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Abstract

We investigate the problem of guaranteed estimation of values of linear continuous
functionals defined on solutions to mixed variational equations generated by linear elliptic
problems from indirect noisy observations of these solutions.

We assume that right-hand sides of the equations, as well as the second moments of
noises in observations are not known; the only available information is that they belong to
given bounded sets in the appropriate functional spaces.

We are looking for linear with respect to observations optimal estimates of solutions of
aforementioned equations called minimax or guaranteed estimates. We develop constructive
methods for finding these estimates and estimation errors which are expressed in terms of
solutions to special mixed variational equations and prove that Galerkin approximations
of the obtained variational equations converge to their exact solutions.

We study also the problem of guaranteed estimation of right-hand sides of mixed vari-
ational equations.

Introduction

Estimation theory for systems with lumped and distributed parameters under uncertainty
conditions was developed intensively during the last 30 years. That was motivated by the fact
that the realistic setting of boundary value problems describing physical processes often contains
perturbations of unknown (or partially unknown) nature. In such cases the minimax estimation
method proved to be useful, making it possible to obtain optimal estimates both for the unknown
solutions (or right-hand sides of equations appearing in the boundary value problems) and for
linear functionals from them, that is estimates looked for in the class of linear estimates with
respect to observations Here we understand observations of unknown solutions as the functions
that are linear transformations of same solutions distorted by additive random noises. for which
the maximal mean square error taken over all the realizations of perturbations from certain given
sets takes its minimal value.

The above estimation method was investigated in the works by N. N. Krasovsky, A. B.
Kurzhansky, A. G. Nakonechny, and others (see [3], [4], [5]-[7], [I8]). This approach makes it
possible to find optimal estimates of parameters of boundary value problems reckoning on the
"worst” realizations of perturbations.

A. G. Nakonechny used traditional variational formulations of boundary value problems (their
solvability is based on the Lax-Milgram lemma), to obtain systems of variational equations whose
solutions generate the minimax mean square estimates.

At the same time many physical processes of the real world are described by mixed variational
problems. Among such processes, there are flows of viscous fluids, propagation of electromag-
netic and acoustical waves. In addition, many classical boundary value problems admit mixed
variational formulations. The mixed method consists of simultaneous finding, from systems of
variational equations, both solutions and certain expression generated by solutions taken as new
auxiliary unknowns. As a rule, these unknowns are related to derivatives of the solutions and
have important physical meaning (such as flux, bending moment etc), and their calculation or
estimation often has even greater practical significance.

The theory of mixed variational methods of solving boundary value problems and their
numerical implementation, the mixed finite element methods, was developed by Babuska, Brezzi,
Fortin, Raviard, Glowinski and others (see [10] -[13]). In particular, Brezzi and Fortin proved
solvability theorems for a wide class of mixed variational problems and their discrete analogs.



In this paper we show that mixed variational formulations of boundary value problems can
be used also for a guaranteed estimation of linear functionals from unknown solutions and their
gradients, as well as functionals from unknown right-hand sides of second order linear elliptic
equations. It is proved that guaranteed estimates of these functionals and estimation errors
are expressed explicitly from the solutions of special systems of mixed variational equations, for
which the unique solvability is established. We develop, on the basis of the Galerkin method,
numerical methods of finding these solutions and prove the convergence of the approximate
solutions to exact ones.

The estimation methods proposed here yield, for example, in stationary and non-stationary
heat conduction problems, estimates of heat flux from temperature observations, or conversely,
estimates of temperature from heat flux observations, as well as estimates of the unknown dis-
tribution of density of sources from heat flux observations. The theory of guaranteed estimation
developed in this work provides an essential generalization of well-known results in this direction
by the authors mentioned above.

Note that the available estimation methods do not provide solution of such estimation prob-
lems, so that the methods developed here are essentially new.

1 Preliminaries and auxiliary results

Let us introduce the notations and definitions that will be used in this work.

We denote matrices and vectors by bold letters; x = (z1,...,x,) denotes a spatial variable
in an open domain D C R" with Lipschitzian boundary I'; dx = dx; - - - dz,, is Lebesgue measure
in R"; H'(D) and H{(D) are standard Sobolev spaces of the first order in the domain D with
corresponding norm.

If X is a Hilbert space over R with inner product (-, -)x and norm || - ||x, then Jx € L(X, X’)
denotes the Riesz operator acting from X to its adjoint X’ and determined by the equality
(we note that this operator exists according to the Riesz theorem) (v,u)y = < v, Jxu >xxx/
Vu,v € X, where < z, f >xxx = f(x) forx € X, f € X'.

Below random variable ¢ with values in a separable Hilbert space X is considered as a function
¢ : Q — X mapping random events E € BB to Borel sets in H (Borel o-algebra in X is generated
by open sets in X). By L?*(£2, X) we denote the Bochner space composed of random variables
¢ = £(w) defined on a certain probability space (€2, B, P) with values in a separable Hilbert space
X such that

€220 = / 1€(w)%dP(w) < co. (L1)

In this case there exists the Bochner integral
Ee = / £(w)dP(w) € X (1.2)
Q

called the mathematical expectation or the mean value of random variable &(w) which satisfies
the condition

(hEE)y = /Q (h, €(w))x dP(w) Vh € X. (1.3)

Being applied to random variable £ with values in R this expression leads to a usual definition of
its mathematical expectation because the Bochner integral (I.2)) reduces to a Lebesgue integral
with probability measure dP(w).

In L?(2, X) one can introduce the inner product

(&) = / (E@).n(@)x dP(w) V. € L3(Q,X). (1.4)



Applying the sign of mathematical expectation, one can write relationships (ILT])—(L4) as

€122 (0, x) = ElIE@)I% (1.5)
(h,E§)x = E(h,§(w))x VheX, (1.6)
(& mizex) = EEW),nw))x V& n € L*(Q, X). (1.7)

L*(Q2, X) equipped with norm (L) and inner product (L7) is a Hilbert space.

2 Statement of the estimation problem of linear function-
als from solutions to mixed variational equations

Let the state of a system be characterized by the function ¢(z) which is defined as a solution of
the Dirichlet boundary value problem:

—div(Agrady) +cp=f in D, (2.1)

=0 on I. (2.2)

Introducing the additional unknown j = —A grad ¢ in D, rewrite this problem as the first-order
system

A'j=—grady in D, (2.3)

divi+cp=f D, =0 on T, (2.4)

where A = A(z) = (a;j(x)) is an n X n matrix with entries a;; € L>(D) for which there exists
a positive number 4 such that

uZ£ <Z% 16 Ve €D VE=(&,....6) R,

i,j=1

A~ is the inverse matrix of A, and c is a piecewise continuous function satisfying for € D the
inequality co < ¢(x) < ¢1, ¢, 1 = const, 0 < ¢y < ;.

According to [I0] and [1I7], by a solution of problem (Z3]), ([24) we will mean a pair of
functions (j, ¢) € H(div; D) x L*(Q) such that

/D((A(I))_lj(if), q(z))rndr — / p(r)divg(z)de =0 Vq e H(div; D) (2.5)

D

/DU(ZL')diVJ( )d:v—l—/ c(x)p( d:v—/ f(z)v(z)dx Yo € L*(D). (2.6)

Note that from equations (2.5) and (2.6]) it follows that p € H}(D), i. e. the boundary condition
@|r = 0 is implicitly contained in these equations.

Problem (Z5)), (Z6]) is commonly referred to as the mixed formulation of (2.3]), ([24]).

From physical point of view problem (2.3]), (2.4) simulates a stationary process of the prop-
agation of heat in the domain D, and the functions ¢(x), j(z), and f(x) have the sense of
temperature, heat flux, and volume density of heat sources, respectively, at the point x.

Introduce the bilinear forms a, b, ¢ and the functional [ given by

a(qr, qa) == /D((A(x))_lql,qg)Rnda: Va1, q2 € H(div; D), (2.7)



vdivqdr Vq € H(div;D),v € L*(D), (2.8)

c(x (z)dz Vv, vy € L*(D), (2.9)

b\m\

= —/ fvdr Vv e L*(D). (2.10)

Then the problem under study may be stated as follows.
Find (j, ») € H(div; D) x L*(2) such that

a(j,q) +b(q,¢) =0 Vqe H(div; D), (2.11)

b(j,v) — c(p,v) =1(v) VYov e L*(D). (2.12)

Denote by B : H(div;D) — L?(D) the operator associated with the bilinear form b. Tt
is easy to see that a,b and c are continuous bilinear forms with a being coercive on Ker B, ¢
being symmetric, positive semidefinite and b satisfying the standard inf-sup condition (Brezzi
condition). Since Im B = L*(D), we have Ker B* = {0}, where B! : L*(D) — H(div; D) is the
transpose operator of B defined by

<wv,B'q> =b(v,q) Vv € H(div,D), Vqe& L*(D).

H(div,Dyx H(div,D)

Consequently, it follows from Theorem 1.2 of [10] that problem 2I1I), (212) has a unique
solution and the following a priori estimate is valid

13ll 1 (divipy + 9 ll20) < Cllfll2p) (€ = const).

Further we assume that the function f(z) in equations (2.4]) and (2.6]) is unknown and belongs
to the set

Go:={f e (D) (QUF = o). F = o) ., <er} (2.13)

where fo € L?(D) is a given function, €; > 0 is a given constant, and @ : L*(D) — L*(D) is a
bounded positive selfadjoint operator for which there exists the inverse bounded operator Q.
It is known that the operator Q~! is positive and selfadjoint.

In this paper we focus on the following estimation problem:

From observations of random variables

1 =Cij+m, y2=Cop+np, (2.14)

with values in separable Hilbert spaces H; and Hs over R, respectively, it is necessary to estimate
the value of the linear functional

KWWZA&@MMWM+/QMM@M (2.15)

D

in the class of the estimates linear with respect to observations, which have the form

—

1(G, ) = (y1,u1) b, + (Y2, u2)m, + €, (2.16)

where (j, ) is a solution of problem (23], (2.8), 1; and Iy are given functions from L?(D)"
and L?(D), u; € Hy, uy € Hy, ¢ € R, Cy € L(L*(D)", H,), and Cy € L(L*(D), Hs) are linear
bounded operators,

n:= (m,m) € Gi; (2.17)



by G we denote the set of pairs {(7j;, )} of uncorrelated random variables 7; € L*(Q, H;) and
fly € L*(Q, Hy) with zero expectations satisfying the condition

E(Quin,in)m < €2, E(Qafla, o), < €3, (2.18)

where Q; and Q, are bounded positive-definite selfad301nt operators in H; and Hs, respectively,
for which there exist the inverse bounded operators Q7 and Q5. We note that random variables
& € Hy and & € H, are called uncorrelated if

(51,u1)H1(§2,u2) =0 Vul € Hl,UQ c Hg (219)

(see, for example, [2], p. 146).

It is known that operators Q;' and Qz_ ! are positive definite and selfadjoint, that is there
exists a positive number « such that

(Ql_lul,ul)Hl > O‘H“l”%{l Yu, € Hy, (Q2_1UQ,UQ)H2 > Oé”'dg”%{z Yuy € Hs. (220)
Set u := (uy,us) € H := Hy X Hy.

