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As was shown recently, the measurement errors in regressors affect only the power of the rank
test, but not its critical region. Noting that, we study the effect of measurement errors on R-
estimators in linear model. It is demonstrated that while an R-estimator admits a local asymp-
totic bias, its bias surprisingly depends only on the precision of measurements and does neither
depend on the chosen rank test score-generating function nor on the regression model error
distribution. The R-estimators are numerically illustrated and compared with the LSE and L1

estimators in this situation.

Keywords: contiguity; linear rank statistic; linear regression model; local asymptotic bias;
measurement error; R-estimate

1. Introduction

Measurement technologies are often affected by random errors; if the goal of the experi-
ment is to estimate a parameter, then the estimate is biased, and thus inconsistent. This
problem appears in the analytic chemistry, in environmental monitoring, in modeling as-
tronomical data, in biometrics, and practically in all parts of the reality. Moreover, some
observations can be undetected, for example, when the measured flux (light, magnetic)
in the experiment falls below some flux limit. In econometrics, the errors can be a re-
sult of misreporting by subjects, miscoding by the collectors of the data, or by incorrect
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transformation from initial reports. An essential part of measuring techniques, used, for

example, in the analytic chemistry, is the construction of a calibration curve – the result

for an unknown sample is then determined by interpolation. Robust calibration methods

were developed in [24]. However, even the calibration can be affected by measurement

errors. The mismeasurements make the statistical inference biased, and they distort the

trends in the data.

A variety of functional models have been proposed for handling measurement errors in

regression models. Either the regressor or the response or both can be affected by random

errors. Technicians, geologists and other specialists are aware of this problem, and try to

reduce the bias with various ad hoc procedures. The bias cannot be completely eliminated

or substantially reduced unless we have some additional knowledge on the behavior of

measurement errors. The papers dealing with practical aspects of measurement error

models include [2, 15, 21, 23, 30], among others.

Adcock [1] was probably the first to realize the importance of the situation. There

exists a rich literature on the statistical inference in the error-in-variables (EV) models

as is evidenced by the monographs of Fuller [9], Carroll et al. [6], and Cheng and Van

Ness [7], and the references therein. The monographs [9] and [7] deal mostly with classical

Gaussian set up while [6] discusses numerous inference procedure under semi-parametric

set up. Nonparametric methods in EV models are considered in [4, 5] and in references

therein, and in [8], among others. The regression quantile theory in the area of EV

models was started by He and Liang [12]. Arias, Hallock and Sosa-Escudero [3] used an

instrumental variable estimator for quantile regression, considering biases arising from

unmeasured ability and measurement errors. The problem of mismeasurement is also of

interest in the econometric literature: [11] and [16] described the recent developments in

treating the effect of mismeasurement on econometric models.

The advantage of rank and signed rank procedures in the measurement errors models

was discovered recently in [20, 25, 26, 31] and in [32]; the latter made a detailed analysis

of rank procedures in the linear model with a nonlinear nuisance regressor and under

various kinds of measurement errors. Namely the rank tests can be recommended in

this situation: it is shown in [20] that the critical region of the rank test for regression

is insensitive to measurement errors in regressors under very general conditions; the

errors affect only the power of the test. However, against expectations following from

the invariance of the ranks, due to which an estimate of a nuisance parameter in [20]

was consistent for every fixed value of the same, we show that the R-estimator of slope

parameter β in linear model is biased. More precisely, we show that, unless β = 0, the R-

estimator is biased even in a local neighborhood of 0. Hence, we cannot have an unbiased

estimator of any kind in this situation, unless we have some additional information on

the measurement errors.

As we further show in the present paper, surprisingly the local asymptotic bias of R-

estimators neither depends on the chosen rank test score-generating functions nor on the

unknown distribution of the model errors. It depends only on value of slope parameter

vector and on the covariance matrix of the measurement error distribution of regressors.
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2. Model and preliminary considerations

Consider the linear regression model

Yni = β0 + x⊤
niβ+ eni, i= 1, . . . , n (2.1)

with unknown parameters β0 ∈R
1, β ∈R

p. The regressors xni are either deterministic or
random and affected by additive random measurement errors, so that instead of xni we
observe wni = xni + vni, i = 1, . . . , n, where vn1, . . . ,vnn are p-dimensional random er-
rors, identically distributed with an unknown distribution, and independent of the errors
eni,1 ≤ i ≤ n. Moreover, there are additive measurement errors in the responses, thus
instead of Yni we observe Y

∗
ni = Yni + uni, where un1, . . . , unn are i.i.d. random variables.

Thus in terms of the observable responses and predicting variables, our regression model
becomes

Y ∗
ni = β0 +w⊤

niβ+ e∗ni, i= 1, . . . , n, (2.2)

where e∗ni = e∗ni(β) = eni + uni − v⊤
niβ, i= 1, . . . , n are i.i.d random variables.

We are interested in R-estimator of the slope vector β, considering β0 as nuisance
parameter. To define these estimators, let Rni(b) be the rank of the residual

Y ∗
ni −w⊤

nib = eni + uni + x⊤
niβ−w⊤

nib

= eni + uni −w⊤
nib

∗ − v⊤
niβ, i= 1, . . . , n,

where b∗ = b− β. We shall work with the vector of linear rank statistics

Sn(b) = (Snj(b); j = 1, . . . , p)
⊤
= n−1/2

n∑

i=1

(wni − w̄n)an(Rni(b)), (2.3)

where the scores an(i),1≤ i≤ n are nondecreasing in i and
∑n

i=1 an(i) = 0.
Hodges and Lehmann [14] introduced a class of estimators of the location parameter

θ in one- and two-sample location models, by inverting a class of rank tests for θ. This
methodology was extended to linear regression models without measurement error by
Jurečková [19], where an estimator of β is defined as

β̂n = argmin
b∈Rp

p∑

j=1

|Snj(b)|.

