
ar
X

iv
:1

41
1.

64
04

v1
  [

m
at

h.
PR

] 
 2

4 
N

ov
 2

01
4

FRACTIONAL SPHERICAL RANDOM FIELDS

Mirko D’Ovidio∗, Nikolai Leonenko†, Enzo Orsingher‡

May 11, 2021

Abstract

In this paper we study the solutions of different forms of fractional equations on the unit

sphere S
2

1 ⊂ R
3 possessing the structure of time-dependent random fields. We study the

correlation functions of the random fields emerging in the analysis of the solutions of the

fractional equations and examine their long-range behaviour.
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1 Introduction

In this paper we deal with various forms of random fields on the unit sphere S2
1 indexed by

the spherical Brownian motion. We restrict ourselves to isotropic random fields for which the
expansion in terms of spherical harmonics holds (see [14] and the references therein). The explicit
law of the Brownian motion on S2

1 was first obtained in [18]. For Brownian motion on Sd
1, see

[11, pag. 338]. Time-dependent random fields on the line or on arbitrary Euclidean spaces have
been studied by several authors (see, for example, [12, 2, 13] and the references therein). We here
study time-dependent random fields on the sphere S2

1, governed by different stochastic differential
equations.

We first study random fields emerging from the Cauchy problem




(
γ − DM +

∂β

∂tβ

)
Xt(x) = 0, x ∈ S2

1, t > 0, 0 < β < 1, γ > 0

X0(x) = T (x),
(1.1)

where DM is a suitable differential operator defined below, ∂β

∂tβ is the Dzerbayshan-Caputo frac-
tional derivative. By T (x), x ∈ S2

1 we denote an isotropic Gaussian field on the unit sphere. We
are able to obtain the solution Xt(x) of (1.1) and to show that its covariance function displays a
long-memory behaviour.

We then consider the non-homogeneous fractional equation

(γ − DM )
β
X(x) = T (x), x ∈ S2

1, 0 < β < 1 (1.2)

of which

(
γ − DM − ϕ

∂

∂t

)β

Xt(x) = Tt(x), x ∈ S2
1, t > 0, 0 < β < 1, γ > 0, ϕ ≥ 0 (1.3)

∗Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa, 16,

00161, Roma, Italy
†School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4YH, UK
‡Department of Statistical Sciences, Sapienza University of Rome, P.le Aldo Moro, 5, 00185, Rome, Italy

1

http://arxiv.org/abs/1411.6404v1


is the time-dependent extension. We obtain a solution to (1.3) which is a random field on the
sphere with covariance function with a short-range dependence.

The couple (Bs(t), T (x + Bs(t))) describes a random motion on the unit-radius sphere with
dynamics governed by fractional stochastic equations (1.1) and (1.3).

Random fields similar to those examined here are considered in the analysis of the cosmic
microwave background radiation (CMB radiation). In this case, the correlation structure turns
out to be very important as well as the angular power spectrum. The angular power spectrum
plays a key role in the study of the corresponding random field. In particular, the high-frequency
behaviour of the angular power spectrum is related to some anisotropies of the CMB radiation (see
for example [9, 14]). Such relations have been also investigated in [10] where a coordinates change
driven by a fractional equation has been considered.

Diffusions on the sphere arise in several contexts. At the cellular level, diffusion is an important
mode of transport of substances. The cell wall is a lipid membrane and biological substances like
lipids and proteins diffuse on it. In general biological membranes are curved surfaces. Spherical
diffusions also crop up in the swimming of bacteria, surface smoothening in computer graphics [[5]]
and global migration patterns of marine mammals [6].

2 Preliminaries

2.1 Isotropic random fields on the unit-radius sphere

We consider the square integrable 2-weakly isotropic Gaussian random field

{T (x); x ∈ S2
1} (2.1)

on the sphere S2
1 = {x ∈ R3 : |x| = 1} for which

ET (gx) = 0,

ET 2(gx) = ET 2(x)

E[T (gx1)T (gx2)] = E[T (x1)T (x2)].

for all g ∈ SO(3) where SO(3) is the special group of rotations in R3. We will consider the spectral
representation

