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ABSTRACT

Massive MIMO systems have made significant progress in increas-
ing spectral and energy efficiency over traditional MIMO systems by
exploiting large antenna arrays. In this paper we consider the joint
maximum likelihood (ML) channel estimation and data detection
problem for massive SIMO (single input multiple output) wireless
systems. Despite the large number of unknown channel coefficients
for massive SIMO systems, we improve an algorithm to achievethe
exact ML non-coherent data detection with a low expected complex-
ity. We show that the expected computational complexity of this al-
gorithm is linear in the number of receive antennas and polynomial
in channel coherence time. Simulation results show the performance
gain of the optimal non-coherent data detection with a low compu-
tational complexity.

Index Terms— ML detection, channel estimation, massive
SIMO, maximum likelihood, sphere decoder

1. INTRODUCTION

Using multiple-antenna arrays has been well known for its benefits:
high reliability, high spectral efficiency and interference reduction.
Recently a new approach,massiveMIMO, has emerged by equip-
ping communication terminals with a huge number of antennas. This
reaps the benefits of the traditional MIMO systems on a much larger
scale. [1] mathematically showed that the effect of fast fading and
non-correlated noise is eliminated as the number of receiveanten-
nas approaches infinity. Since then, extensive research interests have
been generated in massive MIMO. For example, massive MIMO sys-
tems’ information-theoretic and propagation aspects are discussed in
[2, 5]. Research on massive MIMO has also focused on many other
aspects, including transmit and receive schemes, the effect of pilot
contamination, energy efficiency, and channel estimation for mas-
sive MIMO systems, as overviewed in [3, 4].

Knowledge of the channel state information (CSI) is required
to achieve the advantages of massive MIMO systems [3]. How-
ever, accurately estimating the channel gains in wireless systems is
a big challenge, especially in fast fading environments [6]. In case
of conventional MIMO systems, differential modulation techniques,
blind and semi-blind, and pilot based algorithms are used tosolve the
problem of channel tracking [7, 8, 9, 10, 11]. Although thesealgo-
rithms have improved the performance of non-coherent MIMO sys-
tems, they are not optimal for massive time-varying channels. Com-
pared with traditional MIMO systems, it is even more challenging to
perform accurate channel state estimation for massive MIMOsys-
tems, considering massive MIMO’s large number of unknown chan-
nel coefficients. It is of great theoretical and practical interest to

investigate near-optimal or optimal non-coherent data transmission
and data detection schemes for massive MIMO systems [4].

In this paper, we consider the problem of joint ML channel esti-
mation and data detection for massive SIMO systems. An extensive
list of works have addressed non-coherent data detection problems
for conventional SIMO wireless systems or wireless systemsin gen-
eral. Most existing efficient MIMO non-coherent signal detection
algorithms are suboptimal compared with the exact ML algorithms.
However, there are a few exceptions. For instance, sphere decoder
algorithm was used in [12] to solve the joint ML non-coherentprob-
lem for SIMO wireless systems. Sphere decoder algorithm reduces
the computational complexity by restricting the ML detection search
to a subset of the signal space. [9] also used sphere decoder algo-
rithms to achieve the ML channel estimation and data detection for
orthogonal space time block coded (OSTBC) wireless systems. In
[12] and [9], the sphere decoder algorithm has been shown as an
exact ML non-coherent detection algorithm which has a lowercom-
plexity than the exhaustive search, but the sphere decoder works only
for constant-modulus constellations. [13] proposed an exact joint
ML channel estimation and signal detection algorithm for SIMO sys-
tems with general constellations. [19] proposed an exact MLchannel
estimation and data detection for OFDM wireless systems with gen-
eral constellations. An ML non-coherent signal detection algorithm
for OSTBC was developed in [16] for constant-modulus constella-
tions. The algorithm proposed in [16] uses recent results onefficient
maximization of reduced-rank quadratic form to achieve a polyno-
mial complexity.

The optimal non-coherent data detection algorithms from [12]
and [13] did not look at the non-coherent data detection complex-
ity as the number of receive antennas grows large in massive SIMO
systems. Furthermore, the algorithm in [16] gives an exact ML solu-
tion only when the matrix in the related quadratic form optimization
problem has low rank, but this low-rank assumption does not hold
for massive SIMO systems with a large number of receive anten-
nas. Without efficient algorithms achieving optimal non-coherent
data detection for massive MIMO systems, it was not known how
suboptimal non-coherent data detection methods compare with the
ML non-coherent data detection methods. It was believed that the
goal of achieving joint ML channel estimation and data detection is
even more difficult for massive MIMO systems, because of a large
number of unknown channel coefficients [2].

