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A NEW PROOF OF GRADIENT ESTIMATES FOR MEAN
CURVATURE EQUATIONS WITH OBLIQUE BOUNDARY
CONDITIONS

JINJU XU

ABSTRACT. In this paper, we will use the maximum principle to give a new proof of the
gradient estimates for mean curvature equations with some oblique derivative problems.
Specially, we shall give a new proof for the capillary problem with zero gravity in any
dimension n > 2 and Neumann problem in n = 2,3 dimensions.

1. INTRODUCTION

The interior gradient estimates and the Dirichlet problem for the prescribed mean cur-
vature equation have been extensively studied, see Gilbarg and Trudinger [2].

Many authors have also considered various oblique boundary value problems for second
order elliptic equations. We refer to the literature Lieberman [5] and the references therein.

In this note, we mainly consider the following oblique boundary value problem for
prescribed mean curvature equation

D
(1.1) div(\/ﬁ) —f(z,u) in
(1.2) vq_lg—:—i—w(:ﬂ,u) =0 on 09,

where (2 C R" is a bounded domain, n > 2, « is the inward unit normal to 9€2 and ¢ > 0,
v =+/1+ |Dul?

In ([I2), for ¢ = 0, it is corresponding to capillary boundary condition and for ¢ = 1, it
is corresponding to Neumann boundary value.

For the mean curvature equation with capillary problem, there have been many existence
results such as Ural'tseva [9], Simon-Spruck [7], Gerhardt [I]. They obtained gradient
estimates via test function technique. Spruck[§] used the maximum principle to obtain
boundary gradient estimate in two dimension for positive gravity case ( f, > Cy > 0,
Cp is a constant). Korevaar[3] generalized his normal variation technique and got the
gradient estimates in the positive gravity case in high dimensions case. Simultaneously,
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Lieberman[4] used maximum principle to get the gradient estimates on general quasilinear
elliptic equations with capillary problem in zero gravity case (f, > 0).

For the problem (I.T), (I.2]), Lieberman ([5], in page 360) proved the gradient estimates
for ¢ > 1 or ¢ = 0. Recently, Ma-Xu[6] have given the gradient estimates of mean
curvature equations with Neumann problem via maximum principle. Moreover, they got
an existence result in positive gravity case.

In this paper, we use maximum principle to give new proofs of gradient estimates for
the problem (L), (I2) with ¢ > 1 or ¢g = 0or ¢ = 1 ( n = 2,3 dimensions ) cases
respectively. Our proofs are elementary and based on the choice of auxiliary functions.

Let’s restate the following three results. First consider the boundary value condition

with 1 = ¥(z).

(1.3) pa-1

vy

Theorem 1.1 ([5]). Let Q C R™ be a bounded domain, n > 2, dQ € C3, and v be the
inward unit normal to ). Suppose u € C%(Q)(C3(Q) is a solution of (L)), (L3) with
q > 1. f(z,2),¢(zx) are given functions defined in Q x [—My, Mo] and Q respectively.

+¢(z) =0 on 0N

Furthermore we assume there exist positive constants My, L1, Lo such that

lul <My in S,
fo(z,2) >0 in Q x [~My, My],
|[f (@, 2)] + | fa(z, 2)] <Ly in Q x [=Mo, Mo,
W’(x)‘cl(ﬁ) <Ls.
Then there exists a small positive constant ug such that

sup |Du| < max{Mi, M},
Qg
where My is a positive constant depending only on n, pug, Mo, Ly, which is from the interior

gradient estimates; Ms is a positive constant depending only on n,$), ug, Mo, L1, Lo, and
d(z) = dist(x,00),Q,, = {r € Q:d(x) < po}-

Theorem 1.2 ([1], [4]). Let Q@ C R™ be a bounded domain, n > 2, 9 € C3, and 7y be the
inward unit normal to 0. Suppose u € C%(Q)(C3(Q) is a solution of (L)), (L3) with
q = 0 and satisfies (L4). f(x,2),%(x) are given functions defined in Q x [—My, Mo] and
Q respectively. Assume f(x,z) satisfies (L3)-(L6) and ¢ (x) satisfies (LT). Furthermore
we assume there exists a positive constant by such that

(1.8) [v(@)]coa0) <bo < 1.
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Then there exists a small positive constant g such that

sup [ Du| < max{M;, M},

Qg
where My is a positive constant depending only on n, g, Mo, Ly, which is from the interior
gradient estimates; Mo is a positive constant depending only on n, ), po, Mo, L1, Lo, bg.

The following boundary gradient estimate of solutions for Neumann problem of mean

curvature equations has been given by Ma-Xu[6] in any dimension n > 2.

Theorem 1.3 ([6]). Let @ C R" (n=2,3) be a bounded domain, 92 € C3, and ~y be the
inward unit normal to 0. Suppose u € C%(Q) (N C3(Q) is a solution of (L)), (L2) with
q = 1 and satisfies (L4). f(x,2),v(x,2) are given functions defined in (0 x [—Moy, My))
respectively. And f(x,z) satisfies the conditions (LB)-(L6l). Furthermore assume there

exists a positive constant Ly such that
(1.9) W(x,z)bl(ﬁx[_MmMo}) <Ls.
Then there exists a small positive constant pg such that we have the following estimate

sup |Du| < max{My, Ms},

Qg
where My is a positive constant depending only on n, g, Mo, Ly, which is from the interior
gradient estimates; Mo is a positive constant depending only on n, <), po, Mgy, L1, L3.

As we stated before, there is a standard interior gradient estimates for the mean cur-

vature equation.

Remark 1.4 ([2]). If u € C3() is a bounded solution for the equation ([LII) with (L4,
and if f € CY(Q x [~My, My)) satisfies the conditions (L5)-(L8), then for any subdomain
Q' cc Q, we have

sup |Du| < My,
Q/
where My is a positive constant depending only on n, My, dist(€Y,09Q), L.

The rest of the paper is organized as follows. In section 2, we first give the definitions
and some notations. We prove Theorem [I.1] in section 3 under the help of one lemma.
This lemma will be proved in section 4. In section 5, we give the proof of Theorem
Finally we give the proof of Theorem [L3lin section 6.
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2. PRELIMINARIES
We denote by © a bounded domain in R, n > 2, 9Q € C3, set
d(x) = dist(z,00Q),
and
Q) ={r€Q:d(x) < pu}.

Then it is well known that there exists a positive constant g7 > 0 such that d(z) € C3(€,,, ).
As in Simon-Spruck [7] or Lieberman [5] in page 331, we can take v = Dd in €2, and note
that v is a C?(Q,,) vector field. As mentioned in [4] and the book [5], we also have the
following formulas

|Dvy| + |D%*y| <C(n,Q) in Qs
2.1) S 4Dy =0, 3 4Dt =01 =1 Q.