T (x) =

∞∑

l=0

+l∑

m=−l

al,mYl,m(x) =

∞∑

l=0

Tl(x) (2.2)

where

al,m =

∫

S2

T (x)Y∗
l,m(x)λ(dx), −l ≤ m ≤ +l, l ≥ 0 (2.3)

are the Fourier random coefficients of T . The convergence in (2.2) must be meant in the sense that

lim
L→∞

E



∫

S2

1

(
T (x)−

L∑

l=0

+l∑

m=−l

al,m Yl,m(x)

)2

λ(dx)


 = 0 (2.4)

where λ(dx) is the Lebesgue measure on the sphere S2
1, {Yl,m(x) : l ≥ 0, m = −l, . . . ,+l, x ∈ S2

1}
is the set of spherical harmonics representing an orthonormal basis for the space L2(S2

1, λ(dx)). By
Y∗
l,m(x) we denote the conjugate of Yl,m(x). For the sake of clarity we observe that for all x ∈ S2

1

and 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π:
λ(dx) = λ(dϑ, dϕ) = dϕdϑ sinϑ

and
x = (sinϑ cosϕ, sinϑ sinϕ, cosϑ).
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We shall write f(x) instead of f(ϑ, ϕ) when no confusion arises.
The random coefficients (2.3) are zero-mean Gaussian complex random variables such that ([3])

E[al,m a∗l′,m′ ] = δl
′

l δ
m′

m E|al,m|2 (2.5)

where
E|al,m|2 = Cl, l ≥ 0 (2.6)

is the angular power spectrum of the random field T which under the assumption of Gaussianity
fully characterizes the dependence structure of T . Clearly, δba is the Kronecker symbol.

For a fixed integer l we define µl = l(l+ 1). The spherical harmonics Yl,m(ϑ, ϕ) are defined as

Yl,m(ϑ, ϕ) =

√
2l+ 1

4π

(l −m)!

(l +m)!
Ql,m(cosϑ)eimϕ, 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π

where

Ql,m(z) = (−1)m(1− z2)
m
2

dm

dzm
Ql(z), |z| < 1

are the associated Legendre functions and Ql are the the Legendre polynomials with Rodrigues
representation

Ql(z) =
1

2ll!

dl

dzl
(z2 − 1)l, |z| < 1.

We remind that the spherical harmonics solve

∆S2

1

Yl,m = −µl Yl,m, l ≥ 0, |m| ≤ l (2.7)

where

∆S
2

1

=
1

sin2 ϑ

∂2

∂ϕ2
+

1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)

is the spherical Laplace operator or Laplace-Beltrami operator.
In view of (2.5), the covariance function of T (x) writes

E[T (x)T (y)] =
∑

lm

ClYl,m(x)Y∗
l,m(y) =

∑

l

Cl
2l + 1

4π
Ql(〈x, y〉) (2.8)

where in the last step we used the addition formula for spherical harmonics

+l∑

m=−l

Yl,m(y)Y∗
l,m(x) =

2l + 1

4π
Ql(〈x, y〉). (2.9)

and the inner product

〈x, y〉 = cos d(x, y) = cosϑx cosϑy + sinϑx sinϑy cos(ϕx − ϕy)

where d(·, ·) is the spherical distance between the points x, y.
For the details on this material we refer to the book by Marinucci and Peccati [14].

2.2 Subordinators and fractional operators

Let F (t), t ≥ 0 be a Lévy subordinator with characteristic function

EeiξF (t) = e−tΦ(ξ) = e−t(ibξ+
∫

∞

0
(eiξy−1)M(dy)), (2.10)
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where b ≥ 0 is the drift and M(·) is the Lévy measure M on R+ \ {0} satisfying the condition:
∫ ∞

0

(y ∧ 1)M(dy) < ∞.

∫∞

0 (y ∧ 1)M(dy) < ∞ and M(−∞, 0) = 0. The Laplace transform of the law of a subordinator
F (t), t > 0 defined above, can be written as

Ee−ξF (t) = e−tΨ(ξ) = etΦ(iξ) = e−t(bξ+
∫

∞

0
(1−e−ξy)M(dy)), (2.11)

where Ψ(ξ) is known as Laplace exponent. If F (t), t ≥ 0, is the β-stable subordinator, then
Ψ(ξ) = ξβ , β ∈ (0, 1). Hereafter, we assume b = 0.