This estimator can be seen to be asymptotically equivalent to an estimator obtained
by inverting the equations Snj(b) = 0, j = 1, . . . , p. Note that this latter estimator is pre-
cisely an extension of the Hodges–Lehmann estimator from one- and two-sample location
models to linear regression models without measurement error. Under more general con-
ditions, the R-estimators are studied by Koul [22].
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On the other hand, Jaeckel [17] called an analog of the function

Dn(b) =

n∑

i=1

[Y ∗
ni −w⊤

nib](an(Rni(b))− ān), (2.4)

as a measure of rank dispersion of residuals, in the case of no measurement error where
wni’s are replaced by xni’s. He showed that Dn(b) is convex and piecewise linear in

b ∈R
p. He also showed that −n1/2Sn(b) is the subgradient of Dn(b); hence the estimator

defined as a minimizer of Dn exists and is equivalent to the above estimators based on
Sn. Both of these estimators are asymptotically equivalent, and Jaeckel’s definition of
R-estimator is now generally used in the literature. We are using this definition of R-
estimator throughout this paper.
In the absence of measurement errors, that is, if wni = xni, uni = 0, i = 1, . . . , n, the

estimator β̂n is consistent and asymptotically normal. However, β̂n is biased in the pres-
ence of measurement errors, even asymptotically, unless the true β = 0. Furthermore, we
show that it is even asymptotically locally biased in the sense that the asymptotic distri-
bution of n1/2(β̂n − n−1/2β0), with a fixed β0 ∈R

p, converges to a normal distribution
with nonzero mean vector and some positive definite covariance matrix.

In the sequel, all limits are taken as n→∞, unless mentioned otherwise,
p→ denotes

the convergence in probability. We shall now describe the needed assumptions on the
underlying entities.

(A.1) The score generating function ϕ : (0,1) 7→R is nondecreasing, square-integrable
and skew-symmetric on (0,1), that is, satisfies ϕ(1 − t) = −ϕ(t),0 < t < 1. The scores
an(i), i= 1, . . . , n are generated by ϕ in either of the following two ways:

an(i) = ϕ

(
i

n+1

)
or an(i) =Eϕ(Un:i), i= 1, . . . , n,

where Un:1 ≤ · · · ≤ Un;n are order statistics pertaining to the sample of size n from the
uniform (0,1) distribution.

(F.1) Distribution function F of the model errors eni has an absolutely continuous
density f with a.e. derivative f ′.

(F.2) For every u ∈ R,
∫
(|f ′(x− tu)|j/f j−1(x)) dx→

∫
(|f ′(x)|j/f j−1(x)) dx <∞, as

t→ 0, j = 2,3.
(V.1) The measurement errors {uni,1 ≤ i ≤ n} are independent of {eni,vni,1 ≤ i ≤

n} and i.i.d. with generally an unknown absolutely continuous density h, having finite
Fisher’s information for location.
(V.2) The measurement error vni is independent of eni and its p-dimensional distri-

bution function G has a continuous density g, generally unknown, i= 1, . . . , n.
(V.3) EVn → V where Vn = n−1

∑n
i=1(vni − v̄n)(vni − v̄n)

⊤ and V is a positive

definite p× p matrix. Moreover, supn≥1E(‖vn1‖3 + ‖xn1‖3)<∞.

(V.4) E[n−1
∑n

i=1(vni − v̄n)(xni − x̄n)
⊤]→ 0.
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(X.1) If the regressors xni are nonrandom, then assume that Qn →Q, where

Qn = n−1
n∑

i=1

(xni − x̄n)(xni − x̄n)
⊤,

and Q is positive definite p× p matrix. Moreover,

1

n
max
1≤i≤n

(xni − x̄n)
⊤(Qn)

−1(xni − x̄n)→ 0.

(X.2) If the regressors xni are random, then assume that they are independent of
eni, uni,vni, i= 1, . . . , n, and

E

[
n−1

n∑

i=1

(xni − x̄n)(xni − x̄n)
⊤

]
→Q,

where Q is positive definite p× p matrix.

Let m(·),M(·) denote the density and distribution function of eni + uni, i = 1, . . . , n,
that is, m(z) =

∫
f(z − t)h(t) dt. The density is absolutely continuous and has finite

Fisher’s information I(m). We need to define

γm = −
∫

R1

ϕ(M(z))dm(z), A2
m(ϕ) = γ−2

m

∫ 1

0

ϕ2(u) du,

(2.5)
B = −(Q+V)−1Vβ

0.

The following theorem gives the asymptotic distribution of the estimator β̂n when the
true parameter value is

βn = n−1/2β0, β0 ∈R
p fixed. (2.6)

Theorem 2.1. Assume the conditions (A.1), (F.1)–(F.2), (V.1)–(V.4), (X.1)–(X.2)

hold. When the true parameter value is βn, the R-estimator β̂n is asymptotically nor-

mally distributed with the bias B=−(Q+V)−1Vβ0, that is,

n1/2(β̂n − βn)
D→Np(B, (Q+V)−1A2

m(ϕ)). (2.7)

Theorem 2.1 will be proved in several steps; the proof is given in Section 3. The
numerical illustrations of the results are given in subsequent Section 4.