1<i<n 1<i<n

As in [5], we define
(2.2) =6 — "7 in Q,

and for a vector ( € R", we write ¢’ for the vector with i—th component >, i<n ¢, So

o9 D= Y
1<ij<n

Let
(2.4) a”(Du) = v*6;; —wiug, v=(1+ ]Du\2)%

Then the equations (IL1]), (I2]) are equivalent to the following boundary value problem

n
(2.5) Z auj =f(z,u)v® in Q,
ij=1

(2.6) Uy = — v " Np(z,u) on OO

3. PrRoOOF oF THEOREM [I.11

Now we begin to prove Theorem [[Il, using the technique developed by Spruck [§],
Lieberman [4] and Wang [10], we shall choose an auxiliary function which contains |D"ul?
and other lower order terms. Then we use the maximum principle for this auxiliary
function in QHO,O < pp < p1. At last, we get our estimates.

Proof of Theorem [11. Let

P(z) =log \D/ulze\/ﬁao(MOHJr“)eaod,
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where we have let
ag = 2CyLy + 2CH + 2,

which is a constant, and Cj is also a positive constant depending only on n, §2.
In order to simplify the computation, let

p(z) = log P(xz) = loglog |D'ul? + h(u) + g(d),
where in the ¢ > 1 boundary value case, we choose
(3.1) h(u) = vnaog(Mo+1+u), g(d) = apd.

We assume that o(z) attains its maximum at xy € ﬁm), where 0 < pp < pp is a
sufficiently small number which we shall decide it later.

Now we divide three cases to complete the proof of Theorem [I.11

Case 1. If p(x) attains its maximum at xg € 92, then we shall use the Hopf Lemma to
get the bound of |D'u|(zp).

Case IL. If ¢(x) attains its maximum at zo € 99, ()2, then we shall get the estimates
via the standard interior gradient bound [2].

Case III. If (z) attains its maximum at zg € €, in this case for the sufficiently small
constant o > 0, then we can use the maximum principle to get the bound of |D’u|(zo).

Now all computations work at the point xzg.

Case L. If 2y € 99, we shall get the bound of |D'u|(x().

We differentiate ¢ along the normal direction.
Oy _Elgz’gn(|D/u|2)i7i
9y |D'ul?log|D'ul?
Applying (2.1 and ([23]), it follows that

(3-3) DoDuP)nt = () Muwin' =2 Y Hupuy.

1<i<n 1<i<n 1<k,I<n 1<4,k,I<n

(3.2) + h'uy + 4.

Differentiating (2.6]) with respect to tangential direction, we have

(3.4 S Hu=— Y H )

1<k<n 1<k<n
It follows that
(3.5)
Z HFugr' = — Z cklui(’yi)k — e Z D — (1 —q)ypv 1 Z .
1<i,k<n 1<i,k<n 1<k<n 1<k<n

Here in order to avoid repeated calculation in the back, we have let 1) = ¢(x,u) and

(3.6) Dy =1z, + Yyup.
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Since
(3.7) v? =1+ |D'ul? + u%,
differentiating (3.7]) with respect to xj, we obtain

D’u 2 k U . .
(3.8) W:ﬂjﬁl—+jZEZWWV+wW%)

1<i<n

Inserting (3.8]) into (B.2]), we have

1—q le
. ‘ v HD,
Z cklusz _ } : cklu’i(fyl)k B Z1gk§n P

_ _ —2q,/,2
1<4,k<n 1<i,k<n 1 (1 q)v ¢

(3.9) <iks N
B /
- — (1 —a)o-2a02 EE: (1D ul*)i
2 1-(-quy 1<k<n

Since > cp<p o =0, and > 1<k<n vk =0, we obtain
S DR = — Doz Du Y (R + g4
1<k<n 1<k<n
= — I/|D'uf*log | D'ul? Z My,
1<k<n

(3.10)

Inserting (B.I0) into ([B.9), we have
. . Ty M Dy
Kl i Kl (i 1<k<n k
% e 5 i B
1<i,k<n 1<i,k<n
1—gq happ—a~1
2 1—(1-q)v2ay?
Putting (B.I1)) into (B.3]), combining (3.2)), we have
(3.12)

_|_

|D"u|? log | D'u)? Z My,
1<k<n

|D'ul?log ID’uI2 O =¢'|D'u|?log | D'ul? — 2 Z Fuu (v — 20! 1<k i<n fMDkwul
z 1<i ki<n 1—(1—q)v2ay?
quiT?+ (1 — g)v=17e

1= (1 —qv—20y?
In the following, we consider ¢ = ¥ (x), ¢ > 1, then we have
(3.13)

— W |D'ul?log | D'ul?.

0 , pi—a Kby
|D'uf?log | D'ul> 22 =¢'|D'ul?log |D'uf? — 2 S Hu (i — Zlék,lgn_Q !
¢l 1<k l<n 1-(1—qu2w

qu' ™+ (1 — g9
1= (1 —q)v2ay?

— R |D'u|? log | D'ul?.
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Since at xg ,

0 =22 = (14 (D)2, |Duf? = D'l + 2,
then we have if
(3.14) bi|D'ul® < 2,

where by is a positive constant, then

1 2 L |Dul?
and we get the estimate
1+0 140 1
(3.16) (1+ [Dul) ! Duf? < =210, Duf? < (e,
1 1
and we complete this proof.
So we can assume
(3.17) bi|D'ul® > 2,
then from |Dul|? = |D'u|? + u,zy, we have
(3.18) |Dul? < (14 by)|D'ul?
Now we assume at zg, we have
1
(3.19) | Du| > max{10v/1 + b1, (4gv/n[¢)|coaq)) =},
then we can get the the following estimate at xg,
1
4g+/n -1
(3.20) D'u| > max{10, Y Ie0@a) 7T,
V1+by
Inserting (3:20) into (B.13]), and by the choice of h(u), g(d) in (B1]), we obtain
n
D410 | D22 > [ag = Co— Coltlen gy — VA ] o 1og D
,7 c1(Q) a1
(321) 2|D/u|2log|D/U|2
>0.
On the other hand, by the Hopf Lemma, we have
dp
- <0
B (o) <0,
it is a contradiction to (3.2I]). Then we have
1
4gy/n a-1
D'l (zg) < max{10, (4gv/nlY|coan)) N

VI+b
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So

1+ 1 1
)20, 10v/1 + by, (4gv/nltloo(an)) 7T )

Case II. zg € 09, () Q. This is due to interior gradient estimates. From Remark [I.4]

we have

| Du|(zo) < max{(

(3.22) sup | Du| < M;.
9y N0
where M is a positive constant depending only on n, My, g, L1.

Case III. z( € §,,,. we shall get the bound of |D'u|(xo).

In this case, zq is a critical point of ¢. We choose the normal coordinate at xg, by
rotating the coordinate system suitably, we may assume that wu;(zg) =0, 2 < i < n and
u1(zg) = |Du| > 0. And we can further assume that the matrix (u;;(x0))(2 < 4,7 < n) is
diagonal.

We can choose 0 < pg < p1 , and pg is sufficiently small.