We write the transition density of a Brownian motion on the unit sphere (see [18]) as follows

Pr{x+Bt ∈ dy}/dy = Pr{Bt ∈ dy |B0 = x}/dy

=

∞∑

l=0

+l∑

m=−l

e−tµlYl,m(y)Y∗
l,m(x)

=
∑

l

e−tµl
2l+ 1

4π
Ql(〈x, y〉) (2.12)

where we used the addition formula for spherical harmonics (2.9). Furthermore, we shall write

Ptf(x) = Ef(x+Bt) =

∫

S2

1

f(y)Pr{x+Bt ∈ dy} (2.13)

where Ptf(x) is the solution to the initial-value problem

{
∂u

∂t
= ∆S2

1

u, x ∈ S2
1, t > 0

u(x, 0) = f(x)
(2.14)

for a measurable function f(x), x ∈ S2
1.

Let f be a square integrable function on the unit sphere, that is f ∈ L2(S2
1). We define the

following operator

DMf(x) =

∫ ∞

0

(Ps f(x)− f(x))M(ds) (2.15)

where, from (2.12) and (2.13), we have that

Psf(x) =

∞∑

l=0

+l∑

m=−l

e−sµlYl,m(x)fl,m (2.16)

and fl,m are the Fourier coefficients of f . The operator (2.15) can be rewritten as

DM f(x) =

∫

S2

1

(f(y)− f(x)) Ĵ(x, y)λ(dy) (2.17)

where λ is the Lebesgue measure on S2
1 and

Ĵ(x, y) =
∞∑

l=0

2l + 1

4π
Ql(〈y, x〉)Ψ̂(µl)

with Ψ̂(µ) =
∫∞

0 e−sµM(ds) when the integral exists. Indeed we can write

DM f(x) =

∫ ∞

0

(Psf(x)− f(x))M(ds)
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=

∫ ∞

0

E [(f(x+Bs)− f(x))]M(ds)

=

∫ ∞

0

∫

S2

1

(f(y)− f(x))Pr{x+Bs ∈ dy}M(ds)

=

∫

S2

1

(f(y)− f(x)) Ĵ(x, y)λ(dy)

where

Ĵ(x, y)λ(dy) =

∫ ∞

0

Pr{x+Bs ∈ dy}M(ds)

=λ(dy)
∑

l

2l + 1

4π
Ql(〈y, x〉)

∫ ∞

0

e−sµlM(ds)

=λ(dy)
∑

l

2l + 1

4π
Ql(〈y, x〉)Ψ̂(µl).

Furthermore, from (2.16), the operator (2.15) can be written as follows

DMf(x) =

∫ ∞

0

(Psf(x)− P0f(x))M(ds)

=
∑

lm

fl,mYl,m(x)

∫ ∞

0

(
e−sµl − 1

)
M(ds)

= [by (2.11)] = −
∑

lm

fl,mYl,m(x)Ψ(µl)

=−
∑

lm

(∫

S2

1

f(y)Y ∗
l,m(y)λ(dy)

)
Yl,m(x)Ψ(µl)

=−

∫

S2

1

f(y)

(
∑

lm

Ψ(µl)Yl,m(x)Y∗
l,m(y)

)
λ(dy)

=−

∫

S2

1

f(y)J(x, y)λ(dy)

where

J(x, y) =

∞∑

l=0

+l∑

m=−l

Ψ(µl)Yl,m(x)Y∗
l,m(y) =

∞∑

l=0

Ψ(µl)
2l+ 1

4π
Ql(〈x, y〉) (2.18)

exists (in the last step we have applied the addition formula (2.9)).
We introduce the Sobolev space

Hs(S2
1) =

{
f ∈ L2(S2

1) :

∞∑

l=0

(2l+ 1)2sfl < ∞

}
(2.19)

where

fl =
∑

|m|≤l

∣∣fl,m
∣∣2 =

∑

|m|≤l

∣∣∣∣∣

∫

S2

1

f(x)Y∗
l,m(x)λ(dx)

∣∣∣∣∣

2

, l = 0, 1, 2, . . . .

