree 2. In pictures, white circles with inscribed numbers
denote labeled vertices and black circles denote neutral vertices3. Several examples of brace trees
are shown in figure 1.1. Thus the brace trees T1-2 and T2-1 have degree −1 while the brace trees

1

2

2

1 1 2 2 1

Fig. 1.1. The brace trees T1-2, T2-1, T∪ and T opp
∪ from left to right, respectively

T∪ and T opp
∪ have degree 0.

1See also [12, §3.12] for the description of the map between the asscociative and A∞ version.
2In this note, the ground field K is any field of characteristic zero.
3We tacitly assume that every neutral vertex has at least two children.
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The differential δ(T ) of a brace tree T is defined by the formula

δ(T ) :=
n∑

j=1

δj(T ) +
∑

v

δv(T ),

where the second sum is over all neutral vertices and the operations δj , δv are defined graphically
as follows:

δj j =
∑

± j +
∑

±
j

δv =
∑

±

The operadic multiplications are defined in terms of natural combinatorial operations with planar
trees. For more details we refer the reader to Section 3 of this note or [5, Sections 7-9].

The dg operad Br acts on the Hochschild cochain complex C•(A,A) of an A∞-algebra. The
detailed description of this action is given in [5, Appendix B]. For example, for P1, P2 ∈ C•(A,A),
the cochain T∪(P1, P2) (resp. T1-2(P1, P2) + T2-1(P1, P2)) coincides (up to a sign factor) with the
cup product P1 ∪ P2 (resp. the Gerstenhaber bracket [P1, P2]G).

Let us recall (see Appendix A) that the S2-invariant δ-cocycle

(1.1) T{a1,a2} := T1-2 + T2-1

satisfies the Jacobi relation

T{a1,a2} ◦1 T{a1,a2} + (1, 2, 3)
(
T{a1,a2} ◦1 T{a1,a2}

)
+ (1, 3, 2)

(
T{a1,a2} ◦1 T{a1,a2}

)
= 0.

Therefore, we have a natural operad map

(1.2) j : ΛLie → Br

from the shifted version ΛLie of the operad Lie to the dg operad Br.
It is easy to check that the cocycle T∪ satisfies the associativity relation up to homotopy

T∪ ◦1 T∪ − T∪ ◦2 T∪ ∈ Im(δ)

and the difference

T∪ − T opp
∪

is δ-exact.
Therefore, we have a natural operad map

(1.3) Com → H•(Br)

which sends the generator of Com to the cohomology class of the δ-cocycle:

(1.4) Ta1a2 :=
1

2
(T∪ + T opp

∪ ).

It is also easy to check (see Appendix A) that the δ-cocycles Ta1a2 and T{a1,a2} satisfy the Leibniz
rule up to homotopy, i.e.

T{a1,a2} ◦2 Ta1a2 − Ta1a2 ◦1 T{a1,a2} − (1, 2)
(
Ta1a2 ◦2 T{a1,a2}

)
∈ Im(δ).

Thus, combining the maps (1.2) and (1.3), we get an operad map

(1.5) Ger → H•(Br).

In this note, we give a self-contained combinatorial proof of the following theorem:

Theorem 1.1. The map (1.5) is an isomorphism of operads.
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This theorem is a shadow of the very deep statement which says that the dg operad Br is
weakly equivalent to the operad Ger. The proof of the latter statement involves a solution of the
Deligne conjecture and the formality of the dg operad C−•(E2,K) where E2 denotes the topological
operad of little discs [22]. One possible proof [22] of the formality of C−•(E2,K) involves the use
of Drinfeld’s associator [6] and another possible proof [14, Section 3.3], [16] involves the use of a
configuration space integral. Although Theorem 1.1 does not imply the formality of the operad
Br, it is amazing that it can be proved in a purely combinatorial way which bypasses the use of
compactified configuration spaces.

We should remark that various topological proofs of Theorem 1.1 were given earlier. One such
proof is sketched, for example, in [15, Theorem 4], and another proof may be extracted from [20],
together with a small computation. Finally a third proof is described in [11, 13].

Let us also remark that our proof admits a straightforward generalization to the higher versions
of the braces operads Brn+1 acting naturally on the deformation complexes of n-algebras, cf. [2,
Section 4].

Remark 1.2. There is an amazing combinatorial similarity between the dg operad Br and the dg
operad Graphs [14, Section 3.3], [21, Section 3]. The latter dg operad is “assembled from” graphs of
certain kind with some additional data and the former dg operad is “assembled from” rooted planar
trees (also with some additional data). Both dg operads are formal. In fact, both dg operads are
weakly equivalent to the same operad Ger. However, while the proof of formality for Graphs involves
only elementary homological algebra [14, Section 3.3.4], the proof of formality for Br requires a “very
heavy hammer”.

1.1. The organization of the paper and the outline of the proof of Theorem 1.1. In
Section 2, we fix some necessary notational conventions. In Section 3, we give a more detailed
description of the dg operad Br. In Section 4, we formulate and prove a more refined version of
Theorem 1.1 (see Theorem 4.2). Appendix A is devoted to the proof of the fact that the vectors
(1.1) and (1.4) of Br satisfy the Gerstenhaber relations up to homotopy. Finally, Appendix B is
devoted to a proof of a technical statement about the spectral sequence used in Section 4.

Using a standard basis for the space Ger(n) and vectors (1.1) and (1.4), we define a map of dg
collections Ψ : Ger → Br (see Section 4.1).

Claim A.1 from Appendix A implies that the map

H•(Ψ) : Ger → H•(Br)

is compatible with the operad structure.
To prove that the map H•(Ψ) induces an isomorphism of operads, we proceed by induction on

the arity n.
Since the base of the induction n = 1 is obvious, we assume that Ψ induces isomorphisms

H•(Br(j)) ∼= Ger(j) for all 1 ≤ j ≤ n− 1, we split the graded vector space into the direct sum

Br(n) = V◦(n) ⊕ V•(n) ,

δ1
δ0 δ0

where V•(n) is the subspace of Br(n) spanned by brace trees whose lowest non-root vertex is neutral
and V◦(n) is the subspace of Br(n) spanned by brace trees whose lowest non-root vertex is labeled.
The arrows in the above formula indicate the non-zero components of the differential.

It is clear that

• both V◦(n) and V•(n) may be considered as cochain complexes with the differential δ0;
• δ1 induces a map

(1.6) H•(δ1) : H•(V◦(n), δ0) −→ H•(V•(n), δ0) ;
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• and, finally,
H•(Br(n)) ∼=

(
kerH•(δ1)

)
⊕
(
cokerH•(δ1)

)
.

In Section 4.3, we prove that H•(V◦(n), δ0) is isomorphic to sn−1K[Sn] as the Sn-module and
show that the cohomology class corresponding to λ ∈ Sn is represented by the brace tree T n

λ
depicted in figure 4.7.

In Section 4.4, we establish an isomorphism of Sn-modules

(1.7) H•(V•(n), δ0) ∼= Com⊙ ΛLie(n)
/
ΛLie(n) ⊕ s

(
ΛCom⊙ ΛLie(n)

/
ΛLie(n)

)
,

where ⊙ denotes the plethysm of collections.
This is done by filtering V•(n) by the number of children of the lowest non-root vertex and

analyzing the corresponding spectral sequence. The main technical statement

E∞(V•(n), δ0) = E2(V•(n), δ0)

about this spectral sequence is proved separately (see Lemma B.4) in Appendix B.
In Section 4.5, we prove a technical statement about the dual version of the map (1.6). Finally,

in Section 4.6, we use this technical statement and the results of the previous sections to complete
the proof of Theorem 4.2.