From Gilbarg and Trudinger[2] [page 368, formula (15.38)], we have

(3.23) sup |Dul* < C1(1 4 sup | Dul?),
Q o0

where (] is a positive constant depending on n, L1, Mj.
From Case I, we can assume (B.17]), otherwise we have finished the proof of Theorem [L.1]

Hence,
sup |Dul? <C4 [1+ (1+b1) sup |D/u|2]
(3.24) Q OQN{|D'ul>1}
' <Cs sup |D'ul?.
OQN{|D'ul>1}
So we have
(3.25) sup | Dul? <Cj sup |D'ul?,

Qo Qo (M)

where Q, (M) = Q,, {|D'u| > M}, M > 10 is a positive constant; Cs is a positive
constant depending on n, L1, M.
Assume z; € €, (M) such that

(3.26) S |D'ul? =|D'uf*(x1).
Since P(xg) > P(x1), then we have
(3.27) log | D"ul*(zo)h(u(z0))g(d(x0)) >log |D"ul*(z1)h(u(z1))g(d(z1)).

It follows that
(3.28) |D'u|?(x1) <C4|D'ul?(x0).
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where C} is a positive constant depending on n, L1, Ly, My. However
(3.29) sup [Du|? <C3 sup |D'uf* = |D'uf?(z1) < Ca| D'ul?(zo).
QMO Quo(
Assume |D'u|(zg) > M, otherwise we get the estimate. Hence at xo,
(3.30) ut(zg) = | Dul?(z0) <Cycttu?(x).
Then we have at x,
1

3.31 H>_>o.
(3:31) .
From the above choices, we shall prove Theorem [I.I] with three steps, as we mentioned
before, all the calculations will be done at the fixed point zg.

Step 1: We first get the formula (3.57).

Taking the first derivative of ¢,
(ID"ul*);

.32 ;=
(3.32) " |D'u|?log | D'ul?

+ W u; + g'yi.

From ¢;(xg) = 0, we have
(3.33) (|D'ul?); = —|D'ul*log | D'ul*(Ku; + ¢'7").

Take the derivative again for ¢;,

_ (D) (1D"ul?)i(|D"ul*);
[D'uf?Tog | D'uP? (1D log [ Du?)?
+ huij + B uug + ¢"Y' Y+ g (),

Using (3.33)), it follows that

(3.35)

— (1 +log |D'ul?)

(3.34) .

ori — (ID"ul?)s
Y |D'ul? log | D'ul?
+[9" = (L +log |D'ul’)g?]7'y? — (1 +log |ID'uP)W'g/ (v'uj + 7 ws) + ' (1),

+ Blugj + [ — (1 +log | D'ul*)R*|uju,

Then we get
(3.36) 0> Z apij = + Iy,
1<i,j<n
where
1 (12
(337) —[1 = |D/u|210g|D/u|2 Z aJ(‘D ’LL‘ )1.77

1<i,j<n
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and

I = Z aij{h’uij + [0 — (1 +log |D'ul*)h?]uju; + [¢" — (1 + log |D'ul?)g"*] 7'~
1<ij<n

(3.38) ~ 21 + log D) Ay +g'w’>j}.

From the choice of the coordinate, we have

(3.39) a'=1,a" =0 =14u? (2<i<n),d? =0 (i#j1<i,j<n).
and
(3.40) |D'ul? = ¢'*u?,  |D'ul?log |D'u|* = 2c¢tut log uy + M (log ¢t )u?.

Now we first treat Is.

From the equations ([2.5), (8:39) and (B.40), we have
I :h/f?)g _ h/2u% log \D'u!Q + (h// B h/2)u% + [g// . (1 + log ]D'u\2)9'2] Z aii(,yi)2
1<i<n

—2(1 +log | D'ul)W g'y'ur +¢' > a(+)s,
1<i<n
=h'fv3 — 2(h"? + ¢ g"?)ui loguy + [ — (1 +log ')A — (1 + log ') g™

+ctg" + 4 Z (v")i]uf — 41’ g’y ur log uy — 2(1 + log )R g’y uy

2<i<n
(3.41) —2¢”logus +¢" — (1 +logc't)g? + ¢ Z (Y.
1<i<n
So we have
(3.42) Iy >vnag fo® — 2(n + ¢V adud loguy — Csu?,

here we use the expression for h(u), g(d) in (B1]), and Cj is a positive constant depending
only on n, 2, My, uo, Ls.

Next, we calculate I; and get the formula (B.56]).

From (Z.3)), taking the first derivative of |D'u|?, we have

(3.43) (\D/ulz)i: Z (ckl)iukul+2 Z Faug.
1<k,i<n 1<k,i<n

Taking the derivatives of | D'u|? once more, we have
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(1D uf)is = Y (Fgupw+2 D (Maugur+2 > (M) juriu

(3.44) 1<k,i<n 1<k,I<n 1<k,I<n
+ 2 Z cklukijul + 2 Z cklukiulj.
1<k,l<n 1<k,i<n
By B37) and (3:44]), we can rewrite [ as
1
(3.45) I = D7 Tog [Dul? [+ g + N3 + T4,
where

In=ui > ()i, La=4uy Y (),

1<i<n 1<4,k<n
§ : k1 _ij § : kl it
113 :2U1 ca Juijk, 114 =2 C a Uk;Ul;-
1<4,5,k<n 1<4,k,l<n

In the following, we shall deal with Iy1, 12, I13 and I14 respectively.
For the terms I1; and [12: from (3.39), we have

(3.46) =) (Mut+ Y (M,

2<i<n 1<i<n
(3.47) 1o :4(611)1U1U11 + 4uq Z [(Cli)l + U2(Cll)i]uli + 4U1U2 Z (Clz),uu
2<i<n 2<i<n

For the term Iy3: by the equation (2.1]), we have

(3.48) un =fo* =0 Y ug,

2<i<n
and

2

U
(349) Au=fv+ ,U—%’LLH.
Differentiating (2.5]), we have
(3.50) Z aijuijk = — Z agulkuij + 3Dy f + 3fv3uy.

1<i,j<n 1<i,g,l<n

From (24]), we have
(3.51) ag :211,[(52']‘ - (5ilu]' — (5ﬂui.
By the definition of v, we have

(3.52) VUE =ULUL -
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Hence, from(3.49), we have

E a”uijk = — 2u1u1kAu + 2U1 E Ui Uik + ’U3Dkf + 3f’uu1u1k,
1<4,j<n 1<i<n

(3.53) oy .
==Sunuig +2ur Y unttip + V2D f + fourugg.
v 2<i<n

By [B.53)), we get

I3 ——un Z o U1k+4u1 Z UL Z c uk,—|—2fu1v Z F ulk

<k< <i< <k< <k<
(3'54) 1<k<n 2<i<n 1<k<n 1<k<n

—|—2’LL1U3 Z Clekf.
1<k<n

For the term I4:

Iy =2uqy Z Mgy + 20 Z uy; Z oy 4 20 Z cMunug;

(3.55) 1<k<n 2<i<n  1<k<n 2<i<n
+ 2u1q E Mg + 2 E é uhulj + 202 E e 2
2<i<n 2<,5<n 2<i<n

Combining (3.40), (347), (354) and B.553)), it follows that
(3.56)

1 4u?
I = e ) |:(—21 + 2 u11 Z C ’LLkl + 4U1 + 2'U Z U1; Z C ukz
|D ’LL| 10g|D u| v 1<k<n 2<i<n 1<k<n

+ 202 Z cMugug + 2upy Z Mg +2 Z Cijuuu1j+2fvu% Z oy,

2<i<n 2<i<n 2<4,j<n 1<k<n

+ 4wy +4ur Y (@) A oA ilun 4207 D g+ dun® Y ()i
2<i<n 2<i<n 2<i<n

+ 2upv® Z Dy f + Z (c"M)iut + Z (cn)iiuﬂ.