Definition 1. Let Ψ be the symbol of a subordinator. Let f ∈ Hs(S2
1) and s > 4. Then,

DMf(x) = −
∞∑

l=0

+l∑

m=−l

fl,mYl,m(x)Ψ(µl) (2.20)
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where

fl,m =

∫

S2
1

f(x)Y∗
l,m(x)λ(dx)

are the Fourier coefficients of the initial condition.

The series (2.20) converges absolutely and uniformly. Indeed, fl < l−2s with s > 4 (being
f ∈ Hs(S2

1)), ‖Yl,m‖∞ < l1/2 (see [16]) and Ψ(µl) ≤ l2 and thus, by considering that

∑

m

|fl,m| ≤

(
∑

m

|fl,m|2

) 1

2

((2l + 1))
1

2 =
√
(2l+ 1) fl ≤ l−s+ 1

2

we get the claim.

Definition 2. Pt = exp(tDM ) is the semigroup associated with (2.17) with symbol P̂t = exp(−tΨ)
where −Ψ is the Fourier multiplier of DM .

3 Some fractional equations on the sphere

We recall the Dzerbayshan-Caputo fractional derivative

∂βu

∂tβ
(x, t) =

1

Γ(1− β)

∫ t

0

∂u(x, s)

∂s

ds

(t− s)β
(3.1)

for 0 < β < 1, x ∈ R, t > 0, see, e.g., [15], p. 38.

The inverse L
β
t of a β−stable subordinator Hβ

t can be defined by the following relationship

Pr{Lβ
t < x} = Pr{Hβ

x > t}

for x, t > 0, see, e.g., [15], p. 101.
The Mittag-Leffler function is defined as

Eβ(x) =
∞∑

k=0

xk

Γ(βk + 1)
, x ∈ R, β > 0, (3.2)

see, e.g., [15], p. 35.
We assume also that the random field T introduced in (2.2) is Gaussian and its Fourier co-

efficients al,m are independent complex zero-mean Gaussian r.v.’s. We shall use the following
notation

∞∑

l=0

+l∑

m=−l

=
∑

lm

when no confusion arises.
We pass now to the first theorem. Denote by FΨ(Lβ

t ) the subordinator with symbol Ψ time-
changed by the inverse of a stable subordinator of order β ∈ (0, 1).

Theorem 1. Let us consider γ ≥ 0 and β ∈ (0, 1). The solution to the fractional equation

(
γ − DM +

∂β

∂tβ

)
Xt(x) = 0, x ∈ S2

1, t ≥ 0 (3.3)

with initial condition X0(x) = T (x) is a time-dependent random field on the sphere S2
1 written as

Xt(x) =
∞∑

l=0

+l∑

m=−l

al,mEβ

(
−tβ(γ +Ψ(µl))

)
Yl,m(x) (3.4)
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where

al,m =

∫

S2

1

X0(x)Y
∗
l,m(x)λ(dx). (3.5)

Furthermore, the following representation holds

Xt(x) = E

[
T (x+B(γLβ

t + FΨ(Lβ
t )))

∣∣FT

]
(3.6)

where FT is the σ-field generated by X0 = T .

Proof. First we notice that

−
∂

∂t
Ee−ξ(γt+Ft)

∣∣∣
t=0

= ξγ +Ψ(ξ) (3.7)

which coincides with (2.11) for γ = b. Indeed, we are dealing with the symbol Ψ of the subor-
dinator Ft without drift. Furthermore, it is well-known that the Mittag-Leffler function Eβ is an
eigenfunction of the Dzerbayshan-Caputo fractional derivative, that is

∂β

∂tβ
Eβ(−tβµ) = −µEβ(−tβµ). (3.8)

We assume that (3.4) holds true. From the fact that

DM Yl,m(x) =

∫ ∞

0

(PsYl,m(x)− Yl,m(x))M(ds)

where Yl,m(x) = (−1)mY∗
l,−m(x) and

PsYl,m(x) = e−sµlYl,m(x) (3.9)

we obtain that

DM Yl,m(x) =

∫ ∞

0

(
e−sµlYl,m(x) − Yl,m(x)

)
M(ds)

=

∫ ∞

0

(
e−sµl − 1

)
M(ds)Yl,m(x)

=−Ψ(µl)Yl,m(x).