In this paper we study and improve a joint ML channel estima-
tion and data detection algorithm for massive SIMO systems.Sur-
prisingly, despite a large number of unknown channel coefficients for
massive SIMO systems, this algorithm achieves the exact ML non-
coherent data detection with a low expected complexity. We the-
oretically show that the expected computational complexity of the
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algorithm is linear in the number of receive antennas and polyno-
mial in channel coherence time. Simulation results demonstrate the
performance gain of our optimal non-coherent data detection with a
low computational complexity. To the best of our knowledge,for the
first time, we have demonstrated the exact performance gap between
the optimal non-coherent data detection algorithm, and suboptimal
non-coherent data detection algorithms, for massive SIMO systems.

The rest of this paper is organized as follows. Section 2 setsup
the system model and presents the ML non-coherent data detection
algorithm. Section 3 derives the expected complexity of thealgo-
rithm. Simulation results are provided and discussed in Section 4.
Section 5 concludes our paper and highlights our contribution.

2. THE JOINT CHANNEL ESTIMATION AND SIGNAL
DETECTION PROBLEM

Let T denote the length of a data packet during which the channel
remains constant. The channel output for a SIMO system withN
receive antennas is given by

X = hs∗ +W, (1)

whereh ∈ CN×1 is the SIMO channel vector,s∗ ∈ C1×T is the trans-
mitted symbol sequence, andW ∈ CN×T is an additive noise matrix
whose elements are assumed to be i.i.d. complex Gaussian random
variables. We also assume the entries ofs

∗ are i.i.d. symbols from a
certain constant-modulus constellationΩ (such as BPSK or QPSK)
which has unit expected energy, i.e.,

E(∣sk∣
2) = 1, k = 1,2, ..., T. (2)

We assumeh as a deterministic unknown channel with no priori
information known about it [7][9]. Then, the joint ML channel es-
timation and data detection problem for SIMO systems is given by
the following mixed optimization problem

min
h,s∗∈ΩT

∥X − hs∗∥2, (3)

whereΩT denotes the set ofT -dimensional signal vectors. From
[12], the optimization to (3) overh is a least square problem while
the optimization overs∗ is an integer least square problem, since
each elements ofs∗ is chosen from a fixed constellationΩ. By [8],
for any given symbol vectorss∗, the channel vectorh that minimizes
(3) is

ĥ =Xs(s∗s)−1 =Xs/∥s∥2, (4)

Substituting (4) into (3), we get

∥X(I −
1

∥s∥2
ss
∗)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Ps

∥2 = tr(XPsX
∗) = tr(XX

∗) −
1

∥s∥2
s
∗
X
∗
Xs,

(5)
As pointed ou t in [8], if the modulation constellation is of constant
modulus (such as QPSK), the minimization of (5) overs

∗ is equiva-
lent to solve the following problem:

max
s∗∈ΩT

s
∗
X
∗
Xs, (6)

The quadratic form in (6) for a constant modulus modulation can
be changed into an equivalent minimization problem by usingthe
maximum eigenvalue ofX∗X. Thus, (6) can be represented as

min
s∈ΩT

s
∗ (ρI −

X∗X

N
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=I

)s, (7)

whereρ is a slightly larger value than the maximum eigenvalue of
X∗X

N
. The traditional solution of an integer least square optimization

problem in (7) is by using exhaustive search over the entire lattice.
However, the computational complexity of exhaustive search is ex-
ponential inT . Sphere decoder was used in [8] to efficiently solve
(7) with a lower computational complexity than exhaustive search.
Instead of searching over all the hypotheses in the lattice,sphere de-
coder attempts to look at the lattice points within a radiusr. As a
result, the searching process of sphere decoder only visitsthe se-
quences that are inside the hypersphere of radiusr

s
∗(ρI −

X∗X

N
)s ≤ r2. (8)

From the way in whichρ is determined, the matrixI in (7) is
positive semidefinite. We can use the Cholesky decomposition to
factorizeI as

