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Abstract

Computer experiments have become ubiquitous in science and engineering. Com-
monly, runs of these simulations demand considerable time and computing, making
experimental design extremely important in gaining high quality information with lim-
ited time and resources. Broad principles of experimental design are proposed and
justified which ensure high nominal, numeric, and parameter estimation accuracy for
Gaussian process emulation of deterministic simulations. The space-filling proper-
ties “small fill distance” and “large separation distance” are only weakly conflicting
and ensure well-controlled nominal, numeric, and parameter estimation error. Non-
stationarity indicates a greater density of experimental inputs in regions of the input
space with more quickly decaying correlation, while non-constant regression functions
indicate a balancing of traditional design features with space-fillingness. This work
provides robust, rigorously justified, and practically useful overarching sufficient prin-
ciples for scientists and engineers selecting combinations of simulation inputs with high
information content.

Keywords: Computer Experiment, Emulation, Experimental Design, Interpolation, Gaus-
sian Process, Reproducing Kernel Hilbert Space.

1 Background

Computer experiments are complex mathematical models implemented in large computer
codes used by scientists and engineers to study real systems. In many situations, the poten-
tial for actual experimentation could be very limited. For example, a computational fluid
dynamics simulation could be used to compare outflow rates of various sclera flap geome-
tries in trabeculectomy [40], mosquito population dynamics could be coupled with dengue
transmission models to study urban dengue control [13], or a finite-volume radiation hydro-
dynamics model could be calibrated to a small physical data set, allowing exploration of
input configurations for which experimental data is not available [20]. Often, a thorough
exploration of the unknown simulation function or mean simulation function is wanted.
However, the simulation is typically expensive enough that this exploration must be con-
ducted very wisely. A seemingly high-quality solution is to evaluate the expensive simulation
at several well-distributed data sites and then build an inexpensive approximation, or em-
ulator, for the simulation. The accuracy of this emulator depends very strongly on the
manner in which data is collected from the expensive function [35, 14, 17].

Here, we develop principles of data collection for Gaussian process emulation of deter-
ministic computer experiments which are broadly applicable and rigorously justified. Three
sources of inaccuracy will be considered, nominal error, numeric error, and emulation error
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due to parameter estimation. Stationary and non-stationary situations, as well as regres-
sion functions, will be considered. Here, the goal is not to develop optimal experimental
designs, but instead to identify features of experimental designs which simultaneously have
high-quality nominal, numeric, and parameter estimation properties across a broad spec-
trum of specific situations. Several design criteria are available for computer experiments,
including maximin, minimax, low-dimensional stratification, discrepancy, minimum inte-
grated mean squared prediction error, maximum entropy, orthogonality, and others [22].
Here, we proceed by decomposing the emulation error into nominal, numeric, and param-
eter estimation components, then bound each source of error in turn, in terms of design
properties. For the stationary covariance with constant (or null) mean situation, the de-
veloped conditions are well-aligned with the distance-based maximin and minimax criteria.
Non-stationarity indicates more design locations in regions with more rapidly decaying cor-
relation, while regression functions introduce a balancing of traditional design properties
with the distance-based criteria. To the best of our knowledge, this is the first presentation
of sufficient conditions for simulataneously controlling nominal, numeric, and parameter es-
timation error in Gaussian process emulation under stationarity, non-stationarity, and the
presence of regression functions.

2 Preliminaries

Let f : Ω → R, denote the function linking a computer experiment’s input to its output
for Ω ⊂ Rd. Ordinarily, the approximation f̂ to the unknown function f depends on
several parameters ϑ. Here, let f̂ϑ denote the nominal emulator at a particular value of the
parameters ϑ, and f̃ϑ denote the numeric emulator at a particular value of the parameters
ϑ. The numeric emulator represents the emulator which is calculated using floating point
arithmetic, while the nominal emulator represents the idealized, exact arithmetic, version
thereof. Then, for any norm ‖ · ‖, particular value of the parameters ϑ∗, and corresponding

parameter estimate ϑ̂, the normed deviation of the emulator from the computer experiment
can be decomposed into nominal, numeric, and parameter estimation components using the
triangle inequality as shown below, extending ideas in [18] to also consider inaccuracy due
to parameter estimation.

‖f − f̃ϑ̂‖ = ‖f − f̂ϑ∗ + f̂ϑ∗ − f̂ϑ̂ + f̂ϑ̂ − f̃ϑ̂‖

≤ ‖f − f̂ϑ∗‖︸ ︷︷ ︸
nominal

+ ‖f̂ϑ̂ − f̃ϑ̂‖︸ ︷︷ ︸
numeric

+ ‖f̂ϑ∗ − f̂ϑ̂‖︸ ︷︷ ︸
parameter

. (2.1)

Note that inequality (2.1) does not make any assumption about the norm or type of emu-
lator used. It is also noteworthy that this error decomposition considers numeric error in
evaluation of the interpolator but does not consider numeric error in the parameter estima-
tion process. Explicit consideration of numeric error in parameter estimation would result
in a fourth term in the error decomposition.