Formula (3.9) can be obtained by considering that

PsYl,m(x) =EYl,m(x +Bs)

=
∑

l′m′

e−sµl′Y∗
l′,m′(x)

∫

S2

1

Yl,m(y)Yl′,m′λ(dy)

=
∑

l′m′

e−sµl′Y∗
l′,m′(x)(−1)m

′

∫

S2

1

Yl,m(y)Y∗
l′,−m′λ(dy)

=
∑

l′m′

e−sµl′Y∗
l′,m′(x)(−1)m

′

δl
′

l δ
−m′

m = e−sµlYl,m(x).

Thus, we get that

(γ − DM )Xt(x) =

∞∑

l=0

+l∑

m=−l

al,m (γ +Ψ(µl))Eβ,1

(
−tβγ − tβΨ(µl)

)
Yl,m(x)

and, from (3.8), we arrive at

(
∂β

∂tβ
+ γ − DM

)
Xt(x) =

7



=

∞∑

l=0

+l∑

m=−l

al,m

(
∂β

∂tβ
+ γ +Ψ(µl)

)
Eβ,1

(
−tβγ − tβΨ(µl)

)
Yl,m(x) = 0

term by term and therefore equation (3.3) is satisfied. This concludes the proof.

Remark 1. Since
T (x) =

∑

lm

al,mYl,m(x). (3.10)

we have that
PtT (x) = E[T (x+Bt)|FT ] =

∑

lm

e−tµlal,mYl,m(x) = Tt(x). (3.11)

This represents the solution to (3.3) with β = 1, γ = 0 and DM = ∆S2
1

. From (3.6), for β = 1,

Ψ(ξ) = ξ, that is for the elementary subordinator F (t) = t (and L1
t = t) we have that

Xt(x) =E
[
T (x+B(γt+ t))

∣∣FT

]
=
∑

lm

al,me−t(γ+1)µlYl,m(x).

Remark 2. The series (3.4) converges in L2(dP × dλ) sense for all t ≥ 0, that is

lim
L→∞

E



∫

S2

1

(
Xt(x) −

L∑

l=0

+l∑

m=−l

al,m Tl(t)Yl,m(x)

)2

λ(dx)


 = 0, ∀ t. (3.12)

where, in formula (3.4), the time-dependent random coefficients are

Tl(t) = Eβ

(
−tβ(γ +Ψ(µl))

)
, l ≥ 0.

Throughout the paper the convergence (3.12) in mean square sense on S
2
1 is considered.

Theorem 2. Let us consider γ, ϕ ≥ 0 and β ∈ (0, 1]. A solution to the fractional equation

(
γ − DM − ϕ

∂

∂t

)β

Xt(x) = Tt(x), x ∈ S2
1, t ≥ 0 (3.13)

where Tt(x) is given in (3.11), is a time-dependent random field on the sphere S2
1 written as

Xt(x) =
∑

lm

al,me−tµl (γ + ϕµl +Ψ(µl))
−β

Yl,m(x), (3.14)

where e−tµlal,m are the Fourier coefficients involved in the representation (3.11) of the innovation
process Tt(x) in (3.11) in terms of spherical harmonics.

Proof. We have that

Xt(x) =

(
γ − DM − ϕ

∂

∂t

)−β

Tt(x)

=

∫ ∞

0

ds
sβ−1

Γ(β)
esϕ

∂
∂t

−sγ+sDMTt(x)

=

∫ ∞

0

ds
sβ−1

Γ(β)
esϕ

∂
∂t

−sγ
PsTt(x)

=

∫ ∞

0

ds
sβ−1

Γ(β)
e−sγ

PsTt+ϕs(x)

8



where we used the translation rule

ea
∂
∂z f(z) = f(z + a), a ∈ R

which holds for bounded continuous functions f on (0,+∞) (see, for example, formula (3.9) in [8]
and the references therein for details). From the fact that

PsYl,m(x) = e−sΨ(µl)Yl,m(x) (3.15)

where Ps = exp(sDM ) we get that

Xt(x) =
∑

lm

al,m

(∫ ∞

0

ds
sβ−1

Γ(β)
e−sγe−(t+ϕs)µlPsYl,m(x)

)

=
∑

lm

al,m

(∫ ∞

0

ds
sβ−1

Γ(β)
e−sγe−(t+ϕs)µle−sΨ(µl)

)
Yl,m(x)

=
∑

lm

al,me−tµl

(∫ ∞

0

ds
sβ−1

Γ(β)
e−sγ−sϕµl−sΨ(µl)

)
Yl,m(x)

=
∑

lm

al,me−tµl (γ + ϕµl +Ψ(µl))
−β Yl,m(x)

and this concludes the proof.

