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Abstract

In [DM], Downarowicz and Maass proved that the Cantor minimal system associated to a
properly ordered Bratteli diagram of finite rank is either an odometer system or an expansive
system. We give a new proof of this truly remarkable result which we think is more transparent
and easier to understand. We also address the question (QUESTION 1) raised in [DM] and
we find a better (i.e. lower) bound than the one given in [DM]. In fact, we conjecture that the
bound we have found is optimal.

1 Introduction.

The aim of this paper is to give a new proof of the following result.

THEOREM. Let (V,E,≥) be a properly ordered Bratteli diagram, and let (V,E) be of finite rank.
Then the associated Bratteli-Vershik system (X(V,E), T(V,E)) is either an odometer system or an
expansive system.

Remark 1.1. It is well known that an expansive Cantor minimal system is (conjugate to) a minimal
subshift on a finite alphabet (cf. Proposition 2.9). The THEOREM implies that if (V,E ≥) is a
properly ordered Bratteli diagram of finite rank and (V,E) has the ERS-property (cf. Section 2),
then (X(V,E), T(V,E)) is either an odometer or a Toeplitz flow [H].

In our judgment the proof given of the THEOREM in [DM] is not easy to follow, so we feel
that a more transparent proof – thus hopefully making it more accessible – is in order for such an
important and, frankly speaking, rather surprising result. We also address the question (QUESTION
1) that is raised in [DM] about finding a better (i.e. lower) bound than the one they give in their
“Infection Lemma”, and we do indeed find a significantly lower bound (cf. Corollary 4.1), which we
conjecture is optimal.

We will adopt some of the definitions and terminology from [DM], but in contrast to [DM] we
interpret the definitions directly in terms of the properly ordered Bratteli diagram in question. We
feel this makes it much easier to grasp the contents of the various definitions. There is also too
much “hand-waving”, we feel, in [DM], which results in some questionable short-cuts and claims.
But we hasten to say that these can all be fixed by a more careful construction. (Cf. Remark at the
end of this paper, where we are more specific on this point.) However, we strongly emphasize that
our proof is very much inspired and motivated by the proof in [DM].
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V0

E1M1 =

[
1
1

]

V1

E2M2 =



5 2
4 1
1 1




V2

E3M3 =

[
1 2 2
1 2 1

]

V3

Figure 1: An example of a Bratteli diagram

2 Bratteli diagrams and Bratteli-Vershik systems.

General references for this section are [HPS] and [GPS, Section 3]. A Bratteli diagram (V,E) consists
of a set of vertices V = t∞n=0Vn and a set of edges E = t∞n=1En, where the Vn’s and the En’s are
finite disjoint sets and where V0 = {v0} is a one-point set. The edges in En connect vertices in Vn−1
with vertices in Vn. If e connects v ∈ Vn−1 with u ∈ Vn we write s(e) = v and r(e) = u, where
s : En → Vn−1 and r : En → Vn are the source and range maps, respectively. We will assume that
s−1(v) 6= ∅ for all v ∈ V and that r−1(v) 6= ∅ for all v ∈ V \V0. A Bratteli diagram can be given a
diagrammatic presentation with Vn the vertices at level n and En the edges between Vn−1 and Vn. If
|Vn−1| = tn−1 and |Vn| = tn then the edge set En is described by a tn× tn−1 incidence matrix Mn =
(mn

ij), where mn
ij is the number of edges connecting vni ∈ Vn with vn−1j ∈ Vn−1 (see Figure 1). If the

row sums are constant for every Mn, then we say that (V,E) has the ERS-(Equal Row Sum) property.
Let k, l ∈ Z+ with k < l and let Ek+1 ◦Ek ◦ · · · ◦El denote all the paths from Vk to Vl. Specifically,
Ek+1 ◦Ek ◦ · · · ◦El = {(ek+1, · · · , el) | ei ∈ Ei, i = k + 1, . . . , l; r(ei) = s(ei+1), i = k + 1, . . . , l − 1}.
We define r ((ek+1, · · · , el)) = r(el) and s ((ek+1, · · · , el)) = s(ek+1). Notice that the corresponding
incidence matrix is the product MlMl−1 · · ·Mk+1 of the individual incidence matrices.

Definition 2.1. Given a Bratteli diagram (V,E) and a sequence 0 = m0 < m1 < m2 < · · · in Z+, we
define the telescoping of (V,E) to {mn} as (V ′, E′), where V ′n = Vmn and E′n = Emn−1+1 ◦ · · · ◦Emn ,
and the source and the range maps are as above.

Definition 2.2. The Bratteli diagram (V,E) is of finite rank if |Vn| ≤ L < ∞ for all n. By
telescoping we may assume that |Vn| = K for all n = 1, 2, . . . . We then say that (V,E) is of rank K,
and write rank(V,E) = K.