Consider the L2 norm on the domain of interest Ω

‖g‖ = ‖g‖L2(Ω) =

√∫
Ω

g(x)2dx. (2.2)
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For the L2 norm (2.2) and any expectation E we have

E‖g‖ = E

√∫
Ω

g(x)2dx ≤

√∫
Ω

Eg(x)2dx, (2.3)

by Jensen’s inequality and Tonelli’s theorem [6]. Applying relation (2.3) to the error de-
composition (2.1), gives

E‖f − f̃ϑ̂‖ ≤ E‖f − f̂ϑ∗‖+ E‖f̂ϑ̂ − f̃ϑ̂‖+ E‖f̂ϑ∗ − f̂ϑ̂‖

≤

√∫
Ω

E
{
f(x)− f̂ϑ∗(x)

}2

dx +

√∫
Ω

E
{
f̂ϑ̂(x)− f̃ϑ̂(x)

}2

dx

+

√∫
Ω

E
{
f̂ϑ∗(x)− f̂ϑ̂(x)

}2

dx.

(2.4)

More generally, convexity of the function t 7→ |t|p for 1 ≤ p ≤ ∞ ensures that versions of
inequalities (2.3) and (2.4) hold for the Lp(Ω) norms 1 ≤ p ≤ ∞. Here, the loss function,

or measure of inaccuracy, will be the left-hand-side of equation (2.4), E‖f − f̃ϑ̂‖, for the
expectation conditional on the data, the experimental design and corresponding output
values, (xi, f(xi)), i = 1, . . . , n.

Throughout, consider a Gaussian Process (GP) model for interpolation,

f ∼ GP (h(·)′β,Ψθ(·, ·))

for some fixed, known regression functions h(·), and let ϑ =
(
β′ θ′

)′
. The particular GP

draw f is the truth one hopes to discover. It is assumed that Ψθ(·, ·) is a positive definite
function [43]. A considerable collection of theoretical development related to GP regression
is given in [37]. For a particular dataset X = {x1, . . . ,xn} and input of interest x, the best
linear unbiased predictor (BLUP) is

f̂ϑ(x) = h(x)
′
β̂ + Ψθ(x,X)Ψθ(X,X)−1

(
f(X)−H(X)β̂

)
, (2.5)

where Ψθ(A,B) = {Ψθ(ai,bj)} and f(A) = {f(ai)} for A = {ai} and B = {bj}, H(X)

has rows h(xi)
′, β̂ =

(
H(X)′Ψθ(X,X)−1H(X)

)−1
H(X)′Ψθ(X,X)−1f(X), and θ equals

the vector of true correlation parameters [34]. The BLUP is best in the sense that it

minimizes the MSPE, E
{
f(x)− f̂ϑ∗(x)

}2

(integrated and square rooted in the first term

on the right-hand-side of equation (2.4)). While the BLUP cannot actually be computed,
due to unknown correlation parameters and floating point arithmetic, the parameters are
commonly estimated via maximum likelihood and the BLUP’s floating point approximation
is taken as the estimate of the unknown function f . Here, the BLUP, as shown in (2.5), will
be taken as the nominal emulator.

The overall approach will be to provide bounds for each of the three terms on the right-
hand side of (2.4) in terms of properties of the experimental design X. It will be shown that
the nominal, numeric, and parameter estimation criteria are only weakly conflicting, and
lead to broadly similar experimental designs. The remainder of this article is organized as
follows. In Sections 3, 4, and 5, bounds on the nominal, numeric, and parameter estimation
error, respectively, are developed. In each section, experimental design characteristics which
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lead to small error bounds are discussed and a few examples are given. In Section 6, a
few comparisons are presented and the implications of these broad principles are briefly
discussed.

3 Nominal Error

Focusing on the first term of (2.4), the nominal or mean squared prediction error (MSPE)
is given by [34],

E
{
f(x)− f̂ϑ(x)

}2

= Ψθ(x,x)−
(

h(x)′ Ψθ(x,X)
)( 0 H(X)

′

H(X) Ψθ(X,X)

)−1(
h(x)

Ψθ(X,x)

)
.

(3.1)

Note that throughout this section, the unknown parameters are taken at their true values.
This is not an assumption per se, but instead a consequence of the error decomposition
(2.1). The error due to estimating the parameters is considered separately. In line with
intuition, increasing the number of data points always reduces the nominal error. The proof
of Proposition 3.1 is provided in Appendix A.

Proposition 3.1. If f ∼ GP (h(·)′β,Ψθ(·, ·)), for fixed, known regression functions h(·)
and X1 ⊆ X2, then MSPE2 ≤ MSPE1, where MSPE1 and MSPE2 denote the MSPE of the
BLUPs based on X1 and X2, respectively.

Notably, this result states that the expected squared prediction error is always reduced
by the addition of data. Certainly, for a particular combination of GP draw f and new
design location(s), or for a mis-specified model, the actual squared prediction error at a
location of interest could in fact be increased by the addition of data.