Acknowledgements: V.D. has been partially supported by NSF grants DMS-1161867 and DMS-
1501001 and T.W. has been partially supported by the Swiss National Science foundation, grant
200021 150012, and the SwissMAP NCCR funded by the Swiss National Science foundation. We
would like to thank anonymous referees for their useful comments and suggestions.

2. Notation

We work over a ground field K of characteristic 0. For a set X we denote by spanK(X) the K-
vector space of finite linear combinations of elements inX. We denote by s (resp. s−1) the operation
of suspension (resp. desuspension) for graded or differential graded (dg for short) K vector spaces.
The notation |v| is reserved for the degree of a homogeneous vector v in a (differential) graded
vector space.

By a collection we mean a sequence {P (n)}n≥0 of dg vector spaces with a right action of the
symmetric group Sn . The category of collections carries a natural monoidal structure, the plethysm
operation ⊙, see, e. g., [5, eqn. (5.1)].

We will freely use the language of operads. A good introduction is provided in textbook [18]. The
notation Lie (resp. As, Com, Ger) is used for the operad governing Lie algebras (resp. associative,
commutative or Gerstenhaber algebras without unit). Dually, the notation coLie (resp. coAs,
coCom) is reserved for the cooperad governing Lie coalgebras (resp. coassociative coalgebras without
counit, cocommutative (and coassociative) coalgebras without counit).

For an operad O (resp. a cooperad C) and a cochain complex V , we denote by O(V ) (resp.
C(V )) the free O-algebra (resp. cofree C-coalgebra).

For an operad (resp. a cooperad) P we denote by ΛP the operad (resp. the cooperad) with the
spaces of n-ary operations:

(2.1) ΛP (n) = s1−nP (n)⊗ sgnn ,

where sgnn denotes the sign representation of Sn .
For an operad O and degree 0 auxiliary variables a1, a2, . . . , an, O(n) is naturally identified with

the subspace of the free O-algebra

O
(
spanK(a1, a2, . . . , an)

)

spanned by O-monomials in which each variable from the set {a1, a2, . . . , an} appears exactly once.
We often use this identification in this paper. For example, the vector space Ger(2) of the operad
Ger is spanned by the degree zero vector a1a2 and the degree −1 vector {a1, a2} . The commutative
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(and associative) multiplication on a Gerstenhaber algebra V comes from the vector a1a2 ∈ Ger(2)
and the odd Lie bracket { , } on V comes from the vector {a1, a2} ∈ Ger(2). Similarly, the space
ΛLie(n) of the suboperad ΛLie ⊂ Ger is spanned by ΛLie-monomials in a1, a2, . . . , an in which each
variable from the set {a1, a2, . . . , an} appears exactly once. For example, ΛLie(2) is spanned by the
vector {a1, a2} and ΛLie(3) is spanned by the vectors {{a1, a2}, a3} and {{a1, a3}, a2}.

Let us recall [4, Section 2, p. 32] that the set of edges of any planar tree T is equipped with
the natural total order. We use this total order to determine sign factors in various computations
related to the operad Br.

3. Brace trees, a reminder of the dg operad Br

Let us recall that a brace tree is a rooted planar tree having two kinds of non-root vertices:

• labeled vertices, numbered {1, 2, 3, . . . },
• an arbitrary number of unlabeled neutral vertices.

In addition, one requires that each neutral vertex has at least two children. For example, figure
3.1 shows a brace tree T with 6 labeled vertices. In pictures, white circles with inscribed numbers
denote labeled vertices, black circles denote neutral vertices, and the small black node (at the
bottom) denotes the root.

3

2

1 4

6 5

Fig. 3.1. An example of a brace tree

Br(n) is the linear span of the set of brace trees with exactly n labeled vertices. The Z-grading
on Br(n) is given by declaring that each brace tree has the degree

2×# of neutral vertices − # of non-root edges.

For example, the brace tree shown in figure 3.1 has degree −3.
Let T be a brace tree with n labeled vertices, j be a number between 1 and n, and v be a neutral

vertex of T (if T has one). To recall the definition of the differential δ on Br(n), we introduce these
three vectors

δ′j(T ), δ′′j (T ), and δv(T )

in Br(n). The vector δ′j(T ) (resp. δ
′′
j (T )) is obtained from T in the three steps:

• first, we replace vertex j by the left most branch in figure 3.2 (resp. the middle brach in
figure 3.2);

• second, we reconnect the edges which originated from vertex j to this branch in all ways
compatible with the planar structure;

• finally, we discard all brace trees which have a neutral vertex of valency < 3.

Similarly, the vector δv(T ) is obtained from T in the three steps:

• first, we replace the neutral vertex v with the right most branch in figure 3.2;
• second, we reconnect the edges which originated from vertex v to this branch in all ways
compatible with the planar structure;

• finally, we discard all brace trees which have a neutral vertex of valency < 3.
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j

j

Fig. 3.2. The branches appearing in the definition of the differential

The differential δ(T ) of a brace tree T ∈ Br(n) is the sum over all labeled and all neutral vertices

δ(T ) =

n∑

j=1

(δ′j(T ) + δ′′j (T )) +
∑

v

δv(T ).

The signs in the sums δ′j(T ), δ
′′
j (T ), and δv(T ) are determined by treating non-root edges as

“anti-commuting variables.”

δ

3

2

1 4

6 5

=
3

2

1 4

6 5

+

3

2

1 4

6 5

−

3

2

1 4

6 5

=

3 2

1 4

6 5

+
3 2

1 4

6 5

+ 3
2

1 4

6 5

+
3

21 4

6 5

− 2
3

1 4

6 5

+

3

2

1 4

6 5

−

3

2

4

1

6 5

+

3

2

1

4

6 5

Fig. 3.3. Example of computing δ(T )

For example, for the brace tree T shown in figure 3.1, the computation of the differential is shown
in figure 3.3. The sign4 “−” in front of the right most term in the first line appears to due to the
fact the additional edge has to “move behind” the edge originating from vertex 3. The signs in
front of the first four terms in the second line are pluses since the brach which originates at vertex
3 of T has the even number of edges. The sign “−” in front of the right most term in the second
line appears because the edge adjacent to vertex 2 “moves ahead” of the additional edge. The signs
in the third line are obtained in the similar fashion.

4We should remark that the differential ∂ defined in eq. (8.12) of [5] differs from δ by the overall sign factor: δ = −∂.
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Let us observe that, since we discard brace trees with at least one neutral vertex of valency ≤ 2,
we have

δ′j(T ) = δ′′j (T ) = 0 and δv(T ) = 0

if vertex j is univalent and (neutral) vertex v is trivalent. Also, if vertex j is bivalent, then
δ′′j (T ) = 0.

2

1

◦2

1 2

= 2 3

1

=

1 2 3

−

2 3

1

−

2 1 3

+

2 3

1

+

2 3 1

Fig. 3.4. A computation of an elementary insertion

A simple example of the computation of an elementary insertion is shown in figure 3.4. The
sign “−” in front of the second term and the third term appears since the edge adjacent to vertex
1 has to “move behind” the edge connecting vertex 2 to the only neutral vertex. In the last two
terms, the edge adjacent to vertex 1 has to “move behind” the two edges originating from the only
neutral vertex. This is why we have pluses in front of these terms. For the precise definition of the
operadic compositions in Br, we refer the reader to [5, Sections 7-9].

3.1. Remarks on the linear dual of Br. Let us observe that the linear dual Br(n)∗ can be
canonically identified with Br(n) as the vector space. The only difference is that the degree of a
brace tree in Br(n)∗ equals # of non-root edges − 2×# of neutral vertices. Using this observation,
we will often switch back and forth between various subspaces of Br(n) (with certain differentials)
and their linear duals.

