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The Aluffi algebra of the Jacobian of points in projective
space: torsion-freeness

Abbas Nasrollah Nejad1 Aron Simis2 Rashid Zaare-Nahandi

Abstract

The algebra in the title has been introduced by P. Aluffi. Let J ⊂ I be ideals in the
commutative ring R. The (embedded) Aluffi algebra of I on R/J is an intermediate
graded algebra between the symmetric algebra and Rees Algebra of the ideal I/J over
R/J . A pair of ideals has been dubbed an Aluffi torsion-free pair if the surjective map
of the Aluffi algebra of I/J onto the Rees algebra of I/J is injective. In this paper
we focus on the situation where J is the ideal of points in general linear position in
projective space and I is its Jacobian ideal.

1 Introduction

In [1] Aluffi introduced a graded algebra for the purpose of defining a characteristic cycle of
a hypersurface in parallel to the well-known conormal cycle in intersection theory. Inspired
by this construction, in [8] the first two authors have explored its algebraic side, naming
it the Aluffi algebra of a pair of ideals J ⊂ I (or of I on R/J). A little later, the torsion-
freeness problem stated in [8] has been considered by the first and the third authors in [9]
for a special class of ideals. However, by and large this question is widely open.

Let us expand a little on this question. By definition, the (embedded) Aluffi algebra is

A
R/J

(I/J) := SR/J (I/J) ⊗SR(I) RR(I) ≃
⊕

t≥0

It/JIt−1,

where SB(a) and RB(a) denote respectively the symmetric and the Rees algebra of the
ideal a in the ring B. Clearly, there are natural surjections SR/J (I/J) ։ A

R/J
(I/J) ։

RR/J (I/J). The kernel of the rightmost surjection, called the module of Valabrega–Valla

has appeared before in a different context (see [13], also [14, 5.1]):

VVJ⊂I =
⊕

t≥2

J ∩ It

JIt−1
. (1)

As it turns out, provided I has a regular element module J , the Valabrega–Valla module is
the torsion of the Aluffi algebra ([8, Proposition 2.5]) and, consequently, the Rees algebra of
I/J is the Aluffi algebra modulo its torsion. We say that the pair of ideals J ⊂ I is (Aluffi)
torsion-free if VVJ⊂I = {0}. Dealing directly with the Valabrega–Valla module makes the
structure of the Aluffi algebra itself slightly invisible. On the bright side, the results get
simplified since for an ideal I of quadrics as considered in this paper the heavy work is
transferred to the nature of the Jacobian ideal of I. Besides, the existence of non-trivial
torsion is often delivered at the level of degree 2 of VVJ⊂I .
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In this work we focus on the case where J ⊂ R = k[x0, . . . , xn] denotes the ideal of a set
of points in projective space P

n = P
n
k over an algebraically closed field k, and I denotes the

Jacobian ideal of J , i.e., I = (J, In(Θ)) where In(Θ) is the ideal of n-minors of the Jacobian
matrix Θ of a minimal set of homogeneous generators of J . We will restrict ourselves to the
case where the number of points does not exceed 2n, in which case the ideal is generated
by forms of degree ≤ 2 ([4, Theorem1.4]), consequently Θ has linear entries. In addition,
the standing assumption will be that the points are in general linear position.

Now, quite generally, suppose that J is an ideal generated by 2-forms in the standard
graded polynomial ring R = k[x0, . . . , xn]. In this situation, the Jacobian matrix Θ has
linear entries throughout. If ht (J) ≥ 2 then, as a particular case of [8, Example 2.19] (see
also [9, Proposition 1.5]), knowing that the ideal Ir(Θ) is the rth power of the irrelevant
maximal ideal of R, implies that the pair J ⊂ (J, Ir(Θ)) is Aluffi torsion-free.

The overall tactics we employ follow this path. However, there are some cases where
Ir(Θ) is smaller. These exceptions require a special treatment since the pair J ⊂ I may
still be torsion-free. The finer analysis crosses recent examples of Gorenstein ideals and in
one case the underlying geometry has a classical flavor interwoven with additional results
from commutative algebra.

The basic preliminary statement of the paper is Theorem 2.3, while the main results
concerning the central matter are Proposition 4.1, Proposition 4.5 and Theorem 4.4.

2 Ideal of points generated by quadrics

Let R = k[X] = k[x0, . . . , xn] denote a standard graded polynomial ring over a field k, let
J ⊂ R be a homogeneous ideal and let I ⊂ R stand for the Jacobian ideal of J , by which we
always mean the ideal (J, Ir(Θ)) where r = ht (J) and Ir(Θ) stands for the critical ideal of
J , i.e., the ideal generated by the r-minors of the Jacobian matrix Θ of a set of generators
of J . (It is well-known that the ideal (J, Ir(Θ))/J ⊂ R/J does not depend on the choice of
generators of J .)