Corollary 2.1. Under the conditions of Theorem 2.1 and under β = βn = n−1/2β0, the

R-estimator β̂n has asymptotic normal distribution

n1/2(β̂n − (Q+V)−1Qβn)
D→Np(0, (Q+V)−1A2

m(ϕ)). (2.8)
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Notice that the local asymptotic bias cannot be controlled by the choice of the score-
generating function ϕ; this choice can only influence the asymptotic variance factor of the
estimator. The magnitude of the bias fully depends on the precision of the measurements,
namely on the matrix V. The measurement errors in the responses Yni affect only the
asymptotic variance, not the bias. The result is entirely nonparametric, valid for classes of
distributions of model and measurement errors, demanding only finite first moment and
finite (and positive) Fisher’s information for location of the model error distributions,
and finite third moment for measurement error distributions.
Consider the two measurement methods with the same regressors (random or nonran-

dom), with the respective limiting covariance matrices V1,V2. Comparing the biases in
(2.7) for V1 and V2, the first method is considered being more precise than the second
one if the matrix (V2 +Q)−1 ≺ (V1 +Q)−1; otherwise speaking, if Q−1V1 ≺Q−1V2,
where the ordering A≺B means that B−A is a positive definite matrix.

3. Proof of Theorem 2.1

We shall prove Theorem 2.1 in several steps. Notice that if we observe Y ∗
ni = Yni + uni

instead of Yni, then e∗ni = eni + uni, i = 1, . . . , n are still i.i.d. random variables with
density m(z) =

∫
f(z − t)h(t) dt. The steps of the proof are parallel for both densities

f and m of model errors; measurement errors in the Yni affect only the asymptotic
variance of the estimate, not the bias. Noting this, we shall prove the theorem assuming
uni ≡ 0.i= 1, . . . , n. In the sequel, we shall suppress the subscript n whenever it does not
cause a confusion.
The steps of the proof are as follows:

(1) Asymptotic representation of the linear rank statistic

Sn(0,0) = n−1/2
n∑

i=1

(wni − w̄n)an(Rni(0)) (3.1)

with the sum of independent summands. Here wni = xni + vni, i = 1, . . . , n, while
xn1, . . . ,xnn are either i.i.d. random vectors or nonrandom vectors, and vn1, . . . ,vnn

are i.i.d. random vectors.
(2) Contiguity of the sequence {Qn} of distributions of (eni− (wni− w̄n)

⊤b∗
n− (vni−

v̄n)
⊤βn), with b∗

n = n−1/2b0,βn = n−1/2β0 for b0,β0 ∈ R
p fixed, with respect to the

sequence {Pn} of distributions of eni, i= 1, . . . , n.
(3) Asymptotic representation of the linear rank statistic (2.3) under contiguous se-

quence of distribution {Qn}, and the resulting asymptotic linearity of (2.3) in parameters
b0,β0.
(4) Uniform asymptotic quadraticity of Dn in parameters b0,β0 under {Qn}, as a

result of (3) and of the convexity of Dn.

(5) Resulting asymptotic distribution and bias of β̂n in the case uni ≡ 0, i= 1, . . . , n.

(6) Asymptotic distribution and bias of β̂n in the case of nonzero uni, i= 1, . . . , n.
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3.1. Asymptotic representation of Sn(0,0)

Assume that uni = 0, i= 1, . . . , n. That is, for now we assume that there is no measure-
ment error in the response variables Yni. Let

Zn = n−1/2
n∑

i=1

(wni − w̄n)ϕ(F (eni)).

We are ready to state and prove the following lemma.

Lemma 3.1. Under the conditions of Theorem 2.1, the statistic Sn(0,0) admits the

asymptotic representation

Sn(0,0) = Zn +op(1). (3.2)

Proof. The proof is adapted from [28]. If b= β = 0, then (Yn1, . . . , Ynn) = (en1, . . . , enn).
Let Rn1, . . . ,Rnn denote their ranks. Further denote rni = an(Rni) − ϕ(F (eni)), i =
1, . . . , n.
Let σ2

j be the variance of wij , i= 1, . . . , n, for j = 1, . . . , p, and let s2 =
∑p

j=1 σ
2
j .

Notice that (rn1, . . . , rnn) and (w1, . . . ,wn) are independent. Consider the conditional
squared distance

EG{(Sn −Zn)
⊤(Sn −Zn)|e1, . . . , en}

= n−1
EG

{
n∑

i=1

n∑

k=1

(wi − w̄n)
⊤(wk − w̄n)rirk

∣∣∣e1, . . . , en
}

= n−1
n∑

i=1

n∑

k=1

rirkEG

{
p∑

j=1

(wij − w̄j)(wkj − w̄j)
∣∣∣e1, . . . , en

}

= n−1

{
n∑

i=1

n∑

k=1

rirk

p∑

j=1

(xij − x̄j)(xkj − x̄j) + s2
n∑

i=1

(ri − r̄)2

}

=

p∑

j=1

[
n−1/2

n∑

i=1

(xij − x̄j)ri

]2

+ s2
n∑

i=1

(ri − r̄)2.

Then (3.2) follows from [10] [Theorems V.1.4.a,b, V.1.6.a]. �

3.2. Contiguity

For any two probability measures P and Q, absolutely continuous with respect to a
σ-finite measure ν with p= dP/dν, q = dQ/dν, let

H(P,Q) =

[∫
(
√
p−√

q)2 dµ

]1/2
=

[
2

∫
(1−√

pq) dµ

]1/2
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denote the Hellinger distance between P and Q.
Let {Pn1, . . . , Pnn} and {Qn1, . . . ,Qnn} be two triangular arrays of probability mea-

sures defined on measurable space (X ,A) with densities pni, qni with respect to σ-finite

measures µi [which can be also µi = Pni +Qni, i= 1, . . . , n]. Denote P
(n)
n =

∏n
i=1Pni and

Q
(n)
n =

∏n
i=1Qni the product measures, n= 1,2, . . . .

