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ABSTRACT: An approach to quantum mechanics is developed which makes the Heisenberg

cut between the deterministic microscopic quantum world and the partly deterministic, partly

stochastic macroscopic world explicit. The microscopic system evolves according to the

Schrödinger equation with stochastic behaviour arising when the system is probed by a set

of coarse grained macroscopic observables whose resolution scale defines the Heisenberg

cut. The resulting stochastic process can account for the different facets of the classical limit:

Newton’s laws (ergodicity broken); statistical mechanics of thermal ensembles (ergodic); and

solve the measurement problem (partial ergodicity breaking). In particular, the usual rules of

the Copenhagen interpretation, like the Born rule, emerge, along with completely local de-

scriptions of EPR type experiments. The formalism also re-introduces a dynamical picture of

equilibration and thermalization in quantum statistical mechanics and provides insight into

how classical statistical mechanics can arise in the classical limit and in a way that alleviates

various conceptual problems.
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1 Introduction

Quantum mechanics is an amazingly successful and universal framework that describes

physics over a huge range of scales, from the quantum theory of gravity provided by fun-

damental strings, through particle physics, nuclear physics, atomic physics to condensed

matter physics. There can be little doubt that we know how to interpret quantum mechanics

from a practical point of view by employing the rules of the Copenhagen interpretation.1

The Copenhagen interpretation has all the tools that are needed to unlock the microscopic

quantum world in the laboratory. It works by hypothesising the existence of the Heisen-

berg cut, a division between the deterministic microscopic quantum world governed by the

Schrödinger equation and the classical, partly deterministic, partly stochastic, macroscopic

world governed by classical mechanics and the Born rule. It is worth amplifying this point:

it is not the microscopic world that is probabilistic and the classical world deterministic, the

reality is the opposite as is apparent when one listens to a Geiger counter. Moreover, the

classical world includes statistical mechanics and hence is stochastic even if the rôle of prob-

ability is not conceptually well understood in that context. It is important that the scale of

the Heisenberg cut can be changed somewhat without altering the macroscopic predictions

as long as it is kept below (as a scale in position space) macroscopic scales.
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The Copenhagen interpretation posits a kind of stochastic dynamics that kicks in when-

ever a measurement is made on a microscopic quantum system. So during a measurement

process where an initial state vector |Ψ(0)〉 evolves into the linear combination

|Ψ(T)〉 = ∑
i

ci|Ψi〉 , (1.1)

1It can be argued that there is no single, historically coherent version of the Copenhagen interpretation.

However, the rules are well known to, and used by, most physicists and also form the basis of most textbook

treatments of quantum mechanics.
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and where the component states |Ψi〉 are macroscopically distinct, the final state is then in-

terpreted as describing an ensemble with probabilities are given by the Born rule

probi = |ci|2 . (1.2)

This begs some questions of which two key ones are:

1. When does the underlying pure state become interpreted as an ensemble, i.e. where is

the Heisenberg cut to be placed?

2. Why are the macroscopically distinct states |Ψi〉 picked out as special?

The conventional answer to (i) is that it doesn’t matter where we put the Heisenberg

cut as long as it is somewhere between the microscopic and macroscopic while (ii) is solved

by fiat. The Copenhagen interpretation in its present form has shown itself sufficient to use

quantum mechanics in practice. Is there, therefore, any merit in trying to go beyond the

conventional rules in order to provide more convincing answers to the questions above? The

danger is that this might add to the feeling that the Copenhagen interpretation is inadequate

which is not our intention. On the other hand, as we will try to argue, there is the potential to

unify both the deterministic and stochastic aspects of the classical world, the latter including

both quantum measurement scenarios as well as statistical mechanics (SM).

The enhanced formalism we are after will determine what are the possible outcomes of

a quantum measurement without having to resort to identifying them by hand. In addition,

it will provide a better understanding of the Heisenberg cut and therefore how the classical

world emerges from quantum mechanics. In this regard, the existence of a classical world is

not guaranteed by the conventional classical limit and the correspondence principle alone. It

will also yields a formalism where the reduction of the state vector is just a non-compulsory

piece of book keeping.

In addition, an important element of the proposal will be to provide a new way to under-

stand how classical SM can emerge from an underlying quantum system. It may come as a

surprise to learn that classical SM still has many unresolved conceptual problems;2 including:

1. The conceptual status of probability in a deterministic theory.

2. Definition of entropy and the second law.

3. Description of non-equilibrium and the approach to equilibrium.

2Wallace [1] has a nice review of these conceptual difficulties and how they are related to those of quantum

mechanics. Some of the outstanding conceptual issues of classical SM set in a historical context are discussed in

the excellent review of Uffink [2].
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4. The rôle of ergodicity and the relation between ensembles and long, or infinite, time

averages.

The idea of building SM directly on quantum mechanics has its genesis in the work of

Schrödinger [3] and von Neumann [4, 5] back in the 1920s. This kind of approach, taken up

(or re-invented) in the modern era,3 misses out classical mechanics completely, and thereby

avoids its conceptual problems. But we would surely be missing something by not under-

standing how classical SM can arise as a limit of quantum mechanics. In this regard, it would

be wasteful not to put the probabilities of quantum mechanics to good use to provide ab initio

probabilities for SM. Wallace [1] has pointed out that in this context that there is no need to

introduce probabilities twice, firstly for quantum purposes and then for statistical mechanical

purposes. We intend to elaborate on this point and then suggest that if we can understand

the stochastic element of quantum mechanics more formally then we may at the same time

provide a proper foundation for classical SM as the classical limit of quantum mechanics.

There will be a considerable pay off because, as we will see, issues to do with probabilities,

entropy, ensembles and ergodicity potentially become simpler in the quantum context.

With this motivation, we will construct a framework for quantum mechanics for which

the following are true:

1. The underlying system is described by a state vector evolving according to the Schrödin-

ger equation.

2. The rôle of observers is played by sets of observables that describe the macroscopic

interactions of a macro-system.4

3. A classical regime and the usual Copenhagen rules of measurement emerge at macro-

scopic scales: definite macroscopically distinct outcomes are predicted with probabili-

ties that are captured by the Born rule if the measuring device is accurate.

4. The classical limit for macroscopic systems displays both deterministic and stochastic

features which can explain why macroscopic objects have definite positions and obey

Newton’s laws whilst, at the same time, their internal degrees of freedom are in thermal

equilibrium. In the classical limit, a dynamical picture of classical SM emerges but with

a stochastic dynamics on a discrete set of states for which issues concerning ergodicity

are conceptually simpler to investigate.

The present work is a development of earlier work [19–21] which themselves are built on

some aspects of the class of modal interpretations of quantum mechanics. The key idea is that

3For a selection of papers see [6–18] and references therein.
4There is no need for Alices, Bobs, agents, brains, minds, consciousness or users—human, feline or otherwise.

– 4 –



Heisenberg cut is identified implicitly by the resolution scale of a set of relevant macroscopic

degree of freedom of a system. In [19–21] this was done by assuming that the Hilbert space

has an explicit factorization

H = HA ⊗HE , (1.3)

where HA describes the accessible, or macroscopically relevant, degrees of freedom and HE,

the environment, encompasses all the remaining degrees of freedom. The tensor product

factorization is therefore a manifestation of the Heisenberg cut. This kind of split is useful in

toy models for describing the way the formalism works but in realistic situations we cannot

expect such a clean split of the Hilbert space and, in addition, it is difficult to see how the

Heisenberg cut could be varied in this context.

The fact that the Heisenberg cut can be varied as long as it is kept at sub-macroscopic

scales is very reminiscent of the Wilsonian cut off in quantum field theory (QFT) [22]. In the

modern era, QFTs are viewed as effective theories that have an explicit finite resolution, or

coarse graining, scale known as the Wilsonian cut off.5 They are only valid for describing

phenomena at larger distances than this scale. The important point is that phenomena on

larger length scales are insensitive to changing the Wilsonian cut off as long as the latter is

kept below the scale of the phenomena. The analogy with the Heisenberg cut is intriguing.

One feature is worth emphasizing: there is a subjective element in choosing the Wilsonian

cut off because it depends on the distance scale of the phenomena that you want to focus on.

But this kind of subjectivity is completely natural: we are free to choose the length scale of

the phenomena we want to investigate and each scale has its own effective theory.

The lesson for the Heisenberg cut is that it would be natural to associate it to the reso-

lution scale of a set of observables that are needed to describe phenomena on, in this case,

macroscopic scales: macroscopic phenomena require a sub-macroscopic Heisenberg cut. In

the present approach, motivated for the need to describe more realistic systems, and with

the notion of an effective QFT in mind, we propose to change the focus from tensor product

factors and reduced density operators, to the set of relevant—or macroscopically accessible,

or coarse grained—observables A = {On}. These are a set of observables that are coarse

grained on sub-macroscopic scales that are needed to faithfully describe the macroscopic in-

teractions of the system with other macroscopic systems. Implicit in the definition of the set

A, therefore, is the resolution or coarse graining scale which is nothing other than the Heisen-

berg cut. We will find the original tensor product and reduced density operator formalism

5Even our most fundamental QFT, the standard model, is only an effective theory which needs an explicit

cut off to be well defined. It is much more stringent requirement to ask that a QFT has a continuum limit for

which the cut off or resolution scale is taken to zero in position space. This kind of limit can only be taken if

there is a UV fixed point of the renormalization group.
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microscopic system:

deterministic dynamics
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stochastic & deterministic
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Figure 1. A quantum system evolves deterministically according to the Schrödinger equation. In our

proposal, the stochastic element arises when the macroscopic interactions of the system are described

by a set of probes in the form of a set of coarse grained observables A = {On} whose resolution scale

defines the Heisenberg cut.

will emerge as a special case of the more general formalism that we develop. In this sense,

the present approach subsumes the earlier work [19–21].

In our approach to the quantum mechanics, the set of coarse grained observables A has

a perspective on the underlying quantum state with the Heisenberg cut identified with the

resolution scale of the observables. Like the conventional Copenhagen interpretation, the

perspective of A involves a kind of stochastic dynamics, but unlike the conventional Copen-

hagen interpretation there is nothing ad hoc about its definition. In particular, the Born rule

will emerge approximately in realistic situations with efficient measuring devices and state

vector reduction will be seen to be a pragmatic—but ultimately unnecessary—piece of book

keeping that is performed locally on the state vector.

It is a key idea of our approach that although the microscopic state of the system is the

state vector |Ψ〉 the latter is not directly the macrostate of a system. This is very natural from

the perspective of both QFT and quantum SM:

1. In QFT the macroscopic, or IR, state of a system is effectively determined by the corre-

lation functions of the low momentum, or coarse grained, operators 〈Ψ|On1
· · · Onp |Ψ〉.