Definition 1. An estimate

o —
—

1G,¢) = (Y1, ), + (Y2, U2) g, + €

is called a guaranteed (or minimax) estimate of 1(j, ), if elements 4, € Hy, uy € Hy and a
number ¢ are determined from the condition

inf o(u,c) =o(u,c),

ueH, ceR
where -
U(U,C) = _ sup E”(ja()b) _l(j7¢)|27
f€G07(ﬁ17ﬁ2)€G1

and (j, ) is a solutzon of problem [23)), 24) at f(x) f( ), 1(§, @) == (1, uw1) g, + (U2, u2) p, +
C, = CL] + 71, = Co + 1a.

The quantity

o= lo(a,e)? (2.21)
is called the error of the guaranteed estimation of 1(j, ).

Thus, the guaranteed estimate is an estimate minimizing the maximal mean-square estima-
tion error calculated for the “worst” implementation of perturbations.
Further, without loss of generality, we may set ¢, = 1, k = 1,2,3, in (Z1I3) and ([ZIJ).

3 Reduction of the estimation problem to the optimal
control problem of a system governed by mixed varia-
tional equations

Introduce a pair of functions (z(+;u), 22(-;u)) € H(div; D) x L*(D) as a solution of the problem:

(
/D (A@) ™2 (@5 0), qla)gnde — /D () div () d
i

/ (L(2) — (Ct Ty, ur)(2), q(a))gnda  ¥q € H(div, D), (3.1)



_/Dv(x)divzl(x;u)dx—/ c(z)z2 (- u)v(z) do

D

= /D(lg(at) — (C Jius)(z))v(x) dz Yo € L*(D), (3.2)

where v € H, C! : H] — L2(D) and C% : H) — L*(D) are the transpose operators of C; and
Cs, respectlvely, defined by [, (v(z),C} w( Nendz =< Cv,w >p, xp forallv € L*(D)", w € Hj
and [, v(z)Chw(z)dr =< Cv w>H2xHé for all v € L?(D), w € H}.

From the theory of mixed variational problems it is known that the pair (zi(x;u), 22(x; u))
is uniquely determined [

Lemma 1. The problem of guaranteed estimation of the functional [(j, @) (i.e. the determination
of u = (uy,Us) and ¢) is equivalent to the problem of optimal control of the system described by
mized variational problem (31), (3.2) with a cost function

I(u) = (Q 22 u), z2(- u)) raepy + (Q7 'ur, ur)r, + (Q3 'ua, uz) i, — Inf . (3.4)

Proof. From relations (ZI4)-(ZI6) at j =j, ¢ = @, 71 = 71, 12 = 72, we have

1G,2) —1G,¢) = (1,3) 2oy + (o, @) r2(py

— (@1, )i, — (G2, u2) iy — ¢ = (11, §) 2oy + (I, @) 12(0)
—(u1, Coj + i) i, — (w2, Cop + i), — ¢ = (11,3) 12(pyn + (l2, @) 12()
— < Jmur, C1j >apem, — < Jmyuz, Co@ >y,
—(u1, i) iy — (w2 o), — € = (11, §) 2oy + (L2, @) 12(p)
—(ClTmun, 3) 2oy — (CoJmuz, @) 2(p) — (ur, i) m, — (U2, 72)m, — ¢
= (L — CiTm,u, §) 12y + (la — Ch T, uz, @) r2(p)
= (w1, M) iy — (u2, )y — c. (3.5)

Futher, taking into account system of variational equations

/D((A(fv))_lj(x), q(z))rndr — /D p(x) divq(z) de = 0 Vq € H(div; D), (3.6)

/Dv(x)divj(:c)dx—l—/ () @( dx—/ flx)v(z)dz Yo e L*(D), (3.7)

D

n fact, note that problem 3.1, (3:2) can be rewritten in the form
a* (Zl ) q) + b(q7 22) = ll (q) Vq € H(le, D)u
b(z1;v) — ¢(22;0) = la(v) Yo € L*(D),
where a*(z1,q) = a(q,z1), the bilinear forms a, b, and ¢, are defined by (1), (2.8]), and (23]), respectively,
li(q) = (L = ClJm,u1, q)r2(pyn, 12(v) = (l2 — C3Jm,u2,v) 12(p). Since a*(q,q) = a(q, q) then the bilinear form

a*(z1,q) is also coercive on Ker B and, hence, by Theorem 1.2 from [I0] problem @3II), (32) is uniquely solvable.
Moreover we have:

Izl vy H 22l 20y < CUIL g divepy H2llz2(p) < C(=ClTm, w1) L2(Dyn + (12— C Tmyu2) 2(D) ), (3-3)

where C' =const.



which follows from (Z.3))-(2.6) if we set there f = f, and (31, (32), transform the third and the
fourth summands in ([B.5). By setting q = j in (3]) and v = ¢ in ([B.2)), we have

ZﬂM@WM&M%WwM—L@@W&ﬁ@M

:L&@%ﬂ@hﬂﬂ%ﬂwwﬂ>@&

- [ swnivatein o - [ ctw)atei@w do

D

— [ (tla) = (o) (@)p(a) do. (39)
D
On the other hand, putting q = z;(-;u) in [B.6) and v = 25(-;u) in (B37), we find

/D((A(x))_lj(at),zl(z;u))Rnd:B —/Daﬁ(:ﬁ) divz;(x;u) dz = 0, (3.10)

/ng(x;u) divj(z) dz + /Dc(x)@(x)zg(x;u) dx = /Df(x)z2(x;u) dx. (3.11)
From (B.8)-(B3.11]), we get

(L — Ct Ty un, ) 2oy + Iz — Ch Tz, 3) 12(p)

:/D((A(x))_lj(x)azl(x;u))RndI—/[)zg(x;u)divj(x)dx

—Lﬂ@mm@mw—éwmmemm=/«Mmﬂ@mmwmm

D

_Aﬂ@mm@wm—A@@w@ﬂ@m—éwmmwmmmz

=0- (fv zo(3u)2py) = —(f, 22(5u) L2().- (3.12)
Equalities (3.12)) and ([B.5]) imply

—

1(G,¢) = 1(j, ) = —(]F, Z2('§U1au2)L2(D) — (w1, M) my, — (u2,72)m, — ¢

= —(f— Jo, Z2('§U1>u2))L2(D) - (fo, Z2('§U1>u2))L2(D)
— (w1, M), — (U2, M), — c=:§, (3.13)

where by £ we denote the random variable defined by the right-hand side of the latter equality.
It is obvious that

E¢§ = _(f— f0722('§U1,U2))L2(D) - (f0722(';U1,U2))L2(D) — G

§—EE = —(ur, M)m, — (U2, 72) -

Taking into consideration the relationship

D¢ = E(¢ — E¢)* = E€? — (E¢)? (3.14)



that couples dispersion D¢ of the random variable £ and its expectation E&, we obtain from

B.13)

2

- ’(f2 — fo, 22 (-3u)) L2(m)

—
7

EML@—U@¢>

+(fo, z2(-3w)) 20y + C‘2+ El(ur, ), + (u2, 72) )%,

whence we get

—

inﬂf@ ) sup E”(ja 95) _l(ja 95)|2 =
CER feGo, ()G

= inf sup [(f = fo, 22(50) 2oy +(for 22(50) 2y + ]
ceER fEG’o

+ sup E[(ﬁhu1)H1+(ﬁ2,U2)H2]2
(71,72)€G1

— Fup [(f2 - f2(0)a 22('; u))LQ(D) : + sup E[(ﬁlaul)fﬁ + (ﬁ2>u2)H2]2> (315)

feaGo (M1,712)€G1
with
C= —(fo, Z2('§ U))L2(D)-

In order to calculate the first term on the right-hand side of (B.I5) make use of the
Cauchy—Bunyakovsky inequality (see [§], p. 186) and (2.13]). We have

‘(JE— Jo, 22(';U))L2(D)|2 <

< (Q_122('5U),Zz(ﬁu))m(D)(Q(f— fo), f— fo)r2py < (Q_lzz(ﬁu),22(';U))L2(D)-
The direct substitution shows that last inequality is transformed to an equality on the element
~ Q_lz .; U
f=Jo+ =) 2i) 2
(Q ZQ(';U),Z(';U>>L2(D)

Hence,
2

sup (o = A%, 2205 0) )| = Q7 2a(5), 2a(5 ). (3.16)
f€Go

In order to calculate the second term on the right-hand side of (BIH), note that the
Cauchy—Bunyakovsky inequality, (2.I8)), (L), and (Z19) yields

sup  E[(71, w1)m, + (T2, u2) )
(71,72)€G1

< sup [(Qrur, wn)mE(Quin, ) my + (Q3 M ua, us) m, B(Qafla, i) i,
(71,72)€G1

< (Qr ur, w)m, + (Q w2, ua) g, (3.17)
It is easy to see that (B.17) takes the form at
i =11Q7 ur/(Qr 'ur, )2, Tle = 19Q3 un /(Q M ua, wn) P,

where 14 and v, are uncorrelated random variables with Eiy = Evy = 0, Evy = EV% = 1.
Therefore,

sup E[(ﬁla u1>H1 + (ﬁ27u2)H2]2 = (Ql_lulv u1>H1 + (QEIU% u2)H2' (318>
(71,712)€G1



From [B18), (3I6), and (3IH), we find

inﬂf§~ sup E‘l(jvgb)_l(ju¢)|2:](u>7
CER FeGo,(i,i)eGr

at ¢ = —(22(-;u), fo) L2(py, where I(u) is determined by (3.4). This proves the required assertion.
U

4 Representation for guaranteed estimates and errors of
estimation via solutions of mixed variational equations

Solving optimal control problem (B.))-(3.4]), we come to the following result.

Theorem 1. There exists a unique guaranteed eatimate of l(j, p) which has the form

1(§, 0) = (y1,01) g, + (Y2, U2) B, + €, (4.1)
where
¢ = —/ Zo(x) fo(x)dx, 11 = Q1C1p1, Uz = Q2C5ps, (4.2)
D

and the functions p1 € H(div, D) and 24, ps € L*(D) are determined as a solution of the following
uniquely solvable problem:

/D (A@) ) 21 (2), q1 (2) ez — / 5(2)divas (z) da

D

= /D(ll(@ - CfJch?lClPl(f)a%@))Rn dr Va1 € H(div,D), (4.3)

- /D v ()div 2y () de — / o)z (z)vr(v) dx

D

:/;(ZQ(ZL') — C;JHzc?QCQpQ([L’))Ul([L’) dx Vv, € L2(D), (44)

/D((A(ﬂf))_lpl(x)>%(@)wdﬂt—/l)pz(ﬂf)div(h(x) dr =0 Vqy € H(div, D), (4.5)

_ /D ta(e)div pr(a) do — [ cla)pa(a)uata)da
:/D%(:c)@—lzg(:c)dx Ve, € I3(D), (4.6)

where zy € H(div, D). The error of estimation o is given by an expression

g = l(pl,p2)1/2. (47)

Proof. Let us prove that the solution to the optimal control problem ([BI)—(34]) can be reduced
to the solution of system (4.3)-(Z.0).
Note first that functional I(u), where u € H can be represented in the form

Iu) = F(u) + L{u) + /D Q120 ()2 (x) da,



where

f(u) = /DQ_IZ2(SC§ u)Zo(x; u) do + (Qflul,m)Hl + (©51u27u2)H27

L(u) =2 /D Q5 (2:0)20 (2) da,

Zo(x;u) is the second component of the pair (z;(z;u), Z3(z;w)) which the unique solution to
problem (B1)), (3.2) at lél)(at) =0, l((f) () =0, and Zéo)(x) is the second component of the pair
(igo) (x), 2;0)(33)) which the unique solution to the same problem at u = 0.