For example, the differential δ∗ on the dual complex Br(n)∗ is the sum (with appropriate signs)

δ∗(T ) :=
∑

e∈Edges•(T )

±δ∗e(T ),

where the brace tree δ∗e(T ) is obtained from T by contracting the edge e and the set Edges•(T )
consists of non-root edges e which satisfy this property: e either connects two neutral vertices or e
is adjacent to one neutral vertex. For instance, for the brace trees shown in figure 1.1, we have

δ∗(T∪) = T1-2 − T2-1 .

On the other hand, if T is any brace tree without neutral vertices then δ∗(T ) = 0.

4. Computation of the cohomology of Br

4.1. The map of collections of dg vector spaces Ψ : Ger → Br. Let us recall (see Appendix
A) that the assignment

j({a1, a2}) := T{a1,a2}

gives us the map of dg operad

(4.1) j : ΛLie → Br,

where ΛLie is considered with the zero differential.
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We will use j to define a map Ψ of collections

(4.2) Ψ : Ger → Br.

For this purpose, we recall [4, Exercise 3.12] that Ger(n) has the basis formed by the monomials

(4.3) {ai11 , . . . , {ai1(p1−1)
, ai1p1}..} . . . {ait1 , . . . , {ait(pt−1)

, aitpt}..},

where

(4.4) {i11, i12, . . . , i1p1} ⊔ {i21, i22, . . . , i2p2} ⊔ · · · ⊔ {it1, it2, . . . , itpt}

are ordered partitions of the set {1, 2, . . . , n} satisfying the following properties:

• for each 1 ≤ β ≤ t the index iβpβ is the biggest among iβ1, . . . , iβpβ
• i1p1 < i2p2 < · · · < itpt (in particular, itpt = n).

Let σ be the permutation in Sn

σ =

(
1 2 . . . p1 p1 + 1 p1 + 2 . . . p1 + p2 . . . . . . n− pt + 1 n− pt + 2 . . . n
i11 i12 . . . i1p1 i21 i22 . . . i2p2 . . . . . . it1 it2 . . . itpt

)

corresponding to such a partition (4.4).
Then, for the corresponding monomial (4.3) in the above basis, we set5

(4.5) Ψ({ai11 , . . . , {ai1(p1−1)
, ai1p1}..} . . . {ait1 , . . . , {ait(pt−1)

, aitpt}..}) :=

σ
(
Ψ({a1, . . . , {ap1−1, ap1}..}{ap1+1, . . . , {ap1+p2−1, ap1+p2}..} . . . {an−pt+1, . . . , {an−1, an}..})

)
,

Ψ({a1, . . . , {ap1−1, ap1}..}{ap1+1, . . . , {ap1+p2−1, ap1+p2}..} . . . {an−pt+1, . . . , {an−1, an}..}) :=

µ
(
Mt; j({a1, . . . , {ap1−1, ap1}..}), j({a1, . . . , {ap2−1, ap2}..}), . . . , j({a1, . . . , {apt−1, apt}..})

)
,

where µ is the operadic multiplication Br(t)⊗(Br(p1)⊗Br(p2)⊗· · ·⊗Br(pt)) → Br(p1+p2+ · · ·+pt),
and Mt is the vector

(4.6) Mt := (..(Ta1a2 ◦1 Ta1a2) ◦1 Ta1a2) · · · ◦1 Ta1a2)
︸ ︷︷ ︸

◦1 appears t−2 times

∈ Br(t).

Finally, if t = 1, i.e. we deal with a monomial v ∈ ΛLie(n), then we set

(4.7) Ψ(v) := j(v).

For example, the vectorM3 = Ta1a2◦1Ta1a2 is shown in figure 4.1 and the vector Ψ(a1a2{a3, a4}) ∈
Br(4) is shown in figure 4.2.

M3 =
1

4

3
1 2

+
1

4

3
1 2

+
1

4

3
2 1

+
1

4

3
2 1

Fig. 4.1. The vector M3 ∈ Br(3)

1

4

3
41 2

−
1

4

3
4 1 2

+
1

4

3
42 1

−
1

4

3
4 2 1

+ (3 ↔ 4)

Fig. 4.2. The vector Ψ(a1a2{a3, a4}) ∈ Br(4)

We claim that

5Here, we assume that t ≥ 2.
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Proposition 4.1. Equations (4.5) and (4.7) define a map of collections of dg vector spaces

Ψ : Ger → Br.

Furthermore, the induced map

(4.8) H•(Ψ) : Ger → H•(Br)

is compatible with the operadic multiplications.

Proof. The first statement follows from the fact that the vectors Ta1a2 , T{a1,a2} ∈ Br(2) are δ-
cocycles. The second statement follows from Claim A.1 proved in Appendix A. �

4.2. The refinement of Theorem 1.1. We will prove the following refined version of Theorem
1.1:

Theorem 4.2. The map of dg collections Ψ defined above induces an isomorphism of graded operads

(4.9) H•(Br) ∼= Ger.

We will prove that Ψ induces an isomorphism H•(Br(n)) = Ger(n) by induction on n.
For n = 1 there is nothing to show. So suppose we know that H•(Br(j)) = Ger(j) for j =

1, 2 . . . , n− 1 and let us tackle the statement for j = n. As outlined in the introduction, we split

Br(n) = V◦(n) ⊕ V•(n),

δ1
δ0 δ0

where V•(n) is the subspace of Br(n) spanned by brace trees whose lowest non-root vertex is neutral,
while V◦(n) is the subspace of Br(n) spanned by brace trees whose lowest non-root vertex is labeled.
Again as mentioned before, we then find that

(4.10) H•(Br(n)) =
(
kerH•(δ1)

)
⊕
(
cokerH•(δ1)

)
,

where

(4.11) H•(δ1) : H•(V◦(n), δ0) −→ H•(V•(n), δ0) .

is the induced map on δ0-cohomologies.

4.3. Computing H•(V◦(n), δ0). Following remarks in Subsection 3.1, we begin by computing
H•(V ∗

◦ (n), δ
∗
0) for the dual of the complex (V◦(n), δ0):

Claim 4.3. We claim that

(4.12) H•(V ∗
◦ (n), δ

∗
0)

∼= sn−1Kn! ∼= sn−1K[Sn]

as Sn-modules. Moreover, the class corresponding to a permutation λ ∈ Sn is represented by the
brace tree T n

λ shown in figure 4.7.

Proof. We proceed by induction on n. For n = 1 the statement is clear. Otherwise split:

V ∗
◦ = W1 ⊕ W≥2

δ′1
δ′0 δ′0

Here W1 is spanned by brace trees in which the lowest non-root vertex has exactly one child and
W≥2 is spanned by brace trees in which the lowest non-root vertex has at least two children. It is
easy to see that δ′1 is surjective and that its kernel is spanned by brace trees whose lowest non-root
vertex has a labeled vertex as a child. The complex (ker δ′1, δ

′
0) is isomorphic to (V ∗

◦ (n− 1), δ∗0) .
Thus the induction hypothesis implies that H•(V ∗

◦ (n), δ
∗
0)

∼= sn−1K[Sn] as graded vector spaces.
The compatibility of the resulting isomorphism with the Sn-action is obvious. �
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Remark 4.4. Recall that every brace tree T ∈ Br(n)∗ without neutral vertices is automatically
δ∗-closed and hence δ∗0-closed. Therefore, by Claim 4.3, for every brace tree T ∈ Br(n)∗ without
neutral vertices, there exists a vector T ′ ∈ V ∗

◦ (n), such that T − δ∗0T
′ is a linear combination of

string-like brace trees, i.e. brace trees of the form T n
λ (see figure 4.7).