1<k<n 2<i<n 1<i<n

Inserting (3:41]) and (B.50) into ([B.37), we can obtain the following formula

(3.57) 0> > a9y = Qi+ Q2+ Qs

1<ij<n
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where )1 contains all the quadratic terms of u;;; ()2 is the term which contains all linear
terms of u;;; and the remaining terms are denoted by @J3. Then we have

1 42
O =priogap Gz T2 2, Muw+(ud +20%) 3w Y, Hug
& 1<k<n 2<i<n  1<k<n
+ 202 Z cMugug + 2upy Z My
2<i<n 2<i<n
(3.58) +2 Z cijuuulj—l—ZvQ Z c“u2]
2<4,5<n 2<i<n

The linear terms of u;; are

1
Q2 = |D/u|2 lo |D/u|2 [vau% Z Cklulk + 4(01 )1u1u11 + 4uq Z lulz
& 1<k<n 2<i<n
(3.59) + dugv” Z ("M iuri + dugv? Z (Cli)iuii]a

2<i<n 2<i<n

and the remaining terms are

k
o ] 30 o o
1<i<n 1<k<n

11 11 11
=l + ‘Dl ’2 log ’D/u‘g Z zzul + Z “ul + 2c fuu v

2<i<n I<i<n

(3.60) +2ue® Y F
1<k<n

From the estimate on I3 in ([3.42]), we have
(3.61) Q3 > Vnagfv® — 2(n + c')adu? loguy — Ceul,

in the computation of ()3, we use the relation Dy f = f,ur + fr, and f, > 0, where Cs is
a positive constant which depends only on n, 2, Mo, g, L1, L.

Step 2: In this step we shall treat the terms Q1,Q2 using the first order derivative
condition

(101($0) = 07

and let

(3.62) A = |D'ul*log | D'ul?.
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By 33) and ([B.43)), we have

g7 D'l log D' ()

R u;
Z HMug; = — —&|D/u|2log |D'u)? —

Uy
(363) 1<k<n 2 (31 2 (31 2
b g gy A ()
=iy g =1,2,...,n.
2 uy 2 Uy 2 UL, ? ) T
Using (B.63)), we get
h g”yl A (Cll)
k1 1
) crup = ——A— — - u1,
(3.64) sz;n L= 2 w2
and
i 11
Moo g A () o
(365) 1<§k; C Ug; = — 2 u_l_ 9 ui, 1=2,3,...,n.
SRS
Through (B.65]) and the choice of the coordinate at zp, we have
clz‘ g/,yi A (Cll)i )
(3.66) U1 = —cﬁuii - 9cl1 u—l - 9l Ui, 1= 2,3, ceey T
Using (3.64]) and ([B.64]), it follows that
(c')? W gy A U1 Lig 11 (')
— ) o LA i _
U11 222” (Cll)2u” it Al oy + 2(ci1)? 2;nc () el Uy
3.67 - ) -
( ) (Clz)2 h 9’71 A
= Z (AT i — oA T A, Thun,
5 (cth) 2¢ by
where we have let
1 (Cll)1
b— Lig 11y
2(cth)? 2;; ()i = 5
By B48]) and [B.67), we have
1137
(3.68) Z [(611)2,02 + (cli)z]u“, _ (Cll)2fvg n ch A+cllg/,ylé _ (c11)2bu1.
' 2<i<n 2 U

Now we use the formulas (B.64))-(B.67) to treat each term in @1, Q2. At first, we treat
the first five terms of Q1 in (B.58), and get (3.69)-(B.73]).
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By B.64]) and ([B.67)), we have

(3.69)
4u
(—+2 U1 Z C ukl
1<k<n
A2 ()2 % A % dt A (),
—(2 4 9 i — 5 A= S b [ gA- TS
2u2 A (Clz’)2 u2 1 h/2
- (_1 +1)[WA +g/71u— + ()1 ] Z Wu“ + (U—; + 2)011A
1 2<i<n
2 111 A2 2 11 2 120 1\2 A2
uj  13Wg'y A wp  1(c ) / 2ui | 97()° A
— 4= — t (= += —20lWu A+ (— +1 =
+(112 2) el u1+(02+2)[ el Ihw +(v2 1) o u?
2u? el 2u?
+ g S0 a2y e,
From (B.65]) and (3.60), we get
(4u%+2v2) Z Uy; Z g,
2<i<n  1<k<n
1 /i 11 /i 11
a2 4 o2 ¢ g7 A () g7 A ()
_(4U1+2'U ) Z [_Tu”_ﬁu_l_ 2(311 Ul][ ) u—l— ) 'I,Ll]
( 7) 2<i<n
3.70 14
c
(2u1—|—v Z et yum 2u%—|—v2)u1 Z CT(CH)ZUM—I——/P
2<z<n 2<i<n
/ 2 .2\,.2 g2 A2
g , (2us +v)u A
+ > (cll)wl(2u%—|—v2)A+712CH LY ()2 + 2 T
2<isn 2<i<n 1
From (3.66]) , we have
202 Z cliuliuii
2<i<n
1 ‘ 11
0,2 14 ¢ tA (c);
(3.71) =20% > cMuig[ - o1 i 2011 w201 w]
2<i<n
202 - q viA 2A u1v? -
=T a4 > (M) = T PN T ar > (e
2<i<n 2<i<n 2<i<n

ul]

15
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By (B.66]) and (3.67]), it follows that

(3.72)
2u11 Z g
2<i<n
(c)? Mo, gt A up_ ¢ g A (@Y
=2 > i~ g A ar o thu] D e[ = Spui - Sy — o]
2 (cth) 2c cll g 5 c 2c1l 2c
2 , A (ct)2
=— W[ Z (') 2uy)% + (W' A+ Sglfylu— —4cttbuy — (Cll)lul] Z Wun
2<i<n 1 2<i<n
h/g/’yl A2 / 11 9/2(71)2 A2 (Cll)1
-2 )iAuy — — 4+ g7 [3b+ 14
91l ul ()2 2;71 AT 2 ol
— b2be™t + (M)q]ud.
Again by (8.66) and (2.2)), we get
(3.73)
2 Z cijuliulj
2<i,5<n
/i 11 15 I 11
% g7 A () c gv A (D))
—9 g _ 2 e 4
2<i§j:<nc [ ot T 5 T w200 ui] | % T w21 u1]
1i 1 gV A 2w T8 i\ 2
T ()2 Z el ]uiiujj_[ D2 u ()2 7 (c);] Z (v) i
2<ij<n 1 2<j<n 2<i<n
2U1 (1 _ cll)g/2 A2 (1 _ cll)g/A 1
)2 > e+ 5l 2 ¢ (c11)2 > e
2<i<n 1 2<i<n