Show that I(u) is a quadratic form corresponding to a symmetric continuous bilinear form

7(u,v) == /DQ_lég(x; w)Zy(x;v) dr + (Q7 'ur, v1) g, + (Q3 g, v2) i, (4.8)

on H x H and L(u) is a linear continuous functional defined on H.
The continuity of form m(u,v) on H x H means that for all u,v € H the inequality

|m(u, )| < Cllullullvlla (4.9)

must be valid, where C' = const.
To prove ([A.9), we use the estimate

/D%g(x;u) dr < Cl(HCfJHWlHiz(D)n + HC’;JquQHiQ(D)), ¢ = const, (4.10)

which follows from the inequality (8.3) at 1; = 0 and /s = 0. For the first term in the right-hand
side of (4.8), due to the Cauchy—Bunyakovsky inequality and (£.I0) we have

<

/ Q% (z;u) 2 (2 v) do
D

< ¢y (/ng(g:;u)dx)l/2 (/Dig(at;v)dzv)l/z, (4.11)

1/2
< C2C3(HC§JH1/LL1H§2(D)7L + HCgJHQrUQHi%D))
, 9 . 9 1/2
XC3<H01JH1U1HL2(D)n + HC2JH2U2HL2(D))

1/2 1/2
2 2 2 2
< sl + ually, ) (loili, + el ) = eallullallolls (4.12)

where ¢y, ¢3, ¢4 = const.
Analogously,

(Qr ur, v1)m + (Q3 'uz,v2)m, < csllullml|v]lm, e = const.

From this estimate and (4.12) it follows the validity of the inequality (Z.9]).
The continuity of linear functional L(u) on H can be proved similary.
It is obvious that

j(u) = W(uv u) > (Ql_luh u1>H1 + (leu% u2>H2 = aHqu Vu € H,

where « is a constant from (2.20). In line with Theorem 1.1 proved in [I], p. 11, the latter
statements imply the existence of the unique element @ := (uy,u) € H such that

I(a) = inf I(u).

ueH



Therefore, for any fixed w € H and 7 € R the function s(7) := I(& + Tw) reaches its minimum
at a unique point 7 = 0, so that,

d .
e+l =0 (4.13)

Since
2o(x; U 4 Tw) = 29(w;0) + T2 (23 W),

relation (AI3) yields

1d_, .
§£I(U+Tw) .

= (Q ' 2a(5 ), 22 w)) p2(py + (Q7 iy, wi)ar, + (Qg Mo, wo) gy, = 0. (4.14)
Introduce a pair of functions (py, p2) € H(div, D) x L?(D) as the unique solution of the problem

LﬂMwwmummwmw

- / pa(x)divge(z)der =0 Vaqu € H(div, D), (4.15)
D

= / Va(2)Q 2o (z;0) dr Yy € LA(D). (4.16)
D
Setting in (EI5) q2 = z1(-;w) and in [@I6) vy = Z(-;w), we obtain

/D (A(2))"p1 (2), 7 (2 ) )l — / po()dliv 7 (23 w) dir = 0, (4.17)

D

- [ A udive@ e - [ olpato)ate)ds

D

= /DU2(95)Q_122(:L";21) dr. (4.18)
From (@I7) and (4I8), we find
Q7" 22(0), 223 w)) p2(p) = _/

Dég(:v;w)divpl(x) d:v—/ c(x)pa(x)Z2(x; w)dz

+/D((A(x))_lpl(x),Zl(x;w))Rndx—/Dp2(:c)divil(x;w) dx
= [ (@) i) pie)sede - [ s do

D

—/ng(:)s)divil(:z;w) da:—/l)c(x)pg(a:)iz(:r;w)dx

= —/(CUlel,Pl(l"))RndiE—/(CEJHJ»Uz)pz dx
D

D
= _(wh Clpl)H1 - (w2, C2P2)H2-



Last relation and (4.I4)) imply

(w1, C1p1)y + (Wa, Copa) iy = (Q1 M, wi) ar, + (Qa Mo, Wo) g, -
Hence, B B
Uy = Q1Cip1, Uy = Q205ps. (4.19)

Setting these expressions into (B.1]), (8.2) and and denoting z,(z;u) =: z1(x), 2o(z;0) =:
Zo(x), we establish that functions (z1, 23), (p1, and py) satisfy (A3]) — (4.6]); the unique solvabil-
ity of the problem (43 — (4.0 follows from the existence of the unique minimum point @ of
functional I(u).

Now let us establish the validity of formula (£7)). From ([3.4) at v = u and ([@.19), it follows
o? = I(0) = (Q ' 2a(;0), 22(; @) p2(py + (Q1 "1, 1) oy + (Q3 Mz, i)
= (Q "%, %) 12(p) + (C1py, QiC1P1)u, + (Copz, QaCap2) .- (4.20)
Transform the first term in ([4.20). Setting in (4.15) and (AI6) g2 = Z; and vy = 25, we find

/D((A(x))_lpl(x),Zl(x))Rndx — / po(z)divz, (z) dz = 0,

D

- /D 5o(@)div py (2) do — /D c(2)pa(2) 5 () da = / 5 (2)Q " 25(x) da.

D
From the latter relations and from equations (£3) and ([@4]) with q; = p; and v; = p,, we have

(Q "2, 29)12(p) = —/

D

Zo(z)div py () dz—/ c(x)pa(x)2e(x) dx

" /D (A(2))"'pi1 (2), 22 (2))andr — /D pa(a)div s () dr
- /D (A@) ™ 21 (), pi(2))nde - / o)y o () dr

D

~ [ maaivaa) o~ [ oozt da

D

= /D(ll(x> - C§JH1QICIP1(LE)7 P1(7))re dz + / (l2(x) — 05JH2@202P2($))]92($) dx

_ /D (1(z), p1(2))rn dz + /D la(x)ps () da

— (C1p1, @1C1p1) i, — (Copz, Q2Cap2) sy (4.21)
From (4.20) and (£.21]), we otain (£.7]). Theorem is proved.

O

Note that the pair of functions (z(x), 22(z)) = (z1(x; @), 22(x; @)) and the element u = 4 € H
is a solution of optimal control problem (B3], (3.2), (B.4).

In the following theorem we obtain an alternative representation for the guaranteed esti-
mate of quantity [(j, ¢) which is expressed via a solution of certain system of mixed variational
equations not depending on 1; and /5.



Theorem 2. The guaranteed estimate of l(j,p) has the form

—
— ~
.

13, ) =1, @), (4.22)
where the pair (j,$) € H(div, D) x L2(D) is a solution to the following problem:
[ (@) Bu(@).as(o)seds ~ [ pa(odivas(o) do
D D

= /D(CfJch?l(yl — Clj)(l’), ql(x))Rnda: Vql c H(le, D), (423)

. /D o(e)divpr (@) do = [ c@)pala)on (@) do

= /DC§JH2Q2(y2 — CQ@)(ZL’)’Ul(ZL') dx \V/’Ul € L2(D), (424)

/D((A(I))_lj(x% Q2 (2))rr dr — /D@(x)div Q(r)dr =0 Vqp € H(div, D), (4.25)

—/Dvg(a:)divj(:v) d:)s—/ c(x)p(x)ve(x) do
:/Dvg(:)s)(Q_lﬁg(:B)—fo(x))dat Vv, € L3(D), (4.26)

where equalities [E23)-{28) are fulfilled with probability 1. Problem [#23) — ([E26) is uniquely

solvable.

The random fields j, pP1 and @, ps, whose realizations satisfy problem (A.23)—(4.26]), belong
to the spaces L*(2, H(div, D)) and L*(Q, L?*(D)), respectively.

Proof. Note that unique solvability of problem (£.23])-(4.26)) at realizations y; and y, that belong
with probability 1 to the spaces H; and Hs, respectively, can be proved similarly as to the problem

(E3)-E.0).

Namely, consider optimal control problem of the system described by

p1 € L*(, H(div, D)) py € L*(Q, L*(D)), (4.27)

B[ (A ) Biloi ). an@)eode] ~E[ [ palos divana) ]

= E[ /D (di(z) — (CfJHIul)(a:)),ql(x))wd:g] Vai € L*(Q, H(div, D)), (4.28)

— E[/D vy (x)div py(z; u) dzz] — E[/D c(x)pa(z; u)vy () dzz]

:E[ /D (do(z) — (CLTp,u0)(x))vr () dx} Vo, € LX(Q, L*(D)), (4.29)

2 Unique solvability of problem ([@27)-(#29) for every fixed u = (u1,u2) follows from correctness of stochastic
statement of mixed variational problem (2.2) on page 1427 in [9].



with cost function
1) = B[ | @77t — QA)a)al ) = Qo)) d

+(Q7 +(Qy tus, - inf :
(@ ) zun) + (@ iz, u2) 120,11 (s ) EL2 (O H) = L2(S0, H  H)

where .
di(x) = C1Ju, Quya (),
da(x) = C§JH2Q2?J2(95)-
Functional (u) is quadratic and coercive on the space L?(Q2, H). Therefore, there exists a unique

element 4 € L?(€2, H) such that

I(u) = inf I(u).
@)=t 1)

Next, denoting by (j, ¢) € L2(2, H(div, D)) x L2(€, L2(D)) a unique solution of the problem:

B[ [ ((A@) i) aa(o))an do]

- E[/D @ (z)div qo(z) dx} =0 Vq € L*(Q, H(div, D)),

~E| /D va(a)divj(z) da] — B /D c{x)@(z)va(z) de]
_ E[/D o) (@ ol ) — fo(w)da| Vor € X9, L),

and making use of virtually the same reasoning that led to the proof of Theorem 1, we arrive
at the equalities 13 = Q1C1j and Gy = Q2C¢. Denoting py(z) = p1(x; ), po(z) = po(z; ), we
deduce from the latter statement the unique solvability of problem

B[ ((A@) ) br(a).an(o))aeds] ~ B[ [ pa(odivan () da]

—E| /D (CLJ, Q1 — Crf) (), s (2)ed| Vo, € LA(Q, H(div, D)),

—E[ /D w1 (2)div pr(z) dx] - E[ /D o(@)pa ()01 (z) dx]

~E[ [ 4Gl — Cop)an(a)d] Vor € L@, 13(D),

B [ (A@) 50, qa))se ]

g /D pa)divax(w)de] =0 ¥ap € L@, H(div, D)),

—E[ /D va(x)div () dx} —E[ /D c(2)p(2)va () dx]

_ E[ | 0@ palw) — o) dx} Yo, € L2(Q, LA(D)).