Oosterhoff and van Zwet [27] proved that {Q(n)
n } is contiguous with respect to {P (n)

n }
if and only if

limsup
n→∞

n∑

i=1

H2(Pni,Qni) <∞, (3.3)

lim
n→∞

n∑

i=1

Qni

{
qni(Xni)

pni(Xni)
≥ cn

}
= 0 ∀cn →∞. (3.4)

Note that in the case Pni ≡ Pn, pni ≡ pn, and Qni ≡Qn, qni ≡ qn, not depending on i,

n∑

i=1

H2(Pni,Qni) = n

∫
[
√
qn(z)−

√
pn(z)]

2
dz

= n

∫
(qn(z)− pn(z))

2

[
√
qn(z) +

√
pn(z)]2

dz (3.5)

≤ n

∫
(qn(z)− pn(z))

2

pn(z)
dz.

Moreover, for cn > 1 and with dn = cn − 1,

n∑

i=1

Qni

{
qni(Xni)

pni(Xni)
≥ cn

}
= nQn

{
qn(Xn1)− pn(Xn1)

pn(Xn1)
≥ dn

}

≤ d−2
n n

∫ |qn(x)− pn(x)|2
p2n(x)

qn(x) dx

(3.6)

≤ d−2
n n

∫ |qn(x)− pn(x)|3
p2n(x)

dx

+ d−2
n n

∫ |qn(x)− pn(x)|2
pn(x)

dx.

Now, let Yni = x⊤
niβ+eni, i= 1, . . . , n. where the eni are i.i.d. with distribution function

F and density f , satisfying (F.1) and (F.2). Consider the residuals

Yni − (wni − w̄n)
⊤bn = eni + (xni − x̄n)

⊤βn − (wni − w̄n)
⊤bn

= eni − (wni − w̄n)
⊤b∗

n − (vni − v̄n)
⊤βn,
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i= 1, . . . , n, where bn = n−1/2b0,βn = n−1/2β0,b∗
n = n−1/2b0∗,b∗

0 = b0 −β0, with fixed

b0,β0 ∈R
p. Using (3.3) and (3.4), we shall prove the following lemma.

Lemma 3.2. Under the conditions of Theorem 2.1, the sequence {Q(n)
n } is contiguous

with respect to {P (n)
n }, where Q

(n)
n =

∏n
i=1Qni, P

(n)
n =

∏n
i=1 Pni, where Pni is the distri-

bution of eni and Qni is the distribution of (eni − (wni − w̄n)
⊤b∗

n − (vni − v̄n)
⊤βn), i=

1, . . . , n.

Proof. We shall distinguish the two cases: the xni are either i.i.d. random vectors or

nonrandom vector components.

We start with the first case, where wn1, . . . ,wnn are i.i.d. random vectors. Note that

Ui := (wni − w̄n)
⊤b0∗ + (vni − v̄n)

⊤β0, i = 1, . . . , n, are i.i.d. r.v.’s. Let k1 denote the

common density function of Ui. Then, Qni, Pni do not depend on i and qn(x)≡
∫
f(x−

n−1/2u)k1(u) du, pn(x)≡ f(x). Hence, by the Cauchy–Schwarz inequality, and the Fubini

theorem,

n

∫
(qn(x)− pn(x))

2

pn(x)
dx = n

∫ {∫
[f(x− n−1/2u)− f(x)]k1(u) du

}2
dx

f(x)

≤ n

∫ ∫
[f(x− n−1/2u)− f(x)]

2 k1(u)

f(x)
dudx

≤ n

∫ ∫ [∫ n−1/2

−n−1/2

|uf ′(x− tu)|dt
]2

k1(u)

f(x)
dudx

≤ 2n1/2

∫ ∫ ∫ n−1/2

−n−1/2

|f ′(x− tu)|2 dt u2 k1(u)

f(x)
dudx

≤ 2n1/2

∫ ∫ n−1/2

−n−1/2

∫ |f ′(x− tu)|2
f(x)

dxu2k1(u) dudt ∀n≥ 1.

Hence, by (3.5), (F.2) applied with j = 2, and by (V.3), which guaranteed
∫
u2k1(u) du<

∞,

lim sup
n

n∑

i=1

H2(Pni,Qni)≤ 2I(f)

∫
u2k1(u) du<∞. (3.7)

Similarly, the bound

n

∫
(qn(x)− pn(x))

3

p2n(x)
dx ≤ 2n1/2

∫ ∫ n−1/2

−n−1/2

∫ |f ′(x− tu)|3
f2(x)

dx|u|3k1(u) dudt ∀n≥ 1
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together with (3.6), (F.2) applied with j = 3, and (V.3), which guaranteed
∫
|u|3k1(u) du <

∞, yield

lim
n

n∑

i=1

Qni

{
qni(Yni)

pni(Yni)
≥ cn

}

≤ 2 lim
n

d−2
n

{∫ ( |f ′(x)|
f(x)

)3

f(x) dx

∫
|u|3k1(u) du+ I(f)

∫
u2k1(u) du

}
= 0.

This ensures the validity of (3.4), and completes the proof of the contiguity in present
case.
Next, consider the case where xn1, . . . ,xnn are nonrandom, and we observe wni =

xni +vni, i= 1, . . . , n. Let k2 denote the density of (vni − v̄n)
⊤b0, i= 1, . . . , n. Again, by

(3.5),

n∑

i=1

H2(Pni,Qni)

≤
n∑

i=1

∫ {∫
[f(e− n−1/2u)− f(e)]k2(u+ (xni − x̄n)

⊤b0∗) du

}2
de

f(e)

≤
n∑

i=1

∫ {∫
[f(e− n−1/2u)− f(e)]

2
k2(u− (xni − x̄n)

⊤b∗
0) du

}
de

f(e)

≤ 2n1/2

∫ ∫ n−1/2

n−1/2

∫ |f ′(e− tu)|2
f(e)

dedt n−1
n∑

i=1

u2k2(u− (xni − x̄n)
⊤b0∗) du.