2. In quantum statistical mechanics, the properties of equilibration and thermalization are

are properties of the expectation values of coarse grained observables 〈Ψ|On|Ψ〉. In

particular, they are not properties of the underlying state vector that does not equilibrate
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or thermalize itself.6

This paper is organized as follows. In section 2, we set out the main features of the

emergent Copenhagen interpretation along with a limited commentary. Later sections expand

upon this discussion beginning in section 3 which addresses the definition of the quantum

microstates in detail. This is followed up in section 4 by a discussion of the stochastic pro-

cess that controls the dynamics of the quantum microstates. It is important to show that the

stochastic process is local in order to ensure that the formalism is causal. In section 5 we

show how the formalism applies to a simple quantum system consisting of a particle moving

in one dimension. Simple though it is, this example draws out some important details. A

crude model of measurement is then described in section 6. This model is not supposed to

be realistic but is simple enough to see how the proposal works in practice. In section 7, we

show how the formalism produces a description of the EPR thought experiment using qubits

that involves only local interactions between the qubits and the measuring devices: there

is no quantum non-locality. Section 8 describes how the formalism has implications for the

quantum mechanical underpinning of classical statistic mechanics. Finally, in section 9, we

draw some conclusions.

2 The Emergent Copenhagen Interpretation

In this section, we summarize the three key elements of the emergent Copenhagen interpre-

tation previously introduced in [19–21] but here generalized. More detail in given in the

following sections, particularly 3 and 4.

1. The underlying laws of quantum mechanics hold unchanged: in other words, the underlying

state |Ψ〉 evolves according to the Schrödinger equation

H|Ψ〉 = ih̄
d

dt
|Ψ〉 . (2.1)

It is possible to relax the condition of the system having a pure state with the generaliza-

tion to mixed states described in appendix A.

2. The stochastic element that we observe of quantum system arises from the way the underlying

quantum system interacts with other systems. This involves defining a set of probes in the form

of coarse grained observables A = {On} that describe the potential macroscopic interactions of

6It is worth pointing out, and discussed at further length in section 8, that the idea of defining the effective

state of a system through the expectation values of a set of coarse grained observables plays an important rôle

in quantum approaches to SM going back to von Neumann [4].
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the system with other systems. At time t, the state that is actually realized, from the point

of view of the set A, i.e. the macrostate, is encoded in the expectation values 〈Ψi(t)|On|Ψi(t)〉,
n = 1, 2, . . . , dimA, where |Ψi(t)〉 is one of the set of quantum microstates M = {|Ψj〉} that is

realized at time t. These are a discrete set of orthonormal states (defined fully in section 3) that

depend implicitly on both |Ψ〉 and A with the property that the expectation values of operators in

the set A are effectively captured by an ensemble:

〈Ψ|On|Ψ〉 =
dimM

∑
i=1

|ci|2〈Ψi|On|Ψi〉 , ∀ On ∈ A , (2.2)

that has maximal entropy and whose probabilities satisfy the “microscopic Born rule”

|ci|2 =
∣

∣〈Ψi|Ψ〉
∣

∣

2
. (2.3)

Defining the set of observables A and the set of quantum microstates M will form the

subject of section 3. In the simplest case, A contains a single observable O and then the set

M consists of the eigenstates of O that appear in the expansion of |Ψ〉. However, in general

realistic sets A will consist of coarse grained observables in some local region of space that

describe the possible macroscopic interactions of the system with other macroscopic systems.

Our approach incorporates the notion of observer complementarity implicit in the choice

of the set of observables A: different sets define different perspectives.7 The question that

naturally arises is whether this introduces a kind of subjectivity into the approach: in other

words, is the choice of the set A determined or is it arbitrary? To add to the discussion in

section 1, clearly there is some freedom to choose A, however, this kind of non-uniqueness is

familiar in physics. If we want to investigate phenomena of a system at a certain length scale

the theory should be couched in terms of a set of relevant observables that are determined by

the possible probes, or interactions with external systems, at that scale. The choice of scale is

subjective but the details of the effective theory relevant at that scale is not. Since we want

to investigate how a classical world can emerge from quantum mechanics the relevant scale

is macroscopic and A are a set of sub-macroscopically coarse grained observables that are

relevant for describing macroscopic interactions. There will be some some residual freedom

in the choice of A and the coarse graining scale—the Heisenberg cut—but we expect that the

macroscopic predictions will be insensitive to changing this scale, in direct analogy to the

insensitivity of the IR limit of effective QFT to changing the Wilsonian cut off or the way the

observables are actually coarse grained.

7The fact that perspective plays an important rôle in quantum mechanics is implicit in the Copenhagen in-

terpretation: local observers reduce the state vector according to the results of local measurements. It is also

important for quantum approaches to statistical mechanics, where phenomena like equilibration and thermal-

ization happen relative to a choice of macroscopic coarse grained observables.
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The expression (2.2) for the expectation values of operators in the set A in the state |Ψ〉
imply that they can be interpreted as a statistical ensemble of the quantum microstates with

probabilities |ci|2. The fact that the probabilities equal |〈Ψi |Ψ〉|2 is a statement of what we

call the microscopic Born rule. It will be seen to be crucial to derive the Born rule itself in a

measurement scenario.

3. The actual evolution of the system from the perspective of the set of observables A is encoded in

the expectation values 〈Ψi(t)|On|Ψi(t)〉, ∀ On ∈ A, for a sequence of quantum microstates |Ψi(t)〉
related by discontinuous transitions; e.g.

i(t) =

i2 t < t1

i4 t1 < t < t2

i1 t2 < t < t3

· · · |Ψi1〉
|Ψi2〉
|Ψi3〉
|Ψi4〉

t1 t2 t3

described by a continuous time Markov chain with transition rates for |Ψj〉 → |Ψi〉, i 6= j,

Tij = max
(

− 2

h̄
Im
[ ci

cj
〈Ψj|H|Ψi〉

]

, 0
)

. (2.4)

The macrostate of the system is associated to the macroscopic time averages of 〈Ψi(t)|On|Ψi(t)〉.

The stochastic process defined by the transition rates (2.4) allows only one way transitions

between each pair of states, i.e. if |Ψi〉 → |Ψj〉 has a non-vanishing rate then the reverse

|Ψj〉 → |Ψi〉 has a vanishing rate, and vice-versa.

The transition rates (2.4) ensure that the stochastic process is compatible with the Schrödin-

ger equation and microscopic Born rule in the sense that if pi|j(t, t′) is the integrated transition

probability that state |Ψj(t′)〉 evolves via the process to |Ψi(t)〉:

|ci(t)|2 = ∑
j

pi|j(t, t′)|cj(t
′)|2

|Ψ(t)〉 = ∑
i

ci(t)|Ψi〉 |Ψ(t′)〉 = ∑
i

ci(t
′)|Ψi〉

H|Ψ〉 = ih̄
d

dt
|Ψ〉

(2.5)

where the time dependence of ci(t) follows implicitly from underlying Schrödinger equation

(2.1). It is interesting that, in our context, it is the distribution |ci(t)|2 that is fundamental

while the stochastic process is slave to it, rather than the more conventional situation where

the transition rates would given and one would have to solve (2.5) for the |ci(t)|2. The result
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(2.5) means that, if the quantum microstates were distributed with probabilities |ci(t
′)|2 at

time t′, then they will distributed with probabilities |ci(t)|2 at all later times t > t′. It might

seem artificial to take this as an initial condition, after all the system really is, from the per-

spective of A, has expectation values 〈Ψi(t′)|On|Ψi(t′)〉 associated to a particular microstate

at time t′. However, if the system is in equilibrium and the process is ergodic, then the |ci|2
are approximately time independent and after a suitable time, pi|j(t, t′) becomes effectively

independent of j, i.e. the process forgets its starting state. In this situation, |ci(t)|2 does be-

come interpreted as the probability that the quantum microstate is |Ψi(t)〉 at time t and the

expectation values calculated from long time averages of the stochastic process are equal the

underlying expectation value.

On the other hand, it is important also that in other situations ergodicity of the process can

be broken, or partially broken, in order that Newton’s laws can emerge and the measurement

problem can be solved. There are three kinds of behaviour that are needed to successfully

account for the classical limit of macro-systems:

1. Deterministic: this occurs when the matrix elements 〈Ψi|H|Ψj〉 are vanishingly small which

can be expected when the quantum microstates are macroscopically distinct. In this case, over

realistic macroscopic time scales the ergodicity of the stochastic process is broken. The possible

stochastic trajectories then localize around the deterministic trajectories of classical mechanics.

2. Stochastic: this occurs when the matrix elements 〈Ψi|H|Ψj〉 are generic and the stochastic pro-

cess is ergodic. This is exactly the situation needed to describe the thermal properties of macroscopic

systems.

3. Quantum measurement: (a mixture of 1 and 2) during a measurement on a microscopic

quantum system, the final state of the macroscopic measuring device splits up into subsets of quan-

tum microstates Ea ⊂ M for which the matrix elements 〈Ψi |H|Ψj〉 with |Ψi〉 ∈ Ea and |Ψj〉 ∈ Eb,

for a 6= b, are vanishing small because the quantum microstates in different subsets are macroscop-

ically distinct. The subsets Ea become ergodically disjoint and therefore a definite measurement

outcome occurs depending on which of the ergodic subsets the system lies in. In this context, the

reduction of the state vector to the ergodic component corresponding to the measurement outcome

that is actually realized,

∑
|Ψi〉∈M

ci|Ψi〉 −→ ∑
|Ψj〉∈Eb

cj|Ψj〉 ,
(2.6)

is just an efficient piece of book keeping to reflect the fact that over macroscopic time scales T the

integrated probabilities pi|j(t + T, t), for |Ψj〉 ∈ Eb to |Ψi〉 ∈ Ea, a 6= b, are vanishingly small.
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3 Quantum Microstates

In this section, we define the set of quantum microstates M = {|Ψi〉} that are key for our ap-

proach. It is important to recognize that these states depend implicitly on both the underlying

quantum state |Ψ〉 and the set of observables A.

Following the classic work of Jaynes [23], if we have incomplete knowledge of an un-

derlying quantum state |Ψ〉 in the form of the expectation values of a set of observables

〈Ψ|On|Ψ〉, On ∈ A, then the most unbiased description of the state is the density operator ρ

with

〈Ψ|On|Ψ〉 = Tr
(

ρOn

)

, ∀ On ∈ A , (3.1)

which maximizes the von Neumann entropy

S = − Tr
(

ρ log ρ
)

, (3.2)

subject to the constraints (3.1). In a sense, we can view ρ as describing an ensemble of its

eigenstates |Ψi〉,

ρ = ∑
i

|ci|2|Ψi〉〈Ψi | , (3.3)

with the eigenvalues |ci|2 interpreted as probabilities. In the following, we will make this

ensemble interpretation precise and will find that it emerges as the macrostate of a system in

thermal equilibrium.