Definition 2.3. We say that the Bratteli diagram (V,E) is simple if there exists a telescoping of
(V,E) such that the resulting Bratteli diagram (V ′, E′) has full connection between all consecutive
levels, i.e. the entries of all the incidence matrices are non-zero.
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Given a Bratteli diagram (V,E) we define the infinite path space associated to (V,E), namely

X(V,E) = {(e1, e2, . . . ) | ei ∈ Ei, r(ei) = s(ei+1); ∀i ≥ 1} .

Clearly X(V,E) ⊆
∏∞
n=1En, and we give X(V,E) the relative topology,

∏∞
n=1En having the product

topology. Loosely speaking this means that two paths in X(V,E) are close if the initial parts of the
two paths agree on a long initial stretch. Also, X(V,E) is a closed subset of

∏∞
n=1En, and so is

compact.

Let p = (e1, e2, . . . , en) ∈ E1 ◦ · · · ◦ En be a finite path starting at v0 ∈ V0. We define the
cylinder set U(p) =

{
(f1, f2, . . . ) ∈ X(V,E) | fi = ei, i = 1, 2, . . . , n

}
. The collection of cylinder sets

is a basis for the topology on X(V,E). The cylinder sets are clopen sets, and so X(V,E) is a compact,

totally disconnected metric space. An admissable metric d yielding the topology is d(x, x′) = 1
n if

x = (e1, e2, . . . , en−1, en, . . . ), y = (e1, e2, . . . , en−1, e′n, . . . ), where en 6= e′n. If (V,E) is simple then
X(V,E) has no isolated points, and so X(V,E) is a Cantor set. (We will in the sequel disregard the
trivial case where |X(V,E)| is finite.)

Let Pn = E1 ◦ · · · ◦ En be the set of finite paths of length n (starting at the top vertex). We
define the truncation map τn : X(V,E) → Pn by τn ((e1, e2, . . . )) = (e1, e2, . . . , en). If m ≥ n we have
the obvious truncation map τm,n : Pm → Pn.

There is an obvious notion of isomorphism between Bratteli diagrams (V,E) and (V ′, E′); namely,
there exists a pair of bijections between V and V ′ preserving the gradings and intertwining the
respective source and range maps. Let ∼ denote the equivalence relation on Bratteli diagrams
generated by isomorphism and telescoping. One can show that (V,E) ∼ (V ′, E′) iff there exists a
Bratteli diagram (W,F ) such that telescoping (W,F ) to odd levels 0 < 1 < 3 < · · · yields a diagram
isomorphic to some telescoping of (V,E), and telescoping (W,F ) to even levels 0 < 2 < 4 < · · ·
yields a diagram isomorphic to some telescoping of (V ′, E′).

An ordered Bratteli diagram (V,E,≥) is a Bratteli diagram (V,E) together with a partial order
≥ in E so that edges e, e′ ∈ E are comparable if and only if r(e) = r(e′). In other words, we have a
linear order on each set r−1(v), v ∈ V \V0. Assume

∣∣r−1(v)
∣∣ = m and the edge e ∈ r−1(v) has order

k, where 1 ≤ k ≤ m. Then we will say that e has ordinal k, and we will write ordinal(e) = k. We let
Emin and Emax, respectively, denote the minimal and maximal edges of the partially ordered set E.

Note that if (V,E,≥) is an ordered Bratteli diagram and k < l in Z+, then the set Ek+1 ◦Ek+2 ◦
· · · ◦El of paths from Vk to Vl with the same range can be given an induced (lexicographic) order as
follows:

(ek+1 ◦ ek+2 ◦ · · · ◦ el) > (fk+1 ◦ fk+2 ◦ · · · ◦ fl)

if for some i with k+ 1 ≤ i ≤ l, ej = fj for i < j ≤ l and ei > fi. If (V ′, E′) is a telescoping of (V,E)
then, with this induced order from (V,E,≥), we get again an ordered Bratteli diagram (V ′, E′,≥).

Definition 2.4. We say that the ordered Bratteli diagram (V,E,≥), where (V,E) is a simple
Bratteli diagram, is properly ordered if there exists a unique min path xmin = (e1, e2, . . . ) and
a unique max path xmax = (f1, f2, . . . ) in X(V,E). (That is, ei ∈ Emin and fi ∈ Emax for all
i = 1, 2, . . . .)