Consider controlling the inner part of the bound on the nominal error given by the first
term of (2.4). The MSPE in the inner part of the nominal error is given by (3.1). Applying
partitioned matrix inverse results, (3.1) can be rewritten as

E
{
f(x)− f̂ϑ(x)

}2

= Ψθ(x,x)−Ψθ(x,X)Ψθ(X,X)−1Ψθ(X,x)

+
(
h(x)−H(X)′Ψθ(X,X)−1Ψθ(X,x)

)′ (
H(X)′Ψθ(X,X)−1H(X)

)−1

×
(
h(x)−H(X)′Ψθ(X,X)−1Ψθ(X,x)

)
.

(3.2)

Initially, the uppermost terms in (3.2), which provide the MSPE for a model with mean zero
or no regression functions, are bounded. We make use of the below theorem which bounds
the uppermost terms of the MSPE (3.2) in terms of local bounds. The proof of Theorem
3.1 is provided in Appendix B.

Theorem 3.1. If Ai, i = 1, . . . , n is a covering of Ω in the sense that Ω ⊆ ∪ni=1Ai, Ψθ is
a positive definite function with Ψθ(x,x) = σ2 for all x ∈ Ω, and xi ∈ Ai for xi ∈ X, then

sup
x∈Ω

Ψθ(x,x)−Ψθ(x,X)Ψθ(X,X)−1Ψθ(X,x)

≤ 1

k

(
σ2 −min

i
inf

x∈Ai

Ψθ(xi,x)

)(
2k − σ2 + min

i
inf

x∈Ai

Ψθ(xi,x)

)
,
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where k = n supu,v∈Ω Ψθ(u,v).

While Theorem 3.1 only assumes Ψθ is a positive definite function with Ψθ(x,x) =
σ2, we examine special two cases of particular interest. The first covers many situations
where stationarity is assumed, while the second considers a model of non-stationarity in
correlation, adapted from [3]. We will label these cases respectively as the Stationary Model
and Non-Stationary Model. While the considered model of non-stationarity is certainly not
all inclusive, it forms a quality approximation in many practical situations. In the context
of this model of non-stationarity, the correlation consists of more rapidly and more slowly
decaying components with their weights differing across the input space. Below, ϕ(·) is
taken to be a decreasing function of its non-negative argument.

3.1 Stationary Model

Suppose Ψθ(u,v) = σ2ϕ(‖Θ(u−v)‖2). Theorem 3.1 can be used to write the overall bound
on the uppermost terms of the MSPE (3.2) in terms of a Voronoi covering [2] of Ω with
respect to a Mahalanobis-like distance [28] dΘ(u,v) = ‖Θ(u− v)‖2 as

σ2

k

(
1− ϕ

(
max
i

sup
x∈Vi(Θ)

dΘ(xi,x)

))(
2k − 1 + ϕ

(
max
i

sup
x∈Vi(Θ)

dΘ(xi,x)

))
, (3.3)

where Vi(Θ) = {x ∈ Ω: dΘ(x,xi) ≤ dΘ(x,xj)∀j 6= i} and k = nϕ(0).
Note that

max
i

sup
x∈Vi(Θ)

dΘ(xi,x) = sup
x∈Ω

min
i

dΘ(xi,x), (3.4)

is the fill distance with respect to the distance dΘ. So, the supremum of the MSPE over
possible inputs, for a GP model with mean zero, can be controlled by demanding that the
(potentially) non-spherical fill distance (3.4) is small. Further, the upper bound (3.3) is
minimized if it is achieved uniformly for i = 1, . . . , n. Importantly, a uniform bound on the
terms (3.3) is achieved by an experimental design X for which all the supx∈Vi(Θ) dΘ(xi,x)
are the same. That is, all the Voronoi cells have the same maximum distance with respect
to dΘ from their data point to their edge.

3.2 Non-Stationary Model

Suppose Ψθ(u,v) = σ2 (ω1(u)ω1(v)ϕ(‖Θ1(u− v)‖2) + ω2(u)ω2(v)ϕ(‖Θ2(u− v)‖2)). For
the Non-Stationary Model, assume ω1(·), ω2(·) ≥ 0 have Lipschitz continuous derivatives on
Ω, ω2

1(·)+ω2
2(·) = 1, Θ1,Θ2 are non-singular, and λmax(Θ′1Ξ

′
2Ξ2Θ1) < 1, where Ξ2 = Θ−1

2 .
The final assumption can be interpreted as ϕ(‖Θ2(· − ·)‖2) is narrower than ϕ(‖Θ1(· −
·)‖2). Throughout, we use the notation λmax(·) and λmin(·) for the maximum and minimum
eigenvalues of their (diagonalizable) arguments. Consider the covering of Ω, V ∗i = Vi(Θ1)∪
Vi(Θ2), i = 1, . . . , n. Note that Vi(Θ1) and Vi(Θ2) often do not differ strongly. For
example, if Θ2 = cΘ1, then Vi(Θ1) = Vi(Θ2).