I = R∗R, (9)

whereR is an upper triangular matrix. Now we can rewrite (7) as

min
s∗∈ΩT

s
∗(ρI −

X∗X

N
)s = min

s∗∈ΩT
s
∗
R
∗
Rs

= min
s∗∈ΩT

∥ Rs∥2. (10)

SinceR is an upper triangular matrix,Rs can be expanded as

Ms∗ =
T

∑
i=1

∥
T

∑
k=i

Li,ksk∥
2
, (11)

whereMs∗ is the metric of the transmitted vectors∗, andLi,k is the
entry ofR in thei-th row andj-th column. For eachi between1 and
T , we further define

Ms
∗
i∶T
= ∥

T

∑
k=i

Li,ksk∥
2 +Ms

∗
i+1∶T

, (12)

where the partial sequences∗i∶T consist of elementss∗i , s∗i+1, ...,s∗T ,
Ms

∗
i∶T

is the metric of the partial sequences∗i∶T , andMs
∗
T+1∶T

= 0 by
default. If the set of possible data sequences are represented in a tree
structure as in [8], we refer tos∗i∶T as a layer-i node in the tree. Now
we present the algorithm from [8] for joint ML channel estimation
and data detection.
Joint ML channel estimation data detection algorithm
Input: radiusr, matrixR, constellationΩ and a1×T index vectorI

1. Seti = T , ri = r, I(i) = 1 and sets∗i = Ω(I(i)).

2. (Computing the bounds) Compute the metricMs
∗
i∶T

. If

Ms
∗
i∶T
> r2, go to 3; else, go to 4;

3. (Backtracking) Find the smallesti ≤ j ≤ T such thatI(j) <
∣Ω∣. If there exists suchj, seti = j and go to 5; else go to 6.

4. If i = 1, store currents∗, updater2 =Ms
∗
i∶T

and go to 3; else

seti = i − 1, I(i) = 1 ands∗i = Ω(I(i)), go to 2.

5. SetI(i) = I(i) + 1 ands∗i = Ω(I(i)). Go to 2.

6. If any sequences∗ is ever found in Step 4, output the latest
stored full-length sequence as the ML solution; otherwise,
doubler and go to 1.

In our analysis of this algorithm for massive SIMO systems, we
will slightly change the algorithm in the last step: if no sequence is
ever found in Step 4, we will increaser to∞.



2.1. Choice of radiusr

The choice of the radiusr has a big influence on the complexity of
this ML algorithm. If r2 is chosen bigger than the metric of any
sequencẽs ∈ ∣Ω∣T , the ML algorithm will visit all the tree nodes
under that radius. Ifr2 is too small, then the ML sequence may be
outside the search radius, and the ML algorithm will have to search
again under a new larger radius.

[8, 18] derived how to chooser such that with a certain prob-
ability, the transmitted sequence has a metric no bigger than r2.
However, the radius choice in [8] is for a fixed number of receive
antennas, and for high signal-to-noise ratio (SNR).

In this paper, we quantify the choice of radiusr when the num-
ber of receive antennas is big, as in massive MIMO systems. Infact
we setr2 as any constantc such that

r
2 = c <

T

2
.

We remark that this radius choice is different from [8]. More
specifically, the new radius value does not depend on the SNR or the
number of receive antennas. In fact, one can choose the radius of
r2 to be a positive constant arbitrarily close to 0, for a large SIMO
system. In the next section, we will show that, under this newradius,
the joint ML channel estimation and data detection algorithm has
very low computational complexity.

3. ALGORITHM COMPUTATIONAL COMPLEXITY

The computational complexity of the joint ML channel estimation
and data detection algorithm for SIMO systems is mainly determined
by the number of visited nodes in each layer. By “visited nodes”,
we mean the partial sequencess

∗
i∶T for whichMs

∗
i∶T

is computed in
the algorithm. The fewer the visited nodes, the lower computational
complexity the joint ML algorithm needs. In this section, wewill
show that the number of visited points in each layer will converge to
a constant number for a sufficient large number of receive antennas.

Theorem 3.1. In the joint maximum-likelihood joint channel esti-
mation and data detection algorithm, the expected number ofvis-
ited points at layeri with N receive antennas converges to∣Ω∣ for
i ≤ (T −1), asN goes to infinity. The joint ML algorithm only visits
one tree node at layeri = T .