There are, of course, many density operators that can reproduce the expectation values

of a set of observables A, but the maximal entropy requirement picks out a unique one. We

will make a refinement of this notion, by adding an additional constraint that we call the

microscopic Born rule. This leads us to propose the definition of the set of quantum microstates

M = {|Ψi〉}:

1. Microscopic Born rule: for each observable On ∈ A

〈Ψ|On|Ψ〉 = ∑
i

|ci|2〈Ψi|On|Ψi〉 , ci = 〈Ψi|Ψ〉 . (3.4)

2. Non-degeneracy: for every pair of states |Ψk〉 and |Ψl〉, there exists at least one On ∈ A for

which

〈Ψi|On|Ψj〉 6= µnδij , i, j ∈ {k, l} . (3.5)

– 11 –



If the contrary were true then we simply reduce the dimension of M by replacing the pair |Ψk〉 and

|Ψl〉 with the, suitably normalized, linear combination

ck|Ψk〉+ cl|Ψl〉 . (3.6)

This condition, ensures that the quantum microstates are distinguishable with respect to the set of

observables A and it acts to limit the size of M.

3. Maximal entropy: subject to the conditions above, the coarse grained density operator has

maximal entropy

S = − Tr
(

ρ log ρ
)

= −∑
i

|ci|2 log |ci|2 . (3.7)

This condition, roughly speaking, acts to make the set M as big as possible subject to the other

constraints.

As an example, suppose that A consists of a complete set of observables acting on a

tensor product factor HA of a Hilbert space H = HA ⊗ HE. In this case, discussed fully

as Example 2 in appendix B, the quantum microstates |Ψi〉 are the states appearing in the

Schmidt decomposition

|Ψ〉 = ∑
i

ci|Ψi〉 , |Ψi〉 = |ψi〉 ⊗ |ψ̃i〉 . (3.8)

These states form the basis for the reduced density operator formalism developed in [19–21].8

3.1 Realistic sets of observables

To start with, let us suppose that A to consists of a set of commuting operators. In this case,

the quantum microstates are simply the mutual eigenstates that appear in the decomposi-

tion of |Ψ〉. It is clear that the microscopic Born rule (3.4) is satisfied. More precisely, the

non-degeneracy condition (3.5), ensures that there is only one quantum microstate for each

degenerate eigenspace Hi ⊂ H. The maximal entropy condition requires that each each de-

generate eigenspace contributes separately.

In order to describe a macro-system, one expects that the set of observables A contains

coarse grained versions of the microscopic observables. Each such observable O has a finite

working range ∆(O) and a finite resolution δO. We can define a set projection operators

8In those works, the states |ψi〉 of HA were called ontic states and |ψ̃i〉 their mirrors. Here, given the more

general context and the relation to statistical mechanics, we prefer the more general term quantum microstate for

|Ψi〉 the states of HA ⊗HE.
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associated to the intervals [λi−1, λi] which cover the working range of O with λi = λ0 + iδO,

i = 1, 2, . . . , N, where NδO = ∆(O), defined as

Π
(O)
i = ∑

λa∈[λi−1,λi]

|ψa〉〈ψa| , Π
(O)
i Π

(O)
j = δijΠ

(O)
i , (3.9)

where |ψa〉 and λa are the eigenstates and eigenvalues of O. For operators with continuous

spectra, the sum is replaced by an integral. One can then define a class of coarse grained ob-

servables by taking linear combinations of these projection operators ∑i αiΠ
(O)
i , for example

a coarse grained version of O can be written

Oc.g =
N

∑
i=1

(

λ0 + (i − 1
2)δO

)

Π
(O)
i . (3.10)

These operators have a discrete spectrum and are generally highly degenerate. A quantum

microstate is associated to each degenerate subspace Hi of the form

|Ψi〉 = ∑
λa∈[λi−1,λi]

fia|ψa〉 .
(3.11)

for coefficients fia determined by the state |Ψ〉.
Of course, we expect that the set A will contain many observables On and then the issue

becomes how to treat the situation where the microscopic observables do not commute. If one

builds the coarse grained observables out of the projection operators defined above then these

projection operators will not commute. As an example, consider the position and momentum

of a particle with associated projection operators

Π
(x)
i =

∫ xi

xi−1

dx |x〉〈x| , Π
(x)
i Π

(x)
j = δijΠ

(x)
i , (3.12)

for xi = x0 + iδx, and

Π
(p)
i =

∫ pi

pi−1

dp |p〉〈p| , Π
(p)
i Π

(p)
j = δijΠ

(p)
i , (3.13)

with pi = p0 + iδp. These projection operators do not commute even though in the realistic

limit δxδp ≫ h̄, the lack of commutation is small.

In our approach there is nothing to prevent us building coarse grained observables on

these projection operators leading to a non-abelian set A, as we describe in appendix B. Al-

though this creates no conceptual difficulties, it does create technical difficulties in finding ex-

plicit expression for the quantum microstates. However, we can use the freedom that we have

in defining the observables to slightly deform the operators Π
(x)
i and Π

(p)
j to get new coarse
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grained projection operators which do commute. Intuitively one expects that this should be

possible when the volume of the cell in phase space δxδp ≫ h̄. The idea of deforming the

position and momentum operators so that they commute, but which are suitably close to the

original operators, goes back to von Neumann [4, 5]. For example, Halliwell [26] has made an

explicit construction of operators which are effectively deformations of our phase space pro-

jectors which do commute and are still projectors and so would be suitable for our purposes.9

If we now take A to consist of the deformed operators the quantum microstates are just the

simultaneous eigenstates. These eigenstates are very accurately—but not exactly—localised

in the cell [xi−1, xi] ∩ [pj−1, pj] in phase space when δxδp ≫ h̄. It is reasonable to expect that

working with a slightly different set of observables A will not lead to any significant differ-

ences in the resulting analysis.10

The same kind of deformation can be generalized to any non-abelian set A where the non-

commutativity is small and so it is sufficient to assume that the set of observables A needed

to describe the classical limit of a quantum system are abelian.

3.2 Local observables

In general, we expect that A contains coarse-grained observables that are localized in some

compact region of space A. To reflect this, the Hilbert space has a tensor product decomposi-

tion H = HA ⊗HE. The set of accessible operators A act locally on the HA factor, i.e. are of

the form On ⊗ 1E. If there were no coarse graining, so that A were a complete set of observ-

ables on HA, then this would correspond to Example 2 in appendix B. More realistically we

expect some amount of coarse graining so that the set A is not complete. In this more realistic

situation, therefore, the set of observables A has both a ultra-violet cut off, the scale of the

coarse graining, and an infra red cut off, the scale of the compact region in space.

Taking A to consist of a set of commuting observables, the quantum microstates will

generally be entangled with states of the environment, i.e. of the form

|Ψ〉 =
N

∑
i=1

ci|Ψi〉 , |Ψi〉 = ∑
a

|ψia〉 ⊗ |ψ̃ia〉 , (3.14)

where |ψia〉 are the orthonormal eigenstates of the abelian set A with a = 1, 2, . . . , dimHi.
11

These states look superficially like the Schmidt states (3.8), however, there is no requirement

9It is important that the projectors of Halliwell are not exhaustive on phase space to avoid the consequences

of the Balian-Low theorem. However, this is not a restriction for us because there is no requirement that A is

generated by an exhaustive set of projection operators. It is more natural for us that A consists of operators that

only cover a local region of phase space.
10This kind of freedom is familiar in effective QFT. For example, one can define coarse grained observables by

defining the theory on a lattice or one can work in the continuum and cut off Fourier modes at high frequency.

The IR behaviour of the QFT is insensitive to these differences in regularization.
11For the continuous spectrum case the sum is replaced by an integral.
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here that the states |ψ̃ia〉 are orthogonal. The only constraint on them is the normalization

condition

∑
a

〈ψ̃ia|ψ̃ia〉 = 1 . (3.15)

4 The Stochastic Process and Ergodicity

In this section we discuss in more detail the stochastic process defined by the transition rates

(2.4). The first point, amplifying what we said earlier in section 2, the process is consistent

with the Schrödinger equation in the sense that if we temporarily were to interpret |ci|2 as

the probability that the system from the point of view of A is in the quantum microstate |Ψi〉
at time t, then the stochastic process preserves this interpretation at later time, as in (2.5). So

viewing the quantum microstates as an ensemble with probabilities |ci|2 then the ensemble

average over the quantum microstates evolving according to the stochastic process equals the

ordinary expectation value for any observable in A.

From the Schrödinger equation, we find

d|ci|2
dt

= −2

h̄ ∑
j 6=i

Im
[

cic
∗
j 〈Ψj|

(

H − ih̄
d

dt

)

|Ψi〉
]

. (4.1)

In realistic cases, the observables A are time independent and it follows that

〈Ψj|
d

dt
|Ψi〉 = 0 , i 6= j . (4.2)

The generalization to the time dependent case is described in appendix C. Equation (4.1) can

be written in the form of a master equation of a stochastic process

d|ci|2
dt

= ∑
j 6=i

[

Tij |cj|2 − Tji |ci|2
]

, (4.3)

where Tij is the transition rate for |Ψj〉 → |Ψi〉.
Our task is to solve (4.3) given the known time dependence of ci(t) that follow from the

Schrödinger equation in (4.1). Note that in the theory of stochastic processes, one would

usually be presented with the problem the other way around, i.e. given the transition rates

Tij one would have to solve for the instantaneous probabilities |ci(t)|2. There is a very natural
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solution for the transition rates of the form12

Tij = max
(

− 2

h̄
Im
[ ci

cj
〈Ψj|H|Ψi〉

]

, 0
)

, (4.4)

which is the expression quoted in (2.4). Note that if Tij is non-vanishing, then Tji = 0 and

vice-versa. The form makes clear that it is the mis-alignment between the energy eigenstate

basis and the quantum microstate basis that drives the transitions.

The transition probabilities (4.4) are actually not the most general set of probabilities that

are consistent with (4.1). The freedom involves Tij → Tij + Ωij/|cj|2 for any symmetric Ωij >

0. However, it is our hypothesis that Ωij = 0 because Tij is then not only the simplest and

most natural choice depending as it does on just the matrix elements between the initial and

final quantum microstates 〈Ψj|H|Ψi〉 but also the choice has some important implications for

the ergodicity of the stochastic process that will be important for obtaining a sensible classical

limit.13

4.1 Ergodicity and the classical limit

The key feature of the stochastic process is that it preserves the equality of the ensemble

average with respect to the coarse grained density operator ρ with the expectation value (2.2).

The question is how is the quantum expectation value 〈Ψ|O|Ψ〉, related to the time sequence

of expectation values 〈Ψi(t)|On|Ψi(t)〉 of the stochastic process? The situation here is very

similar to the relation between ensemble averages and long time averages in classical SM.

The issue rests on the ergodicity of the stochastic process. In the ergodic situation ensemble

averages capture long time averages. In classical SM, it is generally very difficult to establish

ergodicity because classical mechanics is deterministic and classical motion corresponds to a

trajectory in phase phase. It is then a delicate matter to argue that the trajectory samples phase

space in an ergodic way. The present quantum situation is much simpler, partly because

the quantum microstates are discrete, and, partly because they follow stochastic dynamics.