Here, take a version of the upper bound in Theorem 3.1 given by inserting a slightly

reduced argument into the decreasing for y ≥ 0 function g(y) = σ2

k (1−y)(2k−1+y). First,
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note that

inf
x∈V ∗i

{ω1(xi)ω1(x)ϕ(‖Θ1(xi − x)‖2) + ω2(xi)ω2(x)ϕ(‖Θ2(xi − x)‖2)}

≥ inf
x∈V ∗i

{
ω1(xi)ω1(x)ϕ

(
sup

x∈V ∗i
dΘ1(xi,x)

)
+ ω2(xi)ω2(x)ϕ

(
sup

x∈V ∗i
dΘ2

(xi,x)

)}
.

(3.5)

The Lipschitz derivatives of ω1(·), ω2(·) and Taylor’s theorem [32] imply ω1(x) = ω1(xi) +
R1(x,xi) and ω2(x) = ω2(xi)+R2(x,xi), where |R1(x,xi)| ≤ k1‖xi−x‖2 and |R2(x,xi)| ≤
k2‖xi − x‖2. The bound (3.5) can, in turn, be bounded below as

ω2
1(xi)ϕ

(
sup

x∈V ∗i
dΘ1

(xi,x)

)
+ ω2

2(xi)ϕ

(
sup

x∈V ∗i
dΘ2

(xi,x)

)
− ϕ(0)(k1 + k2) max

i
sup

x∈V ∗i
‖xi − x‖2,

(3.6)

where for tractability the final term in (3.6) is bounded uniformly across the design space.
Next, consider an experimental design for which the bounds (3.6) are uniform over i. One
might expect that regions of the design space with less weight on the global, long range,
correlation ϕ(‖Θ1(·−·)‖2) and more weight on the local, short range, correlation ϕ(‖Θ2(·−
·)‖2) would require more closely spaced design points, and vice versa. Roughly speaking
this expectation holds true.

Consider two design points xi and xj along with corresponding (union of ) Voronoi cell
sizes supx∈V ∗i dΘ1

(xi,x), supx∈V ∗i dΘ2
(xi,x), supx∈V ∗j dΘ1

(xj ,x), and supx∈V ∗j dΘ2
(xj ,x).

Suppose that the points in the input space near xi have more weight on the global, long
range, correlation than the points in the input space near xj and the points in the input
space near xj have more weight on the local, short range, correlation than the points in the
input space near xi, in the sense that

(−1)k−1ωk(xi)
2

(
ϕ

(
sup

x∈V ∗i
dΘ1(xi,x)

)
− ϕ

(
sup

x∈V ∗i
dΘ2(xi,x)

))

≥ (−1)k−1ωk(xj)
2

(
ϕ

(
sup

x∈V ∗j
dΘ1

(xj ,x)

)
− ϕ

(
sup

x∈V ∗j
dΘ2

(xj ,x)

))
,

(3.7)

for k = 1, 2. The (−1)k−1 terms just mean that the direction of inequality depends on k.
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Uniformity of the bounds (3.6) along with ω2
1(·) + ω2

2(·) = 1 implies

ω1(xi)
2

(
ϕ

(
sup

x∈V ∗i
dΘ1

(xi,x)

)
− ϕ

(
sup

x∈V ∗i
dΘ2

(xi,x)

))

− ω1(xj)
2

(
ϕ

(
sup

x∈V ∗j
dΘ1

(xj ,x)

)
− ϕ

(
sup

x∈V ∗j
dΘ2

(xj ,x)

))

= ϕ

(
sup

x∈V ∗j
dΘ2(xj ,x)

)
− ϕ

(
sup

x∈V ∗i
dΘ2(xi,x)

)
and

ω2(xj)
2

(
ϕ

(
sup

x∈V ∗j
dΘ1

(xj ,x)

)
− ϕ

(
sup

x∈V ∗j
dΘ2

(xj ,x)

))

− ω2(xi)
2

(
ϕ

(
sup

x∈V ∗i
dΘ1

(xi,x)

)
− ϕ

(
sup

x∈V ∗i
dΘ2

(xi,x)

))

= ϕ

(
sup

x∈V ∗j
dΘ1(xj ,x)

)
− ϕ

(
sup

x∈V ∗i
dΘ1(xi,x)

)
.

(3.8)

Combining (3.7) with (3.8) gives

sup
x∈V ∗j

dΘ1
(xj ,x) ≤ sup

x∈V ∗i
dΘ1

(xi,x) and sup
x∈V ∗j

dΘ2
(xj ,x) ≤ sup

x∈V ∗i
dΘ2

(xi,x),

since ϕ is a decreasing function of its non-negative argument. That is, a uniform bound on
(3.6) is achieved by an experimental design X which has smaller (union of ) Voronoi cells,
with respect to either dΘ1 or dΘ2 , in regions with more emphasis on the local, more quickly
decaying, correlation and less emphasis on the global, more slowly decaying, correlation.
Note that the global (k = 1) and local (k = 2) emphases at xi are given concretely by

ωk(xi)
2

(
ϕ

(
sup

x∈V ∗i
dΘ1

(xi,x)

)
− ϕ

(
sup

x∈V ∗i
dΘ2

(xi,x)

))
k = 1, 2.

