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ABSTRACT

Massive MIMO systems have made significant progress in &scre
ing spectral and energy efficiency over traditional MIMOtsyss by
exploiting large antenna arrays. In this paper we constuejdint
maximum likelihood (ML) channel estimation and data detect
problem for massive SIMO (single input multiple output) @lé@ss
systems. Despite the large number of unknown channel ciesffic
for massive SIMO systems, we improve an algorithm to achilege
exact ML non-coherent data detection with a low expectedptexa
ity. We show that the expected computational complexityhef &l-
gorithm is linear in the number of receive antennas and ohjal
in channel coherence time. Simulation results show thepadnce
gain of the optimal non-coherent data detection with a lomgo-
tational complexity.

Index Terms— ML detection, channel estimation, massive
SIMO, maximum likelihood, sphere decoder

1. INTRODUCTION

Using multiple-antenna arrays has been well known for itefiés:
high reliability, high spectral efficiency and interfereneduction.
Recently a new approacmassiveMIMO, has emerged by equip-
ping communication terminals with a huge number of antenfibis
reaps the benefits of the traditional MIMO systems on a mugfeta
scale. [[1] mathematically showed that the effect of fasinigaénd
non-correlated noise is eliminated as the number of recaien-
nas approaches infinity. Since then, extensive reseamtests have
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investigate near-optimal or optimal non-coherent datastrassion
and data detection schemes for massive MIMO systems [4].

In this paper, we consider the problem of joint ML channei-est
mation and data detection for massive SIMO systems. An sixten
list of works have addressed non-coherent data detectiisigms
for conventional SIMO wireless systems or wireless systengen-
eral. Most existing efficient MIMO non-coherent signal deien
algorithms are suboptimal compared with the exact ML atbars.
However, there are a few exceptions. For instance, spheedde
algorithm was used in [12] to solve the joint ML non-cohernerttb-
lem for SIMO wireless systems. Sphere decoder algorithmaesl
the computational complexity by restricting the ML detentsearch
to a subset of the signal spacé] [9] also used sphere dedoder a
rithms to achieve the ML channel estimation and data detedtr
orthogonal space time block coded (OSTBC) wireless systéms
[12] and [9], the sphere decoder algorithm has been showmas a
exact ML non-coherent detection algorithm which has a loveen-
plexity than the exhaustive search, but the sphere decant&swnly
for constant-modulus constellations. [13] proposed arctejant
ML channel estimation and signal detection algorithm faviSIsys-
tems with general constellationE. [19] proposed an exactMinnel
estimation and data detection for OFDM wireless systemis gan-
eral constellations. An ML non-coherent signal detectilgodthm
for OSTBC was developed in [lL6] for constant-modulus cdlaste
tions. The algorithm proposed in[16] uses recent resuleficient
maximization of reduced-rank quadratic form to achieve lgmm
mial complexity.

The optimal non-coherent data detection algorithms friogj [1

been generated in massive MIMO. For example, massive MIM©O sy and [13] did not look at the non-coherent data detection ¢exap

tems’ information-theoretic and propagation aspects @aidsed in

ity as the number of receive antennas grows large in masfii® S

[21[5]. Research on massive MIMO has also focused on many otheystems. Furthermore, the algorithm[inl[16] gives an exacsblu-

aspects, including transmit and receive schemes, thet effgxilot
contamination, energy efficiency, and channel estimatoymfas-
sive MIMO systems, as overviewed [d [3, 4].

Knowledge of the channel state information (CSI) is reqlire

tion only when the matrix in the related quadratic form ojitiation
problem has low rank, but this low-rank assumption does ol h
for massive SIMO systems with a large number of receive anten
nas. Without efficient algorithms achieving optimal norerent

to achieve the advantages of massive MIMO systérs [3]. Howeata detection for massive MIMO systems, it was not known how

ever, accurately estimating the channel gains in wirelgstems is
a big challenge, especially in fast fading environments [6]case
of conventional MIMO systems, differential modulationteaues,
blind and semi-blind, and pilot based algorithms are usedltce the
problem of channel tracking ][] 8] ©.110,111]. Although thekgo-
rithms have improved the performance of non-coherent MIM® s
tems, they are not optimal for massive time-varying chaarnebm-
pared with traditional MIMO systems, it is even more chalieiy to
perform accurate channel state estimation for massive MBY®
tems, considering massive MIMO's large number of unknowaneh
nel coefficients. It is of great theoretical and practicakiast to

suboptimal non-coherent data detection methods compahetina
ML non-coherent data detection methods. It was believetthie
goal of achieving joint ML channel estimation and data diéeds
even more difficult for massive MIMO systems, because of gelar
number of unknown channel coefficierits [2].