12It might be thought unnecessary to define the stochastic process as a continuous process in time and indeed

in earlier work [19, 20] we defined the process with some temporal cut off chosen to be much smaller than any

characteristic time scales in the problem. This was done to avoid a problem with “crossovers” discussed in detail

in [19, 20]. But the problem with crossovers only arises from taking an unrealistic choice for the observables as

in Example 2 in appendix B. Realistic choices as described in section 3.1 do not suffer from this problem. So

in the end whether to take a continuous or discrete version of the stochastic process is simply a matter of

computational expedience.
13The transition rates (4.4) are identical to written down by Bell in his theory of beables [24] while the gen-

eralization with time dependent |Ψi〉 described in appendix C was considered by Bacciagaluppi and Dickson

[25]. In Bell’s case, the |Ψi〉 were taken to be eigenstates of some set of preferred observables, the beables. In our

approach, the set of observables is not fixed once and for all in some global way, rather it is dictated locally by

the way the quantum system interacts macroscopically with it surroundings.
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Moreover, the dynamics is a conceptually simple continuous time Markov chain for which

ergodicity is—conceptually at least—straightforward to establish.

The issue of ergodicity, when it holds and when it is broken, is the key to understanding

how a classical world can emerge from quantum mechanics in our proposal. When the sys-

tem is in thermal equilibrium, the expectation values 〈Ψ|On|Ψ〉 are approximately constant.

We then argue in section 8 that the probabilities |ci(t)|2 are also approximately constant, a

fact that actually follows from von Neumann’s quantum ergodic theorem [4]. The stochastic

process will effectively be ergodic over a long time T if the integrated transition probabilities

pi|j(t+ T, t) become independent of j so that memory of the initial state is lost. It follows from

(2.5) that |ci|2 is precisely the probability that the system has expectation values 〈Ψi|On|Ψi〉.
In particular, from a macroscopic point of view which involves a long time average compared

with microscopic time scales, the long time average is captured by the ensemble average over

the quantum microstates M with probabilities |ci|2:

Equilibrium:
1

T

∫ T

0
dt 〈Ψi(t)|On|Ψi(t)〉 ≈ ∑

i

|ci|2〈Ψi|On|Ψi〉 = 〈Ψ|On|Ψ〉 , (4.5)

for large enough T. In the above, the last equality is the microscopic Born rule (3.4). We will

investigate ergodicity in the context of SM more fully in section 8.

However, we do not expect that the stochastic process of a system will always be ergodic;

indeed if it were so then the classical limit would not involve any deterministic dynamics.

So the issue of ergodicity breaking is key to understanding how macroscopic systems can

obey Newton’s laws. Ergodicity breaking occurs when pairs of quantum microstates |Ψi〉
and |Ψj〉 are macroscopically distinct because it would then follow that the matrix elements

〈Ψj|H|Ψi〉 are vanishingly small and so the transition rate (2.4) between the two states and the

integrated probability pi|j(t, t′) would be hugely suppressed and ergodicity over macroscopic

time scales would inevitably be broken. For any given initial quantum microstate |Ψi〉, the

stochastic process would then effectively only explore a more limited ergodic subspace of M.

This subspace consists of quantum microstates that are tightly clustered around a classical

trajectory, as we illustrate in section 5.

A macroscopic object will typically have elements of ergodic and non-ergodic behaviour:

the position of its moving parts in space will involve a breaking of ergodicity whereas, at

the same time, it will typically be in thermal equilibrium, behaviour that involves an ergodic

component corresponding to the appropriate thermal ensemble.
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4.2 Locality

The issue of locality in quantum mechanics is full of misunderstandings.14 It cannot be over

emphasised that quantum mechanics is a perfectly local theory. This is particular clear in

QFT where locality and causality are built into the fabric of the formalism: interaction terms

in the Hamiltonian are spatially local; and causality is manifested in the fact that space-like

separated operators commute.

The worry might be that the stochastic process we have introduced some non-locality.

We need to show that the stochastic dynamics associated to a set of observables A = {On}
that act on spatially localized degrees of freedom is only driven by interactions that are local

to these degrees of freedom. In the case of a spatially localized subsystem A, we can expect

the Hilbert space to factorize H = HA ⊗HE with the observables acting as On ⊗ 1E and a

Hamiltonian with the form

H = HA ⊗ 1E + 1A ⊗ HE + Hint . (4.6)

We will consider the physically realistic situation where A consists of a set of commuting

operators acting on HA factor described in section 3.2. In this case, the quantum microstates

on the total system take the form (3.14), where the states |ψia〉 are the simultaneous eigenstates

of the commuting set A. The key point is that the set of states {|ψia〉} are orthogonal while

the set {|ψ̃ia〉} are not. Therefore,

〈Ψi|1A ⊗ HE|Ψj〉 = 0 , i 6= j , (4.7)

on account of the fact that 〈ψia|ψjb〉 = δijδab; hence, the transition rates take the form

Tij = max
(

− 2

h̄
Im
[ ci

cj
〈Ψj|

{

HA ⊗ 1E + Hint

}

|Ψi〉
]

, 0
)

. (4.8)

It follows that the stochastic process depends on the internal dynamics of the subspace A,

via HA, as well as the local interactions of A with the environment E, via Hint. Importantly,

though, the dynamics of the environment involving HE are irrelevant. This proves that the

stochastic dynamics is local to the degrees of freedom on which the observables A act.

14We refer to [27] for an insightful discussion of these kinds of misunderstandings. In particular, quantum

mechanics famously violates Bell’s theorem but is completely consistent with experiments. So the theorem

holds for theories that are not realized in nature. It is hard to see that it has any implications for quantum

mechanics itself and, in particular, it most certainly does not imply that quantum mechanics is non-local. All

“delayed choice” type experiments designed, apparently, to highlight the spooky, non-local nature of quantum

mechanics simply reveal the correlations between entangled states: there is no non-locality.
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4.3 Patching together a classical world

The discussion above has implications for the case when the set of operators A∪B where the

subsets consists of local observables acting on spatially separated degrees of freedom. The

question is how the perspectives of the system provided individually by A and B are related

to the global perspective provided by A ∪B. If the macroscopic world is to be classical then

it must be the different views can be integrated together, at least to high precision: a classical

world is, after all, an approximation.

The first point is that the quantum microstates of A ∪B can naturally be given a pair of

labels |Ψi1i2〉 to reflect the decomposition of A ∪ B. So the label i is split into the pair i1, i2
which labels the eigenstates of the sets A and B, respectively. The quantum microstates of the

individual localized sets A or B are given by the partial sums

ci1 |Ψi1〉 = ∑
i2

ci1i2 |Ψi1i2〉 , ci2 |Ψi2〉 = ∑
i1

ci1i2 |Ψi1i2〉 , (4.9)

with

|ci1 |2 = ∑
i2

|ci1i2 |2 , |ci2 |2 = ∑
i1

|ci1i2 |2 . (4.10)

Notice that the partial sums in (4.9) are forced by the non-degeneracy condition (3.5) because

〈Ψi1i2 |On ⊗ 1B|Ψi1 j2〉 = µnδi2 j2 , ∀On ∈ A . (4.11)

When ci1i2 6= ci1ci2 the state has entanglement between the two spatially separated regions.

Entanglement could occur if the two subsystems were the two measuring devices in an EPR

type experiment as we describe in section 7. In this section we will focus on the non-entangled

situation.

The stochastic process of the total set A∪B is just a refinement of the individual stochastic

processes of the two subsets with

T
(A)
i1 j1

= ∑
i2,j2

T
(A∪B)
i1i2,j1 j2

∣

∣

∣

cj1 j2

cj1

∣

∣

∣

2
, T

(B)
i2 j2

= ∑
i1,j1

T
(A∪B)
i1i2,j1 j2

∣

∣

∣

cj1 j2

cj2

∣

∣

∣

2
. (4.12)

In order that the two stochastic processes associated to A and B are genuinely indepen-

dent requires that:

1. The only non-vanishing transitions of the global system are |Ψj1i2〉 → |Ψi1i2〉 and |Ψi1 j2〉 →
|Ψi1i2〉.

2. The rate for |Ψj1i2〉 → |Ψi1i2〉 is independent of i2 and that for |Ψi1 j2〉 → |Ψi1i2〉 is inde-

pendent of i1.15

15This is violated in the entangled situation discussed in section 7 due to the correlations between the states.
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These conditions together imply that the only non-vanishing transition rates of the total sys-

tem are

T
(A∪B)
i1i2,j1i2

= T
(A)
i1 j1

, T
(A∪B)
i1i2,i1 j2

= T
(B)
i2 j2

. (4.13)

Recalling the formula for the transition rates (4.4), the first condition above follows from the

fact that realistic Hamiltonians only couple spatially local degrees of freedom and so cannot

drive transitions at two spatially separated regions simultaneously; hence

〈Ψi1i2 |H|Ψj1 j2〉 = 0 if i1 6= j1 and i2 6= j2 . (4.14)

The second condition above is more exacting and is obviously violated in the case where the

systems are entangled due to the correlations. In the non-entangled case, let us consider the

more detailed form of the quantum microstates. Let us take the Hilbert space to have the

factorized form H = H1 ⊗ HE ⊗ H2 to reflect the spatial locality of the observables with

elements of A acting as O ⊗ 1E ⊗ 12 and elements of B as 11 ⊗ 1E ⊗O. The subsystem HE is

the environment. We can write the quantum microstates of A ∪B, generalizing (3.14), more

concretely as

|Ψi1i2〉 = ∑
a1a2

|ψi1a1
〉 ⊗ |ψ̃i1a1,i2a2

〉 ⊗ |φi2a2
〉 , (4.15)

which shows that the subsystems are generally entangled with the environment. Note that

the sets {|ψi1a1
〉} and {|φi2a2

〉} are orthonormal but the set {|ψ̃i1a1,i2a2
〉} is not. So even though

H cannot couple degrees of freedom in H1 and H2 directly, the question is whether it can

couple degrees of freedom in H1 and those in the environment that are entangled with those

in H2, or vice-versa?

Any such coupling must be very small because, by locality, degrees of freedom in H1

can only couple locally with the environment and the latter is a much bigger system than the

subsystems H1 and H2 and it is unlikely the degrees of freedom of the environment that are

entangled with H2 are also spatially local to H1. So, for realistic systems, to a high degree of

accuracy, the second condition above is likely fulfilled and the stochastic process associated

to A∪B consists of two independent processes A and B and the perspectives of A and B can

be integrated into the global view A∪B.

We will discuss more aspects of situation with two sets of spatially separated observables

with entanglement in section 7.

5 A Particle

In this section, we develop our formalism for the case of a particle moving in one dimension,

although the generalization to more dimensions is then obvious. In this crude model, we will
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simply ignore the internal structure of the particle and take it to be a quantum particle with

a wave function Ψ(x). We will also simplify the situation even further by taking A is consist

of a suitably coarse grained definition of the position operator only. The momentum will be

added in later.

The observables consist of the set A = {Π
(x)
i } defined in (3.12). In this case, the observ-

ables are mutually commuting and so the quantum microstates are simultaneous eigenstates.