Let (V,E) be a properly ordered Bratteli diagram, and let X(V,E) be the path space associated
to (V,E). Then X(V,E) is a Cantor set. Let T(V,E) be the lexicographic map on X(V,E), i.e. if x =
(e1, e2, . . . ) ∈ X(V,E) and x 6= xmax then T(V,E)x is the successor of x in the lexicographic ordering.
Specifically, let k be the smallest natural number so that ek /∈ Emax. Let fk be the successor of ek
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(and so r(ek) = r(fk)). Let (f1, f2, . . . , fk−1) be the unique least element in E1 ◦E2 ◦ · · · ◦Ek−1 from
s(fk) ∈ Vk−1 to the top vertex v0 ∈ V0. Then T(V,E)((e1, e2, . . . )) = (f1, f2, . . . , fk, ek+1, ek+2, . . . ).
We define T(V,E)xmax = xmin. Then it is easy to check that T(V,E) is a minimal homeomorphism
on X(V,E). We note that if x 6= xmax then x and T(V,E)x are cofinal, i.e. the edges making up x
and T(V,E)x, respectively, agree from a certain level on. We will call the Cantor minimal system
(X(V,E), T(V,E)) a Bratteli-Vershik system. There is an obvious way to telescope a properly ordered
Bratteli diagram, getting another properly ordered Bratteli diagram, such that the associated
Bratteli-Vershik systems are conjugate (cf. Definition 2.10)– the map implementing the conjugacy is
the obvious one. By telescoping we may assume without loss of generality that the properly ordered
Bratteli diagram has the property that at each level all the minimal edges (respectively the maximal
edges) have the same source, cf. [HPS, Proposition 2.8].

We use the term dynamical system to mean a compact metric space X together with a homeo-
morphism T : X → X, and we will denote this by (X,T ). We say (X,T ) is minimal if all T -orbits
are dense. (Equivalently T (A) = A for some closed A ⊆ X implies that A = X or A = ∅.) If X is a
Cantor set and T is minimal, then we say that (X,T ) is a Cantor minimal system.

Theorem 2.5 ([HPS]). Let (X,T ) be a Cantor minimal system. Then there exists a properly
ordered Bratteli diagram (V,E,≥) such that the associated Bratteli-Vershik system (X(V,E), T(V,E))
is conjugate to (X,T ).

Remark 2.6. The simplest Bratteli-Vershik model (V,E,≥) for the odometer (see below) (Ga, T )
associated to a = (ai)i∈N is obtained by letting Vn = 1 for all n, and the number of edges between
Vn−1 and Vn be an.

Let (Ga, ρ1̂) denote the odometer (also called adding machine) associated to the a-adic group

Ga =

∞∏

i=1

{
0, 1, . . .

pi
pi−1

− 1

}
,

where a =
{

pi
pi−1

}
i∈N

(we set p0 = 1) and where ρ1̂(x) = x + 1̂, where 1̂ = (1, 0, 0, . . . ). We note

that Ga is naturally isomorphic to the inverse limit group

Z/p1Z
φ1←− Z/p2Z

φ2←− Z/p3Z
φ3←− · · ·

where φi(n) is the residue of n modulo pi. It is a fact that the family consisting of compact groups
G that are both monothetic (i.e. contains a dense copy of Z , which of course implies that G
is abelian) and Cantor (as a topological space), coincides with the family of a-adic groups. It
is also noteworthy that all minimal rotations (in particular rotations by 1̂) on such groups are
conjugate. This is a consequence of the fact that the dual group of an a-adic group is a torsion
group. If a = {p}i∈N, where p is a prime, then Ga is the p-adic integers. (We refer to [HR, Vol 1]
for background information on a-adic groups.)

Remark 2.7. It is well known, and easy to prove, that the Cantor minimal system (X,T ) is conjugate
(cf. Definition 2.10) to an odometer if and only if it is the inverse limit of a sequence of periodic
systems.

Definition 2.8. (X,T ) is expansive if there exists δ > 0 such that if x 6= y then supnd(Tnx, Tny) >
δ, where d is a metric that gives the topology of X. (Expansiveness is independent of the metric as
long as the metric gives the topology of X.)
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Let Λ = {a1, a2, . . . , an}, n ≥ 2, be a finite alphabet and let Z = ΛZ be the set of all bi-infinite
sequences of symbols from Λ with Z given the product topology – thus Z is a Cantor set. Let
S : Z → Z denote the shift map, S : (xn)→ (xn+1). If X is a closed subset of Z such that S(X) = X,
we say that (X,S) is a subshift, where we denote the restriction of S to X again by S. Subshifts
are easily seen to be expansive. We state the following well-known fact as a proposition. (Cf. [Wa,
Theorem 5.24].)

Proposition 2.9. Let (X,T ) be a Cantor minimal system. Then (X,T ) is conjugate to a minimal
subshift on a finite alphabet if and only if (X,T ) is expansive.

Definition 2.10. We say that a dynamical system (Y, S) is a factor of (X,T ) and that (X,T ) is
an extension of (Y, S) if there exists a continuous surjection π : X → Y which satisfies S(π(x)) =
π(Tx), ∀x ∈ X. We call π a factor map. If π is a bijection then we say that (X,T ) and (Y, S) are
conjugate, and we write (X,T ) ∼= (Y, S).