Hence, by (F.2) and by the change of variable formula,

limsup
n

n∑

i=1

H2(Pni,Qni)≤C

[∫
u2k2(u) du+ b0∗⊤Qnb

0∗

]
<∞. (3.8)

Similarly one verifies (3.4) here. �

Lemmas 3.1 and 3.2 enable us to extend the approximation of the rank statistic
Sn(b

∗
n,βn) by a sum of independent r.v.’s under the contiguous sequence of distribu-

tions. Let

Tn(b
∗
n,βn) = n−1/2

n∑

i=1

(wni − w̄n)ϕ(F (eni − (wni − w̄n)
⊤b∗

n − (vni − v̄n)
⊤βn)).

We have the following corollary.
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Corollary 3.1. Under the conditions of Theorem 2.1, and under {Q(n)
n },

Sn(b
∗
n,βn) = n−1/2

n∑

i=1

(wni − w̄n)an(R(eni − (wni − w̄n)
⊤b∗

n − (vni − v̄n)
⊤βn))

(3.9)
=Tn(b

∗
n,βn) + op(1).

Hence,

Sn(b
∗
n,βn)− Sn(0,0) =Tn(b

∗
n,βn)−Tn(0,0) + op(1).

3.3. Asymptotic linearity of Sn(b
∗

n
, β

n
)

Lemma 3.3. Under the conditions of Theorem 2.1,

‖Sn(b
∗
n,βn)− Sn(0,0) + γ[(Q+V)b0∗ +Vβ0]‖ p→ 0, (3.10)

where

γ =

∫ 1

0

−f ′(F−1(u))

f(F−1(u))
ϕ(u) du=−

∫

R1

ϕ(F (z)) df(z). (3.11)

Proof. Consider the sequence of functions {ϕ(k)(·)}∞k=1

ϕ(k)(u) = ϕ

(
1

k+ 1

)
I

[
u <

1

k

]
+ ϕ(u)I

[
i− 1

k+ 1
<u≤ i

k+ 1

]
, i= 2, . . . , k. (3.12)

Then, by Lemma V.1.6.a [10], ϕ(k) is nondecreasing and bounded on (0,1) and

lim
n→∞

∫ 1

0

[ϕ(k)(u)− ϕ(u)]
2
du= 0. (3.13)

The function ϕ(k) has at most countable set Bk of discontinuity points. Observe that

assumption (V.3) implies that n−1/2max1≤i≤n{‖wni− w̄n‖+ ‖vni− v̄n‖} p→ 0. This fact
together with the uniform continuity of F implies that

sup
e∈R,1≤i≤n

|F (e− n−1/2(wni − w̄n)
⊤b0∗ − n−1/2(vni − v̄n)

⊤β
0)− F (e)| p→ 0.

Hence,

ϕ(k)(F (e− n−1/2(wni − w̄n)
⊤b0∗ − n−1/2(vni − v̄n)

⊤β0))

converges to ϕ(k)(F (e)), in probability, uniformly in i= 1, . . . , n. It, in turn, implies that
the conditional expectation

E[(ϕ(k)(F (eni − n−1/2(wni − w̄n)
⊤b0∗ − n−1/2(vni − v̄n)

⊤β0))− ϕ(k)(F (eni)))
2|vni,xni]
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converges to 0, in probability, uniformly in i= 1, . . . , n and k.

Let S
(k)
n (b∗,β) and T

(k)
n (b∗,β) be analogous to Sn(b

∗,β),Tn(b
∗,β), respectively,

with ϕ replaced with ϕ(k). Then we can bound the norm of the covariance matrix of

T
(k)
n (b∗,β)−T

(k)
n (0,0) for any fixed k in the following way: denote

A(k)
n = E{[T(k)

n (b∗
n,βn)−T(k)

n (0,0)][T(k)
n (b∗

n,βn)−T(k)
n (0,0)]

⊤}.

Then

A(k)
n = E

{
n−1

n∑

i=1

(wni − w̄n)(wni − w̄n)
⊤

× [ϕ(k)(F (eni − (wni − w̄n)
⊤b∗

n − (vni − v̄n)
⊤βn))− ϕ(k)(F (eni))]

2

}

= n−1
n∑

i=1

E{(wni − w̄n)(wni − w̄n)
⊤ (3.14)

×E[(ϕ(k)(F (eni − (wni − w̄n)
⊤b∗

n − (vni − v̄n)
⊤βn))

− ϕ(k)(F (eni)))
2|vni,xni]}.

Hence,

‖A(k)
n ‖ ≤

{∥∥∥∥∥n
−1

n∑

i=1

(wni − w̄n)(wni − w̄n)
⊤ − (Q+V)

∥∥∥∥∥+ ‖Q+V‖
}
· o(1)

= {‖Q+V‖+ o(1)} · o(1).

This, together with the fact ET
(k)
n (0,0) = 0, implies

‖T(k)
n (b∗

n,βn)−T(k)
n (0,0)−ET(k)

n (b∗
n,βn)‖

p→ 0. (3.15)

Furthermore, for any fixed k and for fixed b0∗,β0,

T(k)
n (b∗

n,βn)−T(k)
n (0,0) + γk[(Q+V)b0∗ +Vβ0]

p→ 0, (3.16)

where

γk =−
∫

R1

ϕ(k)(F (e))f ′(e) de=−
∫ 1

0

ϕ(k)(u)
f ′(F−1(u))

f(F−1(u))
du.