4.4. Computing H•(V•(n), δ0). To computeH•(V•(n), δ0), we filter the cochain complex (V•(n), δ0)
by the number of children of the lowest non-root vertex:

(4.13) 0 = F1V•(n) ⊂ F2V•(n) ⊂ F3V•(n) ⊂ · · · ⊂ FnV•(n) = V•(n).

Here FpV•(n) is spanned by brace trees whose lowest non-root vertex has ≤ p children. Then we
consider the spectral sequence associated to this filtration.

The first differential, say d0, splits vertices except for the lowest non-root vertex. Hence,

(4.14) GrV•(n) ∼=
(
sΛcoAs◦ ⊙ Br

)
(n) ,

where sΛcoAs◦ is the collection with

(4.15) sΛcoAs◦(q) =

{

s2−qK[Sq]⊗ sgnq if q ≥ 2 ,

0 otherwise .

Therefore, by inductive hypothesis, we conclude that

(4.16) E1V•(n) := H•(GrV•(n), d0) ∼=
(
sΛcoAs◦ ⊙ Ger

)
(n).

Moreover, the cohomology class in H•(Grq V•(n), d0) corresponding to the vector

s2−q idq ⊗ (v1 ⊗ · · · ⊗ vq) ∈ sΛcoAs◦(q)⊗
(
Ger(n1)⊗ · · · ⊗ Ger(nq)

)

is represented by the d0-cocycle

(4.17) µ
(
T •
q ; Ψ(v1),Ψ(v2), . . . ,Ψ(vq)

)
∈ Br(n),

where µ is the operadic multiplication on Br, n = n1+ · · ·+nq, T
•
q is the brace tree shown in figure

4.3, and Ψ is the map of collections (4.2).

1 2 . . . q

Fig. 4.3. The brace tree T •
q

1 . . . i−1 i

i+1

i+2 . . . q

Fig. 4.4. The brace tree T •
q,i

Before proceeding to further pages of this spectral sequence, we need to fix some conventions6.
First, we denote by Aq

r (r ≥ 0) the following subspaces of FqV•(n):

(4.18) Aq
r :=

{
v ∈ FqV•(n)

∣
∣ δ0(v) ∈ Fq−rV•(n)

}
.

For example, Aq
0 = FqV•(n) and vectors in Aq

1 represent cocycles in Grq V•(n). By the construction
of the spectral sequence [25, Construction 5.4.6], the components of the r-th page are the quotients

(4.19) Eq
r :=

Aq
r

δ0(A
q+r−1
r−1 ) +Aq−1

r−1

.

The results of the computation of E2V•(n) := H•
(
E1V•(n), d1

)
are listed in the following claim:

6We use the cohomological version of the notational conventions from [25, Construction 5.4.6].
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Claim 4.5. For E2V•(n) := H•
(
E1V•(n), d1

)
, we have

(4.20) E2V•(n) ∼= Com⊙ ΛLie(n)
/
ΛLie(n) ⊕ s

(
ΛCom⊙ ΛLie(n)

/
ΛLie(n)

)
.

More precisely,
(4.21)

Eq
2V•(n) ∼=







Com⊙ ΛLie(n)
/
ΛLie(n) ⊕

⊕

n1+n2=n

IndSn

Sn1×Sn2

(

sgn2 ⊗S2

(
ΛLie(n1)⊗ ΛLie(n2)

))

if q = 2,

⊕

n1+···+nq=n

IndSn

Sn1×···×Snq

(

s2−q sgnq ⊗Sq

(
ΛLie(n1)⊗ · · · ⊗ ΛLie(nq)

))

if 3 ≤ q ≤ n,

0 otherwise.

The classes corresponding to vectors in Com ⊙ ΛLie(n)
/
ΛLie(n) are represented in A2

2 by cocycles
(in (Br(n), δ)) which are obtained by applying Ψ (4.2) to linear combinations of monomials (4.3)
in Ger(n) with t ≥ 2.

If q ≥ 3, the class corresponding to the vector

s2−q 1q ⊗ (v1 ⊗ · · · ⊗ vq) ∈ sΛCom⊙ ΛLie(n)

is represented in Aq
2 by the cochain

(4.22) uq :=
1

q!

∑

σ∈Sq

(−1)|σ|µ
(
σ(T •

q )⊗ j(v1)⊗ j(v2)⊗ · · · ⊗ j(vq)
)

+
1

q!

q−1
∑

i=1

∑

σ∈Sq

σ(i)<σ(i+1)

(−1)|σ|µ
(
σ(T •

q,i)⊗ j(v1)⊗ j(v2)⊗ · · · ⊗ j(vq)
)
,

where µ is the operadic composition

µ : Br(q)⊗ Br(m1)⊗ · · · ⊗ Br(mq) → Br(m1 + · · · +mq),

j is the operad map in (1.2), and T •
q (resp. T •

q,i) is the brace tree shown in figure 4.3 (resp. figure

4.4). Finally, the class corresponding to the vector

12 ⊗ (v1 ⊗ v2) ∈ sgn2 ⊗S2

(
ΛLie(n1)⊗ ΛLie(n2)

)

is represented in A2
2 by the cochain

(4.23)
1

2
µ
(
(T∪ − T opp

∪ )⊗ j(v1)⊗ j(v2)
)
,

where T∪ and T opp
∪ are shown in figure 1.1.

Remark 4.6. Note that the vector (4.22) is not closed in (V•(n), δ0). It is merely a representative
of an element in Eq

2, i.e. a vector v ∈ FqV•(n) such that δ0(v) ∈ Fq−2V•(n).

Proof. The differential d1 on E1V•(n) splits the lowest non-root vertex producing a neutral child
node with two children. To describe this cochain complex, we consider the free Gerstenhaber
algebra Gern in n auxiliary variables a1, a2, . . . , an of degree zero. Forgetting the bracket { , } on
Gern we can view it merely as the free commutative algebra (without unit)

Gern = Com(ΛLien)

generated by the free ΛLie-algebra ΛLien in the auxiliary variables a1, a2, . . . , an
Next, we introduce the cofree coassociative coalgebra

(4.24) coAs(s−1 Gern) =
⊕

q≥1

(
s−1 Gern

)⊗ q
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and equip it with the coderivation d defined by the equation7

(4.25) p ◦ d(s−1 v1 ⊗ · · · ⊗ s−1 vq) =

{

(−1)|v1|+1s−1 v1v2 if q = 2 ,

0 otherwise ,

where vi ∈ Gern and p is the canonical projection;

(4.26) p : coAs(s−1 Gern) → s−1 Gern .

It is easy to see that the coderivation d has degree 1. Moreover, due to associativity of the
multiplication on Gern, we have

d2 = 0 .

In other words, d is a differential on the coalgebra (4.24).
For our purposes we need the following truncation of the cochain complex s2coAs(s−1 Gern)

(4.27) s2T ′(s−1 Gern) =
⊕

q≥2

s2
(
s−1 Gern

)⊗ q

with the differential d′ given by the formula:
(4.28)

d′
(
s2(s−1 v1⊗s−1 v2⊗· · ·⊗s−1 vq)

)
=

{

s2d(s−1 v1 ⊗ s−1 v2 ⊗ · · · ⊗ s−1 vq) if q > 2 ,

0 if q = 2 ,
vi ∈ Gern .

It is not hard to see that E1V•(n) (4.16) is isomorphic to the subspace of s2T ′(s−1 Gern) which
is spanned by tensor monomials

s2(s−1 v1 ⊗ s−1 v2 ⊗ · · · ⊗ s−1 vq) , vi ∈ Gern , 2 ≤ q ≤ n

in which each variable from the set {a1, a2, . . . , an} appears exactly once. It is easy to see that this
subspace is a subcomplex with respect to d′ and, moreover, the differential d1 coincides with the
restriction of d′ up to a total sign.