Let (V,E,≥) be a properly ordered Bratteli diagram, and let (X(V,E), T(V,E)) be the associated
Bratteli-Vershik system. For each k ∈ N let Pk as above denote the paths from V0 to Vk, i.e.
the paths from v0 ∈ V0 to some v ∈ Vk. For x ∈ X(V,E) we associate the bi-infinite sequence

πk(x) =
(
τk(Tn(V,E)x)

)∞
n=−∞

∈ PZ
k over the finite alphabet Pk, where τk : X(V,E) → Pk is the

truncation map. Let Sk denote the shift map on PZ
k . Then the following diagram commutes

X(V,E) X(V,E)

Xk Xk

T(V,E)

Sk

πk πk

where Xk = πk(X(V,E)). One observes that πk is a continuous map, and so Xk is a compact

shift-invariant subset of PZ
k . So (Xk, Sk) is a factor of (X(V,E), T(V,E)). For k > l there is an

obvious factor map πk,l : Xk → Xl, and one can show that (X(V,E), T(V,E)) is the inverse limit of
the system {(Xk, Sk)}k∈N. We write (X(V,E), T(V,E)) = lim←−(Xk, Sk). All the systems (Xk, Sk) are
clearly expansive. One has the following result which will be important for us.

Proposition 2.11. Assume (X(V,E), T(V,E)) is expansive. Then there exists k0 ∈ N such that for
all k ≥ k0, (X(V,E), T(V,E)) is conjugate to (Xk, Sk) by the map πk : X(V,E) → Xk.

Proof. Since the πk’s are factor maps, all we need to show is that there exists k0 such that πk is
injective for all k ≥ k0. Recall that (X(V,E), T(V,E)) being expansive means that there exists δ > 0
such that given x 6= y there exists n0 ∈ Z such that d(Tn0

(V,E)x, T
n0

(V,E)y) > δ, where d is some metric

on X(V,E) compatible with the topology. Choose k0 such that d(x, y) < δ if x and y agree (at least)
on the k0 first edges. Now assume that πk(x) = πk(y) for some k ≥ k0. By the definition of πk this
means that, for all n ∈ Z, τk(Tn(V,E)x) = τk(Tn(V,E)y), and so d(Tn(V,E)x, T

n
(V,E)y) < δ for all n ∈ Z

because of our choice of k0. This contradicts that d(Tn0

(V,E)x, T
n0

(V,E)y) > δ. Hence πk is injective for

all k ≥ k0, proving the proposition. �

We draw the following conclusions from the above: Let (X(V,E), T(V,E)) be the Bratteli-Vershik
system associated to the properly ordered Bratteli diagram (V,E,≥). Then (X(V,E), T(V,E)) is not
expansive if and only if πk : X(V,E) → Xk (= πk(X(V,E))) is not injective for k = 1, 2, 3, . . . .
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3 Key definitions and basic properties.

Set X = X(V,E), T = T(V,E), where (X(V,E), T(V,E)) is the Bratteli-Vershik system associated to the
properly ordered Bratteli diagram (V,E,≥). (We will use the notation introduced in Section 2 as
well as the one in [DM], and we adopt the terminology of [DM].)

Consider a pair (x, x′) of distinct points in X such that πi(x) = πi(x
′) for some i ≥ 1. We call

such a pair i-compatible. Observe that (x, x′) is then k-compatible if k ≤ i. Since x 6= x′, there
exists some j > i such that πj(x) 6= πj(x

′). We say that the pair is j-separated. The largest index
i0 for which the pair (x, x′) is i0-compatible (and hence it is (i0 + 1)-separated) will be called the
depth of compatibility (depth for short) of this pair. In particular, equal elements have depth ∞.
Let (x, x′) be i-compatible and j-separated for some j > i. By telescoping between levels i and j we
obtain that (x, x′) is of depth i, which is easily seen.

We make some observations:

(i) If (x, x′) is i-compatible and j-separated, then (Tmx, Tmx′) is i-compatible and j-separated
for all m ∈ Z. [This follows since πk(Tmy) = Smk πk(y) for all y ∈ X, k = 1, 2, 3, . . . .]

(ii) If (x, x′) is of depth i, then (Tmx, Tmx′) is of depth i for all m ∈ Z. [This is an immediate
consequence of (i).]

(iii) If (x, x′) is a pair of depth i and (x, x′′) is a pair of depth j > i, then (x′, x′′) is a pair of depth
i (and hence not equal). [Clearly the pair (x′, x′′) is i-compatible. There exists m ∈ Z such
that τi+1(Tmx) 6= τi+1(Tmx′). Since τi+1(Tmx) = τi+1(Tmx′′), the assertion follows.]

An i-compatible and j-separated (j > i) pair (x, x′) is said to have a common j-cut if for some
m ∈ Z, τj(T

mx) and τj(T
mx′) are minimal paths, i.e. consisting of only minimal edges, between

level j and level 0 (i.e. the top vertex). Note that if a pair has a common j-cut it also has a common
j′-cut for every i < j′ ≤ j. It is obvious from the definitions that if (x, x′) has a common j-cut,
then (T lx, T lx′) also has a common j-cut for any l ∈ Z. Observe also that if the pair (x, x′) has no
common j-cut the pair must be j-separated.

v0

v

V0

...