1 g
+ Z ()il

11)\2
2ty hen

Now we treat the first four terms of Q9 in ([B.59), and get (B.74))-(B.77).
From (3.64]), we have

n A1 A Al
2fvu1 Z Fug —2fvu1[——A 2 ” %ul]

1<k<n
(3.74) = — W fAvu? — fg'v Avug — (') foud.
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By ([B.67)), we obtain

(3.75)
clz 2 h/ g/,yl
e =] 3 (G A - G+l
2<i<n
Clz)2 2(611)1 49/71
_4(611)1’LL1 Z (Cll)2uii_ T h/Aul— oI (611)1A+4(611)1bu%.
2<i<n

From (B.66]), we have

4uq Z (") 1uy

2<i<n
17 N 11
. c gy A (C )z
—4 wor_ct o _grA
(370 " 2<Zi;n(c il EIR R w2t ]
4uq . . 2d' ) ) 2 '
== 7 Z (") 1ctuy — c—lgl ' (c')1yt A — T 2 () (M),
2SZSTL 2SZSTL 2S2Sn
and
dugv? Z ()i
2<i<n
li o~ 11
=4uv? 11 ¢ g A ()
(3.77) —hav 222”(6 )i [ IS TR Wi w 2¢1 ul]
4’LL1’U2 . 29/ ) 9
Tl Z (et = et ()i Av® cll Z ((e")i)*utv®.
asisn 2<isn 2<i<n

We treat the term Q) using the relations (B:69)-(3.73]), and use the formulas (B74)- B7)
to treat the term Q2. By the formula on Q3 in (B.60), we can get the following new formula

of @3T),

(3.78) 0> Z aijgoij =: J1 + Jo,

1<ij<n

where J; only contains the terms with w;; , the other terms belong to Jo. We can write

1
(3.79) J1=: 1 [J11 + J12),
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here J1;1 contains the quadratic terms of u; (i > 2), and Jyg is the term including linear
terms of u;; (i > 2). It follows that

Jll —2?} Z czz 2 - Z (Cliuii)2 . ﬁ[ Z (Cli)2uii]2

2<i<n 2<i§n 2<i<n
(3.80) cll Z ety
2<,57<n
11 Z diejuZ;, + 2 Z c”c“cl]u“u”]
C 2<z<n 2<i<j<n
where
(3.81) di =(c")?0% + (") = (") ?uf + (") + ()%, i=2,3,...,n,
(3.82) ei =c'tc — ("2 =1-(")? - ("), i=23,...,n.
And
T =[ - 29 7 Auy — 2(v')*h Auf 29'(71)3£ Z u
()2 32 ()2 C11 2 52 Y;
. o LU A 20y
1w 112 .2 12 2 ) Wi
c (ch)? v2uy () v ,
(3.83) asisn
: . du .
+ 4uyv? Z (") — chl Z () ug
2<i<n 2<i<n
2ui  4ctt -2 :
- [chl + (c11)2 u1] Z et (et iuis.
2<i<n
We write other terms as Js, then
2 2 !
U 1. h 3¢’ g
J2:Q3_h/fvu%+(v_;+§)cﬁf4+ “=—A- fgy' UU1+Cﬁ (")iy' (ui — 1)
2<i<n

2 2 3 2 V! 11
L1 Z ((Cll)i)2(v+72)ul—(Cll)lf%+(%+1)h97 A 2(c )1h’u1

S o A A V2 cl oy cll
2 11 2 120132
up 1 (¢ / 9= A " (v)* A
+(v_2+§)[ T = 20[hw 2(cA1)2 > ,u1+7u—%— SR

2<i<n
2u2 912 1\2 A 1— 12 A Cll 291 ; ;
P 0P A ) —+9’Y[3b+(cn)l]—cﬁ S (s

2<i<n
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(1 _ Cll)g' ; 202 (Cll)1 202 u?
+ e Z ¥ ()i + (U—gl +1)g'y'[ TR b] — (1)—21 +1)(c™) bzl
2<i<n
2 2 1
11, 11y ¥ 1 i 11y o Y1 49 1
— el (O g 3 ), S - e
2<i,5<n
(3.84)  +4(c') P 2 (e (c11)~”—%
' A 2<i<n 1 A
Using the formula on Q3 in (3.61)) and I in ([3.42]), we get the following estimate on J,
2 11 2y 2 / 3 h” 39" 2
Joy > —2(h"* 4+ ¢ g“)uilogus + h' fu+ §CTA+TA_C7U1
(3.85) >[R? 4 g2 |ud loguy — Cgu?.
So if we use h(u), g(d) in [B1]), then we have
(3.86) Jo > (n+ cMadu? loguy — Cgu?,

where C7,Cs and the following Cy, ..., Ci5 are positive constants which only depend on
n, Q, Mo, M(), Ll, Lg.

Step 3: In this step, we concentrate on J;. We first treat the terms Ji; and Jy2 and
obtain the formula ([3.93]), then we complete the proof of Theorem [[1] through Lemma[4.3]

By ([B.68]), we have

gy = — 1 Z dus; + 1 ()2 f0 + ﬂA—i— cllg/,ylé — () 2buy ]
d2 - d2 2 u1
3<i<n
(3.87) =
d2 3<i<n dz
where we have let
Cllh/ A
(3.88) D = ("2 fo3 + — A+ cllg/’ylu— — (™) %buy.
1

We first treat the term Jy1: using (3.88]) to simplify ([B.80), we get

2
J11 :m[ Z biiu?i—l-Q Z bijuiinj—QezD Z diw;

(3 89) 3<i<n 3<i<j<n 3<i<n
_ 2(’72)2D Z (Cli)2uii + 62D2],
3<i<n
where

bii =e2d; + eididy — 2P ctid; = (M) (ea + e’ + Ayv® + Ay, 023
(3.90) bij =ead;dj + dac Mt — Pty — Ml

:(011)462’04 + Gijv2 + éijy i F g, 0,5 >3,
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and

Ali :(611)2[(611')2(62 + ei) + Cll ((Cli)2 + (612)2)],
A2i :Cll(cli)2 [(Cli)2 + (012)2]7
Gz’j :cll((cli)2 + (Clj)2) + Cijcliclj,

Gz’j :cll (Cli)2(clj)2.