Since the augmentation

(4.29) . . .
d

−→
(
s−1 Gern

)⊗ 2 d
−→ s−1 Gern

0
−→ K

of the cochain complex (4.24) computes the Hochschild homology

(4.30) HH−•(S(ΛLien),K)

of the free commutative algebra S(ΛLien) (with unit) with the trivial coefficients, we conclude that8

[17, Section 3.2]

(4.31) H•(coAs(s−1 Gern), d) =
⊕

q≥1

Sq(s−1 ΛLien) ,

and the cohomology class of the symmetric word (s−1 v1, s
−1 v2, . . . , s

−1 vq) ∈ Sq(s−1 ΛLien) is
represented by the cocycle:

1

q!

∑

σ∈Sq

(−1)ε(σ,v1,...,vq)(s−1 vσ(1), s
−1 vσ(2), . . . , s

−1 vσ(q)) ∈
(
s−1 Gern

)⊗ q
,

where the sign factors (−1)ε(σ,v1,...,vq) are determined by the Koszul rule.
When we pass to the truncation (4.27) of the Hochschild complex, the cohomology in the terms

(
s−1 Gern

)⊗ q
for q ≥ 3 does not change.

7Note that, since the coalgebra (4.24) is cofree, any coderivation d is uniquely determined by its composition with the
projection (4.26).

8In [17], J.-L. Loday only considers the case when the symmetric algebra is generated by an “ungraded” vector space and
HH• is computed with coefficients in the symmetric algebra. However, the obvious generalization to the Koszul resolution to
the graded case can be applied in the straightforward manner in our case.
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As for q = 2, all vectors in
(
s−1 Gern

)⊗ 2

are cocycles in the truncated complex (4.27).
Since for every pair of vectors v1, v2 ∈ Gern

s−1 v1 ⊗ s−1 v2 =

(−1)|v1|

2
s−1 ⊗s−1 (v1⊗v2+(−1)|v1||v2|v2⊗v1) +

1

2
(s−1 v1⊗s−1 v2+(−1)(|v1|+1)(|v2|+1)s−1 v2⊗s−1 v1),

we have the obvious decomposition
(
s−1 Gern

)⊗ 2 ∼= s−2 S≥2(ΛLien) ⊕ S2
(
s−1 Gern

)
,

where S2
(
s−1 Gern

)
is precisely the kernel of

(4.32)
(
s−1 Gern

)⊗ 2 d
−→ s−1 Gern

and s−2S≥2(ΛLien) is (up to the degree shift) the image of (4.32).
Combining this observation with the knowledge about homology (4.30), we conclude that

(4.33) H•
(
s2T ′(s−1 Gern), d

′
)
∼= S≥2(ΛLien) ⊕

⊕

q≥2

s2Sq(s−1 ΛLien).

On the other hand, E1V•(n) is isomorphic to the direct summand of the cochain complex
(
s2T ′(s−1 Gern), d

′
)
.

Thus the first two statements of Claim 4.5 follow from (4.33). To deduce the remaining state-
ments, we use the description of cohomology classes in H•(GrV•(n), d0) corresponding to vectors
in

(
sΛcoAs◦ ⊙ Ger

)
(n) (see eq. (4.17)).

The most involving statement is about the class corresponding to the vector

(4.34) s2−q 1q ⊗ (v1 ⊗ · · · ⊗ vq) ∈ sΛCom⊙ ΛLie(n)

for q ≥ 3.
Using the information about the E1 page, we know that (4.34) is represented in Aq

1 by the vector

(4.35) fq :=
1

q!

∑

σ∈Sq

(−1)|σ|µ
(
σ(T •

q )⊗ j(v1)⊗ j(v2)⊗ · · · ⊗ j(vq)
)
.

A direct computation shows that

δ0

( ∑

σ∈Sq

(−1)|σ|σ(T •
q )
)

+ δ0

( q−1
∑

i=1

∑

σ∈Sq

σ(i)<σ(i+1)

(−1)|σ|σ(T •
q,i)

)

∈ Fq−2V•(n).

Therefore the sum

uq = fq +
1

q!

q−1
∑

i=1

∑

σ∈Sq

σ(i)<σ(i+1)

(−1)|σ|µ
(
σ(T •

q,i)⊗ j(v1)⊗ j(v2)⊗ · · · ⊗ j(vq)
)

belongs to Aq
2 and represents the element in Eq

2 corresponding to (4.34).
Claim 4.5 is proved. �

Due to Lemma B.4 from Appendix B, this spectral sequence degenerates at the second page, i.e.,

(4.36) E∞V•(n) = E2V•(n).

Hence Claim 4.5 implies the following statement.
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Claim 4.7. For the complex (V•(n), δ0) we have

(4.37) H•(V•(n), δ0) ∼= Com⊙ ΛLie(n)
/
ΛLie(n) ⊕ s

(
ΛCom⊙ ΛLie(n)

/
ΛLie(n)

)
.

Cohomology classes in (V•(n), δ0) corresponding to vectors in Com ⊙ ΛLie(n)
/
ΛLie(n) are repre-

sented by cocycles (in (Br(n), δ)) which are obtained by applying Ψ (4.2) to linear combinations of
monomials (4.3) in Ger(n) with t ≥ 2. The class corresponding to the vector

s2−q 1q ⊗ (v1 ⊗ · · · ⊗ vq) ∈ sΛCom⊙ ΛLie(n), q ≥ 2

is represented in (V•(n), δ0) by the δ0-cocycle of the form

(4.38) uq + . . .

where uq is the vector given in (4.22) and . . . denotes the sum of terms in Fq−1V•(n).

Remark 4.8. One may, of course, dualize the statement of Claim 4.7. The dual statement says
that

(4.39) H•(V ∗
• (n), δ

∗
0)

∼= X∗ ⊕ U∗ ,

where X∗ ⊂ Ger(n)∗ is the kernel of Ger(n)∗ → ΛLie(n)∗ and U∗ is the linear dual of

s
(
ΛCom⊙ ΛLie(n)

/
ΛLie(n)

)
.

4.5. A technical claim about H•(δ∗1) : H
•(V•(n)

∗, δ∗0) → H•(V◦(n)
∗, δ∗0). Let summarize what

we proved so far:

• First, due to Claim 4.3,

(4.40) Hk(V◦(n), δ0) =

{

K[Sn] if k = 1− n ,

0 otherwise .

• Second, due to Claim 4.7,

H•(V•(n), δ0) ∼= Com⊙ ΛLie(n)
/
ΛLie(n) ⊕ s

(
ΛCom⊙ ΛLie(n)

/
ΛLie(n)

)
.

• The subspace

(4.41) s
(
ΛCom⊙ ΛLie(n)

/
ΛLie(n)

)

is concentrated in the degree 2− n, and the subspace

Com⊙ ΛLie(n)
/
ΛLie(n)

lives in degrees 2− n ≤ • ≤ 0.

Thus the operator H•(δ1) sends vectors of H
1−n(V◦(n), δ0) to the space H2−n(V•(n), δ0). Hence,

Hk(Br(n)) ∼=







H1−n(V◦(n), δ0) ∩ ker
(
H•(δ1)

)
if k = 1− n ,

H2−n(V•(n), δ0)
/
Im

(
H•(δ1)

)
if k = 2− n ,

Hk(V•(n), δ0) if 3− n ≤ k ≤ 0 ,

0 otherwise .

Let us prove that

Claim 4.9. The map

H•(j) : ΛLie(n) → H1−n(Br(n))

is injective. In particular,

(4.42) dim H1−n(Br(n)) ≥ (n− 1)!
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Proof. Since Br(n) lives is degrees 1− n ≤ • ≤ 0,

(4.43) H1−n(Br(n)) = Br(n)1−n ∩ ker(δ).