In this paper we study and improve a joint ML channel estima-
tion and data detection algorithm for massive SIMO systefg-
prisingly, despite a large number of unknown channel caeffis for
massive SIMO systems, this algorithm achieves the exact di- n
coherent data detection with a low expected complexity. ke t
oretically show that the expected computational compjesftthe
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algorithm is linear in the number of receive antennas angnusl
mial in channel coherence time. Simulation results dematesthe
performance gain of our optimal non-coherent data deteetith a
low computational complexity. To the best of our knowledoe the
first time, we have demonstrated the exact performance dgajgéer
the optimal non-coherent data detection algorithm, anastitnal
non-coherent data detection algorithms, for massive Slykbess.
The rest of this paper is organized as follows. Sedflon 2igets

the system model and presents the ML non-coherent datatidetec

algorithm. Sectiol]3 derives the expected complexity ofalym-
rithm. Simulation results are provided and discussed irti@ed.
Sectior b concludes our paper and highlights our contebuti

2. THE JOINT CHANNEL ESTIMATION AND SIGNAL
DETECTION PROBLEM

Let T" denote the length of a data packet during which the channel

remains constant. The channel output for a SIMO system With
receive antennas is given by

X =hs" +W, (1)

whereh ¢ CV*! is the SIMO channel vectos;” ¢ C**7 is the trans-
mitted symbol sequence, aftd € CV*7 is an additive noise matrix
whose elements are assumed to be i.i.d. complex Gaussidoman
variables. We also assume the entries™oére i.i.d. symbols from a
certain constant-modulus constellati@nsuch as BPSK or QPSK)
which has unit expected energy, i.e.,

E(si]*)=1,k=1,2,...,T. 2)

We assumeh as a deterministic unknown channel with no priori

information known about if[7][9]. Then, the joint ML charnes-
timation and data detection problem for SIMO systems isrgive
the following mixed optimization problem

|X ~hs"|?, (©)

mm
h,s*eQ

wherep is a slightly larger value than the maximum eigenvalue of

%. The traditional solution of an integer least square opation
problem in [T) is by using exhaustive search over the ergitécé.
However, the computational complexity of exhaustive seasaex-
ponential inT". Sphere decoder was used[iih [8] to efficiently solve
(@) with a lower computational complexity than exhaustiearsh.
Instead of searching over all the hypotheses in the latijaeegre de-
coder attempts to look at the lattice points within a radiusAs a
result, the searching process of sphere decoder only tistse-
guences that are inside the hypersphere of radius

*

s*(pl - XNX )s <r’. (8)

From the way in whiclp is determined, the matrig in (@) is
positive semidefinite. We can use the Cholesky decompasitio
factorizeJ as

J=R'R, 9)

whereR is an upper triangular matrix. Now we can rewr[ié (7) as

*

min s*(pl -

s*eQT

)s— min s"R*Rs
s*eQT

= min | Rs|®. (10)
s*eQT

SinceR is an upper triangular matrixgs can be expanded as

T T 5
=21 Liwskl®,
i=1 k=i

whereM;- is the metric of the transmitted vectst, andL; ; is the
entry of R in thei-th row andj-th column. For eachbetweenl and
T, we further define

()

; (12)

+1:T

T
2
Mg, = | I;Li,kskﬂ + My

whereQ” denotes the set df-dimensional signal vectors. From Where the partial sequensgy. consist of elements;, ;.1 ..., s,

[12], the optimization toI]S) oveh is a least square problem while

My . is the metric of the partial sequensg;, andM tnr = =0 hy

the optimization oves* is an integer least square problem, sincedefault. If the set of possible data sequences are repeebiera tree

each elements af* is chosen from a fixed constellatiéh By [g],
for any given symbol vectors', the channel vectdi that minimizes