More precisely, the eigenstates have the degenerate eigenspaces that are are spanned by the

eigenstates |x〉 in each interval x ∈ [xi−1, xi], with

Π
(x)
i |x〉 =

{

|x〉 x ∈ [xi−1, xi] ,

0 otherwise .
(5.1)

The quantum microstates follow from the decomposition of |Ψ〉:

|Ψ〉 = ∑
i

ci|Ψi〉 , |Ψi〉 =
1

ci

∫ xi

xi−1

dx Ψ(x)|x〉 , (5.2)

with

|ci|2 =
∫ xi

xi−1

dx
∣

∣Ψ(x)
∣

∣

2
. (5.3)

The quantum microstates in this case, are spatially localized an the interval [xi−1, xi] and

represent states that have a good classical interpretation on scales ≫ δx.

5.1 The stochastic process

The transition rates are given in (4.4) and they have been calculated by Sudbery in [28] whose

calculation we repeat. We note that

cjΨj(x) =
(

θ(x − xj−1)− θ(x − xj)
)

Ψ(x) (5.4)

and therefore the matrix elements 〈Ψj|H|Ψi〉 are only non-vanishing if i = j ± 1. Taking

i = j + 1, we have

Im
[cj+1

cj
〈Ψj|H|Ψj+1〉

]

= − h̄2

M|cj|2
∫

dx θ(x − xj)δ(x − xj) Im
[

Ψ∗ ∂Ψ

∂x

]

, (5.5)

with a similar expression for i = j − 1. Evaluating the integral16 gives

Im
[ ci

cj
〈Ψj|H|Ψi〉

]

=
h̄2

2M|cj|2
Im
(

Ψ∗ ∂Ψ

∂x

∣

∣

∣

x=xj−1

δi,j−1 − Ψ∗ ∂Ψ

∂x

∣

∣

∣

x=xj

δi,j+1

)

. (5.6)

16Using
∫

dx θ(x − xj)δ(x − xj) f (x) = 1
2 f (xj).
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So the non-vanishing transitions rates involve |Ψj〉 → |Ψj±1〉 with [28]

Tj±1,j = max

(

± h̄

M|cj|2
Im
[

Ψ∗ ∂Ψ

∂x

∣

∣

∣

x=xj,xj−1

]

, 0

)

. (5.7)

The expression in the brackets here is, of course, just the Schrödinger probability current eval-

uated at the interface between the jth cell and one of adjacent cells divided by the probability

to be jth cell. The transitions only go in the direction of the current.

We can now investigate this process in certain interesting limits. An important issue to

consider is the relative magnitude of the width of the wave function of the particle ∆ and the

resolution scale δx. For a macroscopic object, we expect that the wave function will be very

narrow compared with the coarse graining scale δx ≫ ∆. We will consider this case first.

However, it is also interesting to consider situations where the wave function is smooth on

the resolution scale δx ≪ ∆.

5.2 Narrow wave function δx ≫ ∆

This limit, which is relevant to a macroscopic particle, is very simple because if at some time

t1 the centre of the wave packet lies within a region [xi−1, xi], the quantum microstate |Ψi〉
has a probability that is |ci(t1)|2 ≈ 1. Essentially in this case, the underlying state |Ψ〉 ≈ |Ψi〉
is the only quantum microstate that has any appreciable probability. The centre of wave

packet will, on account of Ehrenfest’s theorem, follow a classical trajectory x(t) and so as the

wave packet moves across into a neighbouring region [xi, xi+1], at, say time t2, the quantum

microstate changes to |Ψi+1〉 with a probability close to unity. It is clear, therefore, that with

a probability close to unity, the resulting sequence of quantum microstates just describes a

coarse graining of the classical trajectory; that is, at time t the microstate is |Ψi(t)〉 where i(t)

is determined by the condition x(t) ∈ [xi(t)−1, xi(t)]. This is illustrated in figure 2.

5.3 Smooth wave function δx ≪ ∆

The other limit, occurs when the width of the wave function is much greater than the resolu-

tion scale δx ≪ ∆. In this case, the resulting dynamics is fundamentally stochastic. However,

even in this case, if the wave function has the typical WKB form

Ψ(x) = R(x)eiS(x)/h̄ , (5.8)

then a classical trajectory emerges. In the semi-classical limit S(x), which is a smooth function

on macroscopic scales, is identified with the classical action of the particle and the velocity of

a classical trajectory is simply

v =
1

M

∂S

∂x
. (5.9)
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t1

t2

xi−1 xi xi+1

=⇒ pi+1|i(t2, t1) ≈ 1|ci(t1)|2 ≈ 1

|ci+1(t2)|2 ≈ 1

Figure 2. When the wave function is narrow compared with the resolution scale, the quantum mi-

crostate just follows the peak of |Ψ(x)|2 and the stochastic process effectively leads to deterministic

dynamics.

We are assuming that the amplitude R(x) is a smooth function on the scale δx. In this case,

the probabilities associated to the quantum microstates |Ψi〉 are |cj|2 ≈ R(xj)
2δx.

The transition rates (5.7) are exact but now we can use the form (5.8) for the wave function

and the approximation |cj|2 ≈ R(xj)
2δx. This yields the transition probabilities

Tj−1,j ≈
1

Mδx

∣

∣S′(xj)
∣

∣ , Tj+1,j = 0 if S′(xj) < 0 ,

Tj−1,j = 0 , Tj+1,j ≈
1

Mδx
S′(xj) if S′(xi) > 0 .

(5.10)

Given these transitions rates, it is clear that the stochastic process is quite simple: the particle

can hop from the interval [xj−1, xj] to a neighbouring one, depending on the sign of S′(xj).

Notice that h̄ has completely dropped out of the expression for Tij. In fact this stochastic pro-

cess of the type we have derived is identical to the one considered by Vink [29] whose starting

point and general approach is rather different,17 but whose analysis we can still borrow.

The question is whether the resulting stochastic process gives a behaviour for the position

that is recognizably classical. This does not seem at all obvious because classically there

should just be a single trajectory. What we will argue is that the stochastic trajectories are

clustered around the classical trajectory.

In order to investigate the process we introduce a small temporal cut off δt and then

investigate the process starting at, say x = xi over a time interval T which involves a large

17In Vink’s approach, the set up is rather different with the wave function being coarse grained on a spatial

lattice whose spacing is taken to zero at the end. In our approach, our coarse graining scale is the spatial

resolution scale which is kept finite.
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number N = T/δt of time steps, but is not too large, so that S′(xj) = vM, |i − j| < N, is

approximately constant and let us suppose v > 0. For each time step, we have must have

p ≡ pi+1,i =
v

δx
δt ≪ 1 , (5.11)

which can be achieved by having a small enough δt. After the N steps, the position xj with

j = k + i has a binomial probability distribution

(

N

k

)

pk(1 − p)N−k (5.12)

whose average position is

〈x〉 = xi + vT , (5.13)

which shows that v is, indeed, interpreted as the velocity of the average of the distribution.

The variance of the distribution is

〈x2〉 − 〈x〉2 = vTδx

(

1 − v

δx
δt
)

≈ Xδx , (5.14)

where X = vT is the distance moved in our small interval of time and we have used (5.11).

So for sub-macroscopic resolution δx the variance is small.

What we have shown here is that even when the wave function is wide compared with

the resolution a classical trajectory can emerge. This suggests that there should be a way to

relate the situation with a fixed wave function with different resolutions scales by changing

the Heisenberg cut.

5.4 Changing the Heisenberg cut

One could view the results of sections 5.2 and 5.3 as pertaining to a given wave packet with

fixed width but with a coarse and finer resolution scale δx, respectively. A coarser view of

the dynamics appears more deterministic than the finer view. The question then is, more

generally, how does the stochastic dynamics behave as one varies the Heisenberg cut. In the

present example, there is a simple way to do this which involves a kind of blocking trans-

formation that doubles the Heisenberg cut δ′x = 2δx. The new coarser description involves

projection operators

Π
(x)′
i = Π

(x)
2i−1 + Π

(x)
2i . (5.15)

It follows that the new quantum microstates are simply

c′i|Ψ′
i〉 = c2i−1|Ψ2i−1〉+ c2i|Ψ2i〉 . (5.16)
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where |c′i|2 = |c2i−1|2 + |c2i|2. The blocking transformation has a simple effect on the stochas-

tic dynamics; the transition rates of the new process are related to the old one via

T′
ij =

1

|c′j|2
(

T2i−1,2j−1|c2j−1|2 + T2i−1,2j|c2j|2 + T2i,2j−1|c2j−1|2 + T2i,2j|c2j|2
)

, (5.17)

Performing this kind of blocking transformation allows us to the relate the two distinct

regimes in sections 5.2 and 5.3.

Figure 3. The classical limit where the wave packet is much narrower than the size of the cells the

sequence of quantum microstates associated to cells in phase space just follows the expectation values

of x and p which Ehrenfest’s theorem implies is the classical trajectory.

5.5 Including the momentum

The simple model that we have described can only be partly correct because we have avoided

any mention of the particle’s momentum. Classically the particles state is specified by both a

position and momentum and so we need to consider enlarging A to include coarse grained

momentum operators.18

The wave function of a macroscopic object is expected to be narrow in both position and

momentum space compared with the resolution scales δx and δp and so there is only one

quantum microstate, the original state itself |Ψ〉, with a probability close to one. In this classi-

cal limit, the stochastic process becomes essentially deterministic and the stochastic trajectory

localises around a classical trajectory in phase space as illustrated in figure 3.

18In fact, without the momentum it would be possible for two apparently decoherent wave packets that cross

in space to interfere. This is because classical trajectories in configuration space can intersect. But once momen-

tum is includes the trajectories in phase space cannot intersect and these kind of interferences are excluded.
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6 Quantum Measurement

In this section, we consider a very simple measuring scenario to see how the formalism can

lead to definite macroscopically distinct outcomes with probabilities that are given by Born’s

rule (at least in the case of an efficient measuring device).

In the model, the total system includes a microscopic system that has an observable A that

we want to measure. Let |ψa〉 be the eigenstates of A and the initial state of the microscopic

system is ∑a λa|ξa〉. The system is coupled to a measuring device with a Hamiltonian that

ensures an evolution of the combined system of the form19

[

∑
a

λa|ξa〉
]

⊗ |ψ0〉 −→ ∑
a

λa|ξa(t)〉 ⊗ |ψa(t)〉 . (6.1)

Note that in general the states of the microscopic system will be changed as a result of the

interaction with the measuring device. The states |ξa(t)〉 remain normalized but are not nec-

essarily orthogonal.

The idea is that the states of the measuring device |ψa(t)〉 become macroscopically distinct

for t ≥ T. After this time a measurement could be said to have occurred. In our simple

model, we will suppose that the measuring device consists of a pointer with a position. So the

states of the measuring device that are entangled with microscopic system are wave functions

ψa(x, t). The idea is that the measuring device is designed in such a way that for t > T, each

component ψa(x, t) is a narrow wave packet peaked around a distinct position x(a). Note that

each component ψa(x, t) is separately normalized.

|Ψia
〉 |Ψib

〉 |Ψic
〉

ψa ψb ψc

xib−1 xib

Figure 4. The measurement scenario. In the final state, each measurement outcome corresponds to a

distinct quantum microstate which are ergodically disjoint.