It is not hard to prove (by induction on n) that

j
(
{..{a1, a2}, a3} . . . , an}

)
= ±

1

2

...

n

+ . . .

where . . . is the sum of braces trees which do not involve string-like brace trees with vertex 1 at
the lowest position.

Therefore, for every permutation τ ∈ S{2,3,...,n}, we have

j
(
{..{a1, aτ(2)}, aτ(3)} . . . , aτ(n)}

)
= ±

1

τ(2)

...

τ(n)

+ . . .

where, as above, . . . is the sum of braces trees which do not involve string-like brace trees with
vertex 1 at the lowest position.

Thus, j gives us (n− 1)! linearly independent vectors
{
j
(
{..{a1, aτ(2)}, aτ(3)} . . . , aτ(n)}

) }

τ∈S{2,3,...,n}

in (4.43).
Since the set

{
{..{a1, aτ(2)}, aτ(3)} . . . , aτ(n)}

}

τ∈S{2,3,...,n}

is a basis of ΛLie(n), the claim follows. �

To prove the other inequality

(4.44) dim H1−n(Br(n)) ≤ (n− 1)!

we need the following technical statement:

Claim 4.10. Let 1 ≤ r ≤ n− 1 and

σ =

(
1 2 . . . r r + 1 r + 2 . . . n
i1 i2 . . . ir j1 j2 . . . jn−r

)

be a permutation in Sn. Let T||,σ,r (resp. T opp
||,σ,r) be the brace tree shown in figure 4.5 (resp. in figure

4.6).
The vector

(4.45)
1

2
(T||,σ,r + (−1)r(n−r)T opp

||,σ,r)

is a cocycle in the dual complex (V•(n)
∗, δ∗0) representing a cohomology class corresponding to a

vector in U∗, i.e. the dual of the subspace (4.41).
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Moreover, the vector

(4.46)
1

2
δ∗1(T||,σ,r + (−1)r(n−r)T opp

||,σ,r)

is cohomologous in (V ∗
◦ (n), δ

∗
0) to

(4.47)
∑

τ∈Shr,n−r

(−1)|τ | T n
σ◦τ−1 ,

where (−1)|τ | is the sign of the permutation τ and {T n
λ }λ∈Sn

be the family of brace trees shown in
figure 4.7.

i1

i2

...

ir

j1

j2

...

jn−r

Fig. 4.5. The brace tree T||,σ,r

i1

i2

...

ir

j1

j2

...

jn−r

Fig. 4.6. The brace tree T opp
||,σ,r

λ(1)

λ(2)

...

λ(n)

Fig. 4.7. The brace tree T n
λ . Here λ ∈ Sn

Proof. First, every brace tree with exactly one neutral vertex (at the lowest position) is a cocycle
in (V•(n)

∗, δ∗0).
To prove that the vector (4.45) belongs to U∗, we need to show that the pairing

(4.48) (T||,σ,r + (−1)r(n−r)T opp
||,σ,r) (w) = 0,

where w is a cocycle representing a cohomology class in H•(V•(n), δ0) corresponding a vector in
Com⊙ ΛLie(n)

/
ΛLie(n).

Due to Claim 4.7, we may assume that

w = Ψ(c),
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where c is a linear combination of monomials (4.3) in Ger(n) with t = 2.
Since Ψ(c) is a linear combination of expressions of the form

σ ◦ µ
(
(T∪ + T opp

∪ )⊗ j(h1)⊗ j(h2)
)
,

where h1 ∈ ΛLie(n1), h2 ∈ ΛLie(n − n1), µ is the operadic multiplication, and σ ∈ Sn, the vector
Ψ(c) is anti-symmetric with respect to the S2 action on F2V•(n) which switches the two branches
originating from the lowest non-root vertex.

On the other hand, the vector (4.45) is symmetric with respect to this S2 action. Hence (4.48)
follows.

We will now prove that

(4.49) δ∗1(T||,σ,r) −
∑

τ∈Shr,n−r

(−1)|τ | T n
σ◦τ−1 ∈ δ∗0

(
V ∗
◦ (n)

)
.

Then the desired statement about the vector (4.46) will follow from the graded commutativity of
the shuffle product.

The simple calculation shown in figure 4.8 proves (4.49) in the case when n = 2 (and r = 1).
This also settles the base of our induction.

δ∗1

1 2

= 1

2

− 2

1

Fig. 4.8. The proof of (4.49) in the case n = 2

Next, we observe that the linear combination

δ∗1(T||,σ,r) − δ∗0

i1

i2

...

ir

j1

j2

...

jn−r

− (−1)r δ∗0

j1

i1

i2

...

ir

j2

...

jn−r

is obtained from

− δ∗0

i1

i2

...

ir

j1

j2

...

jn−r

− (−1)r δ∗0

j1

i1

i2

...

ir

j2

...

jn−r
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by retaining only the terms which are obtained by contracting only the edges which are adjacent
to the neutral vertex and lie above this neutral vertex.

Thus the inductive step follows from the fact that the set of shuffles Shr,n−r splits into the disjoint
union of permutations of the form

(
1 2 . . . r r + 1 . . . n
1 σ(2) . . . σ(r) σ(r + 1) . . . σ(n)

)

with σ ∈ S{2,3,...,n}, σ(2) < σ(3) < · · · < σ(r), σ(r + 1) < σ(r + 2) < · · · < σ(n), and permutations
of the form (

1 2 . . . r r + 1 r + 2 . . . n
σ(1) σ(2) . . . σ(r) 1 σ(r + 2) . . . σ(n)

)

,

where σ is a bijection σ : {1, 2, . . . , r, r+2, . . . , n} to {2, 3, . . . , n} such that σ(1) < σ(2) < · · · < σ(r)
and σ(r + 2) < σ(r + 3) < · · · < σ(n).

Claim 4.10 is proved. �

Let us recall that, for every graded vector space9 V ,

(4.50) coLie(V ) ∼= coAs(V )/coAs(V ) •Sh coAs(V ),

where •Sh denotes the shuffles product.
Thus Claims 4.3 and 4.10 imply that

dim Hn−1(Br(n)∗) ≤ (n− 1)!

and the desired inequality (4.44) follows.

4.6. The final strokes. Combining Claim 4.9 with the inequality (4.44), we conclude that

(4.51) dim H1−n(Br(n)) = (n− 1)!

and the restriction Ψ
∣
∣
ΛLie(n)

induces an isomorphism

ΛLie(n) ∼= H1−n(Br(n)).

Hence, due to the summary given on page 14 and the second statement of Claim 4.7, it suffices
to show that

(4.52) coker
(

H•(V◦(n), δ0)
H•(δ1)

−−−−−−→ H•(V•(n), δ0)
)

∼= Com⊙ ΛLie(n)
/
ΛLie(n).

The later is a consequence of (4.37), the equality dim Hn−1(Br(n)∗) = (n− 1)! and Claim 4.10.
Indeed, due to Claim 4.10 and equality dim Hn−1(Br(n)∗) = (n − 1)!, the dimension of the space

H•(δ∗1)
(
U∗

)

should be equal to n!− (n− 1)!, where U∗ is the linear dual of (4.41).
On the other hand, dim(U) = n!− (n− 1)! = dim(U∗) and hence the restriction of H•(δ∗1) to U∗

is an isomorphism of vector spaces

U∗ ∼= H•(δ∗1)
(
U∗

)
⊂ Hn−1(V◦(n)

∗, δ∗0).

Therefore, by duality, the composition of H•(δ1) with the projection

H2−n(V•(n), δ0) → U

gives us an isomorphism of vector spaces

H1−n(V◦(n), δ0)
/
ker(H•(δ1)) ∼= U.