Indeed, (we put x̄n = v̄n = 0, for the sake of brevity)

n−1/2
n∑

i=1

E{wni(E[ϕ
(k)(F (eni − n−1/2(w⊤

nib
0∗ − n−1/2v⊤

niβ
0)− ϕk(F (eni))
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− γk(n
−1/2[w⊤

nib
0∗ + v⊤

niβ
0])|vni,xni])}

= n−1/2
n∑

i=1

E

{
wni

(∫

R1

ϕ(k)(F (z)) d[F (z + n−1/2w⊤
nib

0∗ + n−1/2v⊤
niβ

0)−F (z)]

− n−1/2[w⊤
nib

0∗ + v⊤
niβ

0]

∫

R1

ϕ(k)(F (z))f ′(z) dz

)}

= n−1/2
n∑

i=1

E

{
wni

(∫

R1

ϕ(k)(F (z)) d[F (z + n−1/2w⊤
nib

0∗ + n−1/2v⊤
niβ

0)−F (z)

− n−1/2(w⊤
nib

0∗ + v⊤
niβ

0)f(z)]

)}
→ 0.

Moreover, we have

(γk − γ)2 =

〈
(ϕk − ϕ),−f ′(F−1(·))

f(F−1(·))

〉2

≤ ‖ϕk − ϕ‖2
∥∥∥∥−

f ′(F−1(·))
f(F−1(·))

∥∥∥∥
2

(3.17)

= I(f)‖ϕk − ϕ‖2 → 0 as k→∞.

Using (3.16), (3.17), Lemmas 3.1 and 3.2, Corollary 3.1 and Lemma 3.5 in [18], we obtain
that

P (‖Sn(b
∗
n,βn)− S(k)

n (b∗
n,βn)‖> ε)< ε

for ∀k > k(ε), ∀n > n(k), and finally we arrive at (3.10). �

3.4. Uniform asymptotic quadraticity of the Jaeckel dispersion

Recall that ān = 0 under (A.1). Rewrite the Jaeckel dispersion in the presence of mea-
surement errors in the form

Dn(b) =

n∑

i=1

[Yni −w⊤
nib]an(Rni(b))

or eventually in the form

Dn(b
∗,β) =

n∑

i=1

[eni − (wni − w̄n)
⊤b∗ − (vni − v̄n)

⊤β]an(R(eni −w⊤
nib

∗ − v⊤
niβ)),

where b∗ = b − β. It is a piecewise linear, convex function of b and b∗, respectively.
Hence, the minimum β̂n = argminb∈Rp Dn(b) exists, and is considered as an estimate of
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β in model (2.1). By [17], the partial derivatives of Dn(b) exist for almost all b, and
where they exist, are equal to

∂

∂bj
Dn(b) =−n1/2Snj(b) =−

n∑

i=1

(wnij − w̄j)an(Yi −wnib), j = 1, . . . , p.

Otherwise speaking,

∇Dn(b
∗,β) =−n1/2Sn(b

∗,β) =−
n∑

i=1

(wni − w̄n)an(R(eni −w⊤
nib

∗ − v⊤
niβ)),

where ∇ denotes the subgradient.
Consider the quadratic function

Cn(b∗,β) = 1
2γb

∗⊤(Q+V)b∗ − b∗⊤Sn(0) + γb∗Vβ +Dn(0).

Then Dn(b) and Cn(b) are both convex functions and Dn(0) = Cn(0). Moreover,

∇[Dn(b
∗,β)− Cn(b∗,β)] =−[n1/2(Sn((b

∗,β))−Sn(0,0) + γ(Q+V)b∗ + γVβ)].

Hence, it follows from (3.10) that for b∗
n = n−1/2b0∗,βn = n−1/2β0 with b0∗,β0 ∈ R

p

fixed that

‖∇[Dn(n
−1/2b0∗, n−1/2β0)−Cn(n−1/2b0∗, n−1/2β0)]‖ p→ 0.

Using the convexity arguments in [13] (Appendix) and [29] (Convexity lemma), we con-
clude that

sup|Dn(n
−1/2b0∗, n−1/2β0)− 1

2γb
0∗⊤(Q+V)b0∗+b0∗⊤Sn(0)−γb0∗Vβ0+Dn(0)|= op(1),

where the supremum is taken over the set {‖b0∗‖ ≤C,‖β0‖ ≤C}. Hence, following the
arguments in the proof of Theorem 1 in [29], we conclude that, under the local alternative
βn = n−1/2β

0,

argmin
b0∗

Dn(n
−1/2b0∗, n−1/2β0)

is asymptotically equivalent to

argmin
b0∗

[
1

2
γb0∗⊤(Q+V)b0∗ − b0∗⊤Sn(0) + γb0∗Vβ0

]
. (3.18)

The solution of (3.18) equals to

b0∗ = b0 − β0 = n1/2(β̂n −βn) = γ−1(Q+V)−1Sn(0,0)− (Q+V)−1Vβ0.

Hence, in the linear model with local value of regression parameter β, when

Yni = x⊤
niβn + eni, βn = n−1/2β0,
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when we observe only wni = xni + vni instead of xni, i = 1, . . . , n, the R-estimator is
asymptotically normally distributed with a bias B=−(Q+V)−1Vβ0, that is,

n1/2(β̂n − n−1/2β0)
D→Np(B, (Q+V)−1A2(ϕ)), B=−(Q+V)−1Vβ0. (3.19)

Finally, as we have already mentioned, all of the above arguments and motivations
are valid when we replace eni with eni + uni, i = 1, . . . , n. This completes the proof of
Theorem 2.1.