19In the following, we have assumed that the measuring device is 100% efficient. Making the generalization

to a more realistic measuring device does not change the central conclusion that we come to below that definite

outcomes are obtained. However, the resulting probabilities will no longer be equal to |λa|2. So the derivation

of the usual Born rule relies on the fact that the measuring device is 100 % efficient.
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If we now apply our interpretation by using the coarse-grained position operators A =

{Π
(x)
i } as in section 5. At some time t > T, the quantum microstates are

|Ψi〉 =
1

ci

∫ xi

xi−1

dx ∑
a

λa|ξa(t)〉 ⊗ ψa(x, t)|x〉 , (6.2)

with

|ci|2 =
∫ xi

xi−1

dx ∑
ab

λ∗
a λb〈ξa(t)|ξb(t)〉ψa(x, t)∗ψb(x, t) . (6.3)

For the measuring device to be accurate, we need its spatial resolution scale δx to be

much smaller than the separation of x(a). It is also realistic to assume that the spatial reso-

lution scale δx is much larger than the width of the individual wave packets ψa(x, t). Given

these assumptions, it follows that |ci|2 is only appreciable if some x(a) ∈ [xi−1, xi], for some

particular i which we can call ia. So only the diagonal term a = b contributes in (6.3). Note

that only one x(a) can lie in any interval in which case, it follows for this interval that

|cia
|2 ≈ |λa|2 . (6.4)

Since the initial quantum microstate is unique, |λa|2 represents the probability that the quan-

tum microstate is |Ψia
〉 at time t > T. This amounts to a derivation of the usual Born rule. The

matching of the components of the underlying state to the quantum microstates is illustrated

in figure 4.

The last important point is that once the system is in the quantum microstate |Ψi〉 there

is only a minute probability for making a transition to a macroscopically distinct state |Ψj〉.
So it is the breaking of ergodicity that leads to distinct classical outcomes and hence solves

the measurement problem. The situation is illustrated in figure 5. At the end of the measure-

ment, from the point of view of A it is prudent to reduce the underlying state vector to the

component |ξa(t)〉 ⊗ ψa(x, t) that is actually realized as a quantum microstate.

7 EPR

In this section, we give an account of Bohm’s version [30, 31] of the classic thought experi-

ment of Einstein, Podolsky, and Rosen (EPR) [32]. Anticipating the result, we find that is no

non-locality or breakdown of causality, the experiment simply reveals the correlation of an

entangled state of two qubits.

In order to describe spin measurements on the qubits, we introduce a very simple mea-

suring device with three quantum microstates |A0〉 and |A±〉. In this simple model the quan-

tum microstates are actually the possible macrostates of the measuring device; in other words,
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interaction with
microscopic system ergodically disjoint

Figure 5. A picture of a quantum measurement in the phase space of a very simple measuring device

with one degree of freedom. The system follows a coarse graining of the classical trajectory. At the

moment of interaction with the microscopic system, the trajectory splits into several distinct trajecto-

ries that soon become ergodically disjoint. The measurement outcome is determined by which of the

disjoint trajectories the system ends up in.

BA
21

nz

Figure 6. The EPR-Bohm thought experiment. Two qubits in the entangled state |Φ〉 are produced at

the source and then recoil back-to-back towards 2 qubit detectors A and B designed to measure the

component of the spin along directions z and n, respectively. In our set up, we choose an inertial frame

for which the interaction between A and 1 happens before B and 2.

in order to focus on the essential details, we avoid the fact that, in reality, the measuring de-

vice is a complicated thermodynamic object with many degrees of freedom. The measuring

device is designed so that the solution of the Schrödinger equation for its interaction with a

qubit from an initial time t = 0 to a final time T is of the form

|A0〉 ⊗
(

c+|z+〉+ c−|z−〉
)

−→ c+|A+〉 ⊗ |z+〉+ c−|A−〉 ⊗ |z−〉 . (7.1)

The stochastic process associated to the observables of the measuring device yield integrated

probabilities

p+|0(T, 0) = |c+|2 , p−|0(T, 0) = |c−|2 . (7.2)

In this simple model, we can identify the quantum microstates in the final state with the

reduced state vectors of the Copenhagen interpretation. In a realistic measuring device, the

reduced state vector only emerges when the ergodic components in (2.6) become identifiable.

This happens in a macroscopically short time but is ultimately a dynamical question.
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The experiment is described in figure 6 with the qubits being produced in the singlet state

|Φ〉 = 1√
2

(

|z+z−〉 − |z−z+〉
)

(7.3)

and so the initial state of the overall system is

|Ψ(t1)〉 = |A0B0〉 ⊗ |Φ〉 . (7.4)

In a certain inertial frame, at time tA > t1, the measuring device A, set to measure the z

component of the spin, interacts with qubit 1. After a short time, the state of qubit 1 becomes

entangled with A and the state of the total system becomes, for t2 > tA,

|Ψ(t2)〉 =
1√
2

(

|A+B0z+z−〉 − |A−B0z−z+〉
)

. (7.5)

Then at a time tB the measuring device B, set to measure the component of the spin along a

vector n at an angle 2θ to the z axis, interacts with qubit 2 producing, for t3 > tB, a state20

|Ψ(t3)〉 =
1√
2

(

sin θ|A+B+z+n+〉+ cos θ|A+B−z+n−〉

− cos θ|A−B+z−n+〉+ sin θ|A−B−z−n−〉
)

.

(7.6)

Just to emphasize, the states |Ψ(ti)〉, i = 1, 2, 3, follow from solving the Schrödinger equation

of the system with a Hamiltonian that only has local interaction terms between the measuring

devices and their associated qubit, A with 1 and B with 2.

In this system, there are three different perspectives associated to the observables of the

two measuring devices A and B as well as the global view associated to A∪B. It is important

to appreciate that the descriptions A and B cannot answer questions about correlations be-

tween the measuring devices, it is only the more refined global view A ∪B that can do that.

Figure 7 shows the three Markov processes.

The quantum microstates of A and B are related to those of A ∪ B precisely as in (4.9).

It is important that the changes in the quantum microstates are driven by local interactions:

A with qubit 1 at tA and B with qubit 2 at tB. It is worth remarking on the fact that the

quantum microstates associated to A and B are not directly comparable: by focussing on,

say, A, we forego any knowledge of B, and vice-versa. The only way to ask about joint

properties of the two measuring devices is via the quantum microstates associated to A ∪B.

The quantum microstates of the latter are always refinements of those of A and B as is clear

20The relation between the basis of qubit states along the z and n axes is |z+〉 = cos θ|n+〉 − sin θ|n−〉 and

|z−〉 = sin θ|n+〉+ cos θ|n−〉.
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A |A0B0Φ〉
|A+B0z+z−〉

|A−B0z−z+〉

cos θ|A+B−z+n−〉
+ sin θ|A+B+z+n+〉

sin θ|A−B−z−n−〉
− cos θ|A−B+z−n+〉

1
2

1
2

B |A0B0Φ〉
1√
2

(

|A+B0z+z−〉
−|A−B0z−z+〉

)

sin θ|A+B+z+n+〉
− cos θ|A−B+z−n+〉

cos θ|A+B−z+n−〉
+ sin θ|A−B−z−n−〉

1
2

1
2

A+ B |A0B0Φ〉
|A+B0z+z−〉

|A−B0z−z+〉

|A+B+z+n+〉

|A+B−z+n−〉

|A−B+z−n+〉

|A−B−z−n−〉

1
2

1
2

sin2 θ

cos2 θ

cos2 θ

sin2 θ

tA tB

Figure 7. The Markov chains of the quantum microstates (the macrostates or reduced state vectors in

this simple model) of the sets of observables A and B associated to the two measuring devices and

the global view A + B at times t1, t2 and t3 between the measurements at tA and tB. Note that the

quantum microstates of A and B always have the factored form |Ai〉 ⊗ |ψ〉and |Bi〉 ⊗ |ψ〉, respectively,

for i = 0,± and for some |ψ〉 in the appropriate complementary subsystem. Also shown are the

probabilities of the Markov chains.

from the last column in figure 7. With our simple description of the measuring devices,

we can identify the quantum microstates of A and B with the reduced state vectors of the

Copenhagen interpretation. It then becomes apparent that different local observers, in this

case A and B, perform their own reduction of the state vector to take account the results of

their local measurements.21

21The fact that each local observer has their own reduced state vector after making local measurements has

been emphasised in [27].
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One way to think of the relation between the refined view A ∪ B and, say, A is the fol-

lowing. When the measurement is made at B, the quantum microstates of A∪B, for example

|A+B0z+z−〉 splits into the pair |A+B±z+n±〉. But the set of observables A cannot distinguish

this pair of states:

〈A+Bi z+ni|On ⊗ 1B ⊗ 11 ⊗ 12|A+Bj z+nj〉 = µnδij , ∀On ∈ A , (7.7)

it is only observables in B that can. Hence, the pair of states do not satisfy the non-degeneracy

condition (3.5) and that is why quantum microstate with respect to A is the linear combination

cos θ|A+B−z+n−〉+ sin θ|A+B+z+n+〉 . (7.8)

The stochastic process associated to the set of observables A for measuring device A gives

the non-vanishing integrated probabilities

pA+|0(t2, t1) = pA−|0(t2, t1) =
1

2
, pA+|+(t3, t2) = pA−|−(t3, t2) = 1 . (7.9)

In particular nothing happens when the measurement is made at B. While that associated to

B gives

pB0|0(t2, t1) = 1 , pB+|0(t3, t2) = pB−|0(t3, t2) =
1

2
. (7.10)

In this case, nothing happens when the measurement is made at A. Just to be completely clear,

in figure 7, the change in the quantum microstate of B from t1 to t2, whilst the measurement

is being made at A, is just evolution by the Schrödinger equation. Likewise is the change in

either of the quantum microstates of A from t2 to t3.

The global view A ∪ B is provides a more refined description of the system that yields

the correlations between measurements at A and B:

pA∪B
+0|00(t2, t1) = pA∪B

−0|00(t2, t1) =
1

2
,

pA∪B
++|+0(t3, t2) = pA∪B

−−|−0(t3, t2) = sin2 θ ,

pA∪B
+−|+0(t3, t2) = pA∪B

−+|−0(t3, t2) = cos2 θ ,

(7.11)

giving the overall probabilities

pA∪B
++|00(t3, t1) = pA∪B

−−|00(t3, t1) =
1

2
sin2 θ ,

pA∪B
−+|00(t3, t1) = pA∪B

+−|00(t3, t1) =
1

2
cos2 θ ,

(7.12)
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which agree with the probabilities calculated in the Copenhagen interpretation using the

Born rule.

So in this account of the EPR-Bohm thought experiment, the stochastic process yields the

conventional quantum mechanical predictions in a way that involves only local interactions

between measuring devices and qubits. There is no mystery or spooky action-at-a-distance,

on the contrary there is simply the unveiling of an underlying correlation carried by the

qubits—albeit of a kind that cannot be mimicked by a classical system.