The assumption that ω1, ω2 have Lipschitz continuous derivatives on Ω, while not overly
restrictive in most practical situations, is not necessary, in principle. Without this assump-
tion, the bilinear form on the right-hand side of (3.5) can be bounded below via one of several
reverses of the Cauchy-Schwarz inequality [11]. Many of these results provide a lower bound
for (3.5) in terms of a geometric mean across x and xi of terms similar to (3.6), without
the terms involving the Lipschitz constants, and in turn more complex development for
the supremum of the uppermost terms of the MSPE (3.2). Balancing simplicity and broad
applicability, these type of results are not pursued here.

3.3 Regression Functions

Subsections 3.1 (Stationary Model) and 3.2 (Non-Stationary Model) relate to the uppermost
terms in equation (3.2), which without further development provides the MSPE for a model
with mean zero. Now, we consider the lowermost terms in (3.2), which are relevant for
Gaussian process models with a mean or non-null regression component. The lowermost
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terms in (3.2) can be bounded above as(
h(x)−H(X)

′
Ψθ(X,X)−1Ψθ(X,x)

)′ (
H(X)

′
Ψθ(X,X)−1H(X)

)−1

×
(
h(x)−H(X)

′
Ψθ(X,X)−1Ψθ(X,x)

)
≤
∥∥h(x)−H(X)

′
Ψθ(X,X)−1Ψθ(X,x)

∥∥2

2

/
λmin

(
H(X)

′
Ψθ(X,X)−1H(X)

)
≤ n sup

u,v∈Ω
Ψθ(u,v)

∥∥h(x)−H(X)′Ψθ(X,X)−1Ψθ(X,x)
∥∥2

2

/
λmin (H(X)′H(X)) .

(3.9)

The first inequality is true because a′B−1a ≤ λmax(B−1)‖a‖22 and λmax(B−1) = 1/λmin(B)
and the second inequality is true because λmin(A′B−1A) ≥ λmin(A′A)/λmax(B) and as
implication (B.2) of Gershgorin’s theorem [41]. Note that the term n supu,v∈Ω Ψθ(u,v)
does not depend on the experimental design.

The components of the squared Euclidean norm
∥∥h(x)−H(X)′Ψθ(X,X)−1Ψθ(X,x)

∥∥2

2
are squared errors for an interpolator of the regression functions. Intuitively, we might
expect these squared interpolation errors to behave in a manner similar to the MSPE for
the Gaussian process model with mean zero. In fact, it has been shown above that if the
regression functions are draws from a Gaussian process with mean zero and a covariance
structure as described in Subsections 3.1 and 3.2, then the expectation of these squared
errors can be controlled through the experimental design as described above. That is, an
experimental design which gives low nominal error in the mean zero case will also make the

term
∥∥h(x)−H(X)′Ψθ(X,X)−1Ψθ(X,x)

∥∥2

2
small.

Alternatively, a reproducing kernel Hilbert space (RKHS) [1, 43] may be defined as the
completion of the function space spanned by {Ψθ(xi, ·) : xi ∈ Ω} with respect to the inner
product 〈

∑
i aiΨθ(xi, ·),

∑
j bjΨθ(yj , ·)〉 =

∑
i,j aibjΨθ(xi,yj). Many commonly selected

regression functions, for example constant, linear, polynomial, and spline, will also lie in the
RKHSs induced by many of the common covariance functions. For example, the Gaussian
kernel induces an RKHS of functions with infinitely many continuous derivatives and Matérn
kernels induce RKHSs of functions with a fixed number of continuous derivatives. If the
selected regression functions lie in the RKHS induced by the chosen covariance function,
then deterministic RKHS interpolation error bounds as a decreasing function of the fill
distance, such as Theorem 5.1 in [18], can be applied. Another alternative would be to
choose as regression functions covariance function (half) evaluations {Ψθ(xi, ·) : i ∈ I} at a
well-distributed set of centers I. These regression functions are capable of approximating a
broad range of mean functions and have the appealing feature that the lowermost term in
the bound (3.2) is then identically zero.

The eigenvalue λmin (H(X)′H(X)) has approximation

λmin (H(X)′H(X)) = λmin

(
n∑
i=1

h(xi)h(xi)
′

)
≈ nλmin

(∫
h(y)h(y)′dF (y)

)
= ns1,

where F denotes the large sample distribution of the input locations X, s1 ≥ 0, and
s1 > 0 unless h(y)′a = 0 with probability 1 with respect to the large sample distribu-
tion F for some a 6= 0. The (approximate) term s1 = λmin

(∫
h(y)h(y)′dF (y)

)
in the

denominator of (3.9) indicates that (at least for regression functions which do not make
h(x) −H(X)′Ψθ(X,X)−1Ψθ(X,x) ≡ 0), the design properties implied by the mean zero
development in Subsections 3.1 and 3.2 need to be balanced with traditional experimen-
tal design properties. Two common scenarios are of particular interest. First, consider a
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constant regression function, a mean parameter. In this situation, s1 = 1 irrespective of
experimental design. Second, consider linear regression functions in each dimension in addi-
tion to the constant. If each linear function is expressed on the same scale, s1 will be large
for an experimental design with points far from µ =

∫
ydF (y) the average design value,

and whose orientations xi − µ emphasize each basis vector in an orthonormal basis of Rd
equally. For the common situation where Ω = [0, 1]d, s1 will be maximized for a design
with equal numbers of points in each of the corners of [0, 1]d. So, high-quality experimental
designs for Gaussian process models with linear regression mean components will balance
the fill distance-based criteria described in Subsections 3.1 and 3.2 with the push of design
points to the “corners” of Ω. Similarly, high-quality experimental designs for Gaussian pro-
cess models with quadratic regression mean components will balance the fill distance-based
criteria described in Subsections 3.1 and 3.2 with the push of design points to the edges and
middle of the design space.