Vi

Vi+1

min max

min max

Figure 2

We make one important observation: Let (x, x′) be of depth i, and assume (x, x′) has a common
(i + 1)-cut. Then for some m ∈ Z, the pair (Tmx, Tmx′) is of depth i such that τi+1(Tmx) and
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τi+1(Tmx′) are minimal paths, and r(τi+1(Tmx)) 6= r(τi+1(Tmx′)). [In fact, by assumption there
exists k ∈ Z such that τi+1(T kx) and τi+1(T kx′) are minimal paths. If v = r(τi+1(T kx)) =
r(τi+1(T kx′)) then l iterates of T , say, applied to T kx and T kx′ respectively, will “sweep over” all
the paths between v0 ∈ V0 and v ∈ Vi+1, eventually reaching the max path, see Figure 2. Applying
T one more time to T k+lx and T k+lx′, respectively, will result in τi+1(T px) and τi+1(T px′) are
minimal paths. (Here p = k + l + 1.) If r(τi+1(T px)) 6= r(τi+1(T px′)) we are done, setting m = p.
If r(τi+1(T px)) = r(τi+1(T px′)), we do the same procedure as above. If we get to a stage where
the ranges are distinct we are done. If this does not happen, we play the same game on T kx and
T kx′, but now with iterates of T−1 instead of T . This must lead to a situation where the ranges are
distinct, otherwise πi+1(x) = πi+1(x′), contradicting that (x, x′) is (i+ 1)-separated.]

4 Proof of THEOREM.

We assume that (X(V,E), T(V,E)) it not expansive and so for all i ≥ 1, πi : X → Xi is not injective.
This is easily seen to have as a consequence that for infinitely many levels i there exist pairs of
points (xi, x

′
i) of depth i. If we telescope between these levels we may assume that for every i ≥ 1

there exists a pair (xi, x
′
i) of depth i. We will show that (X(V,E), T(V,E)) is an odometer, which will

complete the proof. First we set the stage in the sense that we may assume that (V,E,≥) has the
following properties:

(i) We may assume that rank(V,E) = K (cf. Definition 2.2) is the smallest possible such that the
Bratteli-Vershik system associated to (V,E,≥) is (conjugate to) the given one. (If K = 1 we
have an odometer, so there is nothing more to prove.)

(ii) By telescoping we may assume that between consecutive levels there is full connection (cf.
Definition 2.3) and, furthermore, that at each level all the minimal edges (respectively the
maximal edges) have the same source. (This is not an essential assumption, but it makes it
easier to visualize the Vershik map.)

Note that the property (i) is not affected by the operations performed in (ii).

As before we let X = X(V,E), T = T(V,E). There are two scenarios, mutually exclusive, cf. [DM].

(1) There exists i0 such that for all i ≥ i0 and every j > i there exists a pair (x, x′) of depth i with
a common j-cut.

(2) For infinitely many i, any pair (x, x′) of depth i has no common j-cuts for sufficiently large
j > i. (Note that j depends upon (x, x′)!)

The proof is different for case (1) and case (2).

We consider case (1):

By telescoping we may assume that for each i ≥ i0 there exists a pair (x, x′), x, x′ ∈ X, of depth
i. The idea is to find another properly ordered Bratteli diagram (V ′, E′,≥) with rank(V ′, E′) < K
(assuming K > 1), such that (X(V ′,E′), T(V ′,E′)) ∼= (X,T ). This contradiction will finish the proof
in this case. Now choose any i ≥ i0. By the observation we made at the end of Section 3 we may
assume that there exists a pair (x, x′) of depth i such that τi+1(x) and τi+1(x′) consist of minimal
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edges, and that v = r(τi+1(x)) 6= r(τi+1(x′)) = w. If |r−1(v)| = |r−1(w)| we may insert a new level
(we name it i′) between levels i and i+ 1 with ordering of the edges as shown in Figure 3. (The

v′

v wu

i

i′

i+ 1

Figure 3: Rank K = 6.

ordering at the vertex v′ is the same as the ordering at v and w, the two latter being the same since
(x, x′) is of depth i.) The order of the edges ranging at vertices u ∈ Vi+1 − {v, w} is replicated at
level i′. We notice that if we telescope between levels i and i+ 1 we get the original ordering. So
the insertion of level i′ does not change the Bratteli-Vershik map. Now we have obtained a level i′

with K − 1 number of vertices. If |r−1(v)| < |r−1(w)|, say, we insert a new level i′ between levels i
and i + 1 as shown in Figure 4. The |r−1(v)| first edges ranging at v and w are ordered at v′ as
they are at v and w while the |r−1(w)| − |r−1(v)| remaining edges ranging at w are ordered at v′′ as
they are at w. As before vertices u ∈ Vi+1 − {v, w} are just replicated at level i′. We observe that
the number of vertices at level i′ is the same as at level i+ 1, namely K. Now we claim that (x, x′)
separates at level i′, and so (x, x′) has depth i in the new diagram as well. In fact, by applying L+ 1
iterates of T to x and x′, respectively, we see that they separate at level i′. Here L is the number
of paths from the top vertex ranging at v. We observe that the number of edges between levels i
and i′ is strictly smaller than the number of edges between levels i and i+ 1. Now we repeat the
same construction between levels i and i′. Since we decrease the number of edges each time, we
must eventually arrive at the first case, where the number of edges ranging at v and w are the same.
Doing the construction we did in the first case will then yield a level which has K − 1 vertices.