From here following the argument of paper [9], we conclude that problem (£.23)—(.26) is uniquely

solvable.
Now let us prove the representation ({.22). By virtue of (2.16]) and (4.2),

1(G,0) = (y1. 1) g, + (y2, U2)E, + €
= (y1, Q1C1P1) 1, + (Y2, Q2Cp2) 1, — (22, fo)12()- (4.30)

Putting in (4.23)) and ({.24) q; = p; and v; = p;, we obtain

/D(((A(I))_I)Tﬁl(x)upl(x))R”dx—/DﬁQ(l’)dinl(l’) dx

~ [ (Clam Qi = O ). pr(a)ede. (131

= / (CT11,Qa(y2 — Cop) (2)po(x) dz.  (4.32)
D
Putting in (@3] and (£6) g2 = p; and ve = po, we find

/D((A(at))_lpl(x),f)l(:zs))Rnd:E — /ng(x)div p1(z)dx =0, (4.33)

_ /D pol)div i () dr — /D o(@)pa(@)pa(x) dz = / Bo(2)Q "2 (2) d. (4.34)

D
Since the sum of the left-hand sides of equalities (A.31]) and (432) is equal to the sum of the

left-hand sides of (£33) and ([#34)), we find from (Z30)

—
—

1(G, ) = (C13, Q1Cip1) my + (Cop, Qa2Copa), + (Q P — fo, 22)12(D)- (4.35)

Next, putting in (Z25), @26) qs = 21, v2 = 2 and in {@3), @4) q; = j, v1 = @, we obtain

/D((A(:E))_lj(x), z1(x))gn dx — /Dgé(a:)div z1(x)dx =0, (4.36)

_/Diz(i)divj(x) d:)s—/ c(2)(x) s (2) da

D

:A@@wr%m%mm»m,@W>

and

Lm&mﬂfmwmmww—/@M®ﬂwm

D

:Lm@—ﬂh@@m@ﬂMWM(M@



- [ swnivaneyds - [ do)alo)s) ds

D

:L@m—@hﬁﬂmmmmm.@w
Relations (4.36)—(4.39) imply
/[)52(@(@_1]52(1’) - fo(I)) dx = (11 - QlCﬂSl, Clj(x))Hl + (l2 - @2021327 0295(55))H2-

By virtue of (4.35), it follows from here representation (4.22). O

—
—

~ Remark 1. Notice that in representation 1(j, ) for minimax estimate I(j, p) the functions
J, © which are defined from equations (£23)—(220) do not depend on specific form of functional
[ and hence can be taken as a good estimate for unknown solution j, ¢ of Dirichlet problem (23)),

(24).

5 Approximate Guaranteed Estimates: The Theorems
on Convergence

In this section we introduce the notion of approximate guaranteed estimates of I(j, ¢) and prove

their convergence to @ To do this, we use the mixed finite element method for solving the
aforementioned problems (43)-(Z6) and ([A23)-(£26) and obtain approximate estimates via
solutions of linear algebraic equations. We show their convergence to the optimal estimates.

In this section D is supposed to be bounded and connected domain of R™ with polyhedral
boundary I'. First, we note that according to the mixed finite element method, an approximation
(i, ") to the solution (j,¢) of the problem (Z.I1), (2.12) is sought in the finite element space
Vi x V' given by

V' ={q" € H(div; D) : q"[x € (P*(K))" +xP*(K) VK € Ty},

Vi = {v" € L*(D) : v"|x € P*(K) VK €T},

where T}, is a simplicial triangulation of D, P¥(K) denotes the space of polynomials on K of
degree at most k, k > 0, x := (x1,...,2,), and is defined by requiring that

a(j".a") +b(q", ") =0 vq" eV}, (5.1)

b(jhu Uh) - C(Sohu Uh) = (fv Uh)L2(D) v,Uh € ‘/2h (52)

Here the bilinear forms a(,-), b(-,-), and ¢(-, ) are defined by (27)—(29). Hence system (5.1)),
(52)) can be rewritten in the form

ﬁMMWﬁmmeM—mem¢mmzom%mﬁ (5.3)

/Dv(:n)divjh(at)dx + /Dc(x)gph(x)vh(:v)dz = /Df(at)vh(:v) dx Yo' € V. (5.4)

It can be easily verified that the bilinear form alyn,y is uniformly coercive on Ker Bly»
and that the bilinear form blyn, .y satisfies the inf-sup condition (Babuska-Brezzi condition).



Moreover, we have Ker B'|;;n = () and therefore, the mixed discretization (1), (5:2) (or what is
the same (5.3]), (5.4])) is uniquely solvable and the following estimates are valid

15 = 3" lardiv.o) + e = " ll2200)

S N e Py I
v 2

qh c Vlh h

13"l v,y + 19" 1220y < €l fll 2oy, (5.6)

where ¢ and ¢ are constant not depending on h (cf. e.g. [I0]; §II, Prop. 2.11]) and [13], page
102).

Note that since divqy|x € P¥(K), K € T, then a natural choice for the approximation of
the variable ¢ is to use piecewise polynomials of degree at most k leading to the space Vi defined
above. Due to Proposition 3.9 of [10], p. 132, it follows that the sequences of the subspaces
{V]'} and {V}'} are complete in H(div; D) and L?(D), respectively, in the following sense.

Definition 2. Let V be a Hilbert space. Introduce a sequence of finite-dimensional subspaces V"
in'V, defined by an infinite set of parameters hy, ha, ... with limg_,., hy = 0.

~ We say that sequence {V"} is complete in V, if for any v € V and € > 0 there exists an
h = h(v,€) > 0 such that inf ,cyn ||[v —w|| g < € for any h < h. In other words, the completeness

of sequence {V"} means that any elementv € V may be approximated with any degree of accuracy
by elements of {V"}.

Completeness of {V}*} and {V}*} in H(div;D) and L?(D) together with estimate (5.5]) imply
that

. . *h h
lim (13 = 3*ll (v oy + 10 = ©"llz2(0y) = 0. (5.7)

Now we are in a position to give the following definition.
Take an approximate guaranteed estimate of I(j, ¢) as

lh(j7 (P) = (u?7y1>H1 + (ugvy2>H1 + Ch7 (58)

where u! = Q,01p", ul = Q.Copht, " = [ 25 () fo(x) dz, and functions 2},p} € V" and
2h ph e V' are determined from the following uniquely solvable system of variational equalities

/D (A~ () 8(x), o () o + / h(2)div () de

D

= / (11(.]7) - C§JH1QICIP?(Q:)7q?($))R” dx Vq? S ‘/lhu (59)
D

/vf(m)divi?(:ﬁ) d$:/(lg(x)—C;JH2©202pg(l’))U?(SL’) de Yol e VI, (5.10)
D D
[ A7 @R dieds + [ phadivala)dr =0 vV, ()
/vé‘(:ﬂ)divp}f(x) d:z:/vg(:z)Q_lég(x) de Yo € V. (5.12)
D D

The unique solvability of system (5.9)—(5.12)) follows from the same reasoning of the previous
sections which led to the proof of Theorem 1 with H(div, D) and L?(D) being replaced by V}*
and V', respectively.



Theorem 3. Let z,,p; € H(div, D), 2, py € L*(D) and 27, ph € V', 28 ph € V] be solutions

of problems [A3)—A0) and (EI)—([EI2), respectively.
Then the following hold:

|21 = 21| ydiv oy + 1122 = 2|2y = 0 as h =0, (5.13)
i)
Ip1 = Pl div.py + IP2 = P5ll2p) = 0 as h = 0. (5.14)

—

ii) Approximate guaranteed estimate I"(j, ©) of 1(j, @) tends to a guaranteed estimate 1(j, o)
of this expression as h — 0 in the sense that

—
—

—0

Moreover,
lim  sup  E|I"(j,@) —1(,)* =0, (5.15)
h=0 FE€Go,(71,ii2)€G1
and
im s EBRGE) -G8 = s EIGE) - 1G.8)7 (5.16)
7 fEGo,(7i1,72) €G1 F€Go,(71,712)€G1

where flj, and ¢ have the same sence as in the definition 1, 1"(j, ) = (ul', i), + (Wl o), +",
g1 =Cij+ 1, g2 = Cop + 1.

Proof. Denote by {h,} any sequence of positive numbers such that h,, — 0 when n — oco. Let
zm (- u) € V'™ i 2l (5 u) € Vi be a solution of the problem

/D (A@)™) 2 (@ u), ¢ (2) )and — / o ()i o () die =

D

/D () — (CLTmun) (@), @ (2)pnde Yol € Vi, (5.17)

- [ o@ival i do - [ ety @) do

D

_ /D (o) — (Clmus) (@)™ (z) dz Yo € VI (5.18)

Then
2y (x) = zy" (mu™), 2 (x) = 2 (v ). (5.19)

Problem (5.17), (518) can be rewritten as
a* (", q") + b(q", ") =0 vq" eV,
b(jhavh) - C((Phu Uh) = (f, Uh)L2(D) ol € Vzh,

where

a(§", q") = a(q", ") = / (A@) ™)), ¢ (@))znda

D
and the bilinear forms a(-,-), b(-,-), and ¢(-, -) are defined by (271, (Z8), and ([2.9)) respectively.



Since the bilinear form a(j", g") is uniformly coercive on Ker By, then the form is also uni-
formly coercive on Ker By with the same constant and hence system (5.17), (5.18) is uniquely
solvable. Theorem 1.2, Prop. 2.11 in §2 from [I0] (see also [13], page 102), and uniform coer-
civeness of the form a*(j"*, q") on Ker By imply that the following estimates are valid

21 () = 20" (3 )| div,py + 12203 0) = 257 (50) |22y

(D)> , (5.20)

= < inf |z () — qh"HH(div,D) + mf Mzl u) = o

qhn EVlh"

123" (5 ) || vy + 1257 (5 )l 2200y
< ¢ (I = Clmunll2ye + lle — CoJmus|l12(py) »  (5.21)

where ¢, ¢ are constants not depending on h and (zy(-;u), z3(-;u)) is a solution of system of

variational equations (B1), (3:2).
From estimate (5.20) and completeness of {V*} and {Vj"} in H(div; D) and L?(D), it follows
that

22 (3 w) = 23" (3 )| i,y + 1225 0) = 227 (3 0) |20y — O (5.22)

as n — 0o.
Prove now that

. h . . .2 ~ 2 \1/2
T o — i = T (o i, + o — )" = 0.

where u'» = (ul™ ub"), @ = (41, 1), H= Hy x H,.
Set . .
In(u) = (@25 (5 u), 2™ (5 ) 2oy + (Q7 "ua, wa) my + (Q3 ', u2) .
It is clear that
inf I,(u) = I,(u™)

ueH
and
In(uhn) < In(@).

From strong convergence of the sequence {(z"(-;a), 22" (-;0))} to (z1(%), 22()) in the space
H(div, D) x L*(D), which follows from (5.22)), we have

lim I,,(d) = I(40),

n—oo

and, hence lim,, . I,,(u"") < I(@). Since

] ( ) (Ql 1u}f”,u1 ) H, (Q2 1ug7lau2 )Hz 2 CYHuhn %{a

where o > 0 is the constant from (Z.20), then ||u""||; < C (C = const) and we can extract from
the sequence {u""} a subsequence {u"+} such that u"+ — @ weakly in H (see [16], Theorem 1,
p. 180).

Prove that the sequence {(zfll"k(-;uh”k), z;l"k(~;uh”k))} weakly converges to (z;(@), z2(@)) in
H(div, D) x L2(D).