@ is

h=Xs(s"s)™ = Xs/[s|?, @)
Substitutinglﬂa) into[(B), we get
[ X (I - s H2ss NP =tr(XPX™) =tr(XX*) - WS X" Xs,
=Ps
©)

As pointed ou t in[[8], if the modulation constellation is afrstant
modulus (such as QPSK), the minimization[df (5) ov&is equiva-
lent to solve the following problem:

max s" X" Xs,

s*eQT

(6)

The quadratic form in[{6) for a constant modulus modulatian ¢
be changed into an equivalent minimization problem by usieg
maximum eigenvalue ok * X . Thus, [6) can be represented as

X*X

I- s, 7

sr?él%s “(p N )s (7)
— ——

=J

structure as i8], we refer .- as a layer node in the tree. Now
we present the algorithm frorhl[8] for joint ML channel estiina
and data detection.

Joint ML channel estimation data detection algorithm

Input: radiusr, matrix R, constellatiorf2 and al x T" index vectorl

1. Seti=T,r;=r,1(i) =1and ses; = Q(I(7)).

2. (Computing the bounds) Compute the meti\i{‘s;T. If
M, >1? goto3;else, goto 4;

3. (Backtracking) Find the smallesk j < T" such that/(j) <
|Q|. If there exists suclh, seti = 7 and go to 5; else go to 6.

4. Ifi =1, store currens*, updater? = M, - and go to 3; else
seti=i-1,I(i) =1ands; = Q(I(7)), got02

5. SetI(:) = I(i¢) + 1 ands] = Q(I(i)). Goto 2.

6. If any sequence” is ever found in Step 4, output the latest

stored full-length sequence as the ML solution; otherwise,

doubler and go to 1.

In our analysis of this algorithm for massive SIMO systems, w
will slightly change the algorithm in the last step: if no seqce is
ever found in Step 4, we will increaseto oo.



2.1. Choice of radiusr

The choice of the radius has a big influence on the complexity of
this ML algorithm. 1f 2 is chosen bigger than the metric of any
sequence e |Q|”, the ML algorithm will visit all the tree nodes
under that radius. If* is too small, then the ML sequence may be
outside the search radius, and the ML algorithm will haveetareh
again under a new larger radius.

[8. 18] derived how to choose such that with a certain prob-
ability, the transmitted sequence has a metric no bigger tfa
However, the radius choice iAl[8] is for a fixed number of reeei
antennas, and for high signal-to-noise ratio (SNR).

In this paper, we quantify the choice of radiusvhen the num-
ber of receive antennas is big, as in massive MIMO systenf&cin
we setr? as any constantsuch that

T
=c<—.

2

We remark that this radius choice is different frdn [8]. More

specifically, the new radius value does not depend on the S0
number of receive antennas. In fact, one can choose thesrafliu
2 to be a positive constant arbitrarily close to 0, for a lartjdS
system. In the next section, we will show that, under this reaius,
the joint ML channel estimation and data detection algarithas
very low computational complexity.

3. ALGORITHM COMPUTATIONAL COMPLEXITY

The computational complexity of the joint ML channel estifoa
and data detection algorithm for SIMO systems is mainlyrieiteed
by the number of visited nodes in each layer. By “visited r&de
we mean the partial sequences- for which M, - is computed in
the algorithm. The fewer the visited nodes, the lower cormporal
complexity the joint ML algorithm needs. In this section, wél
show that the number of visited points in each layer will age to
a constant number for a sufficient large number of receiveranats.

Theorem 3.1. In the joint maximum-likelihood joint channel esti-
mation and data detection algorithm, the expected numbetissf
ited points at layer; with N receive antennas converges|f9 for
1< (T-1), asN goes to infinity. The joint ML algorithm only visits
one tree node at layer=T'.

Proof of Theorerfi 3]1The number of visited nodes at laye(l <
i < T - 1) in the joint ML algorithm is equal t¢2|, if there is one
2

and only one tree nodg,, )., such thatMgzi+1 L <o In fact,
we will prove that, the transmitteq‘wl) . Will be the only sequence
satlsfylngMM* o S 2, with high probability as the number of re-
ceive antennaAf — oo. To prove this, we first show this conclusion
is true for the average case wily; = ppl - X—X] , Wherepg is
the maX|mum elgenvalue &— Then we use the concentration

results forX:X to prove that, fory = pI - ZIX X1 the transmltted

S(is 1y Will also be the only sequence satlsfymgs ot <r?