We will henceforth focus on the case of an ideal of points in projective space generated
by 2-forms. Let Γ = {p1, . . . , ps} be a set of distinct points of Pn = P

n
k , where k is an

algebraically closed field and n ≥ 2. The defining ideal of Γ is the ideal J = ∩s
i=1I(pi)

where I(pi) is the prime ideal of pi – since we are assuming that k is algebraically closed
then I(pi) is generated by n linear forms. Note that R/J is a reduced ring of dimension one,
hence is a Cohen-Macaulay ring. We say that the points in Γ are in general linear position
if either s ≤ n and the points span a P

s−1, or else s ≥ n + 1, in which case no subset of
n + 1 points of Γ is contained in a hyperplane of Pn. We will often use the following facts
without further ado: (1) the Aluffi torsion-freeness is invariant under a projective change
of coordinates; given two sets each consisting of the same number s ≤ n + 2 of points in
general linear position, then there is a projective change of coordinates carrying one onto
the other.

2.1 Results for arbitrary n

The following preliminary result will allow us to focus on the case where the number s of
points is at least n+ 2.
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Proposition 2.1. Let J ⊂ R denote the ideal of 1 ≤ s ≤ n + 1 points in general linear

position in P
n. The pair J ⊂ I = (J, In(Θ)) is torsion-free if and only if s 6= 2.

Proof. The case s = 1 is trivially torsion-free. For s = 2, by a projective change of coor-
dinates, the ideal J will be J = (x0x1, x2, x3, . . . , xn) with Jacobian ideal I = (J, In(Θ)) =
(x0, . . . , xn). Then, for example, x0x1 ∈ J ∩ I2 \ JI.

Let 3 ≤ s ≤ n. By a projective change of coordinates, we may assume that the points
are the coordinate points [0 : · · · : 0 : 1 : 0 : · · · : 0], where 1 is in the ith position for
i = 0, . . . s− 1. The defining ideal J of these points is generated by square-free monomials
of degree 2 and n− s+ 1 variables as follows

J = (xixj : 0 ≤ i < j ≤ s− 1, xs, . . . , xn).

The Jacobian matrix Θ of J is of the form

Θ =











Θ′ 0 · · · 0

0 1 · · · 0
...
0 0 · · · 1











,

where Θ′ is the Jacobian matrix of the defining ideal of s coordinate points in P
s−1. Then,

In(Θ) = Is−1(Θ
′) = (x0, . . . , xs−1)

s−1. The Jacobian ideal I is

(J, In(Θ)) = (J, (x0, . . . , xs−1)
s−1) = (J, xs−1

0 , . . . , xs−1
s−1).

Set ∆ = (xs−1
0 , . . . , xs−1

s−1).

Claim: J ∩∆t ⊆ JIt−1.

The proof uses the algorithmic procedure for intersection of monomial ideals. Namely,
setting J1 = (xs, . . . , xn) and J2 = (xixj 0 ≤ i < j ≤ s− 1), one has

J ∩∆t = J1 ∩∆t + J2 ∩∆t , J1 ∩∆t = J1∆
t ⊂ J∆t−1

and

J2 ∩∆t = J2 ∩ (x
t(s−1)
0 , . . . , x

t(s−1)
s−1 ) + J2 ∩ (x

α0(s−1)
0 · · · x

αs−1(s−1)
s−1 |

s−1
∑

i=0

αi = t)

=

s−1
∑

k=0

J2 ∩ (x
t(s−1)
k ) + (x

α0(s−1)
0 · · · x

αs−1(s−1)
s−1 |

s−1
∑

i=0

αi = t).

For the first summand it obtains

(xixj) ∩ (x
t(s−1)
k ) =











x
t(s−1)
k xj = (xkxj)x

t(s−1)−1
k if i = k

xix
t(s−1)
k = (xixk)x

t(s−1)−1
k if j = k

(xixj)x
t(s−1)
k if k 6= i, j,

hence
∑s−1

k=0 J2 ∩ (x
t(s−1)
k ) ∈ JIt−1. Since s ≥ 3, the second summand belongs to JIt−1 and

the claim is proved.
Assume next that s = n + 1. By a projective change of coordinates, we may assume

that the given points are the coordinate points in P
n. The defining ideal is generated by all

degree 2 square-free monomials xixj, 0 ≤ i < j ≤ n. Since this ideal is the edge ideal of a
complete graph, the assertion follows as in [9, Example 3.4(i)].
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In the above proposition, if the assumption that the points are in general linear position
is omitted, the assertion may fail, as shown in the following example.