(3.91)

Now we simplify the terms in Jio: by ([B.87), we can rewrite (3.83) as

29"y 2020 Aui 29'(v1)° A 27
Jig =| — Auq — — — Ul
[ ol ()2 2 (112 u1 )2 2<]Z£n );j
45(71)2 29'(71)3 A 2(71)2(011)1 U1 2 di, 9o
T T <cﬂ>2 T (e F] 2 107 = 3 0P
3<i<n
4u ; ; dl
+ 4U1U2 Z 2 _ 12)2]“@'@' _ CTll Z [612(612)1 _ d_2612(612)1]uii
3<i<n 3<i<n
2ud  4ctt -2 , d;
(3.92) ~[5E + 5w [e" ()i = =" (M )a]uss
[611 (c1)2 ] 3;71 ds
B, 20N AR A 2
11 112 2 11)2 11 2
c (c)? v (c™)? uy  (c o
_ B0 20007 A 200wy (0F)°D
AT T (N2 2y (2 2 4,
D u1 D 23 4e!l — 2 D
A2 u1v _4012( 12 [t ke § 12 T =
* (C )2 d2 ¢ (C )lcndg [CH te ( ) (011)2 UI]CZ2

Using ([B.89) and ([8:92)) to treat (3.79]), we have

= Ady( c11 Z b“u”+2 Z bijuiiugj — U110gU1 Z biug;

(3 93) 3<i<n 3<i<j<n 3<i<n
+ Z Kiuii| + R,
3<i<n
where

(3.94) b; :2(61 )Sg"yl(eg —€),
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and
K; = —2e3Dd; — 2(v*)*D(c")? — (") (log cll)g’vlu?(ez —e;) — (") g/ Auy (eg — €))
11)3 oAN2H Au2 24 (41)3 A
+(c2> e 211))2 hi ?ﬁ)g ) BN
1 2<j<n
4b(+')? 2¢'(y')? A 2(71)2(011)1% e _ i 2o
- 611 U+ (12 2 (c11)2 v_g][(’Y) —d—2(’Y)]
4y ()3 — d.
12 1 1ig i i 12/ 12
i@l 3 (e ()] = i 5 dale (M1 = e ()]
3<i<n
(3.95)

(Cll)3d [Q—U% N 4611 -9
o 2l (112

we also have let
2e, D 2g9' - 200)°Wup 29(v)° 1
R= [— - 011 2 Z

Ul] [Cli(cll)i _ 3—2612(611)2]

=" | — bl §
(c1)3dy A JST ()2 2 2 52
_ 80w 20000 L 200D w ](’Y )*D
Al A (D)2 vy (N2 24 4,
’D u1 D 2u3 4ett — 2 D
A(A2), WV 0212 1 _reur 12/ 11 .
+4(c7)2 Ady (e )lcllAd2 [611 +c(e )2 (cl1)2 ui] Ady

For K; and R, using the formulas on D in (3.88]); the formula of A in (B.62); e;;d; in
B=1)-[B82), and h(u), g(d) in BI]), we have the following estimates
(3.96) K; <Couj,
(3.97) R <Cypu?.

Now we use Lemma [£3] if there is a sufficiently large positive constant C1; such that
(3.98) |Dul(zo) > C11,
then we have

2
J1 ZW[—(n — ("7 (v1)2ul log? uy — Craulloguy] — Crou?,

(3.99) > — (n—2)c (1 — cM)g*u? logu; — Cy3u?,

where we use the formulas (y1)? =1 — ¢!!, dy in (3:81) and A in (362).
Using the estimates on J; in (3:99) and J; in ([B.85), from (B.78) we obtain
0= Z a i
1<i,j<n

(3.100) >{h? + [(c")?(n - 2) — cM'(n — 3)]g” uTlogus — Craui.



22 JINJU XU

By the choice of h(u), g(d) in 31, it follows that

0> Z aij(Pij

1<i,j<n
>{n+[(c")?(n—2) — c"(n — 3)]af }uilogus — Craui
23u% log u; — C14u%.

By B31), (98] and (3I01]), there exists a positive constant C5 such that
(3.102) |D'ul(zg) < Chs.

So from Case I, Case 11, and ([B.102]), we have

|D'u|(xq) < Cis, xo € U@Q.

Since p(x) < ¢(xg), forVa € Q,,,, there exists My such that

(3.103) |Dul(z) < My, in Q| J09,

(3.101)

where My depends only on n, €2, ug, Mg, L1, L.
So at last we get the following estimate
sup |Du| < max{Mj, M},
Qi
where the positive constant M; depends only on n, pg, My, L1; and My depends only on
n, Q, uo, My, L1, Lo. Now we complete the proof of Theorem [I.1] O

4. SOME LEMMAS

In this section, we prove the main Lemma L3 and get the main estimate (3.99), which
was used in last section to estimate J; defined in (3.93]).
We first state a simple lemma on elementary symmetric function.

Lemma 4.1. Assume e = (e, e3,...,¢ey,), then for i > 3, we have
(41)  onsleli)(ez—e) — > onslelik)(ea — ex) = (n — 1)on_2(eli) — ona(e).
k#ik>3

Proof: When ¢ > 3, we have,

O'n_g(e’i)(eg — 62') — Z O'n_g(e‘ik)(eg — ek)

k=£i,k>3
=eson—s(eli) — eion_s(eli) —ex > onslelik) + > erons(elik)
i#k,k>3 k#i,k>3

(n —2)on—2a(elt) — e;on—3(eli)

(n —1)op—2a(elt) — op—2a(e).
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Lemma 4.2. Leta; = (v)%,7 = (4},92,...,7") is a unit vector in R", a = (az,as,...,a,),
and e = (ez,e3,...,€n), € =oi(ali),i>2. Then the matric E = (E;;)3<i j<n 1S positive
definite, where F;; = ea + €;0;5.

Proof: We only need to prove that the following determination is positive.
det E =0y_2(e) = opn—2(01(al2),01(al3),...,01(aln))

= > (01(a) = aiy) (01(a) — as,) -~ (o1(a) — as, ,)

2<i1 <o < <ip_2<n—2

(4.2) = Y (V- k - Dor(@)])" > For(a)
0<k<n-—2
@2+ Y (D) — k= Do (@) ox(a),
2<k<n—2

Now we divide the following two cases, using the Newton-MacLaurin inequality, then we
get our conclusion.
Case 1: if n = odd

(=1 (n = 1= k)[o1(a)]"*Fo(a)
2<k<n—2

= > [k(01(a))* on1-k(a) — (k = 1)(01(a)* *0p_r(a)]
2<k<n—3,k=even

@3 = 3N (o) lker(a)on-1-k(a) — (k — D)on_k(a)]
> > [e@ = 1) k) = (k= D]onx(a)

= Y [ko(@) ronk(a) = (k= 1)(01(a)*?0p_k(a)] + on2(a)
@4 > SN [o(@)f P lkor(a)on-1-k(a) = (k= 1)on_r(a)] + on2(a)
> lo1(a)]*2[(n = 1)(n = k) = (k = 1)]on_x(a) + 00—2(a)

Since o1(a) = > 9ocicp, @i = et > 0, it follows that

(4.5) det E = 0, _o(e) > [o1(a)]"2 > 0.
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then the matrix E is positive definite. O
Now we prove the main lemma.

Lemma 4.3. We define (b;;) as in B90), d;, e; defined as in B.81)-B82), Ai;, A2, Gij, Gij
defined as in B.91)). And we define b; as in (B.94), v2 =1+ u? and 't > C%;' We study
the following quadratic form

Q(azg,az4,...,xn): Z biix?+2 Z bija;ixj—u?logul Z bia:i

3<i<n 3<i<j<n 3<i<n
+ g K;x;,
3<i<n

where K; defined in [B98) and we have the estimate [B.96]) for K;. Then there exists
a sufficiently large positive constant Cig which depends only on n, <, uo, Mg, L1, La, such
that if

(4.6)

(4.7) \Du](xo) = ul(azo) Z C16,

then the followings hold.