Example high quality 23 run experimental designs for the nominal situations described
in Subsections 3.1 (Stationary Model), 3.2 (Non-Stationary Model), and the Stationary
Model along with linear regression functions are illustrated in the left, middle, and right
panels, respectively, of Figure 1. For each case, ϕ(d) = exp{−d2}. For the Non-Stationary
Model example, ω1(u)2 = 1 − ‖u‖2/2, ω2(u)2 = ‖u‖2/2, Θ1 = 1 · I2, Θ2 = 10 · I2, and
σ2 = 1, while for the Stationary Model along with linear regression functions example
Θ = 2 · I2 and σ2 = 1. As expected, in the first panel, illustrating the stationary situation,
the design points lie near a triangular lattice (subject to edge effects). Similarly, in the
second panel, illustrating the non-stationary correlation situation, the design points in the
upper right, where the shorter range, more quickly decaying, correlation is emphasized, are
more dense than in the lower left, where the longer range, more slowly decaying, correlation
is emphasized. Further, in the third panel, illustrating the impact of regression functions,
the design points balance fill distance and a push towards the corners of the input space.

Finding designs which minimize (or nearly minimize) the error bounds is challenging.
Here, we adopted a homotopy continuation [12] approach, which slowly transitions from an
easier objective function to a more difficult objective function. Note that the respective tar-
get objectives for the stationary, non-stationary, and stationary with regression functions sit-
uations are given by minimizing equation (3.3), maximizing equation (3.6), and minimizing
the sum of equations (3.3) and (3.9). For the stationary situation, the optimization routine
was initialized at a triangular lattice, crudely scaled for small fill distance. The objective
function is then taken as (1 − δ) meani supx∈Vi(Θ) dΘ(xi,x) + δmaxi supx∈Vi(Θ) dΘ(xi,x)
for δ ∈ [0, 1]. Initially, the optimization is performed for δ = 0, then δ = 1/K, then
δ = 2/K,and so on, up to δ = K/K = 1, for a moderately large number K. Notice that the
target objective function is optimized when δ = 1.

For both the non-stationary and stationary with regression functions situations, the
objective function transition occurs both from mean to minimum/maximum and from sta-
tionary to non-stationary or with regression functions. For convenience and without loss
of generality, suppose one is minimizing the maximum of local bounds. Let Qδ(xi) denote
an objective function local to data point xi, which is continuous as a function of δ and
converges to the target local objective function as δ → 1. The objective function is then
taken as (1− δ) meaniQδ(xi) + δmaxiQδ(xi), and is solved repeatedly for a sequence of δ

9
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Figure 1: Left Panel: Nominal error design for stationary correlation. Middle Panel:
Nominal error design for the Case 2 model of non-stationary correlation with ϕ(d) =
exp{−d2}, ω1(u)2 = 1 − ‖u‖2/2, ω2(u)2 = ‖u‖2/2, Θ1 = 1 · I2, Θ2 = 10 · I2. Right
Panel: Nominal error design for stationary correlation and a linear regression function for
each dimension.

going from 0 to 1. For the non-stationary case (with minus signs to express as minization),

Qδ(xi) =− ω2
δ (xi)ϕ

(
sup

x∈V ∗i
dΘ1

(xi,x)

)
− (1− ω2

δ (xi))ϕ

(
sup

x∈V ∗i
dΘ2

(xi,x)

)
+ ϕ(0)(k1 + k2) max

i
sup

x∈V ∗i
‖xi − x‖2,

with ωδ(x) = (1− δ) + δ
√

1− ‖x‖22/2 and Lipschitz constants k1 = k2 = 1/2, while for the
non-null regression functions case,

Qδ(xi) =
1

n

(
1− ϕ

(
sup

x∈Vi(Θ)

dΘ(xi,x)

))(
2n− 1 + ϕ

(
sup

x∈Vi(Θ)

dΘ(xi,x)

))

+ δn sup
x∈Vi

∥∥h(x)−H(X)′Ψθ(X,X)−1Ψθ(X,x)
∥∥2

2

/
λmin (H(X)′H(X)) .

Nelder-Mead black box optimization along with penalties to enforce input space constraints
was used throughout [32].