Example 2.2. The points (0, 1, 0), (0, 0, 1), (0, 1, 1) ∈ P
2 lie on the straight line {x0 = 0}

and the ideal of these points is J = (x0, x1x2(x1 − x2)). A calculation with [2] shows that
J ∩ I2 6⊂ JI – e.g., x1x

3
2(x1 − x2) ∈ J ∩ I2 \ JI.

2.2 Explicit generators

As remarked earlier, when 3 ≤ s ≤ 2n points are in general linear position in P
n then the

corresponding ideal of points J is generated by quadrics. In the next proposition we add
further precision to this fact.

Theorem 2.3. Let Γ be a set of n+2 ≤ s ≤ 2n points in general linear position in P
n. Let

t be an integer running in the interval [2n − s + 1, n − 1]. Then the corresponding ideal J
of points is minimally generated by the quadrics of the form

gij = xixj +

n−1
∑

t=2n−s+1

α
(t)
ij xtxn, (i, j) ∈ Λ,

where

Λ := {(i, j) ∈ N× N | (i, j) 6= (t, n) ∀t}.

and α
(t)
ij ∈ k are uniquely determined by the coordinates of the points in Γ. In particular,

the minimal number of generators µ(J) of J is |Λ| =
(n+1

2

)

− (s − (n + 2)) =
(n+2

2

)

− s,

hence lies in the interval
(n
2

)

+ 1 ≤ µ(J) ≤
(n+1

2

)

+ 1.

Proof. Since the points in Γ are in general linear position, we may assume that n + 1 of
them are the coordinate points and an (n+ 2)nd point is [1 : 1 : . . . : 1]. For the remaining
points, write [ah,0 : ah,1 : . . . : ah,n−1 : 1] for n+3 ≤ h ≤ s. Consider the system of equations

in the unknowns α
(t)
ij ∈ k (0 ≤ i < j ≤ n):

{

1 +
∑n−1

t=2n−s+1 α
(t)
ij = 0

ah,iah,j +
∑n−1

t=2n−s+1 α
(t)
ij ah,t = 0, (n+ 3 ≤ h ≤ s).

(2)

To find α
(t)
ij it is enough to solve the following matrix equations











1 1 · · · 1
an+3,t an+3,t+1 · · · an+3,n−1

...
... · · ·

...
as,t as,t+1 · · · as,n−1























α
(t)
ij

α
(t+1)
ij
...

α
(n−1)
ij













=











−1
−an+3,ian+3,j

...
−as,ias,j











. (3)

Now, since the points are in general linear position, any (n + 1)-minor of the following
matrix is nonzero.

M =















1 0 · · · 0 0 1 an+3,0 · · · as,0
0 1 · · · 0 0 1 an+3,1 · · · as,1
...

. . .
...

...
...

...
0 0 · · · 1 0 1 an+3,n−1 · · · as,n−1

0 0 · · · 0 1 1 1 · · · 1















.
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Then the minor





























1 0 · · · 0 0 0 · · · 0 0
0 1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

...
0 0 · · · 1 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 1

an+3,0 an+3,1 · · · an+3,t−1 an+3,t an+3,t+1 · · · an+3,n−1 1
...

...
...

... · · ·
...

as,0 as,1 · · · as,t−1 as,t as,t+1 · · · as,n−1 1





























is nonzero, which implies that the determinant of the first matrix in (3) does not vanish.

Therefore, the system (3) has unique solution. Furthermore, by Cramer’s rule, α
(t)
in 6= 0 for

0 ≤ i ≤ 2n − s and 2n− s+ 1 ≤ t ≤ n− 1.

Consider the ideal J ′ ⊂ R generated by the quadrics gij as in the statement, where the

coefficients α
(t)
ij ∈ k (0 ≤ i < j ≤ n) are the uniquely determined solutions of (2). Clearly,

the generators of J ′ vanish on Γ and J is a radical ideal. Therefore, J ′ ⊆ J . We show that
J and J ′ have the same Hilbert function, hence must be equal. Now, one knows by [3] that
the ideal J of a set of points in general linear position in P

n has maximal Hilbert function,
that is

dimk(R/J)t = s, t > 0.