Proof of Theorem 3.1.The number of visited nodes at layeri (1 ≤
i ≤ T − 1) in the joint ML algorithm is equal to∣Ω∣, if there is one
and only one tree nodẽs∗(i+1)∶T such thatMs̃

∗
(i+1)∶T

≤ r2. In fact,

we will prove that, the transmitteds∗(i+1)∶T will be the only sequence

satisfyingMs̃
∗
(i+1)∶T

≤ r2, with high probability as the number of re-

ceive antennasN →∞. To prove this, we first show this conclusion

is true for the average case withIE = ρEI −
E[X∗X]

N
, whereρE is

the maximum eigenvalue ofE[X
∗X]

N
. Then we use the concentration

results forX
∗X

N
to prove that, forI = ρI − E[X∗X]

N
, the transmitted

s
∗
(i+1)∶T will also be the only sequence satisfyingMs∗

(i+1)∶T
≤ r2.

For the average case, we first deriveE[X∗X], and factorize

ρEI −
E[X∗X]

N
using the Cholesky decomposition. Using the upper

triangular matrix generated from the Cholesky decomposition, we
show that the transmitteds∗(i+1)∶T will be the only sequence satisfy-

ingMs
∗
(i+1)∶T

≤ r2 underI = ρEI −
E[X∗X]

N
.

We can write (1) as

[x1 x2 ⋅ ⋅ xT ] = [s∗1h s
∗
2h ⋅ ⋅ s

∗
Th] + [w1 w2 ⋅ ⋅wT ]

= [s∗1h +w1 s
∗
2h +w2 ⋅ ⋅ s

∗
Th +wT ],

wherexi is thei-th column vector ofX. ThenE[X∗X] is equal to

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎢⎣
(s∗

1
h+w1)∗

(s∗
2
h+w2)∗
⋮

(s∗
T
h+wT )∗

⎤⎥⎥⎥⎥⎦[ (s
∗
1
h+w1) (s∗2h+w2) ⋯ (s∗T h+wT ) ]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Since the entries ofh are independent complex Gaussian ran-
dom variables with unit variance and zero mean,E[h∗h] =
E[∑N

i=1 h
∗
i hi] =N . After some algebra, we can rewriteE[X∗X]/N

as ⎡⎢⎢⎢⎢⎢⎢⎢⎣

s1s
∗
1 + σ

2

w s1s
∗
2 ⋯ s1s

∗
T

s2s
∗
1 s2s

∗
2 + σ

2

w ⋯ s2s
∗
T

⋮ ⋮ ⋱ ⋮

sT s
∗
1 sT s

∗
2 ⋯ sT s

∗
T + σ

2

w

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

Obviously (13) is a Hermitian matrix with a full column rank.

The maximum eigenvalue ofE[X
∗X]

N
is ρE = T + σ2

w. Then we can

writeA = ρEI −
E[X∗X]

N
as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T − s1s
∗
1 −s1s

∗
2 ⋯ −s1s

∗
T

−s2s
∗
1 T − s2s

∗
2 ⋯ −s2s

∗
T

⋮ ⋮ ⋮ ⋮

−sT s
∗
1 −sT s

∗
2 ⋯ T − sT s

∗
T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

We then decompose(ρEI − E[X∗X]
N

) into R̀∗R̀ using the Cholesky
decomposition in [17]. Then we have

R̀ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

L1,1 L1,2 L1,3 ⋅ ⋅ L1,T

0 L2,2 L2,3 ⋅ ⋅ L2,T

0 0 L3,3 ⋅ ⋅ L3,T

0 0 0 ⋅ ⋅ LT,T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

whereL∗i,i =
√

ai,i −∑i−1
k=1 Lk,iL

∗
k,i

,L∗i,j =
1

Li,i
(aj,i−∑i−1

k=1Lk,iL
∗
k,j)

for 1 ≤ i < j ≤ T , andai,j is the entry of(ρEI − E[X∗X]
N

) with row

index i, and column indexj. ThusR̀ is given by (14) (listed on the
top of next page).