We now examine the special case ϕ = 0.

Corollary 1. Let α ∈ (0, 1), β ∈ (0, 1]. The solution to

(γ − DM )β X(x) = T (x) (3.16)

is written as
X(x) =

∑

lm

al,m (γ +Ψ(µl))
−β

Yl,m(x). (3.17)

Proof. For β ∈ (0, 1) we consider the following relation concerning the fractional power of operators
(Bessel potential). For f ∈ L2(S2

1) we have that

(γ − DM )
β
f(x) =

β

Γ(1− β)

∫ ∞

0

ds

sβ+1

(
1− e−sγ+sDM

)
f(x)

=
β

Γ(1− β)

∫ ∞

0

ds

sβ+1

(
f(x)− e−sγ

Psf(x)
)

where, we recall that Psf is the transition semigroup associated with the operator DM and u(x, t) =
Ptf(x) solves the Cauchy problem (∂t−DM )u(x, t) = 0 with u(x, 0) = f(x). Therefore, if we assume
that there exists the following spectral representation for the solution X as a random function on
S2
1,

X(x) =
∑

lm

âl,mYl,m(x) (3.18)

then we can immediately write

(γ − DM )
β
X(x) =

β

Γ(1− β)

∑

lm

âl,m

∫ ∞

0

ds

sβ+1

(
Yl,m(x)− e−sγ

PsYl,m(x)
)

=
β

Γ(1− β)

∑

lm

âl,m

∫ ∞

0

ds

sβ+1

(
1− e−sγe−sΨ(µl)

)
Yl,m(x)

9



=
∑

lm

âl,m (γ +Ψ(µl))
β Yl,m(x).

The equation (3.16) turns out to be satisfied only if

âl,m = al,m (γ +Ψ(µl))
−β .

On the other hand, by repeating the arguments of the proof of Theorem 3 we have that

X(x) = (γ − DM )
−β

T (x)

=

∫ ∞

0

ds
sβ−1

Γ(β)
e−sγ+sDMT (x)

=

∫ ∞

0

ds
sβ−1

Γ(β)
e−sγ

PsT (x)

=
∑

lm

al,m

∫ ∞

0

ds
sβ−1

Γ(β)
e−sγe−sΨ(µl)Yl,m(x)

=
∑

lm

al,m (γ +Ψ(µl))
−β Yl,m(x).

This confirms result (3.17).

We now study the covariance of the random fields introduced so far. Let us consider the
representation

Xt(x) =
∑

lm

al,mTl(t)Yl,m(x) =
∑

l

Tl(t)Tl(x) (3.19)

already introduced in Remark 2. We also recall that, for x, y ∈ S
2
1,

E[X0(x)X0(y)] =
∑

l

2l + 1

4π
Cl Ql(〈x, y〉) = E[T (x)T (y)]. (3.20)

Furthermore,

E[T (x)T (y)] =
∑

l

E[Tl(x)Tl(y)]. (3.21)

This is due to the fact that the coefficients al,m are uncorrelated over l.

Remark 3. We observe that

• for Xt(x) as in Theorem 1,

Tl(t) = Eβ

(
−tβ(γ +Ψ(µl))

)
≥

1

1 + Γ(1− β)tβ(γ +Ψ(µl))
, t ≥ 0, l ≥ 0 (3.22)

For this inequality, consult [17, Theorem 4].