As for J ′, we claim that its Gröbner basis with respect to the deg-revlex term ordering
with x0 > x1 > . . . > xn is the set

G ∪ {x2l xn +

n−1
∑

t=2n−s+1,t6=l

β
(t)
l xtx

2
n, 2n− s+ 1 ≤ l ≤ n− 1}. (4)

where G is the above generating set of J ′ and each indexed β
(t)
l is a certain polynomial

expression of the α’s. For this, we consider the S-pairs of elements in this set. First, we
look at the S-polynomial of g0l and g0n for 2n− s+ 1 ≤ l ≤ n− 1 is

xl

n−1
∑

t=2n−s+1

α
(t)
0nxtxn − xn

n−1
∑

t=2n−s+1

α
(t)
0nxtxn

which upon division by the generators of J ′ is reducible to fl = x2l xn+
∑n−1

t=2n−s+1,t6=l β
(t)
l xtx

2
n,

where β
(t)
l is a certain polynomial like expression in the α’s. Since the initial monomial of

each of the fl’s is not divisible by the initial term of any generator of J ′ we add these
polynomials to the generating set of J ′.

Now consider the S-pairs {gij , gkl} of the remaining generators of J ′, where either i 6= 0
or j 6= n. The initial monomial of any gij in the generating set of J ′ is xixj. Clearly, we
may assume that {i, j} ∩ {k, l} 6= ∅, as otherwise xixj and xkxl are relatively prime. Say,

i = k and j < l. In this case, the S-polynomial of gij and gkl is xj(
∑n−1

t=2n−s+1 α
(t)
ij xtxn) −

xl(
∑n−1

t=2n−s+1 α
(t)
kl xtxn). The monomial xjxtxn is divisible by initial term of gjt or fj and
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the monomial xlxtxn is divisible by initial term of glt or fl. Thus, the remainder of this
polynomial upon division by the augmented generating set of J ′ is zero.

The argument for the cases where i = l, j = k or j = l is entirely similar. As for a pair
{gij , fl}, if j 6= n then their initial terms are relatively prime, hence assume j = n. In this
case the S-polynomial is

x2l

n−1
∑

t=2n−s+1

α
(t)
ij xtxn − xi

n−1
∑

t=2n−s+1

β
(t)
l xtx

2
n.

Each term of this polynomial is divisible by the initial term of gin or of fl. The S-polynomial
of a pair {fl, fl′} similarly reduces to zero.

Thus, the following set is a minimal generating set for the initial ideal of J ′:

{xixj , x
2
txn, 0 ≤ i < j ≤ n, (i, j) 6= (t, n), 2n− s+ 1 ≤ t ≤ n− 1}.

Therefore for any r > 0,

dimk(R/J
′)r = #{xri , 0 ≤ i ≤ n, xtx

r−1
n , 2n − s+ 1 ≤ t ≤ n− 1} = s,

as stated. In particular, µ(J) = dimk(J2) = dimkR2 − dimk(R/J2) =
(n+2

2

)

− s is the
minimal number of generators of J .

3 Points in P2

3.1 Exceptions

We now consider the case n = 2. For s ≤ 3, the question is taken care by Proposition 2.1.

The case of s = n+2 = 4 is surprisingly more involved and it turns out that the pair is
not Aluffi torsion-free. As will be seen later on n = 2 is the only dimension for which n+2
points in general linear position are such that the Aluffi algebra of the pair J ⊂ I is not
torsion-free.

We can assume that the four points in general linear position in the projective plane
are the coordinate points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and the additional point (1 : 1 : 1).
By Theorem 2.3, the defining ideal is J = (xz − yz, xy − yz), while the Jacobian matrix of
these 2-forms is:

Θ =

(

z −z x− y
y x− z −y

)

Therefore, I := (J, I2(Θ)) = (xy− xz, xz− yz, xz + yz− z2,−xy+ y2 − yz,−x2 + xy+ xz).

A computation with [2] gives that J ∩I2 is minimally generated by 11 quartics, while JI
is obviously generated by at most 10 quartics. Therefore, the pair J ⊂ I is not torsion-free.

Strikingly enough, this example has a curious algebraic-geometric background.

In one end, the underlying algebra will tell us that the ideal I belongs to the class of
ideals of k[x, y, z] of finite colength minimally generated by 5 quadrics which happen to be
syzygetic in the sense of [11, Section 2]. By [6], these ideals are Gorenstein.

Let ϕ denote the 5× 5 skew-symmetric matrix whose Pfaffians are the generators of I.
Pick a new set of indeterminates T = {T1, T2, T3, T4, T5} (think of them as the homogeneous

6



coordinates of P4) and consider the entries of the matrix product T · ϕ. Next take the
Jacobian matrix ψ of these bihomogeneous polynomials of bidegree (1, 1) with respect to
x, y, z – the so-called Jacobian dual matrix of ϕ ([12]). Note that this a 5× 3 matrix whose
entries are linear forms in k[T].