We can see thatLii =
√(T − 1) −∑i−1

j=1
T

(T−(j−1))(T−j) for 1 <

i ≤ T . Now we can usèR in (14) as the upper triangular matrix of
Cholesky decomposition to solve the minimization equationin (10).
In fact, based on (11), the metricMs

∗
1∶T
(R̀) from (7) is

Ms
∗
1∶T
= s∗As = s∗(TI − s∗s)s

= T s∗s − s∗s∗ss

= T 2
− T

2

= 0, (15)

sinces∗s = T . BecauseMs∗ = ∑
T
i=1 ∥∑T

k=iLi,ksk∥2, from (15), we
must have∥∑T

k=i Li,k sk∥2 = 0 for every1 ≤ i ≤ T . This in turn
implies thatMs

∗
i∶T
= 0, and∑T

k=i Li,ksk = 0 for every1 ≤ i ≤ T .
On the other hand, according to Lemma 6.1, for any others̃ ≠ s,
Ms̃

∗
i∶T
≠ 0, wherei is the integer closest toT such thats∗i ≠ s̃

∗
i .

Wheni = T , the joint ML algorithm will visit only1 tree node,
namelys∗T , whose metric is equal to0, becauses∗T is predetermined



R̀ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
T − 1

−(s1s∗2)√
T−1

−(s1s∗3)√
T−1

⋯
−(s1s∗T )√

T−1

0

√
T − 1 − 1

T−1
1

L2,2
[−(s2s∗3) − (s2s∗3)T−1

] ⋯
1

L2,2
[−(s2s∗T ) − (s2s∗T )T−1

]
0 0

√
T − 1 − 1

T−1
−

T

(T−1)(T−2) ⋯
1

L3,3
[−(s3s∗T ) − (s3s∗T )T−1

−
(s3s∗T )T
(T−1)(T−2) ]

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯

√
T − 1 − 1

T−1
− ⋅ −

T

(T−(T−2))(T−(T−1))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

to resolve phase ambiguity; wheni < T , at layeri, we also only
have one sequencẽs∗i∶T = s

∗
i∶T such thatMs̃

∗
i∶T
= 0. This will prove

Theorem 3.1, under the assumption thatX∗X = E[X∗X].
Now we prove that, with high probability,X∗X/N is close to

E[X∗X]/N , and thus the expected number of visited nodes under

ρI − X∗X

N
is very close to the number underρEI −

E[X∗X]
N

. In

fact,
(X∗X)i,j

N
can be written as the sum of independent random

variables:

(X∗X)i,j
N

=
(s∗i h +wi)∗(s∗jh +wj)

N

=

N

∑
k=1
(s∗i hk +wk,i)∗(s∗jhk +wk,j)

N

= sis
∗
j

∑N
k=1 h

∗
khk

N
+
∑N

k=1w
∗
k,iwk,j

N

+
si∑N

k=1 h
∗
kwk,j

N
+
s
∗
j ∑

N
k=1 w

∗
k,ihk

N
, (16)

(17)

wherewi is thei-th column ofW . Then we can find the expectation
and the variance of (16) as follows:

E[ (X∗X)i,j
N

] = sis∗j ∑N
k=1E(h∗khk)

N
+
∑N

k=1E(w∗k,iwk,j)
N

+
si∑N

k=1 E(h∗kwk,j)
N

+
s
∗
j ∑

N
k=1 E(w∗k,ihk)

N
,

=
⎧⎪⎪⎨⎪⎪⎩
1 + σ2

w, if i = j
sis
∗
j , otherwise

(18)

var( (X∗X)i,j
N

) = ⎧⎪⎪⎨⎪⎪⎩
(1 + 2σ2

w + σ
4

w)/N, if i = j(2 + 2σ2

w + σ
4

w)/N, otherwise
The weak law of large numbers states that the sample mean of

a random variable converges to its expectation in probability. Thus,
for any pair1 ≤ i, j ≤ N , for any ξ > 0 andǫ > 0, asN goes to
infinity, we have

P (∣ (X∗X)i,j
N

−
E[(X∗X)i,j]

N
∣ ≥ ε) ≤ ξ. (19)

This means that, for anyξ > 0 andǫ > 0, asN goes to infinity,
we have

P (∥X∗X
N
−
E[X∗X]

N
∥F ≤ ε) ≥ 1 − ξ, (20)

where∥ ⋅ ∥F is the Frobenius norm.
Sinceρ is the maximum eigenvalue ofX

∗X

N
, by the triangular

inequality for the spectral norm

∣ρ − ρE ∣ < ∥X∗X
N
−
E[X∗X]

N
∥2.