In fact, take a subsequence {(z?nk (-0, z; "i(u" )} of the sequence
{(z?n’“( sultne ), zg"’“ (-;u"))} which weakly converges to some (i, %) in H(div, D) x L*(D) and
for an arbitrary (q,v) from H(div, D) x L*(D) take a sequence {(q"",v™")}, (q""*,v""*:) €



hny, by ] -
V; " x V, ™ which strongly converges to (q,v) in H(div, D) x L?(D) [} and pass to the limit
in both sides of equations

[)(((A(x))-l)Tz?”ki (0" ), "% (2) ol — / 2™ (a0 ) div o () da

D

N /D<11 (2) = (CLmu, ™) (@), a5 (2))gnda, (5.23)

h h
_ / o' (@) div g, ™ (w5 a0 do — / o(x)zy " (w0 (2) da
D

D

hn
B / (o) = (CTmyuy ™) (@)™ (v) dar - (5.24)
D
(which follows from (B.17), (B5.I8)), when ¢ — oo. Taking into account that I

im (A2 (5,0 (@) — [

1—00 D

by,
2y () div g () da:)

h Py,
= lim a(q"™ 2y (5a"0)) + Tim b(q""*, 2™ (5u"%)
71— 00 71— 00

ng, g,

. h k; hny .
= Zliglo <Aqy ",z C(5u™) > 1 (div, Dy x H(div,D)

. hn, h”ki . hn,
Flim < B, 2 () oy

=< Aq,21 > ydiv.pyxadiv.o) T < BA 22 >r2pyxr2)= a(q, 1) + b(q; 2)

:/D(((A(x))_l)Til(x),q(x))Rndx—/ Zo(x)div q(z) dx, (5.25)

D

where by A : H(div, D) — H(div, D) we denote the bounded operator associated with the
bilinear form a(-,-), defined by a(u,v) =< Au,v > Yu,v € H(div, D),

h h
—lim [ " (@)diva, (a0 de = Tim b(zy ("), 0"
71— 00 D 1—00

h
= lim < Btvh”ki,zlnki(-;uh"ki))

Am > m(div,py x H(div,D)

=b(z1,v) = — /Dv(x)div z1(z) dx, (5.26)

h h
lim [ c(x)z " (20" ) 0" () do = lim (2, (u" ), co )L2(D)
1— 00 D 1— 00

3Such sequences exist due to the boundedness of the sequence {(z}f”’c (~;uh"k),z§""(-;uh"k))} in the space
H(div; D) x L2(D), which follows from inequality (5.21)) and the boundedness of the sequence {u/"+} in the space
H, and from completeness of the sequence of the subspaces {V}* x V1 in H(div; D) x L2(D).

4Passage to the limit in (5.25)—(5.29) is justified by the following assertion (see, for example [15], page 12):

Let a sequence {v, } weakly converge to vy in some linear normed space X and a sequence {F,,} strongly converge
to Fy in the space X', dual of X. Then

lim < Fy,u, >xxx=< Fo,u0 >x/xx -
n—oo



— (5, cv) g2 = /D (@) 5(2)0(z) da, (5.27)

B, ;
lim [ (1i(z) = (CLTgu, ™) (2), ¢ (z) )en da

1—00 D
h7l N
= }H&((lh )L2( — < Jchlq N ki >H{xH1)
= (L, q) 2oy — < I, C1Q, U >y, = / (L(z) — (CYJm 1) (x), q(z))rrde, (5.28)
D

lim [ (la(x) — (ChJayus™ ) ()" () da

_ /D (o) — (T, ) ()0 () d,  (5.29)

we see, from (523) — (5.29), that (zy,2,) € H(div,D) x L*(D) satisfy equations (B.1) and
B2) at w = w. But problem (31), (3.2) has a unique solution (z;(u), 29(%)) at v = 4. Hence
(21, 22) = (21(1), 22(1)) and

(Zy ™ (s ulme ), 2™ (e )) — (21(40), 22(@))  weakly in H(div, D) x L3(D).

Then, since the functionals Fi(z2) = (Q ‘22, 22)12py and Fp(u) = (Q'u,u)y =
(Q7 ur, uy) g, + (Qy'ug, ug) g, are weakly lower semicontinuous in the spaces L?(D) and H,
respectively we obtain

[(@) = (Q " 25(; @), 22( @) 20y + (Qr W)
< h_mk—mo(Q_l’Z;mk (5 um), Z;lnk (5 u")) r2(py + lim, ,(Q tul )y
<limy o [(Q712 (5ul ), 2™ (5 uh) ) gy + (Q 7w, w )y
— T oo T (0) < T T (7)< 1(20). (5.30)
Here Q! : H — H is the bounded selfadjoint positive definite operator defined by
Q 'u=Q7 ur + Q3 uz, u=(ui,u) € H=Hy X Hy,

satisfying the inequality 3
(Q 'u,u)y > allul|3;, VYue H, (5.31)

where « is a constant from (2.20). Taking into account the uniqueness of an element on which
the minimum of functional (u) is attained, we find from (5.30) that @ = @. This implies that

lim I, (u") = I(a) (5.32)
n—o0
and w2 g in H, 2 = 2he (o yhn) Swealdy, 29(+;1) = 25 in L*(D) as n — oo. Hence,
(@ 2a(58), 2065 ) 2oy < Hmn, (@ (50), 2 (oo (5.33)
(Q1ﬁ> @)y < lim, o (Q7 M u )y (5.34)

SThese assertions are the corollary of a more general statement (that can be found, for example, in [15], p
41): Let X be a reflexive Banach space, and B : X — X* a linear bounded nonnegative selfadjoint operator. Then
the functional F(u) :=< Bu,u >x~xx 18 a weakly lower semicontinuous on X.



and from (5.33)), (5.34]), we have

lim,, o (Q7 125" (5u"™), 237 (1 u™)) 2oy + im0 (Q M )y

hm [Q el (i, 2 (i) iy +(@—1uhn’uh7l)H:|
- hmn—)oo [Q ! hn( ;uhn)a Zgn('; uhn))Lz(D) + ( ~_1uhn>uhn)Hi|

> lim, Q20 (u™), 28 (5 u™)) ooy + Timy oo (Q 1™ u™) 4.
Whence
lim,, oo (@ u, u") g 2 Ty oe (Q7 ™ u)

The last inequality shows that the sequence {(Q Lutn un) ) is convergent. This fact and (5.32)

also imply convergence of the sequence {(Q 25 (-; h"), 2 (5u) p2(py } and equality

I(a) = Hm (Q ' 24" (- ul™), 25" (;u™)) 2(py + lim (Q tul ul) . (5.35)
n—o0 n—oo
It is easy to see that . .
lim (@', u") g = (Q7'a, @) (5.36)

In fact, if we suppose that (5.36) does not hold, i.e.

lim (@_luh", u) g = (Q_lﬂ, W)y + a,

n—oo

where a is a certain positive number, then (due to (5.35)) there must be valid

n—)oo(Q ! hn('; fin ) Zgn(’ fin )L2

hm (Q Labn (5 ufm), zg”(-;uh"))Lz(D) = (Q ' 22(:; G, 22(+ ) p2(py) — @ (5.37)
But this is impossible since (5.37) leads to the contradictory inequality
lim, (@ "2 (- ul )7Zgn(';uhn>)L2(D) < (Q (- 4, 22(+3 1)) 12(D)-

Hence, (538]) is proved. )
Now let us show that u» — 4 strongly in H. To this end introduce Hilbert space H consisting

of elements of H endowed with norm

o]l = (Q v, v) 37

Then from weak convergence of the sequence {u""} to 4 as n — oo, it follows, obviously, that
u' — 4 weakly in H as n — oco. (5.38)
Since (£.36) means that
[u" |z = llallz as n — oo, (5.39)

we obtain from (53%) and (539) that u" — @ strongly in H i.e.J

lim [[u' —a|; = lim (Q ' (u" — a), u" — a)})* = 0.
n—oo n—oo

6Here we use the following statement (see, for example [16], p. 124). Let {f,} be a sequence in Hilbert space
X. If frn— f weakly in X and || fnllx = || fllx as n — oo then f, — f strongly in X.



From here, due to the inequality

following from (5.31)), we find that

lim |lu" — ||z =0,
n—oo

i.e. the sequence {u"} strongly converges to @ in H.
In order to get estimate (5.13), we note that

(A5 ) — 2 () 2 ) — 2 )
is a solution of the following problem
/D(((A(I))_l)T(Z?”(x; ) — 21" (z;u")), " (@) Jpnd
— [ sy = s iv g (o) do
D

= / (C1Tm (uh™ — @) (2), g (2))rndz Vg € VI, (5.40)
D

- /Dvh" (z)div (2 (z;0) — 2 (z;ul)) da
— [ cla)ep i) = (st ) da
- /D(Cész(ug” — G))(z)v" (2) dx Yol € V. (5.41)
Applying estimate (5.21]) to the solution of problem (5.40), (5.4T]), we obtain

23 (+5) = 23" (3 u") | v,y

+ 12" () — 2" (") 2y < Clluy™ = dnlle (5.42)

From triangle inequality, (5.19), (5.42), and the fact that the sequence {(z""(-;a), 20 (-;a))}
strongly converges to (z(4), z2(@)) in the space H(div, D) x L?(D), we have

A ~ b, 2 sh
121 = 27" | ir(div,py + 122 = 227 (| L2(p)

< Nz ) = 20 (5 )l div,py + I22(58) = 257 (5 8) | 2oy

+ |2y (@) — 24" ()

|H(diV,D)

+ 2 (s a) — 2 a2y = 0 as n— 0o, (5.43)

Analogously, in order to obtain estimate (5.14]), we note that

Ip1 — p}” r(div,py + Ilp2 — 5" |20y

< pr = 21" (5 0) | rdivpy + 12 = 257 (@) || 22



+ Py () — p}ILnHH div,D) + ||pgn(aﬂ) _pgn”B(D)v (5.44)

where (p"(-; @), ph(-;4)) is a solution of the problem

[ () ), (o))

— / pg”(x;ﬂ)divqg(x) dr =0 ‘v’q};” € Vlh", (5.45)
D

- [ (ntivpl @iy de = [ ooy (@) da

D

= / vp(2)Q M 2oy 0) dr v € V. (5.46)
D
Taking into account that, due to (5.11)),(5.12) and (5.45), (5.40),
(PY" (@) — 1™, Py (+5) — P5")

is a solution of the following problem

(b@@ﬂ@%w%ﬁwnwwmm

—3/u£wna>—p?@deqxtwdz=o Vi € VI, (5.47)
D

=A@WWﬂmmw£mwmezweWa®%>

and applying relationship (5.7) to the solution of problem (5.45), (5.46) and estimate (5.6) to
the solution of problem (5.47), (5.48)), respectively, we obtain, in view of (5.43)), that

Ip1 — P (5 @) rdivpy + IP2 = P57 (5 @) |20y = 0 as n— oo, (5.49)

P15 @) = ) | mrdiv,py + 195" (@) — 5| 2200
< Cl|zo(5 1) — é’g"HLz(D) —0 as n—oo. (5.50)

From (5.50), (5.49), and (5.44]), we find
11 = PV | rdivpy + P2 — 95" [l 20y = 0 as n — oo. (5.51)

Relationships (5.51]) and (5.43) mean that (5.13) and (5.14]) are proved.
Now show the validity of (5.15) and (5.16).