8 The Emergence of Classical Statistical Mechanics

It should be apparent that our interpretation has some important implications for the way

that classical SM arises from quantum mechanics. The first point, as we discussed in the

introduction, is that there are many issues in the theory of classical SM that are not completely

settled. Take the issue of probability. Essentially, as reviewed, for example, by Wallace [1],

there are two distinct points of view called the inferential and dynamical, sometimes portrayed

as the Gibbs view versus the Boltzmann. The former views probabilities as arising from our

incomplete knowledge of the microstate given the macroscopic information that we have

about a system. On the other hand, in the dynamical point of view, there is no fundamental

need for probabilities because classical mechanics is deterministic. However, one can talk

about the relative number of particles moving with such and such velocity and the dynamics

is complicated and it is not possible to follow individual trajectories of microstates and so one

has to talk about averages over suitably long times. In ergodic systems it is possible to link

these points of view directly, but ergodicity is problematic to formulate and difficult to prove

in general.

Probabilities, of course, naturally arise in quantum mechanics in the conventional Copen-

hagen interpretation and Wallace [1] makes the point that there is then no need to introduce

probabilities in quantum SM twice. It would be much more natural if the probabilities in

SM and the Copenhagen interpretation were essentially one and the same. This is what our

formalism achieves with the potential to illuminate and solve the conceptual problems of

classical SM.

In fact, a completely quantum approach to SM has its roots in the work of Schrödinger

[3] and von Neumann [4] in the 1920s.22 We will be particularly interested in the approach of

von Neumann leading to his quantum ergodic theorem. The idea is to focus on expectation val-

ues of suitable coarse grained observables with the aim of showing that the resulting values

behave in the way expected in SM. One can either consider a system in isolation or one can

22There is now a large literature but a limited set of references are [6–18].

– 32 –



focus on a small subsystem of a much larger system, corresponding to the microcanonical

and canonical situations, respectively.

There are two important issues: does a system equilibrate and then if so does it thermal-

ize? The issue of equilibration, concerns whether the expectation values of various coarse

grained observables become constant, or at least constant for the vast majority of time after

some initial transient regime. Note that this is a non-trivial question because the underlying

quantum state of the system certainly does not approach a constant. The issue of thermaliza-

tion is whether the equilibrium state gives expectation values that one would expect of the

microcanonical or canonical ensembles. So the properties of equilibration and thermalization

are properties of the state of the system with respect to a set of coarse grained observables

A = {On} rather than the underlying quantum state itself.

Let us consider an isolated system and suppose that it is described by a density operator

ρ(t), which includes the possibility of a pure state, and consider an observable O ∈ A. The

idea is that it is not the state ρ(t) but the expectation value Tr[Oρ(t)] that equilibrates in the

sense that the long time average of it is very close to Tr[Oρ0] where ρ0 is the time independent

component of ρ(t). The latter is just the diagonal component of ρ(t) in the energy eigenstate

basis:23

ρ0 = ∑
n

pn|n〉〈n| , pn = 〈n|ρ(t)|n〉 , (8.1)

where |n〉 are the energy eigenstates and the pn are time independent probabilities ∑n pn = 1.

Since many energy eigenstates are expected to be occupied each with a small probability,

roughly pn . 10−N, where N is the number of degrees of freedom of the system, e.g. N =

O(1023).

There are various bounds that can be established. For example, one can prove [10, 12] that

the long time average of the variance of the expectation value Tr[Oρ(t)] about the equilibrium

Tr[Oρ0] is bounded above by a quantity of order24

∆(O)2 ∑
n

p2
n , (8.2)

where ∆(O) is the range of eigenvalues of O. Since the probabilities pn are very small, (8.2)

is certainly much smaller than the square of the resolution scale δ2
O. Hence the time average

of the expectation value of O is captured to high degree of the accuracy by the equilibrium

state ρ0.

23For simplicity, we assume that there are no degeneracies in the En and also in the gaps En − Em which is

reasonable in a realistic interacting non-integrable quantum system.
24We refer to the original work for the precise statements.
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Another interesting quantity is the faction of time that the system spends away from the

equilibrium state as measured by the inequality [13]

∣

∣Tr[Oρ(t)] − Tr[Oρ0]
∣

∣ > δO , (8.3)

where δO is the resolution scale defined in section 3.1. It can be shown that this fraction of

time is bounded above by a quantity of order

(∆(O)

δO

)2
max

n
pn . (8.4)

Although the ratio ∆(O)/δO can be large, it is expected to be dominated by the smallness

of the eigenvalues pn and so the implication is that the system spends the vast majority of

time close to the equilibrium state with only occasional excursions away. It is important to

emphasize, though, that the equilibrium state is not strictly time independent due to these

fluctuations.

The issue of thermalization rests on the extent to what expectation values calculated from

the equilibrium state ρ0 are close to the microcanonical ensemble

ρmc =
1

N ∑
En∈[E,E+∆E]

|n〉〈n| . (8.5)

This is a more refined question that requires additional hypotheses. For instance, it follows

if the initial state is pure and has a sharply defined energy in the band [E, E + ∆E] from

von Neumann’s quantum ergodic therorem [4]. More generally, it follows from the eigenstate

thermalization hypothesis discussed, for example, in [12–16]. There are similar statements that

can be made for a sub-system A interacting with a larger system E. In this case, it is the

expectation values of operators on the subsystem that equilibrate and can give values that

are close to the canonical ensemble [6–11].

What is striking about this quantum approach to SM is that it completely cuts classical

SM and any mention of microstates or probability out of the picture. So whilst the approach

is very successful, there does not seem to be a way to see how classical SM can arise in the

classical limit.

However, there are some parallels between our approach to the Copenhagen interpreta-

tion and the quantum approach to SM. Both place the expectation values of a set of realistic

coarse grained observables A centre stage in the sense that the macroscopic state of the sys-

tem is determined by both the underlying quantum state and the observables. In particular,

in the SM context the underlying quantum state by itself is not the relevant object to measure

equilibration and thermalization—it certainly does not have these properties—rather it is the

expectation values of the observables Tr[Onρ(t)], On ∈ A.

– 34 –



In our proposal, the expectation values of the observables Tr[Onρ(t)] as a function of

time should be replaced by the expectation values in the sequence of quantum microstates

determined by the stochastic process 〈Ψi(t)|On|Ψi(t)〉. The key question for us is:

To what extent is the long time average of 〈Ψi(t)|On|Ψi(t)〉 captured by the microcanonical equi-

librium expectation value Tr[Onρmc]?

In order to answer this, let us make us some assumptions:

1. We will take the overall state to be the pure state ρ = |Ψ〉〈Ψ| with sharply defined en-

ergy in a microcanonical shell [E, E + ∆E] defined by a subspace of the Hilbert space

Hmc ⊂ H with a large dimension N with ∆E is macroscopically small but microscopi-

cally large so that N is large.

2. We will assume that the observables On are explicitly time independent and commut-

ing, so that the quantum microstates are the simultaneous eigenstates. In addition, none

of the On commutes with the Hamiltonian (except the coarse grained energy: see be-

low) . If the contrary were true, there would be super-selection sectors which would

break ergodicity and in that case one would have to restrict to a particular eigenspace.

3. Finally we assume that the microcanonical energy shell defining a subspace of the

Hilbert space Hmc has a decomposition in terms of the eigenspaces of the observables

Hmc =
⊕

i

Hi , di = dimHi , ∑
i

di = N . (8.6)

This seems reasonable because it is natural that A contains a coarse grained version of

the energy consisting of the projector onto Hmc.25

When the system, with respect to the set A, equilibrates in the sense described above, the

occupation probabilities of the quantum microstates |ci(t)|2 also equilibrate. In fact, von Neu-

mann’s quantum ergodic theorem [4] (see also [17]) states that, for any |Ψ(t)〉 ∈ Hmc and

most times in the long run,

|ci(t)|2 =
∣

∣〈Ψi|Ψ(t)〉
∣

∣

2
= 〈Ψ(t)|Πi |Ψ(t)〉 ≈ di

N
, (8.7)

where Πi is the projector onto Hi. The exact conditions for the equality are to be found in

[4, 17] but they include the requirement that the dimensions di are suitably large. Note that

25Von Neumann [4] calls the family of spaces {Hi} the “macro-observer”. In our approach we associate the

“macro-observer” to the macroscopic time average of the expectation values 〈Ψi(t)|On|Ψi(t)〉.
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(8.7) implies that the expectation values take their microcanonical form:

〈Ψ|On|Ψ〉 = ∑
i

|ci|2〈Ψi|On|Ψi〉 ≈ Tr[Onρmc] , (8.8)

where the first equality is the microscopic Born rule (3.4). The result also follows from the

eigenstate thermalization hypothesis [16]. To emphasize, being in equilibrium does not mean

that the |ci(t)|2 are strictly constant: the equilibrium state allows for fluctuations and very

occasional larger excursions away from the average.

So in order to answer the question posed above, we need to establish that the stochastic

process in equilibrium is also ergodic so that the long time average of 〈Ψi(t)|On|Ψi(t)〉, as

in (4.5), is equal to the equilibrium values Tr[Onρmc]. We discussed the issue of ergodicity

in section 4.1. In equilibrium, the stochastic process is effectively a homogeneous Markov

chain for which ergodicity requires that over a long enough time the integrated transition

probabilities pi|j(t + T, t) becomes independent of j.

The transition rates of the stochastic system are given in (4.4). In order to address the

question of ergodicity, we need to investigate the matrix elements 〈Ψj|H|Ψi〉, with i 6= j. In

an interacting and non-integrable, i.e. chaotic, quantum system, it is reasonable to expect that

the energy basis and the basis of quantum microstates are related by a random unitary ma-

trix. With this hypothesis, one finds approximately that for each pair i, j, the non-vanishing

transition rate Tij, say, is randomly distributed over a range [0, di∆E/(h̄
√

2N)] while Tji = 0.

A homogeneous Markov chain with these random transition rates is demonstrably er-

godic in numerical simulations. A suitable measure for the time scale for the system to be

ergodic is how quickly the system becomes independent its initial state; one finds for large T

∣

∣pi|j(t + T, t)− pi|k(t + T, t)
∣

∣

∼ exp
[

− µT
]

, (8.9)

where µ is order
√

N∆E/h̄. This shows that the process is ergodic over very short time scales

of order h̄/(
√

N∆E). The implication is that the long time average as in (4.5) over macro-

scopic time scales T, of the expectation values that follow from the stochastic process repro-

duce those of the microcanonical ensemble:

1

T

∫ T

0
dt 〈Ψi(t)|On|Ψi(t)〉 ≈ ∑

i

|ci|2〈Ψi|On|Ψi〉 = 〈Ψ|On|Ψ〉 ≈ Tr[Onρmc] .

ergodicity (4.5)

microscopic Born rule (3.4)

quantum ergodic theorem (8.8)
(8.10)

The stochastic dynamics of the expectation values 〈Ψi(t)|On|Ψi(t)〉 re-instates a dynam-

ical, i.e. Boltzmann, picture of a thermal ensemble but now in the context of quantum SM.
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Now we can interpret the density operator as being an ensemble of quantum microstates as

in (3.4) with a clear understanding of the rôle of probability as a fundamental property of the

Markov process. So the conceptual picture is clear and the quantum microstates provide a

quantum precursor of the microstates of classical SM. There remains the program of inves-

tigating the stochastic dynamics in detail for particular examples, like a gas of microscopic

particles, to find to what extent the stochastic dynamical picture is related to the classical

mechanical picture. We have already shown how the latter can arise from the former for a

macroscopic particle in section 5 but one would need to apply the same ideas to the whole

gas.