Since

∥X∗X
N
−
E[X∗X]

N
∥2 ≤ ∥X∗X

N
−
E[X∗X]

N
∥F ,

we have

∣ρ − ρE ∣ < ∥X∗X
N
−
E[X∗X]

N
∥F ≤ ǫ,

with probability at least1 − ξ, asN →∞.
Using the triangular inequality for the spectral norm and the

Frobenius norm, we have

∥ρI − X∗X

N
− (ρEI − E[X∗X]

N
)∥2 ≤ 2ǫ,

and

∥ρI − X∗X

N
− (ρEI − E[X∗X]

N
)∥F ≤ (√T + 1)ǫ,

with probability at least1 − ξ, asN →∞.
Now since the Cholesky decomposition of(ρI − X∗X

N
) is con-

tinuous at the pointA = ρEI −
E[X∗X]

N
, for anyǫ > 0 andξ > 0, as

N goes to infinity, ∥R − R̀∥F ≤ ǫ
holds true with probability at least1 − ξ. Thus asN goes to infinity,
for any full-length sequencẽs∗, with probability at least1 − ξ,

∣M R̀
s̃
∗
i∶T
−M

R
s̃
∗
i∶T
∣ = ∣̃s∗(Ri∶T − R̀i∶T )̃s∣ ≤ ∥̃s∥2∥R − R̀∥F ,

which is no bigger than∥̃s∥2ǫ. Note here the superscriptsR andR′

in M R̀
s̃
∗
i∶T
−MR

s̃
∗
i∶T

describe what upper triangular matrix is used in
calculating the metric.

Since we can takeǫ to be arbitrarily small, this means that, for
a small enoughǫ, the number of visited nodes per layer will also be
equal to∣Ω∣ under(ρI − X∗X

N
), with probability at least(1−ξ). For

a small enough constantǫ > 0 and any constantξ > 0, asN goes
to infinity, the expected number of visited nodes at layeri is upper
bounded by ∣Ω∣ + (1 − ξ)∣Ω∣T−i,
since the largest number of visited nodes at layeri whenr = ∞ is∣Ω∣T−i.

If we takeξ > 0 to be arbitrarily small, the expected number of
visited nodes at layeri will approach∣Ω∣.

4. SIMULATION RESULTS

In this section, we simulate the performance and complexityof the
exact ML algorithm for SIMO systems with a large number of re-
ceive antennas. We use the 4-QAM constant modulus constellation.



Channel matrix entries are generated as i.i.d complex Gaussian ran-
dom variables. We investigate the performance of the ML algorithm
for N= 10, 50 100, and500 receive antennas. Two different data
length values are examined, namelyT = 8 and 20. We compare
the performance of the joint ML non-coherent data detectionalgo-
rithm with sub-optimal iterative and non-iterative channel estimation
and data detection schemes. We use least square (LS) and minimum
mean square error (MMSE) channel estimation for the iterative and
non-iterative detection schemes (the reader may refer to [15] for the
LS and MMSE channel estimation).

We embed one symbol which is known by the receiver to re-
solve the phase ambiguity of the channel, at layerT of the data se-
quence. In the non-iterative channel estimation case, the receiver
estimates the channel vector using this training symbol. Then, the
receiver uses this estimated channel vector to detect the remaining
T − 1 transmitted symbols. The iterative channel estimation scheme
exploits the detected data vector from the pervious iteration to obtain
a new channel estimation, which, in turn, is used for data detection
in the current iteration. The iterative joint channel estimation and
data detection scheme runs 100 iterations for each channel coher-
ence block.

In Figures 1, 2 3 and 4, the symbol error rate (SER) of the ML
algorithm has been evaluated as a function of SNR forT = 8 and20
respectively, along with the SER of data detection based on the it-
erative and non-iterative LS and MMSE channel estimations.It can
be seen that the ML algorithm outperforms the LS and MMSE it-
erative and non-iterative channel estimation schemes. Forexample,
from Figures 1 and 3, we see more than 2 dB improvement over the
iterative channel estimation, and 3 dB improvement over thenon-
iterative channel estimation and data detection forN = 100, at10−2

SER. In Figures 2 and 4, the ML detector provides a performance
improvement of 2 dB over the iterative scheme and 4.5 dB improve-
ment over the non-iterative scheme,at10

−2 SER. One can notice the
improvement in the performance of ML channel estimation anddata
detection when we increase the number of receive antennas. From
Figure 4, there is 2dB improvement SER forN = 100 compared
with N = 50, whereas it is 7 dB usingN = 100 compared with
N = 10, at10−1 SER.