For the average case, we first derikg X * X] and factorize
pel - usmg the Cholesky decomposition. Using the upper
trlangular matrix generated from the Cholesky decompmsitive
show that the transmitteq‘wl) . Will be the only sequence satisfy-

ing Mg BIXX]

Sy <r?underd = pgl -

We can write[(l) as

[sthsi;h - -s7ph]+

=[sth+wi ssh+ws -

[x1x2 + - X7]= [wiwz - -wr]

- sth+wr],
wherex; is thei-th column vector ofX. ThenE[ X * X ] is equal to

“|

Since the entries oh are independent complex Gaussian ran-
dom variables with unit variance and zero medd[h*h] =

(sfh+w1 )*
(Ssh‘tw2 )* ][ (schrwl) (s§h+w2) (s}thwT) ]

(s}h-f.wT)*

E[2N, hih:] = N. After some algebra, we can rewrifgf X * X ]/ N
as
sis} + 02 S1S5 S1ST
* * 2 *
S2S7 S2So + 0y, S2S (13)
srs] srs) sTsp + o2

Obviously [I3) is a Hermitian matrix with a fuII column rank.

The maximum eigenvalue XX is p, = T + o2, Then we can
write A = ppl - XX a5
T s8] —-s185 —S18T
—SoS] T — sos5 —S9S7
A: : 1 ; 2 > T
—s7s] —sT85 T —srsy

We then decomposig s I - ZL2°X1) into k* R using the Cholesky
decomposition in[17]. Then we have

Liyn Lip Lig Ly
R _ 0 L2,2 L2,3 L2,T
0 0 L33 Lzt |’
0 0 0 Lrr
whereL; ; = \/ai,i =Yk DLy 0 Ly = = (agi-Xich L Lk ;)

forl1<i<j<T,anda;;istheentry of( pgl - E[XT*X]) with row
indexi, and column indey. ThusR is given by [T#) (listed on the
top of next page).
T
We can see thdt“ = \/(T 1) J 1 T=G=1)(T=5)
i < T. Now we can use? in (Id) as the upper triangular matrix of

Cholesky decomposition to solve the minimization equaiiofL0).
In fact, based ori (11), the metid,. (1) from @ is

forl<

Mg =8"As=s"(TI-s"s)s
1T

=Ts"s-s"s"ss
=7 -7°
=0, (15)
sinces*s = 7. BecauseMS* =YL IZE., Lixsi|?, from (I8), we
must have| $7_; Lix si|® = 0 for every1 < i < T. This in turn
implies thatM -~ = 0, andz,C s Liksky = 0foreveryl <i<T.
On the other hand according to Lemmal 6.1, for any ohers,
Mg+ 0, wherei is the integer closest t6 such thak} +;.
‘Wheni = T, the joint ML algorithm will visit only 1 tree node,
namelys’., whose metric is equal 1, becausa?. is predetermined



i — —(s1s5) —(s1s3) —(s18%) )
T 1 T-1 VT-1 T-1
(s2s7)
0 T-1-7 L”[ (s283) - ] L”[ (s2sT) — 2_{ ]
R= 1 T 1 (sssh)  (sssh)T 14
0 0 \/T’ l-75 - (T-1)(T-2) Iss [*(SIKST) - ;f - (T—i){T—2):| (14)
1 T
| 0 0 0 \/T g (T—(T-2))(T—(T-1)) J

to resolve phase ambiguity' wheén< T, at layeri, we also only
have one sequen& = s’.;- such thatM~* = 0. This will prove
Theoreni:31, under the assumptlontXéTX E[X*X].