It should be noted that the approach to bounding the MSPE which was used above is
not the only approach available. One possibility is to formulate the function approximation
problem as n numeric integration problems [44], then apply numeric integration results [31]
to provide upper bounds on the integrated MSPE in terms of the star discrepancy of the
point set X,

D∗(X) = sup
J=

∏d
k=1[0,uk)

∣∣∣∣#{xi ∈ X : J ∩ Ω}
n

− vol J ∩ Ω

vol Ω

∣∣∣∣ ,
the supremum of differences between the proportion of points in a rooted rectangle and
the proportion that are supposed to be in the rectangle under uniform measure. The fill
distance can in fact be bounded above in terms of star discrepancy. It is conceivable that
these type of results could be extended to the situation of non-stationarity by considering
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discrepancy with respect to a more general measure. However, this line of development is
not pursued here. We provide the below theorem as an indication of the type of results which
are attainable. A proof of Theorem 3.2 and related development is provided in Appendix
C.

Theorem 3.2. If f ∼ GP(0,Ψ(·, ·)), Ω = [0, 1]d, then we have bounds on the integrated
mean squared prediction error

E‖f − f̂‖2L2([0,1]d) ≤
∞∑

j=n+1

λj +D∗(X)2
n∑
j=1

EV (ϕif)2,

under the condition that ϕif has finite expected squared variation in the sense of Hardy
and Kraus V (ϕif) [31], where Ψ(·, ·) has eigenvalue, eigenfunction decomposition Ψ(·, ·) =∑∞
i=1 λiϕi(·)ϕi(·).

A similar bound can be developed in terms of the modulus of continuity [31] of ϕif . See
Appendix C for details.

4 Numeric Error

In Section 3, it has been shown that increasing the number of data points will decrease
the nominal error. On the other hand, the numeric error can become arbitrarily large by
the addition of new data sites. Here, we develop bounds on the numeric error in terms of
properties of the experimental design by adapting and extending results in [15, 43, 18].

The numeric accuracy of Gaussian process emulation depends on the accuracy of float-
ing point matrix manipulations. Floating point numbers are the rounded versions that
computers perform calculations with as opposed to the targeted numbers. Commonly, com-
puter and software have 15 digits of accuracy meaning that ‖x̃− x‖2/‖x‖2 ≤ 10−15, where
x denotes the actual value and x̃ denotes the value that the computer stores. We state
a few typical assumptions on computer and software floating point accuracy and provide
the following proposition relating numeric accuracy to eigenvalues of Ψθ(X,X). Below,
κ(·) = λmax(·)/λmin(·) denotes the condition number of its (diagonalizable) argument. The
proof of Proposition 4.1 is provided in Appendix D.

Assumption 4.1. Take κ(Ψθ(X,X)) = r/δ for r < 1 and

‖h(x)− h̃(x)‖2 ≤ δ‖h(x)‖2, ‖f(X)− f̃(X)‖2 ≤ δ‖f(X)‖2, ‖hj(X)− h̃j(X)‖2 ≤ δ‖hj(X)‖2,
‖Ψθ(X,X)− Ψ̃θ(X,X)‖2 ≤ δ‖Ψθ(X,X)‖2, and ‖Ψθ(x,X)− Ψ̃θ(x,X)‖2 ≤ δ‖Ψθ(x,X)‖2.

Proposition 4.1. Under Assumption 4.1, the Gaussian process BLUP (2.5) has numeric

error
∣∣∣f̂ϑ(x)− f̃ϑ(x)

∣∣∣, for arbitrary parameter vector ϑ =
(
β′ θ′

)′
, bounded above by

δ‖h(x)‖2‖β‖2 +
2δ

1− r
‖Ψθ(x,X)‖2

‖f(X)‖2 + ‖β‖2

√√√√ p∑
j=1

‖hj(X)‖22

 g(X,Ψθ), (4.1)

where

g(X,Ψθ) =
κ(Ψθ(X,X)) + 1

λmin(Ψθ(X,X))
.
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For experimental designs which are not too small and have reasonable parameter es-
timation properties, ‖β̂‖2 will be of a similar magnitude to ‖β‖2. Further, the terms
‖Ψθ(x,X)‖2, ‖f(X)‖2, and ‖hj(X)‖2 are Monte Carlo approximations to

√
n‖Ψθ(x, ·)‖L2(F ),√

n‖f(·)‖L2(F ), and
√
n‖hj(·)‖L2(F ), respectively, with respect to the large sample distri-

bution of the experimental design F . That is, the terms in the bound (4.1), aside from
g(X,Ψθ), influence the numeric accuracy only weakly and vanishingly, and the bound de-
pends on the experimental design primarily through g(X,Ψθ). The implication of Gersh-
gorin’s theorem [41] in (B.2) implies g(X,Ψθ) can be bounded in terms of the minimum
eigenvalue of Ψθ(X,X) as

g(X,Ψθ) ≤ 1

λmin(Ψθ(X,X))

(
n supu,v∈Ω Ψθ(u,v)

λmin(Ψθ(X,X))
+ 1

)
. (4.2)

We adapt and generalize results from [43] in the theorem below providing a lower bound
for λmin(Ψθ(X,X)) and thereby an upper bound for (4.2). The proof of Theorem 4.1 is
provided in Appendix E. First, a definition of the Fourier transform is provided.