By a known argument as in [5], one can show that the maximal minors of ψ are poly-
nomial relations of the 5 original quadrics. Therefore, since dim k[I] = 3 the codimension
of the ideal I3(ψ) is at most 2. It can further be shown that I3(ψ) is a prime ideal of
codimension 2.

But a lot more is true:

Proposition 3.1. With the above notation we have:

RR(I) ≃ R[T]/(I1(T.ϕ), I3(ψ)).

Thus, I is an ideal of fiber type. Moreover, RR(I) has depth 1 – the lowest possible.

Proof. Since I1(T ·ϕ) defines the symmetric algebra of I and as a consequence of the above
discussion, the ideal (I1(T ·ϕ), I3(ψ)) ⊂ R[T] is contained in a presentation ideal of RR(I)
on R[T] and, moreover, I3(ψ) is the homogenous defining ideal of k[I]. We must show that
the whole ideal (I1(T · ϕ), I3(ψ)) is a prime ideal of codimension 4.

In the other end, consider the rational map P
2
99K P

4 defined by generators of I which
is birational on to its image. By [10, Theorem 2.4] one has rank(ψ) ≡ 2 (mod I3(ψ)) and
moreover, the coordinates of any nonzero homogeneous syzygy of ψ modulo I3(ψ) defines
the inverse rational map. In particular, these forms are algebraically independent over k.
Actually, they will generate an ideal of linear forms modulo I3(ψ). From this and from [10,
Proposition 2.1] now follows that (I1(T ·ϕ), I3(ψ)) is a presentation ideal of RR(I) on R[T].
For the proof that RR(I) has depth 1 see [6, Theorem 2.1 (ii)].

It is possible to write donw the presentation ideal of the Aluffi algebra as well, based on
the presentation ideal in the above proposition. Although hardly useful at this point, we
can moreover compute the torsion of the Aluffi algebra, the latter being generated by two
forms in degree 2.

To understand the underlying geometric content, consider the rational map F : P2
99K

P
4 defined by five sufficiently general quadrics q = {q1, q2, q3, q4, q5} ⊂ R. It is classically

known that the image of this map is a surface obtained as a general projection of the
2-Veronese embedding of P

2 in P
5. Therefore, the integral closure of the homogeneous

coordinate ring of the image (i.e., the k-subalgebra k[q] ⊂ R up to an obvious degree
normalization) is the Veronese algebra R(2). Write P ⊂ k[T] for the homogeneous defining
ideal of the image of F . By geometric considerations, one knows that the homogeneous
defining ideal of this smooth surface is generated by 7 cubic forms. To subsume the geometry
under the algebra, one checks that the ideal generated by 5 sufficiently general quadrics is
syzygetic. Perhaps remarkable is that then the cubic forms can be taken to be the minimal
generators of the ideal of maximal minors of the well-structured 5 × 3 matrix described
above.
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3.2 When is the critical locus a power?

Quite generally, suppose that J ⊂ R is an ideal generated by 2-forms. In this situation,
the Jacobian matrix Θ has linear entries throughout. If ht (J) ≥ 2 then, as a particular
case of [8, Example 2.19] (see [9, Proposition 1.5]), knowing that Ir(Θ) is the rth power
of the irrelevant maximal ideal of R, implies that the pair J ⊂ (J, Ir(Θ)) is Aluffi torsion-
free. It seemed reasonable to conjecture in [9] that it is always the case that Ir(Θ) is
m-primary if and only if it coincides with the rth power of m = (x0, . . . , xn) [9, Conjecture
2.6]. Unfortunately, this conjecture is not true in all its generality as shown in the following
example.

Example 3.2. Consider the 6 points in P
3
k, which are written as columns of the following

matrix:








1 0 0 0 1 −1
0 1 0 0 1 2
0 0 1 0 1 3
0 0 0 1 1 1









They are in general linear position since all the 4-minors are nonzero. By Theorem 2.3,
one has

J = (x0x1−5x1x3+4x2x3, x0x2−6x1x3+5x2x3, x0x3−4x1x3+3x2x3, x1x2−4x1x3+3x2x3).

A computation with [2] yields

• I = (J, x1x
2
3, x2x

2
3, x

3
0, x

3
1, x

3
2, x

3
3)

• m
3 ⊂ I

• µ(I3(Θ)) = 16 (hence m
3 6= I3(Θ))

Still, since m3 ⊂ I and the inclusion I3(Θ) ⊂ m
3 always holds, then I = (J,m3) – hence,

the pair J ⊂ I is torsion-free by [8, Example 2.19].