After we have done this, we do the same construction between levels (i+ 1) and (i+ 2), etc. If
we now telescope to the new levels with K − 1 vertices we wind up with a properly ordered Bratteli
diagram of rank K − 1 which yields a Bratteli-Vershik system conjugate to the original. From this
we conclude that K can not be larger than one and the proof is completed for case (1).

We now look at case (2). By telescoping to appropriate levels we may assume that we have the
following scenario:

For each i ≥ 1 there exists a pair of depth i that has no common (i + 1)-cuts, and hence no
common j-cuts for any j > i. Now fix any i0 ≥ 1. We shall prove that (Xi0 , Si0) is periodic (and
hence finite). This will imply that (X,T ) is an odometer since (X,T ) = lim←−(Xk, Sk), hence finishing
the proof.
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Figure 4: Rank K = 6.

Under the assumption that the above scenario holds we can prove the following lemma (whose
proof we postpone to the end).

Sublemma. For any positive integer L there exist L distinct elements y1, y2, . . . , yL in X which
are pairwise i0-compatible and pairwise have no common j-cuts for some j ≥ i0. In particular, they
are pairwise j-separated. (Observe that for all k ∈ Z the elements T ky1, T

ky2, . . . , T
kyL have the

same properties as y1, y2, . . . , yL.)

By telescoping between level i0 and level j we may assume that the elements y1, y2, . . . , yL in the
Sublemma are pairwise of depth i0 and have no common (i0 + 1)-cuts. Choose L in the Sublemma
to be

L = (K − 1)2K + 2.

Let us in the sequel denote τi0 by τ1 and τi0+1 by τ2. Let v ∈ Vi0+1 and let lv be the smallest
(positive) difference of the ordinal numbers of any pair (τ2(T pyi), τ2(T pyj)) with common range v, i.e.
r(τ2(T pyi)) = r(τ2(T pyj)) = v. Here i, j ∈ {1, 2, . . . , L}, i 6= j, and p can be any integer. (In Figure
5 we have illustrated this by assuming that lv is obtained at v by y1 = (a, e, . . . ), y2 = (a, f, . . . ).
We see that lv = 5− 1 = 4. Actually, Figure 5 illustrates another point (setting aside that K = 2):
In the general case, if we telescope between level 0 and level i0, then we wind up with a scenario like
the one in Figure 5 except that there are multiple edges instead of the single edge a (respectively b).)

Assume lv is obtained at v with the pair (τ2(T pyi), τ2(T pyj)). Since
πi0(T pyi) = πi0(T pyj) this has the following consequence: v̂(k) = v̂(k + lv) for k ∈ [1, |v| − lv]. Here
|v| denotes the number of paths in Pi0+1 ranging at v, and v̂(k) is the element in Pi0 obtained by
“cutting off” (or truncating) the path in Pi0+1 ranging at v with ordinal number k. (In Figure 5
we have lv = 4, and we get that v̂(1) = v̂(1 + 4) = a, v̂(2) = v̂(2 + 4) = b, v̂(3) = v̂(3 + 4) = a,
v̂(4) = v̂(4 + 4) = b.)

Now let ŷ denote the common image of y1, y2, . . . , yL under πi0 , i.e. πi0(y1) = πi0(y2) = · · · =
πi0(yL) = ŷ ⊆ PZ

i0
. Observe that by the definition of ŷ we have that ŷ(l) = τ1(T lyi) for l ∈ Z

and any i = 1, 2, . . . , L. In particular, ŷ(0) = τ1(yi). We will say that the lv-periodicity law holds
at the coordinate n ∈ Z of ŷ if ŷ(n) = ŷ(n + lv). We make one important observation: If, say,
r(τ2(Tnyi)) = r(τ2(Tnyj)) = v for some yi 6= yj and τ2(Tnyi) < τ2(Tnyj) (n ∈ Z), then the lv
periodicity law holds at the coordinate n of ŷ. In fact, if the ordinal number of τ2(Tnyi) is k,
then k + lv ≤ (ordinal number of τ2(Tnyj)) ≤ |v|, and so v̂(k) = v̂(k + lv). By definition of ŷ it

9



a b

1

3

2 41

e

3 5

f

7

2
4

6
8

v
...