Thus the desired isomorphism (4.52) follows and the proof of Theorem 4.2 is complete.

9The isomorphism (4.50) is the dual version of [18, Proposition 1.3.5].
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Appendix A. Verification of the Gerstenhaber relations

As above, T{a1,a2} and Ta1a2 denote the following vectors in Br(2):

T{a1,a2} := T1-2 + T2-1, Ta1a2 :=
1

2
(T∪ + T opp

∪ ),

where T1-2, T2-1, T∪, and T opp
∪ are the brace trees shown in figure 1.1.

The goal of this appendix is to prove the following statement.

Claim A.1. The vector T{a1,a2} satisfies the Jacobi identity

(A.1) T{a1,a2} ◦1 T{a1,a2} + (1, 2, 3)
(
T{a1,a2} ◦1 T{a1,a2}

)
+ (1, 3, 2)

(
T{a1,a2} ◦1 T{a1,a2}

)
= 0

and the vector Ta1a2 fulfills these properties:

(A.2) Ta1a2 ◦1 Ta1a2 − Ta1a2 ◦2 Ta1a2 ∈ Im(δ)

(A.3) T{a1,a2} ◦2 Ta1a2 − Ta1a2 ◦1 T{a1,a2} − (1, 2)
(
Ta1a2 ◦2 T{a1,a2}

)
∈ Im(δ).

Proof. The insertion T{a1,a2} ◦1 T{a1,a2} is computed explicitly in figure A.1. It is clear that the
sum over the cyclic permutations of the first term (resp. the third term) will cancel the sum over
the cyclic permutations of the sixth term (resp. the forth term). Similarly, the sum over the cyclic
permutations of the second term (resp. the fifth term) cancels the sum over the cyclic permutations
of the seventh term (resp. the eighth term). Thus identity (A.1) holds.

(

1

2

+ 2

1 )

◦1
(

1

2

+ 2

1 )

=

1

3 2

− 1

2

3

− 1

32

+ 2

3 1

− 2

1

3

− 2

1 3

+ 3

1

2

+ 3

2

1

Fig. A.1. Computation of the vector T{a1,a2} ◦1 T{a1,a2} ∈ Br(3)

A simple computation shows that

(A.4) δ(T1-2) = T∪ − T opp
∪ .

Hence

(A.5) Ta1a2 = T∪ −
1

2
δ(T1-2).

On the other hand,

δ

1 2 3

= T∪ ◦1 T∪ − T∪ ◦2 T∪

Therefore, the vector
Ta1a2 ◦1 Ta1a2 − Ta1a2 ◦2 Ta1a2

indeed belongs to Im(δ), i.e. (A.2) holds.
To prove (A.3), we denote by T1-(2,3) the following brace tree:

T1-(2,3) : = 1

2 3
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We compute the differential δ(T1-(2,3)) in figure A.2

δ(T1-(2,3)) = 1

2 3

+

1 2 3

+

1 3

2

−

2 1 3

−

2 1

3

+

2 3 1

Fig. A.2. Computation of the differential δ(T1-(2,3))

The insertions T{a1,a2} ◦2 T∪ and T∪ ◦1 T{a1,a2} are computed in figures A.3 and A.4, respectively,

and the vector (1, 2)
(
T∪ ◦2 T{a1,a2}

)
is shown in figure A.5.

T{a1,a2} ◦2 T∪ = 1

2 3

+

1 2 3

−

2 3

1

−

2 1 3

+

2 3

1

+

2 3 1

Fig. A.3. Computation of the insertion T{a1,a2} ◦2 T∪

T∪ ◦1 T{a1,a2} = −
1 3

2

−

2 3

1

Fig. A.4. Computation of the insertion T∪ ◦1 T{a1,a2}

(1, 2)
(
T∪ ◦2 T{a1,a2}

)
=

2 1

3

+

2 3

1

Fig. A.5. The vector (1, 2)
(
T∪ ◦2 T{a1,a2}

)

Adding all these expressions and performing obvious cancelations, we conclude that

(A.6) T{a1,a2} ◦2 T∪ − T∪ ◦1 T{a1,a2} − (1, 2)
(
T∪ ◦2 T{a1,a2}

)
= δ(T1-(2,3)).

Finally, combining (A.5) with (A.6), we deduce (A.3).
Claim A.1 is proved. �

Appendix B. The spectral sequence for (V•(n), δ0) degenerates at the second page

Let us study in a bit more detail the dual of the map j : ΛLie → Br. In arity n the dual map can
be realized as a composition

Br∗(n) → T ∗(n) → Λ−1coAs(n) → Λ−1coLie(n)

where we use the following objects and morphisms:

• T (n) ⊂ Br(n) is the graded subspace of trees without neutral vertices. (In fact, the T (n)
assemble to form an operad whose twist is essentially Br, cf. [5].)

• The map Br∗(n) → T ∗(n) is the natural projection. (Concretely, it sends graphs with
neutral vertices to zero.)
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• The map Λ−1coAs(n) → Λ−1coLie(n) is the natural projection arising from the inclusion
Lie → As. Note that we may identify Λ−1coAs(n) (up to a degree shift) with the subspace
of the space of words

K〈X1, . . . ,Xn〉

in formal odd variables, each appearing exactly once. The space K〈X1, . . . ,Xn〉 is a Zn

graded augmented commutative algebra with the shuffle product •sh and unit the empty
word. We denote by An ⊂ K〈X1, . . . ,Xn〉 the augmentation ideal. The space Λ−1coLie(n)
may then be identified with the degree (1, . . . , 1)-subspace of the quotient

An/(An •sh An).

In this language, Λ−1coAs(n) → Λ−1coLie(n) is just the map induced on the degree (1, . . . , 1)-
subspaces of the obvious projection

An → An/(An •sh An).

• The map f : T ∗(n) → Λ−1coAs(n) ∼= A
(1,...,1)
n can be defined recursively as follows. If n = 1

and T ∈ T ∗(1) is the unique tree with one vertex labelled 1, we set

f(T ) = X1.

If n > 1 and T ∈ T ∗(n) is the tree with lowest vertex j, having children (in this order)
T1, . . . , Tk, we set recursively

f(T ) = Xj(f(T1) •sh · · · •sh f(Tk)).

For example, if λ ∈ Sn and T n
λ is the brace tree shown in figure 4.7, then

f(T n
λ ) = Xλ(1)Xλ(2) . . . Xλ(n) .

Furthermore, if

T = 1

2

3

4

then

f(T ) = X1

(
(X2X3) •sh X4

)
= X1(X2X3X4 −X2X4X3 +X4X2X3).

The composition g : Br∗(n) → T ∗(n)
f
→ Λ−1coAs(n) appearing above is of interest in its own

right. It is does not commute with the differential, i.e., g ◦ δ∗ 6= 0. However, we claim that

Lemma B.1. For every brace tree T

g ◦ δ∗0(T ) = 0.

Proof. It is clear that we should only consider g ◦ δ∗0(T ) for a brace tree T with exactly one neutral
vertex which is not in the lowest possible position.

Up to an overall sign factor, the differential δ∗0 turns the branch

i

n

j1 j2 . . . jq

. . . . . . . . .
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into the linear combination

i

j1 j2 . . . jq

. . . . . . . . .

−

i

j1

j2 . . . jq
. . .

. . . . . .

− (−1)d1

i

j2

j1 . . . jqj3

. . .

. . .

. . . . . .

. . . − (−1)d1+···+dq−1

i

jq

j1 . . . jq−1

. . . . . .

. . .

where dk is the degree of the brach which originates from the neutral vertex and contains vertex
jk.