Remark 3.3. It may be contended that the above example, although in general linear
position, is not “general enough”. However, a computation with random coordinates for
the points yields the same result, so the failure is due to the nature of given data, no matter
what sort of stronger general position notion is assumed.

Examining closely the data of the above example, the following might be a more realistic
question.

Question 3.4. Let J be generated in degree 2 and assume that r := ht (J) > 2. If Ir(Θ)
is m-primary and I := (J, Ir(Θ)) contains at least the pure powers xr0, . . . , x

r
n, then m

r ⊂ I
(and hence, I = (J,mr)).

4 Points in P
n

4.1 Points in Pn (n ≥ 3)

In this part we assume that n ≥ 3. Recall the negative sort of result in Example 3.2 for
s = n+ 3, where it has been seen that the critical ideal In(Θ) is not always a power of the
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irrelevant R+ = m even though the pair J ⊂ (J, In(Θ)) is torsion-free. Clearly, the inclusion
In(Θ) ⊂ m

n always holds as they are both generated in degree n
Still, for s = n+ 2 one has:

Proposition 4.1. Let Γ be a set of n + 2 distinct points in general position in P
n with

n ≥ 3. Let J ⊂ R = k[x0, . . . , xn] be the corresponding ideal of points. Then In(Θ) = m
n;

in particular the pair J ⊂ (J, In(Θ)) is torsion-free.

Proof. By Theorem 2.3, up to a projective change of coordinates J is generated by the
following quadrics

{xixj − xn−1xn, 0 ≤ i < j ≤ n, (i, j) 6= (n− 1, n)}. (5)

Then J is the “canonical” submaximal ideal of quadrics of the square-free Veronese Cohen–
Macaulay ideal K = (xixj, 0 ≤ i < j ≤ n) (edge ideal of the complete (n+ 1)-graph). The
transposed Jacobian matrix Θ(K)t of K is the well-known Koszul matrix of K “without
signs”, hence its ideal of u-minors is mu for every u ≤ n.

After applying to Θ(K)t elementary column operations consisting in subtracting the
last column from the remaining columns, one easily sees that

Θ(K)t =



















0
0

Θ(J)t
...
0
xn
xn−1



















.

A straightforward calculation now gives the equality In(Θ(J))t = In(Θ(K))t = m
n.

Remark 4.2. (1) An alternative inductive argument would depend on writing

Θ(J)t =









x1 x2 · · · xn 0 · · · 0

∗ Θ′









,

where Θ′ is the transposed Jacobian matrix of the ideal of suitable n+ 1 points in general
linear position in P

n−1
k viewed in coordinate x1, . . . , xn. But the procedure would work as

far down as from n = 4 to n = 3. In dimension 3 a direct argument would be required,
since the statement of the Proposition is false for n = 2.

(2) The ideal J is Gorenstein, pretty much as in the full Veronese case, corresponding
to the situation of finite colength ([6]). It would be interesting to study this class of 1-
dimensional Gorenstein ideals on itself.

We introduce a notion weaker than general linear position:

Definition 4.3. Let Γ denote a set of s ≥ n + 2 distinct points in P
n. We say that Γ is

in hyperplane linear position if it admits s − 1 points spanning a hyperplane H ⊂ P
n and

in general linear position as points of the P
n−1 ≃ H, while the remaining point of Γ lies

outside H.
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Theorem 4.4. Let Γ be a set of n + 2 distinct points in hyperplane linear position in P
n,

where n ≥ 2. Let J ⊂ R = k[x0, . . . , xn] denote the corresponding ideal of points. Then the

pair J ⊂ (J, In(Θ)) is torsion-free.

Proof. By a projective change of coordinates one may assume that H : {xn = 0}. Further,
by identifying H with P

n−1, we may assume that the n+1 points lying on H are the coordi-
nate points of H = P

n−1 and the “diagonal unit” point, stacking 0 as the nth coordinate of
each of these points as points of Pn. In addition, concating the matrix of the coordinates of
these n+ 1 points with the vector of coordinates of the remaining point and then applying
elementary column operations, we may assume that the last point is (0 : 0 : · · · : 0 : 1).
This gives the matrix of points coordinates

















1 0 · · · 0 1 0
0 1 · · · 0 1 0
...

...
. . .

...
...

...
0 0 · · · 1 1 0

0 0 · · · 0 0 1

















.

The surprise in this weaker setup is that, even for n = 2 the pair J ⊂ I is torsion-free.
Indeed, an immediate calculation gives

J = (x1, x2) ∩ (x0, x2) ∩ (x0 − x1, x2) ∩ (x0, x1) = (x0x2, x1x2, x0x1(x0 − x1)).