• for Xt(x) as in Theorem 2,

Tl(t) = e−tµl (γ + ϕµl +Ψ(µl))
−β

≤ e−tl2
(
γ + ϕl2 +Ψ(l2)

)−β
, t ≥ 0, l ≥ 0 (3.23)

• for X(x) as in Corollary 1,

Tl(0) = (γ +Ψ(µl))
−β

≤
(
γ +Ψ(l2)

)−β
, t ≥ 0, l ≥ 0 (3.24)
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Remark 4. Let B(τt) be a time-changed Brownian motion on the unit sphere. We refer to it as
a coordinates change for the random field on the sphere T . From the previous results, we observe
that

Xt(x) = E[T0(x+B(τt))|FT ] = E[Tτt(x)|FT ], x ∈ S
2
1, t > 0 (3.25)

where
Tt(x) =

∑

l

e−tµlTl(x), x ∈ S
2
1, t > 0. (3.26)

Moreover,
Tl(t) = Ee−µlτt . (3.27)

We can state the following result for which the spherical Brownian motions underlying Xt(x)
and Xt(y) are assumed independent.

Theorem 3. For x, y ∈ S
2
1, for all g ∈ SO(3), we have that

E[Xt(gx)Xs(gy)] =
∑

l

2l + 1

4π
Cl Tl(t) Tl(s)Pl(〈x, y〉), t, s ≥ 0 (3.28)

Proof. First we observe that
E[al,mal′,m′ ] = (−1)mδl

′

l δ
m′

−mCl (3.29)

from the property Yl,m(x) = (−1)mY∗
l−m(x) of the spherical harmonics. From the representation

(3.19) we can write

E[Xt(x)Xs(y)] =
∑

lm

∑

l′m′

E[al,mal′m′ ]Tl(t)Tl′(s)Yl,m(x)Yl′m′(y)

=
∑

lm

Cl Tl(t)Tl(s)Yl,m(x)Y∗
l,m(y)

=
∑

l

2l + 1

4π
Cl Tl(t)Tl(s)Pl(〈x, y〉)

where Tl(t) is given as in (3.27) and we used the addition formula in order to arrive at Pl(〈x, y〉).

Remark 5. We can immediately see that the variance becomes

E[Xt(gx)]
2 =

∑

l

2l+ 1

4π
Cl |Tl(t)|

2, ∀ g ∈ SO(3). (3.30)

We recall that Cl is the angular power spectrum of T and, it is usually assumed to be Cl ∼ l−γ with
γ ≥ 2 for large l to ensure summability (or Cl ∼ L(l)/tθ where L(·) is slowly varying function as
l → ∞). As Remark 3 shows we have the high-frequency behaviour also for Tl(t) in both the variable
t > 0 and the frequency l > 0. The convergence of (3.30) therefore entails different correlation
structures for the solutions Xt(x) of the equations investigated so far.

We say that the zero mean process Xt(x) exhibits a long range dependence if

∞∑

h=1

E[Xt+h(x)Xt(y)] = ∞, x, y,∈ S
2
1. (3.31)

Conversely, we say that X exhibits a short range dependence if the series (3.31) converges.

Remark 6. We write
Kt(x, y) =

∑

h≥1

E[Xt+h(x)Xt(y)], t ≥ 0

for x, y ∈ S2
1. From the discussion above, we have that
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• for Xt(x) as in Theorem 1,

Kt(x, y) =
∑

h≥1

∑

l≥0

2l + 1

2π
ClEβ(−tβ(γ +Ψ(µl)))Eβ(−(t+ h)β(γ +Ψ(µl))) (3.32)

≥
∑

h≥1

∑

l≥0

2l + 1

2π
Cl

1

1 + Γ(1− β)tβ(γ +Ψ(µl))

1

1 + Γ(1− β)(t+ h)β(γ +Ψ(µl))

≥
∑

l≥0

2l+ 1

2π
Cl

1

1 + Γ(1− β)tβ(γ +Ψ(µl))

∑

h≥1

1

1 + Γ(1 − β)(t+ h)β(γ +Ψ(µl))

=∞,

that is the random field exhibits a long-range dependence;

• for Xt(x) as in Theorem 2,

Kt(x, y) ≤
∑

h≥1

∑

l≥0

2l+ 1

4π
Cl e

−2tl2−hl2
(
γ + ϕl2 +Ψ(l2)

)−2β
Pl(〈x, y〉) (3.33)

≤
∑

l≥0

2l + 1

4π

Cl

el2 − 1
e−2tl2

(
γ + ϕl2 +Ψ(l2)

)−2β
Pl(〈x, y〉)

<∞,

that is the random field has a short range dependence.
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