Let (j, @) be a solution of problem (), [2:0) at f(x) = f(z). Then from (5.8) and @I)), we

have

o —
—_—

E|tr (3, @) — 1G5, &) 1> = E[(u}™, 1) b, + (b, G2) #r, + " — (i, §1) ar, — (i, G2) a1, — €7

= E[(u}" — a1, §1) g, + (b — @o, §o) b, + " — &



- [( - ulv CL])Hl + (ulen - @J?v 0295)112 + Chn - 6]2
+ B[l — dy, )i, + (uh™ — G, ) ). (5.52)

Weak convergence of the sequence {25} to 2, in the space L?(D) implies that ¢ — ¢ asn — oo.
Then from the fact that f € Gy and the inequality

[(uilln — Uy, Clj)Hl + (ug" — Uy, CoP) g, + I — 6]2
<O (lurm = inlly, + s = tallf, + (" = ¢)?) <||j||?q(div,D> + HSEII%Z(D))
< C ([l —alf + (" = &) 1 flIZ2p)

< & (Jluh —al + (" — ) (C,C,C = const),

we see that the fist term in the r.h.s of (5.52]) tends to 0 as n — oo. Analogously, we may show
that for the last term in the r.h.s of (B.52)) the following estimate is valid

El(uf™ — @, i), + (uh™ =ty i2) ) < Cflu" — ail|};  (C = const)

and therefore this term also tends to 0 as n — oo. From here and the inequality

—
/-\
— _— =

E|im (3, @) — G, 8)|Y* = Bl G, 2) —1G, ) + G, ) — 1G5, &)
==\ (= 2

it follows the validity of the conclusion of the theorem. O

Let us formulate a similar result in the case when an estimate (j,$) of the state (j,¢) is
directly determined from the solution to problem (E23)—(Z24]).

Theorem 4. Let (j", $") € V' x VI be an approzimate estimate of (j, ) determined from the
solution to the variational problem

/D (A@) TP (x), o (2))nde /D P(e)div o (z) de

= [ Clan@n(@) = i), al@))anda vl € V. (553)

- / (Ch T, Qalya(z) — Cogh (@)l (2) de Vol € Vi, (5.54)
D

[ (@) ) dhoe o= [ Floptivaiiorde =0 VeVl 6.5

D

- [ i@ - [ doe e i

- /D wa@)(Q ' Ph(x) + folw)) de Wob € Vi (5.56)

Then o
15 = 3" ezdiv.py + 16 = &"ll2y) = 0 as h—0
and
1P1 = Bl div.py + 152 = D51l 20y = 0 as h —0.



Introducing the bases in the spaces V/* and V3!, problem (5.9)-(5.12) can be rewritten as a
system of liner algebraic equations. To do this, let us denote the elements of the bases of V;* and
Viby & (i=1,... ,nl) and 77,~ (i = 1,...,ny), respectively, where n; = dim V}", ny = dim V",
The fact that il, p1 and 2 ph belong to the spaces V" and V" means the existence of constants

22'(1)7 Pgl) and 2@ y D; @ SUCh that

ni
SoF: 1
Z e =D 0 (5:57)
j=1
and s
. A2
2h = Zz]( )nj, ph = ij nj. (5.58)
j=1
Setting in (5.9), BGII) a7 = af = & (i = 1,...,m) and in (G10), BI2) vf = vf = n; (i =

1,...,ny) respectively, we obtain that finding 27, p?, 28 and ph from (E.9)-(EI2) is equivalent

to solving the following system of linear algebraic equations with respect to coefficients 2 21 ), pgl),

2](-2), and p§-2) of expansions (5.57), (5.58):
Za +Za +Zam P =0 =1, (5.59)

Za +Za +Za”p b =1, ny, (5.60)
Zaﬁ)é” + Z aPpP =0, i=1,...,n, (5.61)

Zaij —i—Zawp] +Zaw,§ i=1,...,n9, (5.62)

where

o) = [ (AN 6@ & @hrde, ij =1,
o) = [ (A@) €@ g @hdn, i =1,
ag):—/Dm(z)divgj(x)dz, i=1,...,n9, j=1,...,m,
al) = /(ClelQlClé( ), &;())mn dz, 0,5 =1,... 01,
a] :/DC'EJHQQ2C2m(x)nj(x)dx, i,j=1,...,n9,
ag’:—/nj(x)cg—lm(x)dx, i i=1,... no,

c(@)mi(@)n;(x) de, i,j=1,... na,

b§2) :/ lo(x)ni(z)de, i=1,... ns.
D

Analogous system of linear algebraic equations can be also obtained for problem (B.53)—(5.50]).



6 The case of integral observation operators

As an example, we consider the case when H; = L? (Dgl))n X oo x L? (Dfll))n X oo x L2 (DSI’)”,
Hy = L*(D{) x -+ x L2(DP) x - x L2(DS)). Then Ju, = Ip,, Ju, = Iu,, where I, and
Iy, are the identity operators in H; and Hs, respectively,

@) = (W@ v @y @),

m@) = (0" @0 @), 0 (@),

1 1 1 1)\ n 1 1 1 .
where yi'(z) = (@), ...,y @) € L2(D)", ol (@) = () (x),... .0l (@) is a

stochastic vector process with components 172(11))(:5) (j=1,...,n,9 = 1,...,ny) that are stochas-

tic processes with zero expectations and finite second moments,

wal@) = (@), 9 @), @)

2 2
m(@) = (07 (@), 02 @), 12 @), (6.1)
where yi(j) e L*(D), ng) (x) (ia = 1,...,m2) is a stochastic process with zero expectation and

finite second moment.
Let in observations (2.14)) the operators C, : L?(D)"* — H; and Cs : L?*(D) — H, be defined
by

i) = (i), .., Vi) ... CDiw))

Cop(a) = (CPp(), ... CPp()...,Cp(w))

where C’Z.(ll) : LA(D)™ — Lz(Di(ll))" and C’Z.(f) . L2(D) — L*(D'?) are integral operators defined by

12

and

correspondingly, Kgll)(x, &) = {kiM(z,€) i'i—1 is a matrix with entries K e L2(D§11)) X Lz(Dl-(ll)),
ih=1,...,n, Ki(f)(a:,f) € LQ(DZ(?) X LQ(DZ(?) is a given function, io = 1,...,ns.
As a result, observations y; and y» in (Z.I4)) take the form

1 1
g =M@,y D),y V),

2 2

where

yﬁwz/mm%mmaﬁﬂﬁ@xu:Lm (6.2)
D

zﬁ@:/@@%mmwﬁ+ﬁ%x@:L% (6.3)
D

12



and the operators

O, € c(L2(D§1>)" x o x L(DM)" x - x L2(DIVY",

11 ni
(D) x o x (DY) x - x I2(DID)")
and
Qs € E(LQ(D§2’) xox L2(DP) x -+ x L2(DR),
L2(D§2)) TR L2(D§§)) e x L2(D(2))>

n2

in (2.18), which is contained in the definition of set G, are given by

Qlﬁl (Ql 771 a"'>Qr1nr1>"'>Qn1nn1)

and

Q2772 (Qz 772 e Qm 77r2 e Qn2 77n2)
where Q' ( ) is a symmetric positive definite n X n-matrix with entries q(r1 eC (Dﬁ}))ﬂ i,j =
1,...,n, ml e L*(Q, L2(D7q ), re=1,...,n1, o (x) is a continuous positive function defined

in the domain D£2), ng e L*(Q, Lz(Dg))), ro =1,...,n9.
In this case condition (2.I8)) takes the for

(1) < R(2) <
Z/(l) z)R! Nz, 7)) dr <1, Z/@)Qr2 VR, (z,2)dr < 1,

ri=1 ro=1

where by R{} (x,y) = [b( )(SL’ y)]i ;=1 we denote the correlation matrix of vector process ' (z) =

(ﬁg?l (x),... ,ﬁﬁpn(m)) with components

b () = E(US)Z( )nﬁ)](y)>, (v,y) € D x DY,

and by R (x,y) = Ef? (x )771(3) (y) we denote the correlation function of process i) (x), (x,y) €
D(2) > D(2)
To ro -
In fact,

ni

E(Qul, 1) m, = ZE(Q( ()l (« )mfi)(x))y (o)

ri=1

= nZi ( 0 QY (@) (), ) (2))sndr

—ZIZ;/(DZ D @) (@) do

lel

—ZZ/(UZ D @)t (x) de

ri=1 i=1 7131

"Here and below we denote by C(D) a class of functions continuous in the domain D.
5B
y
A (1 S (1
Sp(Qf (2)R} (. 2))

we denote the trace of matrix Q&P( )R(l)(:v x), i.e. the sum of diagonal elements of this matrix.



ni

- Z/D(D (@) (@, x) da = Z W ()R (2, 7)) da.

(1)
ri=1 leljl r11D

Analogously,
E(Qx)2, 12) ZE Q 7]7“2 ),nﬁ?(x))p (Dg))

ro=1

—i/m@m E(® (2 (2 dx—i/m@m O (2,2)do.

ro=1 ro=1
Uncorrelatedness of random variables 7; and 7); reduces in this case to the condition of
uncorrelatedness of the componets 772( )] of random vector fields 77“), in = 1,nq, j = 1,n, with

random fields ni2), o = 1,1y, and hence the set G; is described by the formula
Gy = L= Gini) s = @Al = G )
€ QL2 (D)) il = (77l A7) € LA(Q, LA(DY)),

En(l) =0 Eﬁ-(2) =0, ﬁl(ll)] and 172-(2) are uncorrelated, j = 1,n,i; = 1,ny,1p = 1, no;

22

i/Dgn Sp QY ()R (2, 2)] de < 1, Z/@)Q 2R (z,2) dz < 1} (6.4)

i1=1
It is easily verified that the operator Cf : (D%l)) X oo x L2 (Dl(ll))n X oo x L2 (DSI’)" —
L*(D)", transpose of Cy, is defined by Clyy(z) = YL, XDl(ll)(x) sz(ll) [Kl(ll)(g’x)]Tl/Jl(ll)(@ dé¢
where
Gr= @), € (D) =1,
and the operator C% : L? (DP) -x L? (D22 ) % >< L? (D,%)) — L*(D), transpose of Cy, is
defined by Clyn(x) = Y12 ng) <x> Jo K (& >w () de, where

o= (7, P @), Wy e LADY), b=1,...,n,
and x(M) is a characteristic function of the set M C R".
Since
in=QiCpr = (al,...,al, ... 0k ), of € 2D, hi=1,...,n,
ly = QoCopy = (03,02, ..., 02), 0} € LA(DY), ly=1,...,ns,
where
a () = Qi) /D<1> K (on)pi(n)dn, v =1,...,m, (6.5)
h
iy ()= Q0 | KL Cmpadn, iz =1, e (6.6)
l2
we find



- ZXD(”(') /D(l) Kl(ll)('vgl)Pl(&)dfl, (6.7)

I1=1 I
CoTm,QaCopa() = Y X o) / o KL G em(&) dér, (6.8)
la=1 2 DlQ

Wher€|§|

A class of linear with respect of observations (6.2)) and (G.3]) estimates m will take the

form
ni
Ga=3 [ sl omasy [ oo 6o

i1=1 ig=1

Thus, taking into account (G.H)—(6.9), we obtain that, under assumptions (ZI3)), (6.4), and
(217), the following result is valid for integral observation operators as a corollary from Theorems
1 and 2.