(Note the exceptional behavior: there is a minimal generator of degree 3.)

Another direct calculation yields I = (x30, x
2
0x1, x0x

2
1, x

3
1, x0x2, x1x2, x

2
2). Now, a compu-

tation with [2] yields that the relation type of I/J on R/J is 2 (note that this result is a bit
elusive, as a set of minimal generators of I contains one of J , yet the ideal of R generated
by the complementary subset of minimal generators of I has relation type 3). Then, by [8,
Corollary 2.17] it suffices to check that J ∩ I2 ⊂ JI. An additional elementary computation
with [2] yields this inclusion.

Now suppose that n ≥ 3. In this case we show that In(Θ(J)) = m
n by a similar argument

as in the proof of the preceding proposition. For that, we need to know a set of minimal
generators of J .

Claim: J = (xixj − xn−2xn−1, xixn, 0 ≤ i < j ≤ n− 1).

(Note that we cannot use Theorem 2.3 automatically since Γ is not in general linear
position, hence one needs a different approach.)

From the shape of the coordinates of the points, J surely contains the ideal J ′ generated
by these 2-forms. In order to show that J = J ′ we prove that the respective Hilbert functions
coincide (a debate one could avoid by providing a direct proof that J ′ is a saturated ideal
of multiplicity (degree) n+ 2).

Write Γ = Γ1 ∪ Γ2 where Γ1 is the set of n + 1 points spanning H and Γ is the set
consisting of the unique point not on H. Since Γ1 is in general linear position as points in
P
n−1, then Theorem 2.3 is applicable, hence as in (5) its ideal of points is

JΓ1
= (xixj − xn−2xn−1, xn, 0 ≤ i < j ≤ n− 1).
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Clearly, JΓ2
= (x0, x1, . . . , xn−1). Since J = JΓ1

∩ JΓ2
, one has a short exact sequence

0 −→ R/J −→ R/JΓ1
⊕R/JΓ2

−→ R/(JΓ1
, JΓ2

) −→ 0.

Direct inspection gives

R/(JΓ1
, JΓ2

) ≃ k , R/JΓ1
≃ k[x0, . . . , xn−1]/(xixj − xn−2xn−1), R/JΓ2

≃ k[xn].

By the additive property of Hilbert function, we derive the Hilbert function of R/J :

HilbR/J (0) = 1, HilbR/J (1) = n+ 1, HilbR/J (t) = n+ 2, t ≥ 2.

For the Hilbert function of R/J ′, we compute a Gröbner basis of J ′ in the lex order with
x0 > x1 > · · · > xn. By a similar argument as in proof on the Theorem 2.3, we can show
that a Gröbner basis is

{xixj − xn−2xn−1, xixn, x
2
n−2xn−1 − xn−2x

2
n−1, 0 ≤ i < j ≤ n− 1}.

The initial ideal of J ′ is generated by {xixj , x
2
n−2xn, 0 ≤ i < j ≤ n, i 6= n − 2 }. The rest

is as in the end of the proof of Theorem 2.3, thus showing that J = J ′, as claimed.

We now argue that the pair J ⊂ I is Aluffi torsion-free by showing that In(Θ(J)) = m
n,

in pretty much the same way as was argued in the proof of Proposition 4.1. Namely, we
consider the squarefree Veronese “hull” of J :

K = (xixj, 0 ≤ i < j ≤ n) = (xixj , 0 ≤ i < j ≤ n− 1;x0xn, . . . , xn−1xn),

from which the above set of generators of J is obtained by some obvious elementary trans-
formations of the generators of K.

Accordingly, up to the same elementary operations applied to the corresponding columns
of Θ(K)t, we get

Θ(K)t =























0
0
...

Θ(J)t 0
xn−2

xn−1

0























.

A straightforward calculation now gives the equality In(Θ(J))t = In(Θ(K))t = m
n, where

as before the last equality comes from the structure of Θ(K))t as Koszul matrix without
signs.

4.2 Points in Pn (n ≥ 4)

Proposition 4.5. Let Γ be a set of n + 3 distinct points in general linear position in P
n
k

with n ≥ 4. Let J ⊂ R = k[x0, . . . , xn] be the defining ideal of Γ and let I = (J, In(Θ))
stand for the Jacobian ideal of J . Then the pair J ⊂ I is Aluffi torsion-free.
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Proof. Since Γ is in general linear position, we may assume that n + 1 of them are the
coordinate points and an (n + 2)nd point is [1 : 1 : . . . : 1]. Let [a0 : . . . : an−1 : 1]
denote the (n+3)rd point. Note that general linear position property of points implies that
an−2 6= an−1.