Therefore g ◦ δ∗0(T ) contains this expression

(B.1) Xi

(
fj1 •sh fj2 •sh · · · •sh fjq

)
−XiXj1

(
hj1 •sh fj2 •sh · · · •sh fjq

)

−(−1)d1XiXj2

(
fj1 •sh hj2 •sh fj3 •sh · · · •sh fjq

)
− . . .

−(−1)d1+d2+···+dq−1XiXjq

(
fj1 •sh · · · •sh fjq−1 •sh hjq

)

as a factor. Here fjk is the value of f on the brach which originates at the neutral vertex and
contains vertex jk, while

hjk = f(bjk1) •sh f(bjk2) •sh · · · •sh f(bjkrk),

where bjkt is the t-th brach which originates from vertex jk.
Using the definition of the shuffle product, it is easy to see that the expression (B.1) is zero.
Thus the lemma follows. �

Remark B.2. Let us observe that the map g ◦ δ∗1 has the following nice combinatorial description:
If T ∈ Br∗(n) is a brace tree, then g ◦ δ∗1(T ) = 0 unless T has exactly one neutral vertex, which is
the lowest vertex. In this case

g ◦ δ∗1(T ) = f(T1) •sh · · · •sh f(Tk),

where T1, . . . , Tk are the branches which originate at the neutral vertex.
On the other hand, Lemma B.1 implies that g ◦ δ∗ = g ◦ δ∗1. Thus g ◦ δ∗(T ) = 0 unless T has

exactly one neutral vertex, which is the lowest vertex and, in this case,

(B.2) g ◦ δ∗(T ) = f(T1) •sh · · · •sh f(Tk).

Let us now consider the dual cochain complex

(V•(n)
∗, δ∗0)

and construct a set of vectors in the top degree n− 2 which will play an important role.
Let k be an integer ≥ 2 and (r1, r2, . . . , rk) be a tuple of positive integers such that r1 + r2 +

· · ·+ rk = n. For every such tuple, we consider a brace trees T σ
r1,...,rk

shown in figure B.1, where σ
is a permutation in Sn

(B.3) σ =

(
1 2 . . . r1 r1 + 1 . . . r1 + r2 . . . . . . n− rk + 1 . . . n
i11 i12 . . . i1r1 i21 . . . i2r2 . . . . . . ik1 . . . ikrk

)
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which satisfies these properties10

(B.4) im1 = min{im1 , im2 , . . . , imrm} ∀ m, and i11 < i21 < · · · < ik1 .

i11

...

i1r1

ik1

...

ikrk

. . .

Fig. B.1. The brace tree T σ
r1,...,rk

Moreover, we set

(B.5) Y σ
r1,...,rk

=
1

k!

∑

τ∈Sk

τ∗(T
σ
r1,...,rk

),

where τ∗ rearranges the k branches of T σ
r1,...,rk

originating from the neutral vertex with the appro-
priate sign factor. For example,

Y σ
r1,r2 =

1

2

i11

...

i1r1

i21

...

i2r2

+
(−1)r1r2

2

i11

...

i1r1

i21

...

i2r2

We denote by Ξ the set of all such vectors Y σ
r1,...,rk

for all k ≥ 2, all tuples (r1, r2, . . . , rk),
r1 + · · · + rk = n, and all permutations σ satisfying (B.4). Due to the theorem about the cyclic
decomposition of a permutation, it is clear that Ξ has

n!− (n− 1)!

elements. Moreover, the subset Ξ ⊂ V•(n)
∗ is linearly independent.

Since every vector Y σ
r1,...,rk

is in the top degree of (V•(n)
∗, δ∗0), it is automatically a cocycle in

this complex.
Let us prove that

Claim B.3. Every non-trivial linear combination of vectors in Ξ is a non-trivial cocycle in (V•(n)
∗, δ∗0).

Proof. To prove this claim, we need Lemma B.1 and Remark B.2.
Let us, first, prove that the map

(B.6) (g ◦ δ∗)
∣
∣
∣
spanK(Ξ)

: spanK(Ξ) → Λ−1coAs(n) ∼= A(1,...,1)
n

is injective.
Indeed, by Remark B.2 and the symmetry of the shuffle product, we have

g ◦ δ∗
(
Y σ
r1,...,rk

)
= g ◦ δ∗

(
T σ
r1,...,rk

)
= (Xi11

. . . Xi1r1
) •sh · · · •sh (Xik1

. . . Xikrk
).

10In particular, i11 is necessarily 1.
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Using the identification between Λ−1coLie(n) and the degree (1, . . . , 1)-subspace of the quotient
An/(An •sh An), it is easy to see that g ◦ δ∗ gives us a surjective map from spanK(Ξ) to the
degree (1, . . . , 1)-subspace of An •shAn. Since both spanK(Ξ) and the degree (1, . . . , 1)-subspace of
An •sh An have the same dimension

n!− (n − 1)!,

we conclude that (B.6) is indeed injective.
Let us consider a vector v ∈ spanK(Ξ) and assume that

v = δ∗0(w)

for some w ∈ V•(n)
∗.

Using Lemma B.1, we conclude that

g(δ∗v) = g(δ∗δ∗0w) = −g(δ∗0δ
∗w) = 0.

Thus, since (B.6) is injective, we conclude that v = 0 and the desired claim follows. �

With these preparations we are now ready to prove the following statement left open above.

Lemma B.4. The spectral sequence arising in Section 4.4 degenerates at the second page.

Proof. According to Claim 4.5, E2V•(n) splits (as the graded vector space) into the direct sum

Com⊙ ΛLie(n)
/
ΛLie(n) ⊕ s

(
ΛCom⊙ ΛLie(n)

/
ΛLie(n)

)
.

It is easy to see that every vector in the summand

(B.7) U := s
(
ΛCom⊙ ΛLie(n)

/
ΛLie(n)

)

has degree 2− n, while the summand

(B.8) X := Com⊙ ΛLie(n)
/
ΛLie(n)

lives in degrees
2− n ≤ • ≤ 0.

We also know that every vector in (B.8) can be represented by a genuine cocycle in Br(n). Thus
the restriction of all higher differentials dr, (r ≥ 2) to the subspace (B.8) is zero and it remains to
show that the restriction of dr for r ≥ 2 to (B.7) is also zero.

To prove this statement, we pass to the obvious dual version of Claim 4.5, which says that

E2V•(n)
∗ ∼= X∗ ⊕ U∗,

where X∗ is the kernel of the map Ger(n)∗ → ΛLie(n)∗ and U∗ is the linear dual of (B.7).
The advantage of passing to the dual complex is that U∗ lives in the top degree n−2 of the cochain

complex (V•(n)
∗, δ∗0). So all vectors in U∗ can be represented by genuine cocycles in (V•(n)

∗, δ∗0).
Moreover, the first (potentially) non-zero differential d∗r , r ≥ 2 may only send vectors in X∗ of
degree n− 3 to vectors in U∗:

(B.9) (X∗)n−3 → U∗ = (U∗)n−2 .

Using the explicit representatives of vectors in X (B.8) and the Sk-symmetry of Y σ
r1,...,rk

, we see
that the evaluation of every vector Y σ

r1,...,rk
on representatives of vectors in X is zero. Thus all

elements in Ξ represent vectors in U∗.
Due to Claim B.3, the cohomology classes of Ξ in Hn−2(V•(n)

∗, δ∗0) span a subspace of dimension

n!− (n− 1)!

Thus, since U∗ also has dimension n!− (n− 1)! and the only component of the first potentially
non-zero d∗r is (B.9), we conclude that

dim
(
E∞V•(n)

)
≥ dim

(
E2V•(n)

)
.

Lemma B.4 is proved. �
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