—
———

Theorem 5. The guaranteed estimate 1(j, p) of I(j, ) is determined by the formula

S 0 S @)
Z/(l) 21 y“ ( ))R” dx_l—Z/D(Q) ui2 (l’)yzg ( )dI+C_l(Ja )a

11=1 i9=1

/\

where

o=~ [ a@h .

i (v) = Qﬂ)(x)/m K (@, mpi(n)dn, i =T,ni,
D

11522)(3:) = Qg)(x) / @) Kz(f) (ZE? n)pQ(n) dna 7;2 = ].,77,2,
Di2

and functions py € H(div, D), 25,ps € L2(D) and j € H(div, D), $ € L2(D) are found from
solution to systems of variational equations

[ (@A) o) a@)eods = [ sadivae) de
- [ (v

9We use the following notation: if A(§) = [ay; ({)]f\’]:l is a matrix dependig on variable £ that varies on

measurable set €2, then we define [, A(£) d¢ by the equality

e / K(r.60p1(6) (@) dar Ve € H(div, D),

i1=1

A(S) d§ = U ai;j (€) dgr_ .

Q Q i,j=1



_ /D o1 (2)div 2, (z) d — /D c(w)22(x)vi (z) do
ACE

/D((A(:B))_lpl(x),qg(at))Rndx—/ng(x)div ax(z)dxr =0 Vqo € H(div, D),

ZXD(2) / 12 (95 fl)Pz(fl)dfl)vl( Ydx Vv, € L*(D),

io=1

_ /D o)y by () die — /D c(2)ps()va(a) do
B /Dv2<x>@—122<x> dx Vv, € L*(D).

JA@ i) — [ @) de
ZXD(l) / K (2,€0)31(&1) dér, qu (@ )) dx Vaq; € H(div, D),

SACEEDY

- [ wontivpe)ds — [ ctwpatope) ds

D

SACCE > g / o K @056 )u(a) s v € 220),

/D((A(m))_lj(m), q2(z))ge dx — / o(x)divgy(z)de =0 Vqu € H(div, D),

D

- [ wleyivit) o~ [ ctaploala) ds
- /1)212(17)(@_1132(93) + fo(z))dz Yy € L*(D),

respectively. Here z;,p; € H(div, D), p, € L*(D) and

ZXDu) / D (e, 2)TQM )y (€) de,

i1=1

hle) = Y xpp () [ | K€D € ds

i2:1 9
The estimation error o is given by the expression

o= l<p17p2)1/2-



7 Minimax estimation of linear functionals from right-
hand sides of elliptic equations: Representations for
guaranteed estimates and estimation errors

The problem is to determine a minimax estimate of the value of the functional

un:Lmnmwx (7.1)

from observations (2I4)) in the class of estimates, linear with respect to observations,

—_

I(f) = (v, u)m + (Yo, u2)m, + ¢, (7.2)

where u; and uy are elements from Hilbert spaces H; and Hy, respectively, ¢ € R, Iy € L*(D)
is a given function, under the assumption that f € Gy and n € GG, where sets Gy and G, are
defined on page

Definition 3. The estimate of the form

—
——

I(f) = (y1. @) my + (Y2, 42)m, + € (7.3)

will be called the quaranteed estimate of I(f) if the elements 1y € Hy, U € Hy and a number ¢
are determined from the condition

ue}?ieRa(u,c) =o(u,ce),
where u = (uy,us) € H = Hy X Hy, U = (U, Us) € H,

—_

o(uc):i=  sup  EN(f) = U )P,

FE€Go,(71,72)€G1

—

(f) = G w) i, + (G, u2)m, + €

(
g1 =Cij+7, G2 = Co@~+1l, and (j, ) is a solution to problem Z3)-(24) when f(z) = f(x).
The quantity

o= lo(a,é)"?

is called the error of the guaranteed estimation of I(f).

For any fixed u := (uy, us) € H, introduce a pair of functions (z1(-;u), 22(-;u)) € H(div; D) x
L?(D) as a unique solution of the following problem:

LMM@WFMmmmmwm—/@mmmm@mz

D

_Lﬂq@mmmmwmm ¥q € H(div, D), (7.5)

memm@wm+/d@memmx

D

:L@hwmwﬂwva@)WQ



Lemma 2. Finding the guaranteed estimate of I(f) is equivalent to the problem of optimal control
of a system described by the problem (7.5), (7.6) with cost function

I(u) = (Q '(lo — z2(-u)), lo — 2a(; W) 1)
+(Q1 M wn, )iy + Qg uz uz)m — inf L (7.7)

Proof. Taking into account (ZI)) atf = f and (Z4), we have

—_

1(f) = 1f) = (Lo, f)m(D) — (91, u1)my, — (Jo, u2)m, — €
= (lo, f)L2(D) — (u1, Cvj + i), — (2, Co + 7o), — €
= (lo. f)r2oy— < Jryur, Chj >myxm, — < Jmytz, Cof > g,
_(u1>ﬁl)H1 - (u27ﬁ2)H2 —C

= —(ClJm w1, J)2pyr — (ChTm,us, @) 12(p)
+ (107 f)LZ(D) - (ubﬁl)Hl - (U277~72)H2 —C. (7-8)

Using a similar argument as in the proof of Lemma 1 in which the solution of problem (B),
([B2) is substituted by the solution of problem (H]), (Z6), we obtain from (Z.8]) the following
representation

—

l(f) - l(f) = (fv lo — Z2('§U)L2(D) - (Uhﬁl)Hl - (U277~72)H2 —C
= (f = fo,lo — () 220y + (fo, lo — 22(; 1)) 22Dy

_(ulvﬁl)Hl - (U2,7~72)H2 —C

By virtue of (3.14)), we find from here

—

E \zm —

2
= ’(ﬁ — fo,lo — 22('; U))L2(D) + (fo, lo — 22('; U))L?(D) —C i

+E[(wr, 71) iy + (U2, 72) 1,7

From the latter equality, we obtain

—_

inf  sup B — ()P =

R I
CER feqo, (i ,i)eGh

= inf sup [(f— fo,lo — za(+;u)) 20y + (fo, lo — 22(55w)) 2Dy — 0]2

ceR f~€Go
+ sup  E[(f1,u)m, + (T2, u2) i)
(7,72)€G1
~ 2
= sup [(f - f(o)Jo - Zz(';u))LZ(D)] + sup E[(ﬁbul)Hl + (ﬁ2au2)H2]2a (7-9)
feaGo (71,712)€G1

where infimum over c is attained at ¢ = (fo, lo — 22(+; u)) L2(py. Cauchy—Bunyakovsky inequality

and (2.13) imply .
‘(f — fo,lo — Z2('§ U))L?(D)‘2

< (Q7Mlo — 22(5u)), lo — 22(5u)) 2y (QUF = fo)s f = fo) 2oy



<(Q 7 lo — 25 u)), lo — 22(; u))r2(p),
where inequality becomes an equality at
. Q' (lp — z(u
Fopr Pl mti)
(Q_ (ZO - Z2('? u))a lo — Z('? u))L2(D)

Hence

Sup [(fz — 121y — 2+ u))LZ(D>]2 = (Q (lo — 22(-;w)), lo — 22(;w)) r2(p)-
feGo

Analoguosly, due to (ZI8), (L6), and (2.19), we have

sup  E[(71,u1)m, + (ﬁ27u2>H2]2 = (©;1u17u1>H1 + (Q§1U2,U2)H2-
(71,72)€G1

From two latter relations and (7.9), we get

—_

il swp BN~ WP = (),
CER feGo, (i) eGr

at ¢ = (lo — 22(-;u), fo)r2(p), where I(u) is determined by (Z.7). O

As a result of solving of optimal control problem (Z.5) — (1), we come to the following
assertion.

Theorem 6. There exists a unique estimate of [(f) which has the form

—_
—

I(f) = (v, t1)m, + (Yo, U2)m, + 6, (7.10)

where

¢= / (lo(x) = 22(x)) fo(z) dz, Gy = QC1p1, iz = Q2Caps, (7.11)
D

and the functions py € H(div, D) and 25,ps € L*(D) are found from solution of the following
variational problem:

LmAmrwaummmwm—/@mmwmmm

D

= —/D(C{J}thClpl(l’),ql(l'))Rn dx Vql GH(diV,D), (712)

/D v (2)div 2, (z) do + / c(@) o (2)0r () d

D

N /D(CgJHzézczpz)(x)Ul(x) de Vv € Lz(D)’ (7.13)

/D((A(x))_lpl (), qa(z))gndx

_ / po(@)divap(z) dz = 0 Vap € H(div, D), (7.14)
D



/D v(@)div py (z) da + / o(@)pa()va(x) dz

= /Dvg(:v)Q_l(lo — %())(x)dx Vv, € L*(D), (7.15)

where z; € H(div, D). Problem (T12)-(7.15) is uniquely solvable. The error of estimation o is

gien by the expression
o= Q" (lo — 2)))"*. (7.16)
Proof. Show that the solution to the optimal control problem (T.H)—(7.7) can be reduced to the

solution of system ((T.12)-(7.15).

First, we note that fuctional I(u), defined by (7)), can be represented in the form

I(u) = I(u) — L(u) + /D QMo (2)lo(2) d, (7.17)

where
j(“) = / Q_122($§ w)zo(x;u) de + (@1_1“1,U1)H1 + (@51u2, Ua) H,
D

is a quadratic form corresponding to a symmetric continuous bilinear form

m(u,v) = / Q_122($§ w)zo(x;v) do + (@1_11% ), + (@2_1“27?12)1127
D
defined on H x H and
L(u) = 2/ Q' 2z u)ly(x) do
D

is a linear continuous functional defined on H.

The representation of in the form (ZIT) follows from the reasoning similar to that in the
proof of Theorem 1 (replacing Zo(z;u) by zo(z;u) and zéo) (x) by lp(x), correspondingly).

Since ) )

I(u) = 7(u,u) > (Q7 'ur, wn)m + (Qy 'ua, u)p, > aflully, Vu € H,
where « is a constant from (220), then the bilinear form m(u,v) and the linear functional
L(u) satisfy the condition of Theorem 1.1 from [I]. Therefore, by this theorem, there exists a
unique element @ := (i, Uy) € H on which the minimum of the functional I(u) is attained, i.e.
I(4) = inf,ep I(u). This implies that for any fixed w = (w;, w2) € H and 7 € R the function
s(T) := I(t + Tw) reaches its minimum at the point 7 = 0, so that
%I(ﬂ +71w) |, _,=0. (7.18)
Taking into account that
2o(x; U 4 Tw) = 29(w;0) + 729 (5 W),

we obtain from (7.I8))
1d
Sy 10
0 50 (4 + Tw) .,
= —(Q 7 "(lo — 22(:;0)), 22 (-;w)) r2(py + (Q7 M, wi) iy + (Q3 Mo, Wwo) g, - (7.19)
Further, introducing a pair of functions (py, p2) € H(div, D) x L*(D) as a unique solution of
the problem

/D((A(x))_lpl (), qa(z))gndx

_ / po(2)divap(z) dz = 0 Ve € H(div, D), (7.20)
D



/D v(@)div py (z) da + / o(@)pa()va(x) dz

D

= / Vo (2)Q (lg — 22(+;0))(x) dx Vuy € L*(D) (7.21)
D
and reasoning analogously as in the proof of Theorem 1, we arrive at the following relation

_(Q_l(lo - 22('§ﬂ))722('§w))L2(D) = — (w1, C1p1) i, — (w2, Cop2) -

By using (£I4), we find from the latter equality

(w1, C1p1) iy + (Wa, Copa) r, = (Q7 M, wi) ar, + (Q i, w2) sy,

Whence, it follows that 4, = @lClpl, Uy = Q2C’2p2. Substituting these expressions into ([5)
and (6] and setting zi(x; @) =: z1(x), 29(z;0) =: 25(x), we establish that functions z;, Z, and
p1, p2 satisfy system of variational equations (7.12))—(7.I5) and the validity of equalities (7,10,
(ZId)). The unique solvability of this system follows from the existence of the unique minimum
point @ of functional I(u).