4. Numerical illustration

The following simulation study illustrates the effect of measurement errors in regressors
on the finite-sample performance of R-estimates. Empirical bias (and variance) of R-
estimates are computed and compared for various measurement error models. For the
sake of comparison, the biases and variances are also computed for the least squares
estimate (LSE) and the least absolute deviation (L1) estimate, under the same setup.
Moreover, we compare the deterministic and random regressors.
All the simulations were performed in the statistical software R using standard tools and

libraries. For minimization of (2.4) functions optimize and optim with initial estimate
0.5 – regression quantile were used. The random numbers generator was setup with the
initial value set.seed(15).
The results illustrate that the bias of R-estimate is surprisingly stable with respect to

the sample size; the bias corresponding to small n is comparable to the asymptotic one
derived in Theorem 2.1.
Notice that the bias of R-estimator only slightly differs from the biases of LSE and

L1-estimators.

4.1. Regression line

Consider first the model of regression line

Yi = β0 + xiβ1 + ei, i= 1, . . . , n,

where the Yi are measured accurately, while instead of xi we observe only wi = xi+vi, i=
1, . . . , n. The R-estimator of parameter β1 is based on Wilcoxon scores generated by score
function ϕ(u) = u− 1/2.
All the simulation results are based on 10 000 replications, parameters were chosen

as β0 = 1, β1 = 2, and model errors ei follow the logistic distribution. In Tables 1 and
2, the empirical bias of R-estimator based on Wilcoxon scores is compared for various
sample sizes (n= 10, . . . ,1000) and with the theoretical asymptotic result (n=∞). The
regressors xi are deterministic in Table 1; they were generated from uniform U(−3,9)
distribution once for all experiment and then considered as fixed. The regressors in Table 2
are random; each time they were generated also from uniform distribution U(−3,9). This
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Table 1. Empirical bias of R-estimator for various n and measurement errors vi; nonrandom
regressors xi

n

vi 10 20 50 100 200 500 1000 ∞

0 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000
U(−5,0) −0.264 −0.295 −0.305 −0.297 −0.302 −0.306 −0.307 −0.296
U(0,9) −0.684 −0.727 −0.732 −0.714 −0.719 −0.727 −0.728 −0.720
U(−3,9) −0.982 −1.013 −1.006 −0.983 −0.986 −0.995 −0.995 −1.000
N (0,1) −0.128 −0.148 −0.150 −0.146 −0.148 −0.151 −0.152 −0.154
N (0,2) −0.440 −0.483 −0.488 −0.476 −0.480 −0.487 −0.488 −0.500
N (0,3) −0.790 −0.836 −0.837 −0.819 −0.822 −0.832 −0.833 −0.857

enables to see the difference between deterministic and random regressors: the bias differs

more from its asymptotic value in case of deterministic regressors than in case of random

regressors; it can be caused by the slower rate of convergence. The measurement errors

vi are either uniformly or normally distributed (i= 1, . . . , n).

Table 3 compares empirical bias and variance (in parenthesis) of R-estimator based

on Wilcoxon scores, of LSE and L1-estimate for the sample size n = 50 and when re-

gressors xi are random, generated from uniform U(−3,9) distribution; model errors ei
are generated from normal, logistic, Laplace, Pareto with parameter α= 0.9 and Cauchy

distributions. The measurement errors vi follow various distributions, similarly as in

Tables 1 and 2.

Table 2. Empirical bias of R-estimator for various n and measurement errors vi; random re-
gressors xi

n

vi 10 20 50 100 200 500 1000 ∞

0 0.004 −0.001 0.000 0.000 0.000 0.000 0.000 0.000
U(−5,0) −0.283 −0.297 −0.305 −0.306 −0.307 −0.309 −0.309 −0.296
U(0,9) −0.711 −0.722 −0.728 −0.730 −0.730 −0.732 −0.732 −0.720
U(−3,9) −0.998 −1.000 −0.999 −1.000 −0.999 −1.000 −1.000 −1.000
N (0,1) −0.138 −0.149 −0.150 −0.153 −0.153 −0.153 −0.153 −0.154
N (0,2) −0.462 −0.481 −0.487 −0.489 −0.491 −0.492 −0.492 −0.500
N (0,3) −0.813 −0.830 −0.833 −0.835 −0.837 −0.837 −0.838 −0.857
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Table 3. Empirical bias (variance) of R-estimator, LSE and L1-estimator for various measure-
ment errors vi and model errors ei; n= 50

ei

vi Normal Logistic Laplace Pareto Cauchy

0.002 (0.182) 0.008 (0.527) −0.002 (0.254) 0.000 (0.416) 0.018 (0.672)
0 0.004 (0.172) 0.009 (0.567) −0.003 (0.355) 5.047 (89 200) −3.289 (85 700)

0.002 (0.274) 0.010 (0.708) −0.002 (0.249) 0.000 (1.191) 0.018 (0.526)

−0.399 (0.155) −0.398 (0.438) −0.396 (0.214) −0.401 (0.422) −0.404 (0.568)
U(−3,3) −0.395 (0.147) −0.396 (0.466) −0.394 (0.283) −7.137 (604 000) 22.62 (4 000 000)

−0.401 (0.232) −0.400 (0.591) −0.400 (0.235) −0.422 (0.932) −0.405 (0.456)

−0.995 (0.101) −1.006 (0.278) −0.997 (0.142) −1.001 (0.309) −1.010 (0.397)
U(−6,6) −0.995 (0.096) −1.009 (0.294) −0.998 (0.182) −7.259 (401 000) 0.933 (36 400)

−0.995 (0.151) −1.006 (0.376) −0.995 (0.157) −1.001 (0.587) −1.014 (0.320)