9 Discussion

We have described an approach to quantum mechanics which offers the possibility to un-

derstand the different deterministic and stochastic elements of the classical limit of quan-

tum mechanics in a more unified way. The key idea is that the underlying quantum system

evolves according to the standard rules of quantum mechanics, i.e. the Schrödinger equation,

while the stochastic behaviour enters at the level of the set of coarse grained observables that

are needed to construct an effective theory that describes the interactions of the system with

other macroscopic systems. The central element of this effective theory is a stochastic pro-

cess that preserves the microscopic Born rule. All the different facets of the classical limit

follow from properties of the stochastic process and in particular to what extent the process

is ergodic. When ergodicity is broken, the behaviour can be effectively deterministic and the

classical limit gives rise to classical mechanics. When the process is ergodic, the behaviour

is characteristic of statistical mechanics and we have shown that the quantum system gives

a dynamical picture of a thermal ensemble. Finally, when ergodicity is partly broken with

large ergodic subsets of states, the formalism provides a natural solution to the measurement

problem.

To finish, we can give an account of the fate of Schrödinger’s famous cat. The evolution

of the quantum state leads to a final state vector that involves a linear combination of an alive

and a dead cat:

|Ψ(0)〉 = | 〉 −→ |Ψ(T)〉 = c+| 〉+ c−| 〉 . (9.1)

In this simple analysis, we need not explicitly describe the other parts of the system, the

measuring device, microscopic quantum system and environment: they are assumed to be

included in the states | 〉 and | 〉.
The effective macroscopic description of the cat involves a set of sub-macroscopically

coarse grained observables A. The set of quantum microstates {|Ψi〉} associated to A splits
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into two subsets {|Ψi+〉} and {|Ψi−〉},

| 〉 = ∑
i+

ci+ |Ψi+〉 , | 〉 = ∑
i−

ci− |Ψi−〉 , (9.2)

corresponding to an alive and a dead cat, respectively. The macroscopic state of the system

is then described as the macroscopic time average of the expectation values 〈Ψi(t)|On|Ψi(t)〉.
The important point is that for realistic Hamiltonians, the integrated probability over a macro-

scopic time scale for making a transition for a dead to alive, or vice versa, over a macroscopic

time scale t2 − t1

pi± |j∓(t2, t1) ≪ 1 . (9.3)

So there is no practical prospect of an alive state |Ψj+〉 making a transition to dead state

|Ψi−〉, and vice-versa. So the states of an alive cat and dead cat are ergodically disjoint. Once

the quantum microstate of the cat lies in a given ergodic component, which is does with

probability |c+|2 or |c−|2, it remains there, either dead or alive, with definite positions for its

moving part but also with its more microscopic degrees of freedom in approximate thermal

equilibrium. It makes sense to then remove the ergodically disjoint parts of the state vector

that can never be realized, a harmless procedure that is nothing other than the reduction of

state vector:

|Ψ(T)〉 −→ | 〉 or | 〉 . (9.4)

Appendices

A Mixed State Generalization

In this appendix, we show how to generalise the formalism to the case when the state is mixed

described by a density matrix ρ. We will also focus on the realistic case with a commuting set

of observables A.

As in the case of a pure underlying state, the quantum microstates are just the simultane-

ous eigenstates of the set A. The underlying mixed quantum state can always be expressed

as

ρ = ∑
ij

Aijρij , ∑
i

Aii = 1 , (A.1)
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where ρij is an operator which maps Hj → Hi with Tr ρij = δij. The microscopic Born rule in

this case is expressed as

Tr
(

Onρ
)

= ∑
i

Aii Tr
(

ρiiOn

)

, ∀ On ∈ A . (A.2)

The rôle of the quantum microstate is now played by the diagonal elements ρii and Aii is the

generalization of the probability |ci|2.

We now define the stochastic process by the same logic as in (2.5). Using von Neumann’s

equation of motion for the density operator, one finds

dAii

dt
=

2

h̄ ∑
j 6=i

Im
[

Aij Tri

(

[H, ρij]− ih̄
dρij

dt

)]

, (A.3)

where the trace is over Hi. This yields the transition rates

Tij = max
(2

h̄
Im
[Aij

Ajj
Tri

{

[H, ρij]− ih̄
dρij

dt

}]

, 0
)

. (A.4)

In the case of a pure state Aij = cic
∗
j and ρij = |Ψi〉〈Ψj| we recover the expression (4.1) using,

for i 6= j,

Tri

{

[H, ρij]− ih̄
dρij

dt

}

= −〈Ψj|
(

H − ih̄
d

dt

)

|Ψi〉 . (A.5)

If our quantum system is in a mixed state ρ and is interacting with a larger quantum

system then the time evolution of ρ will be non-trivial. It would be interesting to generalize

our formalism to this case, but we will leave such an endeavour to future work.

B Non-Abelian Sets of Observables

In this appendix, we consider several examples where the set A contains operators that do

not commute.

Example 1: Suppose that A consists of the complete set of observables on the finite dimen-

sional Hilbert space H. If the dimension of H is n then the complete set of observables has

dimension n2. It quickly becomes apparent in this case that the set of quantum microstates

states M consists of just |Ψ〉 itself. In an intuitive sense, if we know the expectation values of

all the observables on H then we have complete knowledge of the quantum state and so the

coarse grained density operator must be equal to ρ = |Ψ〉〈Ψ|. The stochastic process will be

trivial and the evolution of the system with respect to A is just the same as the deterministic

microscopic dynamics encoded in the Schrödinger equation.
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So an omnipotent observer A sees the system evolve according to the Schrödinger equa-

tion.

Example 2: Suppose that A consists of the complete set of observables which as operators act

on a factor HA of a tensor product of finite dimensional Hilbert spaces H = HA ⊗HE. These

operators act as On ⊗ 1E. The dimension of A is equal to (dimHA)
2.

In this example, the quantum microstates are just the conventional Schmidt states

|Ψ〉 =
N

∑
i=1

ci|Ψi〉 , |Ψi〉 = |ψi〉 ⊗ |ψ̃i〉 , (B.1)

where 〈ψi|ψj〉 = 〈ψ̃i|ψ̃j〉 = δij. The states |ψi〉 and |ψ̃i〉 are eigenstates of the reduced density

matrices ρ(A) = TrE |Ψ〉〈Ψ| and ρ(E) = TrA |Ψ〉〈Ψ|, respectively. Their number equals N =

min(dimHA, dimHE).

The microscopic Born rule (3.4) follows from the orthogonality of |ψ̃i〉:

〈ψi| ⊗ 〈ψ̃i|
(

On ⊗ 1E

)

|ψj〉 ⊗ |ψ̃j〉 = 〈ψi|On|ψj〉〈ψ̃i|ψ̃j〉 = δij〈ψi|On|ψi〉 , (B.2)

which implies (3.4). The non-degeneracy condition rules out having more than one quantum

microstate associated to each |ψi〉 since having two potential microstates |ψi〉⊗ |ψ′
i〉 and |ψi〉⊗

|ψ′′
i 〉 violates the non-degeneracy condition (3.5).

This example forms the basis of the reduced density operator formalism developed in

[19–21].

Example 3: Consider the case of a small finite dimensional set of non-commuting observables

A in a large Hilbert space in a generic state |Ψ〉. We will assume that A forms a Lie algebra,

or can be completed into such an algebra. To be more precise, we will consider the case that

the observables generate a u(N) algebra. This example is not supposed to be realistic but it

just illustrates how the formalism can cope with a non-abelian set of operators.

The complexified generators can be labelled by a pair i, j ∈ {1, 2, . . . , N} with26

[Oij,Okl] = δjkOil − δilOjk . (B.3)

We are assuming that the dimension of the algebra N2 is much smaller than the dimension of

the Hilbert space H. This means that a typical state |Ψ〉 is not annihilated by any element of

A:

O|Ψ〉 6= 0 , ∀ O ∈ A . (B.4)

26The Hermitian combinations are Oii, Oij + Oji and i(Oij − Oji). The complexified operators satisfy an

algebra under multiplication as well as commutation.
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In such a situation, the N2 dimensional space HA,Ψ ⊂ H spanned by the independent states

Oij|Ψ〉 , ∀ i, j (B.5)

carry an adjoint representation of the Lie algebra. A basis for this space consists of the or-

thonormal states |ij〉 labelled by a pair i, j with

Oij|kl〉 = δjk|il〉 . (B.6)

The generators and states can always redefined by a unitary U(N) transformation:

Oij → UOijU
−1 , |ij〉 → U|ij〉 . (B.7)

Given the typical state |Ψ〉, we can always use this freedom to perform a U(N) transformation

to align the algebra with the state |Ψ〉 in the sense that

|Ψ〉 =
N

∑
i=1

ci|ii〉+ cN+1|Ψ⊥〉 . (B.8)

In this expression, |Ψ⊥〉 is the component of |Ψ〉 lying orthogonal to HA,Ψ.

The expression above identifies the N + 1 quantum microstates as

|Ψi〉 = |ii〉 , i = 1, 2, . . . , N , |ΨN+1〉 = |Ψ⊥〉 . (B.9)

The quantum microstates are precisely the eigenstates of the Cartan subalgebra generated by

the mutually-commuting operators Oii, i = 1, 2, . . . , N and, in particular, |ΨN+1〉 has zero

eigenvalues for all the Cartan generators:

Oii|Ψj〉 = δij|Ψj〉 , j = 1, 2, . . . , N , Oii|ΨN+1〉 = 0 . (B.10)

Note that the Cartan generators are the only operators with non-vanishing expectation values

〈Ψ|Oij|Ψ〉 = |ci|2δij . (B.11)

C Time Dependent Observables

In this appendix, we discuss how to general the formalism to the case of explicitly time de-

pendent observables. The transition rates in (4.4) as generalized to

Tij = max
(

− 2

h̄
Im
[ ci

cj
〈Ψj|

(

H − ih̄
d

dt

)

|Ψi〉
]

, 0
)

. (C.1)
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The discussion of locality in section 4.2 is modified in the following way, without any of

the conclusions being changed. First of all, (4.7) generalizes to

〈Ψi|1A ⊗
(

HE − ih̄
d

dt

)

|Ψj〉 = 0 , i 6= j , (C.2)

where the derivative term here acts only on |ψja〉. The final local expression for the transition

rates is

Tij = max
(

− 2

h̄
Im
[ ci

cj
〈Ψj|

{(

HA − ih̄
d

dt

)

⊗ 1E + Hint

}

|Ψi〉
]

, 0
)

, (C.3)

which generalizes (4.8).
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