Figure 5: A Bratteli diagram where i0 = 1, |v| = 8, lv = 4, y1 = (a, e, . . . ), y2 = (a, f, . . . ) and
π1(y1) = π1(y2).

follows that v̂(k) = ŷ(n). Now τ2(Tn+lvyi) ≤ τ2(Tnyj), and so ŷ(n+ lv) = v̂(k + lv), and hence the
lv-periodicity law holds at the coordinate n of ŷ.

Let us order the vertices at level i0 + 1 by v1, v2, . . . , vK such that lv1 ≤ lv2 ≤ · · · ≤ lvK . (If there
exists some vertex v at level i0 + 1 such that no two T pyi, T

pyj (p ∈ Z, i 6= j) range at v, then we
just ignore that v. This will not cause any problem for the subsequent argument, so we may just as
well assume that there exists no such v.) Assume that there exists some k ∈ Z such that

∣∣{T kyi
∣∣r(τ2(T kyi)) = v1, i = 1, 2, . . . , L}

∣∣ ≥ K + 1.

(Here |A| denotes the cardinality of the set A.) By renaming T kyi as yi, i = 1, 2, . . . , L (cf. Sublemma),
we may assume

|{yi |r(τ2(yi)) = v1, i = 1, 2, . . . , L}| ≥ K + 1.

Let I be the largest interval of integers (obviously containing 0) such that the lv1-periodicity law
holds. Specifically, if i ∈ I, then ŷ(i) = ŷ(i+ lv1). If I is infinite at the right end, then ŷ(i) = ŷ(i+ lv1)
for all i ≥ 0. Shifting ŷ to the left and using minimality of (Xi0 , Si0), we get that ŷ is periodic
and so (Xi0 , Si0) is periodic, thus finishing the proof. If I has a right end, let m ∈ Z+ be the first
integer to the right of I. At least two of the elements in {Tmyi | r(τ2(yi)) = v1, i = 1, 2, . . . , L}, say,
Tmyi and Tmyj (i 6= j) are such that r(τ2(Tmyi)) = r(τ2(Tmyj)) = vk for some k ≥ 1. We have
ŷ(m) = τ1(Tmyj) = τ1(Tmyi). If vk = v1 then the lv1 -periodicity law holds at m by the observation
we made above, contradicting our assumption. So k > 1. Let the ordinal numbers of τ2(Tmyi) and
τ2(Tmyj) be s and t, respectively, and assume s < t. Now lv1 ≤ lvk ≤ t − s, and so the ordinal
number s+ lv1 exists for paths in Pi0+1 ranging at vk.

Applying T−(t−s) to Tmyj results in the following:

τ2(Tmyi) = τ2(T−(t−s)(Tmyj)) = τ2(Tm−(t−s)yj).
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In particular, the ordinal numbers of τ2(Tm−(t−s)yj) and τ2(Tmyi) are the same, both equal to s.
We also get

ŷ(m) = τ1(Tmyi) = τ1(Tm−(t−s)yj) = ŷ(m− (t− s)).
Assume we can prove that m − (t − s) > 0. Then m − (t − s) ∈ I and so the lv1 periodicity law
holds at m− (t− s) i.e. ŷ(m− (t− s) + lv1) = ŷ(m− (t− s)). If we apply T lv1 to both Tmyi and
Tm−(t−s)yj , respectively, we get

τ2(Tm+lv1 yi) = τ2(Tm−(t−s)+lv1 yj)

(both having ordinal number s+ lv1), and so

ŷ(m+ lv1) = ŷ(m− (t− s) + lv1) = ŷ(m− (t− s)) = ŷ(m).

So the lv1-periodicity law holds at m which contradicts our assumption that I has a (finite) right
end, thus finishing the proof. It remains to prove that m− (t− s) > 0. Assume by contradiction
that m− (t− s) ≤ 0. There exists an l, 0 ≤ l ≤ t− s (≤ t) such that m− l = 0. We get

τ2(yj) = τ2(Tm−lyj) = τ2(T−l(Tmyj))

which is impossible since r(τ2(yj)) = v1 and r(τ2(T−l(Tmyj))) = vk.
To recap, if there exists some k ∈ Z such that

∣∣{T kyi | r(τ2(T kyi)) = v1, i = 1, 2, . . . , L}
∣∣ ≥ K + 1, (*)

then we can prove that (Xi0 , Si0) is periodic. So assume that this is not the case. In other words,
for all k ∈ Z we have ∣∣{T kyi | r(τ2(T kyi)) = v1, i = 1, 2, . . . , L}

∣∣ ≤ K.
Assume now that there exists some k ∈ Z such that

∣∣{T kyi | r(τ2(T kyi)) = v2, i = 1, 2, . . . , L}
∣∣ ≥ 2K. (**)

Now we argue exactly as above letting I and m be as above. There will then exist at least
two elements in {Tmyi | r(τ2(yi)) = v2, i = 1, 2, . . . , L}, say Tmyi and Tmyj (i 6= j) such that
r(τ2(Tmyi)) = r(τ2(Tmyj)) = vk, where k ≥ 2. By exactly the same argument as above, we get that
(Xi0 , Si0) is periodic. If both (*) and (**) do not occur, we assume there exists k ∈ Z such that