−0.153 (0.174) −0.161 (0.493) −0.145 (0.243) −0.149 (0.439) −0.147 (0.638)
N (0,1) −0.152 (0.163) −0.158 (0.523) −0.145 (0.328) −2.136 (281 000) −7.380 (739 000)

−0.153 (0.261) −0.159 (0.675) −0.147 (0.259) −0.165 (1.092) −0.138 (0.510)

4.2. Model of two regressors

Consider the model

Yi = β0 + xi,1β1 + xi,2β2 + ei, i= 1, . . . , n,

where again the Yi are measured accurately, but instead of xi we observe only wi =
xi + vi, i = 1, . . . , n. The R-estimator of parameter β = (β1, β2)

⊤ is based on Wilcoxon
scores generated by score function ϕ(u) = u− 1/2.
Here we chose n = 50, parameters β0 = 1, β1 = 2, β2 = 1, random regressors xi =

(xi,1, xi,2)
⊤ are generated from 2-dimensional normal distributions N2(µ,Sν), ν = 1,2,3,

where µ= (0,1)⊤ and

S1 =

(
4 0.5
0.5 2

)
, S2 =

(
2 0.2
0.2 2

)
, S3 =

(
1 0.9
0.9 1

)
.

Table 4 compares empirical bias and variance (in parentheses) of R-estimator based on
Wilcoxon scores, with those of the LSE and L1-estimator for various distributions of the
measurement errors vi and model errors ei.
We have also computed R-estimates generated by other score functions, for example,

van der Waerden, median; also another simulation design was considered – various sample
sizes n, values of the parameters, distributions of regressors, measurement errors vi and
ui and model errors. It is of interest that the results for corresponding R-estimates are
quite similar to those presented in the previous tables.
The simulation study confirms that R-estimates in measurement error models are bi-

ased, as well as other usual estimates. The bias is relatively stable with respect to the
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Table 4. Empirical bias (variance) of R-estimator, LSE and L1-estimator for various measure-
ment errors vi and model errors ei; n= 50

ei

vi Normal Logistic Laplace Pareto Cauchy

0 β̂1 0.000 (0.600) −0.015 (1.688) 0.002 (0.821) −0.002 (0.017) 0.026 (2.326)
−0.001 (0.569) −0.019 (1.789) 0.006 (1.120) 21.73 (5 330 000) −3.698 (48 700)
−0.007 (0.864) −0.008 (2.295) 0.002 (0.857) −0.003 (0.034) 0.035 (1.843)

β̂2 0.020 (1.176) 0.026 (3.497) 0.001 (1.678) −0.003 (0.033) 0.037 (4.634)
0.014 (1.117) 0.027 (3.725) −0.001 (2.250) −29.28 (9 770 000) 0.695 (66 200)
0.031 (1.744) 0.017 (4.588) −0.001 (1.758) −0.005 (0.067) 0.007 (3.618)

N2(µ,S3) β̂1 −0.362 (0.554) −0.379 (1.603) −0.379 (0.798) −0.372 (0.087) −0.347 (2.161)
−0.359 (0.528) −0.385 (1.693) −0.376 (1.030) 22.81 (6 270 000) −4.118 (48 500)
−0.365 (0.823) −0.369 (2.134) −0.375 (0.881) −0.370 (0.102) −0.338 (1.758)

β̂2 −0.774 (0.936) −0.738 (2.662) −0.754 (1.295) −0.770 (0.136) −0.738 (3.618)
−0.776 (0.881) −0.734 (2.832) −0.757 (1.696) −26.76 (7 920 000) −0.268 (78 500)
−0.769 (1.402) −0.754 (3.366) −0.754 (1.409) −0.769 (0.164) −0.752 (2.935)

N2(µ,S2) β̂1 −0.643 (0.419) −0.652 (1.155) −0.648 (0.579) −0.649 (0.076) −0.626 (1.622)
−0.640 (0.399) −0.655 (1.216) −0.653 (0.750) 14.66 (3 070 000) −3.987 (47 200)
−0.647 (0.615) −0.645 (1.573) −0.642 (0.657) −0.650 (0.089) −0.623 (1.317)

β̂2 −0.495 (0.643) −0.474 (1.730) −0.477 (0.866) −0.494 (0.107) −0.466 (2.426)
−0.497 (0.605) −0.469 (1.843) −0.471 (1.139) −17.59 (3 660 000) −0.646 (55 900)
−0.489 (0.948) −0.477 (2.282) −0.486 (0.944) −0.492 (0.129) −0.478 (1.992)

N2(µ,S1) β̂1 −0.997 (0.329) −1.013 (0.879) −1.010 (0.448) −1.005 (0.071) −0.987 (1.264)
−0.999 (0.311) −1.015 (0.931) −1.011 (0.577) 9.435 (1 260 000) −2.474 (40 500)
−0.994 (0.484) −1.009 (1.192) −1.011 (0.509) −1.005 (0.086) −0.998 (1.037)

β̂2 −0.505 (0.670) −0.493 (1.797) −0.496 (0.917) −0.499 (0.141) −0.482 (2.489)
−0.505 (0.630) −0.486 (1.883) −0.487 (1.168) −21.75 (5 680 000) 0.106 (49 600)
−0.501 (0.980) −0.520 (2.374) −0.504 (1.024) −0.500 (0.170) −0.501 (2.064)

sample size and to distribution of model errors. The R-estimates provide meaningful

results as long as the ei have a finite Fisher information; even under the normal errors

are their empirical variances only slightly greater than that of LSE. The bias and other

properties of R-estimates are comparable with those of the least squares and of L1 esti-

mates unless the distribution of model errors ei is heavy, where the LSE fails. Generally,

the reduction of the bias is rather a matter of measurement precision, of calibration and

repeated measurements.
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