Now let us find the error of estimation. From (T7) at v = @ and (ZI1)), it follows

0% = I(i) = (Q " (lo — 22(5@)), lo — 22( ) ()

H(Q1 My, ), + (Q7 iz, o)
= (Q '(lo — 22), 1o — 22)12(p) + (Cip1, Q1C1p1) 1, + (Capa, QaCops) i, - (7.22)
Setting in (7.14) and (7I5) q2 = Z; and vy = 25, we find

/D((A(x))_lpl(x),Zl(x))Rndx — / po()divzy (z) dz = 0,

D

/D % (2)div i (z) da + /D c(@)pa(2) 5a(z) dz = / 2(2)Q" (o — 2)(2) dx.

D
Setting in equations (.I2) and (ZI3) q; = p1 and v; = po, we derive from two latter relations

(Q ' (lo — 22), 1o — Z9)12(p) = (Q Mo, lo — Z2)12(D) — / Zy(x)div py(z) dx

D

—/Dc(x)pg(x)ég(x) de’—l—/D((A(x))_lpl(x),Zl(x))Rndx—/pg(x)divil(x) dx

D

= (lo, Q—l(lo — 22))[,2([)) —l—/

D

(((A(l’))_l)Til(l’),P1($))Rnd$—/ z(x)div py (z) dx

D

- /Dp2(3:)div Z1(x) dx — /Dc(x)pg(x)ég(x) dz = (lo, Q" (lo — %)) r2(p)

- / (CLTOrCap (&), P () ) i — / 810, GaCopa(2)pa(z) da
D D

=1Q (o — %)) — (C1p1, Q1C1P1) 1, — (Copa, Q2C2p2) 1,
From here and (7.22)), it follows representation (7.16]) for the estimation error. O

—
———

In the following theorem we obtain another representation for the guaranteed estimate [( f)
of quantity [(f) similar to ([E22).



Theorem 7. The guaranteed estimate of I(f) has the form

—
—

~

I(f)=1(f), (7.23)
where f(z) = fo(x) — Q  pa(z) and ps € L2(Q, L2(D)) is determined from solution of problem
(H.23) -(#.26).

Proof. From (10) and (ZI1]), we have

—
——

U(f) = (Y1, 01)m, + (Yo, U2)m, + €
= (y1, Q1C1P1) 1y + (Y2, Q2C5p2) m, + (o — 2o, fo)r2(py- (7.24)
Putting in ([A23)) and [@24]), q; = p1 and v = py, respectively, we come to the relations

/D (A@) ) pu(), pr(a)znder — /D po(x)div pi () de

:/D(CfJHlél(]ﬂ—C1j)(x),p1($))RndSC, (7.25)

~ [ (CInuln ~ Cop)@lpale) o, (720
D
Putting qs = p; and ve = po in (TI4) and (T.I5]), we have

/D (A@) P (2), 1 (2))gedc — /D pa()div pu () dr = 0, (7.27)

c(x)p2(z)pa() dx

- / P2(2)Q 7 (lp — %) (z) do.  (7.28)
D
Relations (7.25)-(7.28), and (7.24]) imply

—

1(f) = (C1J, QiCip1)ay + (Cop, Q2Copa) ey, — (Q ™ P — fo, (lo — 22)12(D)- (7.29)
Setting qz = 21, va = % and qq = j, v; = ¢ in equations 25, @26) and (T12), (ZI3),
respectively, we obtain

[ (A i) a ) o -

/Dgé(at)div z1(x)dx =0,
- /D o()divi(z) do — /D (2)p(2) 2 (2) da = /D 5(0)(Q pola) — folw)dz,  (731)
and

/D(((A(x))_l)Til(:L’),j(g:))wdx _

(7.30)

/D 2 (2)div j(z) da

- /D (CLIi 010y (2), §(2))se d, (7.32)



- /D () div 2 () do — / (2)22(2) ple) d = — /D (CoTi,QuCopal)p(a) da. (7.33)

D

From (7.30) and (7.33), we deduce
/[)52(55)(@_1]32(56’) - fo(fC)) dr = —(@101131, Clj(fc))Hl - (@202132, C2@(I))H2u

whence, by virtue of (7.29)), it follows represetation (7.23). O

Remark 2. Notice that in representation I( f) for minimax estimate l(/f\) the function f(z) =
fo(x) — Q7 1pa(x), where py is defined from equations ([#23)-(426), can be taken as a good
estimate for unknown function f entering the right-hand side of equation (2.4)) (for explanations,
see Remark 1).

8 Approximate guaranteed estimates of linear function-
als from right-sides of elliptic equations

In this section we introduce the notion of approximate guaranteed estimates of {(j, ¢) and prove

—
—

their convergence to [(j, ¢).

Futher, as in section 6, the domain D is supposed to be bounded and connected domain of
R™ with polyhedral boundary I'.

Take an approximate minimax estimate of [(f) as

w(”?) — <u;zy1>H1 + (ul, g, + (8.1)

where ul = QlClpl, ul = Q,Ch = [, (lo(x) — 25 (x)) fo(x) dz, and functions 2}, p} € V{*
and 28 ph € V] are determine from the followmg uniquely solvable system of variational
equalities:

[ (A ). dheds — [ adivata) da

D

_ /D (CL, O1Cip! (), o (2))en d Y € VP, (8.2)

/D V() div 2 () dz + / o(@) 2 (2 )0 () da

D

:/(C';JHZQQC’gpg(x)U{’(x) dz V’U?GVZh, (8.3)
D

/D((A(x))_lp?(x),qg(z))Rndx - /Dpé‘(z)div gz (z)dz =0 Vay € V', (8.4)

[ dhtptepta) o+ [ et do

= [ @)@ o= BN e Vi eV (55)

19The spaces V{* and V3 are described on page I8l



The quantity o = (I(u"))"/?, where

I(u") = (Q (o — %), 1o — 2 2 )L (Ql tug, ul )y (Qz tug, uy) a,.
is called the approximate error of the guaranteed estimation of I(f).

Theorem 8. Approzimate guaranteed estimate lh/(?) of I(f) which is defined by (8I)) can be
represented in the form IM(f) = 1(f"), where f* = fo(x) — Q™ *pl(x), and function pi € Q"
is determined from solution of problem (5.53)—~(5.50). Approximate error of estimation has the
form

ot = (UQ o — 2))) "
In addition, -
lim E|lh( f)— l(/f\)|2 =0, limo"=o0,

h—0 h—o0
and
||Zl_leHdlvD + 22 — 2 Nlz2py — 0 as h —0,
Ipr = P!l r(div.py + IIP2 = P5ll2) = 0 as h =0,
13 —thH(div,D) + 1@ = @" 2y = 0 as h—0,
1P1 = Dl div.py + 152 = 51l 20y = 0 as h — 0.
Proof. The proof of this theorem is similar to the proofs of Theorems 4 and 5. O

System of linear algebraic equations with respect to coefficients of expansions (5.57)), (5.58)

of functions z?, 2, p%, and pf, analogous to (5.59)-(5.62), can be also obtained for problem

B.2)-B.3).

9 Corollary from the obtained results

Note in conclusion that the above results generalize, for the class of estimation problems for
systems described by boundary value problems considered in this work, the results by A. G.
Nakonechnyi [5], [6].
To do this, suppose, as in these papers, that from observations of random variable of the
form
= Cyp + 19, (9.1)

it is necessary to estimate the expression

I(p) = /D 1y () p() d 9.2)

in the class of estimates of the form

—

() == (y2, u2)m, + (9.3)

where ¢ is a solution to the problem (21)), (Z.2), I, is a given function from L?*(D), us € Hy,
c€R, Cy € L(L*(D), Hy) is a linear operator.
The case considered here corresponds to setting C; =0, 7, =0, 1} = 0, u; = 0, respectively

in (2.14), 215), (2.16), (2.I8), and Lemma 1 can be stated as follows.



Lemma 3. Finding the minimaz estimate of l[(¢) is equivalent to the problem of optimal control
of the system described by the equations

LMMmWVMmmmmwm—/@mmmmmmzo

D
Vq € H(div, D), (9.4)

_/Dv(x)divzl(:c;u)dx—/ c(z)z2 (- u)v(z) do

D

= /D(lg(x) — (CtJgyus)(x))v(z)de Yo € L*(D) (9.5)
with the cost function

I(u) = (Q 'z (- u), 2(3u)) L2(py + (Qz_lu2,u2)H2—> inf . (9.6)

u€Ho

It is easy to see that the second component zy(-;u) of the solution (z(+;u), 22(+;u)) to this
problem belongs to the space H} (D) and is a weak solution to problem [ZI)-([22), i.e. it satisfies
the integral identity

— (A" grad 2y, grad v) z2(pyn — (€22, 0) 12(p)
= ((lg — (C§JH2u2)>'U)L2(D) Yv € Hol(D) (97)
Therefore, Lemma 3 takes the form:

Lemma 4. Finding the minimax estimate of [(p) is equivalent to the problem of optimal control
of the system described by equation (Q.7) with the cost function (9.6]).

Theorems 1 and 2 are transformed into the following assertions.

Theorem 9. There exists a unique minimax estimate of 1(j, ¢) which has the form

m = (yQa ﬁQ)Hz + 67 (98)
where
o= [ B s, = QuCops 9.9)
D

and the functions 2o and py € HY(D) are determined from solution of the following problem:

— /D(AT(ZL') grad (), grad vy (x))gn dx — / c(x)Ze(x)vy(x) do

D

:/l;(lg(l’) — C;JHZQQCQPQ(ZL'))Ul(ZL') dx \V/’Ul c H&(D), (910)

— /D(A(:E) grad ps(x), grad vy (z) g dz — / c(x)pe(z)va(x) da

D

:/Dvg(x)Q_lé’g(x)d:B Vv, € HY(D). (9.11)

Problem ([QI0)-©@IT)) is uniquely solvable. The error of estimation o is given by the expression
o= I(ps)"> (9.12)



Theorem 10. The minimaz estimate of I(j, ) has the form

—
—

(G, 2) =1G. ).
where the function $ € H}(D) is determined from solution of the following problem:

—/D(AT(x) grad ps(x), grad vy () )ge d:)s—/Dc(:)s)ﬁg(x)vl(x) dx

= /DC§JH2Q2(y2 — Cop)(x)vi(z)dx Vv, € Hy(D), (9.13)

— (AT (z) grad ¢(z), grad vy (z))gn do — /D c(x)p(x)ve(x) do

:/Dvg(x)(Q_lﬁg(z) — fo(z))dx Vv, € HY(D), (9.14)

where equalities (O13) and (QI4) are fulfilled with probability 1. Problem (@QI3)), (O.I4) is

uniquely solvable.
The random fields ¢ and py, whose realizations satisfy equations (XI3) and (@QI4), belong to
the space L*(Q, Hi(D)).
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