The complexity of the ML algorithm is evaluated based on the
average number of nodes which are visited each layer during the
algorithm execution. In Figure 5 we obtain the average number of
visited nodes per layer forT = 20 , N = 100, andN = 500 at
SNR=-2dB. This experiment is for the 4-QAM constellation, using
our proposed search radius satisfyingr2 = T

8
. For N = 100, the

average number of visited nodes per layer is already very low. When
N = 500, the number of average visited nodes per layer is steady at
a constant number, namely 4. When the number of receive antennas
goes fromN = 100 to N = 500, the simulation results show a clear
reduction in the tree search complexity. Also, under a sufficiently
large number of receive antennas, on average the joint ML algorithm
will visit each layer 4 times, which is equal to the cardinality of the 4-
QAM constellation. This is consistent with the theoreticalprediction
of our Theorem 3.1.

5. SUMMARY AND DISCUSSION

This paper shows, for the first time, the performance of jointML
channel estimation and data detection algorithm of massiveSIMO
wireless systems. We have shown that, as the number of receive
antennas grows to infinity, the number of visited nodes per layer
reaches a constant. Simulation results show that ML algorithm has
better performance than iterative and non-iterative LS andMMSE

channel estimation schemes. In addition, our simulation results ver-
ify our theorem by showing that the number of visited points per
layer is equal to a constant number as the number of receive anten-
nas is sufficiently large.

6. APPENDIX

Lemma 6.1. Let s∗ be the transmitted data sequence. Let us con-

sider usingρEI −
E[X∗X]

N
for calculating the sequence metric. For

any s̃∗ such that̃s∗ ≠ s∗, Ms̃∗ ≠ 0.

Proof of Theorem6.1.For anỹs∗ ≠ s∗, let i be the closest integer to
T such thats∗i ≠ s̃

∗
i , where1 ≤ i ≤ T − 1. Then we can find the

metric of s̃∗i∶T based on (12)

Ms̃
∗
i∶T
= ∥ T

∑
k=i

Li,k s̃k∥2 +Ms̃
∗
i+1∶T

= ∥ T

∑
k=i+1

Li,ksk +Li,is̃i∥2,
(21)

where s̃∗i+1∶T = s
∗
i+1∶T , andMs̃

∗
i+1∶T

= Ms
∗
i+1∶T

= 0 as proved in
Theorem 3.1. Now we can write (21) as

Ms̃
∗
i∶T
= ∥ T

∑
k=i

Li,ksk −Li,isi +Li,is̃i∥2
= ∥ −Li,isi + Li,is̃i∥2
= ∥Li,i(̃si − si)∥2,

where we have used the fact that∑T
k=iLi,ksk = 0, proved in the

proof of Theorem 3.1. Sincẽsi − si ≠ 0 by assumption, andLi,i ≠
0 for i ≠ T according to Lemma 6.2,Ms̃

∗
i∶T

will not be zero as
well.

Lemma 6.2. Li,i ≠ 0 for any1 ≤ i ≤ T − 1, andLT,T is equal to
zero.

Proof of lemma 6.2.Lii can be written as

Li,i =

¿ÁÁÀ(T − 1) − i−1

∑
j=1

T(T − (j − 1))(T − j)
=

¿ÁÁÀ(T − 1) + i−1

∑
j=1

( T(T − (j − 1)) − T(T − j))
=

√
T −

T

T − (i − 1) .
(22)

Wheni = T , (22) will be

Li,i =

√
T −

T

T − (T − 1)
= 0.

It is also obvious thatLi,i ≠ 0 for anyi <T.
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Fig. 1. SER vs SNR for joint ML channel estimation and data detec-
tion, iterative and non-iterative LS channel estimation for T = 8
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Fig. 2. SER vs SNR for joint ML channel estimation and data detec-
tion, iterative and non-iterative LS channel estimation for T = 20
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Fig. 3. SER vs SNR for joint ML channel estimation and data detec-
tion, iterative and non-iterative MMSE channel estimationfor T = 8
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