∣∣{T kyi | r(τ2(T kyi)) = v3, i = 1, 2, . . . , L}
∣∣ ≥ 4K − 2. (***)

We repeat the same argument as above, again getting that (Xi0 , Si0) is periodic. We continue this
process, and it must eventually stop. The “worst” case scenario is that for all k ∈ Z the following
simultaneously holds:

∣∣{T kyi | r(τ2(T kyi)) = v1, i = 1, 2, . . . , L}
∣∣ ≤ K

∣∣{T kyi | r(τ2(T kyi)) = v2, i = 1, 2, . . . , L}
∣∣ ≤ 2K − 1

∣∣{T kyi | r(τ2(T kyi)) = v3, i = 1, 2, . . . , L}
∣∣ ≤ 4K − 3

...
...

...
∣∣{T kyi | r(τ2(T kyi)) = vl, i = 1, 2, . . . , L}

∣∣ ≤ 2l−1K − (2l−1 − 1)

...
...

...
∣∣{T kyi | r(τ2(T kyi)) = vK , i = 1, 2, . . . , L}

∣∣ ≤ 2K−1K − (2K−1 − 1)





(****)
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Adding up the right hand side we get (K − 1)2K + 1. However, (****) contradicts that
L = (K − 1)2K + 2. Hence one of the scenarios that lead to a proof that (Xi0 , Si0) is periodic must
occur. This finishes the proof of THEOREM.

Proof of Sublemma. For each i ∈ [i0, i0 + L− 1] let (xi, x
′
i) be a pair of depth i which do not have

a common (i + 1)-cut. Let {nk}k be a subsequence of natural numbers such that Tnkxi −→ y0
as k −→ ∞, where y0 is the unique minimal path xmin in X = X(V,E). (Because of minimality
of (X,T ) such a subsequence exists.) By compactness of X there exists a subsequence of {nk}k,
which we again will denote by {nk}k, such that Tnkx′i −→ yi for some yi ∈ X. By continuity we
get that πi(y0) = πi(yi) since πi(T

nkxi) = πi(T
nkx′i) for all k. So (y0, y1) is i-compatible. We

claim that (y0, yi) is (i + 1)-separated, and hence (y0, yi) is of depth i. In fact, there exists k0
such that for all k ≥ k0, τi+1(Tnkxi) = τi+1(y0) and τi+1(Tnkx′i) = τi+1(yi). Since (xi, x

′
i) do not

have a common (i+ 1)-cut we conclude that τi+1(Tnkxi) 6= τi+1(Tnkx′i). Hence τi+1(y0) 6= τi+1(yi),
and so (y0, yi) is (i + 1)-separated, hence of depth i. By (iii) in Section 3 we get that if i < i′,
then (yi, yi′) is a pair of depth i′ and hence, in particular, i0-compatible. (In particular, the points
yi0 , yi0+1, . . . , yi0+L−1 are distinct.) By assumption (2) there exists j(i, i′) > i′ such that (yi, yi′)
have no common j(i, i′)-cut. Let j = max{j(i, i′)|i 6= i′}. Then y1, y2, . . . , yL are distinct points in X
which are pairwise i0-compatible and pairwise have no common j-cut. (Here we rename the indices
by letting i0 → 1, i0 + 1→ 2, . . . , i0 + L− 1→ L.) This finishes the proof of the Sublemma.

The following corollary gives a positive answer to QUESTION 1 raised in [DM] about finding a
smaller L than the one given in the so-called ”Infection Lemma” in [DM], namely L = KK+1 + 1.
In fact, we conjecture that the L we have found is optimal.

Corollary 4.1. If there exists at least

L = (K − 1)2K + 2

points yk (k ∈ [1, L]) that are i-compatible and have no common j-cut for some j > i (and hence
are j-separated), then (Xi, Si) is periodic.

Remark 4.2. We find some of the assertions at the beginning of ”Proof in case (2)” of THEOREM 1
(the same as our THEOREM) in [DM, pp. 744-745] somewhat confusing and lacking explanations.
For example, it is stated that under assumption (2) the following holds: for each i ≥ 1 every (!)
pair of depth i has no common (i + 1)-cuts. We do not see why this should be true. However,
it does follow from assumption (2) that there exists (!) a pair with the desired properties, and
that is sufficient for the proof to work. We also find the subsequent argument for the existence
of appropriately many i0 compatible and j-separated elements with no common j-cuts somewhat
lacking and needing some further explanation.

While we think that there is too much ”hand-waving” in the proof of THEOREM 1 in [DM],
making it difficult to follow, we want no negative impression to attach to the [DM] paper. In fact,
Downarowicz and Maass had the insight to realize that such a remarkable result as THEOREM 1
holds, and also the ingenuity of finding a proof, the basic idea of which we use in our new proof.
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