Now we prove that, with high probabilityX * X /N is close to

E[X*X]/N, and thus the expected number of visited nodes undewe have

pl — XX is very close to the number undpg/ - M In
(X X)i
fact, —~=L can be written as the sum of independent randomitp, probability at least — f asN — oo.
variables:
(X*X);; (sih+wi)*(sjh+w;)
N N
N * * *
kz (Si hk + w;w-) (Sj hk + w;w-)
_ k=1
- N
* lejzl hihg ZkN=1 w;,iwk»j
= Z‘S]‘ +
N N
* * NV *
N S; ZkN:1 hjpwe,; S Xk=1 wk,ihk7 (16)
N N
17)

wherew; is thei-th column ofi¥. Then we can find the expectation
and the variance of (16) as follows:

B X0y _ - They Blhithe) | Ziees B 0n.)
N s N N
. S; Z;Ijﬂ E(hpwy ;) . S; Zgﬂ E(wZLhk)
N N ’
1+oo, ifi=j
_ +:7w, ) ]- (18)
sisj, otherwise
2 4 I .
UQT((X*J)V()M): (14205 +0y)/N, ifi=j
(2+202 +0L)/N, otherwise

Since
”X X E[X X] H ”X X E[X'X] I
N 2 < N F,
X X  E[X*X]
lp=pe|<|—— - ——F <€,

N

Using the triangular inequality for the spectral norm and th
Frobenius norm, we have

XX E[X*X
o1 - 22X (e - XXy, <o
and
X*X E[X*X
o1 - XX per - X < (VT 1),

with probability at least — &, asN — oo.
Now since the Cholesky decomposition(gfl —

tinuous at the poinl = pp I —
N goes to infinity,

XX is con-
E[XT*X], foranye > 0 and¢ > 0, as

|R-R|r<e

holds true with probability at leagt— £. Thus agV goes to infinity,
for any full-length sequenc&’, with probability at least - &,

Mg, Mg | = B (Rier ~ Rier )| < [81° | R~ R .
which is no bigger thatis]|*e. Note here the superscripisand R’
in MM 35 describe what upper triangular matrix is used in
calculatlng the metrlc

Since we can take to be arbitrarily small, this means that, for
a small enough, the number of visited nodes per layer will also be

The weak law of large numbers states that the sample mean §@ual td©| under(pl — 22X ), with probability at leas1 - ¢). For

a random variable converges to its expectation in proligbilihus,
for any pairl < i,5 < N, forany{ > 0 ande > 0, asN goes to
infinity, we have

P (X*Ji[()i,j B E[(X]:[X)i’jh >e) <€

This means that, for any > 0 ande > 0, asN goes to infinity,
we have

(19)

X X E[X'X]
N
where|| - | 7 is the Frobenius norm.

Sincep is the maximum eigenvalue 6FX, by the triangular
inequality for the spectral norm

|lp<e)21-¢, (20)

X X B[X'X]

~ 2.

a small enough constaat> 0 and any constarg > 0, as N goes
to infinity, the expected number of visited nodes at layer upper
bounded by .

Q1+ (1=,
singe_the largest number of visited nodes at layahenr =
QI .
. If we take& > 0 to be arbitrarily small, the expected number of
visited nodes at layerwill approach|(?|.

o0 is

O

4. SIMULATION RESULTS

In this section, we simulate the performance and complexityre
exact ML algorithm for SIMO systems with a large number of re-
ceive antennas. We use the 4-QAM constant modulus corntgialla



Channel matrix entries are generated as i.i.d complex Gaussn-  channel estimation schemes. In addition, our simulatisnltg ver-
dom variables. We investigate the performance of the ML ity ify our theorem by showing that the number of visited poings p
for N= 10, 50 100, and500 receive antennas. Two different data layer is equal to a constant number as the number of recete@-an
length values are examined, namé&ly= 8 and20. We compare nas is sufficiently large.

the performance of the joint ML non-coherent data detectigo-

rithm with sub-optimal iterative and non-iterative chalhestimation 6. APPENDIX

and data detection schemes. We use least square (LS) amdumini
mean square error (MMSE) channel estimation for the itezatind
non-iterative detection schemes (the reader may ref€5idfét the

LS and MMSE channel estimation).