By Theorem 2.3, the defining ideal of these points is

J = (xixj + α
(n−2)
ij xn−2xn − α

(n−1)
ij xn−1xn , 0 ≤ i < j ≤ n, (i, j) 6= (n− 2, n), (n − 1, n))

where α
(n−2)
ij =

an−1−aiaj
an−2−an−1

, α
(n−1)
ij =

aiaj−an−2

an−2−an−1
.

The transposed Jacobian matrix of J has the form

Θ =









x1 x2 · · · xn 0 · · · 0

∗ Θ′









,

where Θ′ is the transposed Jacobian matrix of the defining ideal of n+ 2 points in general
linear position in P

n−1 with coordinate x1, . . . , xn. Then the result follows by induction
on n, except when n = 4 and s = 4 + 3 = 7 as in this case Θ′ is the Jacobian matrix of
n + 2 = 6 points in P

n−1, when the minors of Θ′ do not generate the entire power of m.
Thus, in this case one needs a direct argument, as follows.

According to Theorem 2.3, a generating set of J consists of the following polynomials.

x0x1 + α
(2)
01 x2x4 + α

(3)
01 x3x4 , x1x2 + α

(2)
12 x2x4 + α

(3)
12 x3x4

x0x2 + α
(2)
02 x2x4 + α

(3)
02 x3x4 , x1x3 + α

(2)
13 x2x4 + α

(3)
13 x3x4

x0x3 + α
(2)
03 x2x4 + α

(3)
03 x3x4 , x1x4 + α

(2)
14 x2x4 + α

(3)
14 x3x4

x0x4 + α
(2)
04 x2x4 + α

(3)
04 x3x4 , x2x3 + α

(2)
23 x2x4 + α

(3)
23 x3x4.

The Jacobian matrix of J therefore has the form:

Θ =































x1 x0 α
(2)
01 x4 α

(3)
01 x4 α

(2)
01 x2 + α

(3)
01 x3

x2 0 x0 + α
(2)
02 x4 α

(3)
02 x4 α

(2)
02 x2 + α

(3)
02 x3

x3 0 α
(2)
03 x4 x0 + α

(3)
03 x4 α

(2)
03 x2 + α

(3)
03 x3

x4 0 α
(2)
04 x4 α

(3)
04 x4 x0 + α

(2)
04 x2 + α

(3)
04 x3

0 x2 x1 + α
(2)
12 x4 α

(3)
12 x4 α

(2)
12 x2 + α

(3)
12 x3

0 x3 α
(2)
13 x4 x1 + α

(3)
13 x4 α

(2)
13 x2 + α

(3)
13 x3

0 x4 α
(2)
14 x4 α

(3)
14 x4 x1 + α

(2)
14 x2 + α

(3)
14 x3

0 0 x3 + α
(2)
23 x4 x2 + α

(3)
23 x4 α

(2)
23 x2 + α

(3)
23 x3































,

where the lower right block is the Jacobian matrix of six points in general linear position in
P
3 with coordinates x1, x2, x3, x4. By Example 3.2, (x1, x2, x3, x4)

3 ⊆ (Jx0
, I3(Θx0

)). Then,
(x1, x2, x3, x4)

4 ⊆ (J, I4(Θ)). By changing the roles of x0 and x1, we get (x0, x2, x3, x4)
3 ⊆

(Jx1
, I3(Θx1

)) and (x0, x2, x3, x4)
4 ⊆ (J, I4(Θ)), where Jxi and Θxi for i = 0, 1, denote the

ideal and its Jacobian matrix of six points in coordinates x1, x2, x3, x4 and x0, x2, x3, x4,
respectively. By inspection one can see that x30x1, x

2
0x

2
1, x0x

3
1 ∈ (J, I4(Θ)). Therefore,

(x0, x1, x2, x3, x4)
4 ⊆ (J, I4(Θ)), thus yielding I = (J, I4(Θ)) = (J,m4) and hence, J ⊆ I is

Aluffi torsion-free.
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We close with the following conjecture.

Conjecture 4.6. Let Γ be a set of s = 2n distinct points in general position in P
n. Let

J ⊂ R = k[x0, . . . , xn] be the defining ideal of Γ and let I = (J, In(Θ)) stand for the

Jacobian ideal of J . Then In(Θ) = m
n. In particular, the pair J ⊂ I is Aluffi torsion-free.

As a consequence of this conjecture, using a similar argument as the induction step in
the proof of the Proposition 4.5, one can deduce the Aluffi torsion freeness of n+4 ≤ s ≤ 2n
points in general linear position in P

n.
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