(I): The matriz (b;j) is positive definite if and only only if the matric
(b}j) = (Eij) = [e2 + €;05] is positive definite.

(II): We have

(4.8) Q(zs,x4y...,x4) > — (n— 2)(011)79'2(’)/1)2u§3 log? uy — Cyrul log uy,
where positive constant Ci7 also depends only on n,$2, po, Mo, L1, Lo.
Proof: Let
B = (bij) = Bi + B, Bi = ((¢"") uiby;), Bo = (O(u7)dy5),
We first prove (I):
ox(B) =01(B1 + B2)
=0y (B1) + ox(B1, B, ..., B, Bs)

4+ .4 Uk(Bla Bg, ... ,BQ, Bz) + O'k(B2)
:(Cll)4ku%kak(bgj) + O(uilk_2)

(4.9)

so if u; is sufficiently large, then oy (B) > 0 < ak(bilj) > 0.
Now we prove (II): If By = ((611)4u‘11b}j)3§,~7j§n is positive definite, from the argument
in (I), we get
1

(4.10) B '=(Bi+By) ' =B I +B;{'By)7! = W(b}j)—l(l +0(1)).
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Then we have
1

ex t+e3 €2 €2
_ () ey +eq - €2
(bzlj) b=
€2 () - eg Tt e
(4.11) on-3(e|3)  —on_3(el34) -+ —op_3(e|3n)
. 1 _Un—3(e|43) 0n—3(e|4) e _Un—3(e|4n)
_Un—2(e)
—op—3(eln3) —op_s(elnd) - op_3(eln)
1 ~
= B
O’n_g(e)
where e = (eg,€3,...,6,).

Now we solve the following linear algebra equation

oQ
4.12 2% =0, k=34,...,n.
(4.12) T n
We assume (T3, Zy4,...,T,) is the extreme point of the quadratic form Q(zs3,z4,...,zy).

From the definition of b;;, b;, K; in (3.90), (3:94), (395]) and the estimate for K; in (8.96),
using the formulas ([@.I0) and ([@II]), it follows that

T3 b3 1
T4 1 by 1
:§u? loguy B~* : +O0(u})B™!
b3 1
1 b4 1
(4.13) :§u‘r{ log uy By : +O0(w) | .
by, 1
€y — €3 1
11 /.1 1 _ €9 — ey4 1
:C gy ur loguy +O(u1)
on—2(€)
ey — €en 1
From Lemma ATl we have for i = 3,4,...,n,
cg'vtug logu , ,
7 =TI o aeli)(es —er) — > onoslelik)(e2 — ex)] + O(un)
on-2(e) ki k>3
(4.14) Fik2

:cllg’vlul log uq

on—2(€)

[(n— 1)on_2(ei) — on_2(e)] + O(u1).
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It follows that we have the following minimum of the quadratic @,

Q(T3,%4,. .., Tp)
1602 (41246 1002 0
:( )°g (27 )“u3 log 1{ Z (ez—l—ei)[(n— Don_a(eli) _Un—2(e)]2
0n—2(e) 3<i<n
(4.15) + 2eo Z [(n — 1)op—a(eli) — on—2(e)] [(n — 1)on—2(elj) — on-2(e)]
3<i<j<n

— 20,_2(€) Z (e2 — ) [(n — 1)on_s(eli) — op—2(e)] } + O(u$ loguy).

3<i<n

By the elementary computation, we have

37 (ea +e)[(n — 1)on—2(eli) — 7na(e)]?

3<in
+ 269 Z [(n = 1)on_s(eli) — on—2(e)] [(n — 1)on_2(elj) — on—2(e)]
3<i<j<n
—2002(e) Y (e2—e;)[(n — Don_a(eli) — on_a(e)]
3<i<n
=e2{ Y [(n—Don-aleli) — on-s(e)]}
3<i<n
—2e30n-3(e) Y [(n— Don_a(eli) — on_s(e)]
(4.16) 3sisn
+ 3 ei[(n—Dons(eli) — ons(e)]?
3<i<n
+207m-2(e) > ei[(n—1)on_s(eli) — on_2(e)]
3<i<n
= — e20,_o(e) + (n—1)? Z eion_s(eli) — o _s(e)ai(e]2)

3<i<n
=[(n —1)*0n_1(e) — o1(€)on_2(e)on_2(c)
> —o1(e)op_s(e)

=—(n—2)cMa?_5(e).
Using (AI5]) and (.10), we at last get the following estimate

Q(z3, %4, ..., 2n) 2Q(T3, T4, ..., Tn)

417
.17) > — (n—2)(c") g (v")*uf log? uy + O(uf log uy).

In this computation, the bounds in the coefficient on O(u$ logu1), O(u}), O(u1) depend
only on n, 2, My, uo, L1, Lo. Thus we complete this proof. O
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5. PROOF OF THEOREM [[.2]
Proof of Theorem [I.2.
As in the proof of Theorem [I.11, let
p(ﬂj‘) = log |D/u|2e\/ﬁdo(Mo+1+u)edod,
where we have let
vV 1+ ag
V1-03

212
apg = max ——-
07 zegn1— 2’

Cy is also a positive constant depending only on n, €.

ayg =4Lo +2CH + 2,

which is a constant, and

Similarly, let
o(x) =log P(x) = log log ]D'u]2 + h(u) + g(d),
where in the capillary boundary value case, we choose
(5.1) h(u) = Vnéo(Mo + 1+ u), g(d) = aod.

We assume that o(z) attains its maximum at xy € ﬁm), where 0 < pp < pp is a
sufficiently small number which we shall decide it later.

Case 1. If xy € 09, we shall get the bound of |D"u|(z).

Similar calculations to case I in the proof of Theorem [I111, let ¢ = 0 in (BI3]), we get

|D'ul? log ]D’u\2g—$(a:0) —=¢'|D'u|?log | D'ul* — 2 Z Mgy (vH)y,

1<i,k,l<n
2v
(5.2) TTo g2 Z Fapry
1<k,l<n
R4
— m ’D/U’2 log ’D/’U,F.
Since at x,
u = ¢*(1 4 |Dul?) = *(1 + | D'ul* + u3),
then
2 1/}2 /12
If
2 2
(5.4) ag|D'ul? < u,zy, ap = max W

zcoQ 1 — 1/127
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then we get the estimates

1-y* DD <1, |Duf<——p—
¢2 ’ aolwéﬁz - 1,

and we complete this proof.

(5.5) (a0

So we can assume
(5.6) ao|D'ul® > 2,
then from [Du|? = |D'ul?* + u2, we have
(5.7) |Dul? < (1 + ag)|D'ul?.