We embed one symbol which is known by the receiver to re-
solve the phase ambiguity of the channel, at [&yenf the data se-  proof of TheorefB]1For anys* = s, leti be the closest integer to
guence. In the non-iterative channel estimation case,dbeiver 7 ¢ ,ch thats? + 7, wherel < i < T — 1. Then we can find the
estimates the channel vector using this training symboenTlhe | \otic of 8%y based on{I2)
receiver uses this estimated channel vector to detect thainéeng

Lemma 6.1. Lets™ be the transmitted data sequence. Let us con-
sider usingop — 22 for calculating the sequence metric. For
anys” such tha&™" s * Ms+ # 0.

T -1 transmitted symbols. The iterative channel estimatioesteh I 2

exploits the detected data vector from the pervious itendt obtain M§;T = Z Li k8] + Mijﬂ:T

a new channel estimation, which, in turn, is used for datediemn b=t

in the current iteration. The iterative joint channel esgiion and = i Liksk + LiiS; ”2

data detection scheme runs 100 iterations for each chaoher-c W v

ence block. 1)
In Figured 1B andl 4, the symbol error rate (SER) of the ML

algorithm has been evaluated as a function of SNRfer8 and20 wheres}, ., = si ., and Mg M, = 0 as proved in

+1:T

respectively, along with the SER of data detection basecheritt  Theorenf31L. Now we can ertﬁjél) as

erative and non-iterative LS and MMSE channel estimatitinsan

be seen that the ML algorithm outperforms the LS and MMSE it-

erative and non-iterative channel estimation schemesekample,

from Figuregdl anf]3, we see more than 2 dB improvement over the

iterative channel estimation, and 3 dB improvement overre- =|-

iterative channel estimation and data detection¥ot 100, at10~> = Lii(5i—s:)|?,

SER. In Figure§12 andl 4, the ML detector provides a performanc

improvement of 2 dB over the iterative scheme and 4.5 dB ingro

ment over the non-iterative schemel&t®> SER. One can notice the

improvement in the performance of ML channel estimation deig

detection when we increase the number of receive antenmam F

Figure[4, there is 2dB improvement SER ff = 100 compared

with N = 50, whereas it is 7 dB usingv = 100 compared with

N =10,at10™" SER- _ ) Lemma6.2. L;; + 0foranyl <i < T -1, and Ly is equal to
The complexity of the ML algorithm is evaluated based on the, o

average number of nodes which are visited each layer duhiag t

algorithm execution. In Figufel 5 we obtain the average nurobe Proof of lemm&6]2.L;; can be written as

visited nodes per layer fof = 20 , N = 100, and N = 500 at

SNR=-2dB. This experiment is for the 4-QAM constellatiosing T

our proposed search radius satisfyirfg = % For N = 100, the Lii= \ (T-1)- Z < (T— (- DT —J)

average number of visited nodes per layer is already very\l'éhen

N =500, the number of average visited nodes per layer is steady at T T

a constant number, namely 4. When the number of receive rmasen = \ (T-1)+ Z ( (T-G-1) (T ,j))

goes fromN = 100 to N = 500, the simulation results show a clear

reduction in the tree search complexity. Also, under a gefiity - T

large number of receive antennas, on average the joint Maridtgn - T-(Gi-1)

will visit each layer 4 times, which is equal to the cardihadif the 4- 22)

QAM constellation. This is consistent with the theoretisaddiction

of our Theoren 311. Wheni = T, (22) will be

T
2
Mg = | kZ::Z L; xSk — Li,isi + Li iSi |

L;isi+ Li,z‘giH2

where we have used the fact thaf_, Li s, = 0, proved in the

proof of Theorem 3.1. Sincg - s; # 0 by assumption, and; ;

0 for ¢ # T according to Lemm-ZMM* will not be zero as
well. O

5. SUMMARY AND DISCUSSION Lii=+/T-

This paper shows, for the first time, the performance of jiiht =0.

channel estimation and data detection algorithm of masSivO

wireless systems. We have shown that, as the number of eeceiv

antennas grows to infinity, the number of visited nodes pgerla |t js also obvious thaL; ; + 0 for anyi <T.

reaches a constant. Simulation results show that ML algoriias O
better performance than iterative and non-iterative LS MMSE



Fig. 1. SER vs SNR for joint ML channel estimation and data detec-
tion, iterative and non-iterative LS channel estimationfo= 8

Fig. 2. SER vs SNR for joint ML channel estimation and data detec-
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