Now we assume at xg, we have

(5.8) [Du] = max{10/(1+ ao), 2v/n max - | l,zﬂ}

then we can get the the following estimates at xg,

2yn Y]
. D'u| > 1
(5.9) |D"u| > max{10, 1+a091c1é891—¢2}

Inserting (5.9]) into (5.2]), by the choice of h(u), g(d) in (EI), it follows that at xo,
(5.10)

oo .. /mag | [Vl a0
D'ul|?log | D'ul? =2 > — — 21 20 ol IDul? log | D'ul?
|D'u|* log | D"u| 9 >[ag o 12V +aow 0] | D"u|*log | D"ul

>|D'ul?log | D'u|?

>0.
On the other hand, by the Hopf Lemma, we have

it is a contradiction to (5.10). Then we have

1 2
| D'u|(x¢) < max{10, max , v max i 5
z€d \/aol—;ﬁz _1 V1Itagzeonl—1
P

1.

Case 2. xg € 0Q,, (). This is due to interior gradient estimates. From Remark [[.4]

we have

(5.11) sup |Du| < M;.
90, N

where M is a positive constant depending only on n, My, ug, L1.
Case 3. zg € Q.
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As in the proof of the Case III in Theorem [[.1] we can let 0 < pg < p1 be sufficiently
small positive constant. As before we have

sup | Du|? < Cy(1 + sup |Dul?),
Q 09

where C is a positive constant depending on n, Ly, My. From Case 1, we can assume
(58], otherwise we have finished the proof of Theorem Hence,

sup | Du|* <Cq[1+ (14 ag) sup |D'u]
Q

(5.12) OQM{|D'ul>1}
' <Cy sup |D'ul?.
0QN{|D"u|>1}
So we have
(5.13) sup ‘Du’2 SCgisup ’DIUP,

QHO Q#o (M)

where Q, (M) = Qu {|D'u| > M}, M > 10 is a positive constant; Cy is a positive
constant depending on n, Ly, by, Mp.
Assume x; € €, (M) such that

(5.14) S |D'ul? =|D'uf*(x1).
1o

Since P(x) > P(x1), then we have

(5.15) log [ D"ul? (o) h(u(20))g(d(x0)) >log [ D"ul?(x1)h(u(z1))g(d(z1)).
It follows that

(5.16) |D'u|?(x1) <C3|D'ul?(x0).

where Cj3 is a positive constant depending on n, L1, by, La, My. However

(5.17) ?211P|DU|2 <Cy sup |D'uf?>=|D'u*(z1) < Cs|D'u)?(z0).

HOo Quo(

Assume |D'ul(zg) > M > 10, otherwise we get the estimate. Hence at xg,
(5.18) ut(xo) = |Dul?(z0) <Csc™u?(x).
Then we have at x,

(5.19) At>— >0
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Similar calculations to Case III in the proof of Theorem [T, and by the choice of h(u), g(d)
in (B.0)), we can obtain at last

0> Z a" p;j

1<i,j<n
>{h? 4+ [(c")?(n —2) — cM'(n — 3)]¢g”? }uilogus — Cyui
(5.20) >3u? log u; — Csu?.

There exists a positive constant Cg such that
(5.21) ]D'u\(a;o) < C@.

So from Case 1, Case 2, Case 3, we complete the new proof of Theorem O

Remark 5.1. For ¢ > 1 or ¢ =0, ¢ = ¢(z,u), under the condition |1,| < O(vi~!logv),
we can obtain the gradient estimate for the problem (LI)-(L2)).

6. PROOF OF THEOREM [L.3

Proof of Theorem [1.3.

In order to unify the computation with the proof of Theorem [Tl we still use the
summation index from 1 to n, and at last we take n = 2, 3.

As in the proof of Theorem [L.1] let

O(z) = log | D'ul?e! TMotuehd Q|

where By = 2L3 4+ Cy + 1, Cy is a positive constant depending only on n, €.
Set

(6.1) d(2) = log ®(x) = loglog | D'ul* + h(u) + g(d).
and in the Neumann boundary value ,we choose
(6.2) h(u) =1+ Mo +u, g(d) = Bod.

We assume that ¢(z) attains its maximum at zo € €,,, where 0 < pg < g1 is a
sufficiently small number which we shall decide it later.
Case i. If 2y € 99, we shall get the bound of |D'ul(x).
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Following the similar calculations to case I in the proof of Theorem [T, we let ¢ = 1

in (312)), and get
|D'u|? log ]D’u]2?(xo) =(g' — W'¢)|D'ul*log |D'ul?* - 2 Z g (),
(6.3) v 1<i,k,l<n
-2 Z Clekl/Jul.
1<k,i<n

Assume |Du(xg) > /20, otherwise we get the estimates. At zg, since
|Duf* = |D'uf® +uj = |D"ul* + v,

SO we can assume

(6.4) |1 D"ul*(x0) > ¥ G000 [ 1o, 110])

then

maX{QOa2’¢‘200(89x[—M0,M0})} < |Dul?(z0) < 2|D"uf*(z0),

otherwise we get the estimates. So by the above formulas and (6.3]), we have

0
|D'ul? log rD’uPa—f’juo) >(Bo — ¥ — |Vat| — 2| — Co)|D'ul? log | D'ul?

(6.5) >(By — 2L3 — Cp)|D'u|? log | D'ul?
>|D'ul*log | D'ul?
>0.

On the other hand, from Hopf Lemma,

99
- <0
6’7 (330) )
it is a contradiction to (6.5]).
Then we have
(6.6) |D"ul(x0) < max{V10, [1)|co aax [~ Mo,Mo)) }-

Case ii. o € 09, (2. This is due to interior gradient estimates. From Remark [[.4]
we have

(6.7) sup |Du| < M;.
90, N

where M is a positive constant depending only on n, My, ug, L1.
Case iii. x¢ € Q.
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As in the proof of the Case III in Theorem [[.1] we can let 0 < pg < pu1 be sufficiently
small positive constant. As we have
sup | Dul? < Cy(1 + sup |Dul?),
Q o0

where C] is a positive constant depending on n, L1, My. From Case i, we can assume ([6.4]),
otherwise we have finished the proof of Theorem [[.3l Hence,

(6.8) sup |Dul? <C4 [1+2 sup |D'u|2] < (Cy sup |D'ul?.
Q OQM{|D'ul=1} IQN{|D'ul=1}
So as before, there exists a positive constant Cs such that at zg
1
6.9 H>_—>o.
(6:9) e

By the above choice of h,g in (6.2) and from the similar calculations to the proof of
Theorem [T we have for n = 2, 3,

0> Z ]¢2j 5170

1<i,j<n
Z{h/z + ()2 (n—2) =M (n— 3)]ﬁg}u% log u; — Cu?
>u? loguy — Cau?.
So there exists Cy4 such that

(6.10)

|D/’LL|($0) < 04.

Where the above positive constants Cs, Cy, Cy are depending only on n, €, ug, Mg, L1, Ls.
As in the proof of Theorem [I.I combining three cases, we finally get the following estimate
sup |Du| < max{Mi, M},

Qi
where positive constant My depends only on n, g, My, L1; My depends only on n, €2, pg, Mo,
Ly, Ls.
So we complete the new proof of Theorem [L.3] O
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