Definition 4.1. For f ∈ L1(Rd) define the Fourier transform [36]

f̂(ω) = (2π)−d/2
∫
Rd

f(x)e−iω
′xdx.

Theorem 4.1. Suppose Φ is a positive definite, translation invariant kernel with Fourier
transform Φ̂ ∈ L1(Rd). Then,

n∑
j=1

n∑
k=1

αjαkΦ(xj − xk) ≥ Υc∗/q(Θ)(0)

n∑
j=1

α2
j

(
1− Γ2(d/2 + 1)π

18

(
q(Θ)

qj(Θ)

)(
12

c∗

)d+1
)
,

for c∗ > 0, where

ΥM (0) ≡ lim
t→0

ΥM (t) =
Φ̂∗(M)

Γ(d/2 + 1)

(
M

23/2

)d
, Φ̂∗(M) = inf

‖ω‖2≤2M
Φ̂(ω)

for M > 0, and the respective local and global separation distances with respect to the
Mahalanobis-like distance dΘ, Θ non-singular are given by

qj(Θ) =
1

2
min

k=1,...,n, k 6=j
dΘ(xj ,xk) and q(Θ) = min

j
qj(Θ).

This result is now applied to the Stationary Model and Non-Stationary Model (Subsec-
tions 3.1 and 3.2, respectively).
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4.1 Stationary Model

Here,

λmin(Ψθ(X,X)) = min
‖a‖2=1

∑
i,j

aiajΨθ(xi,xj)

= σ2 min
‖a‖2=1

∑
i,j

aiajϕ(‖Θ(xi − xj)‖2)

= σ2 min
‖a‖2=1

∑
i,j

aiajϕ(‖x∗i − x∗j‖2)

= σ2 min
‖a‖2=1

∑
i,j

aiajΦ(x∗i − x∗j )

≥ σ2 min
‖a‖2=1

n∑
i=1

a2
i `i(Θ),

(4.3)

where Φ(x∗ − y∗) = ϕ(‖x∗ − y∗‖2) and

`i(Θ) = Υc∗/q(Θ)(0)

(
1− Γ2(d/2 + 1)π

18

(
q(Θ)

qi(Θ)

)(
12

c∗

)d+1
)
. (4.4)

The lower bound (4.3) is maximized for `i(Θ) constant over i and as large as possible. This
implies qi(Θ) = q(Θ) for all i. Now, the lower bound depends on

Υc∗/q(Θ)(0) =
Φ̂∗(c∗/q(Θ))

Γ(d/2 + 1)

(
c∗/q(Θ)

23/2

)d
, (4.5)

which, for sufficiently small q(Θ), is an increasing function of q(Θ) that approaches zero as
q(Θ) approaches zero. That is, in the stationary situation, numeric accuracy is preserved
for designs which are well-separated.

4.2 Non-Stationary Model

Here, assume additionally that Θ2 = aΘ1 for some a > 1. Slightly, coarsen the bounds by
replacing ΥM (0) with its monotone decreasing in M lower bound Υ̃0

M = infm∈[r∗,M ] Υm(0),

r∗ = c∗/maxx,y∈Ω dΘ1(x,y). Let ˜̀
i denote the coarsened version of (4.4). Then,

λmin(Ψθ(X,X)) = min
‖a‖2=1

∑
i,j

aiajΨθ(xi,xj)

= σ2 min
‖a‖2=1

∑
i,j

aiaj (ω1(xi)ω1(xj)ϕ(‖Θ1(xi − xj)‖2) + ω2(xi)ω2(xj)ϕ(‖Θ2(xi − xj)‖2))

≥ σ2 min
‖a‖2=1

n∑
i

a2
i

(
ω1(xi)

2 ˜̀
i(Θ1) + ω2(xi)

2 ˜̀
i(Θ2)

)
,

(4.6)

where Φ̂ is the Fourier transform of Φ defined by Φ(x∗ − y∗) = ϕ(‖x∗ − y∗‖2) in (4.4) and
(4.5). The lower bound (4.6) is maximized for ω1(xi)

2 ˜̀
i(Θ1) +ω2(xi)

2 ˜̀
i(Θ2) constant over

i and as large as possible.
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Consider two design points xi and xj and suppose that the points in the input space
near xi have more weight on the global, long range, correlation than the points in the input
space near xj and the points in the input space near xj have more weight on the local,
short range, correlation than the points in the input space near xi, in the sense that

ω1(xi)
2(˜̀

i(Θ2)− ˜̀
i(Θ1)) ≥ ω1(xj)

2(˜̀
j(Θ2)− ˜̀

j(Θ1)),

ω2(xi)
2(˜̀

i(Θ2)− ˜̀
i(Θ1)) ≤ ω2(xj)

2(˜̀
j(Θ2)− ˜̀

j(Θ1)).
(4.7)

Here, we consider the situation where qi(Θ1) and qi(Θ2) are small across i, the situation
where a bound on the numeric error is most relevant. For q(Θ1) and q(Θ2) sufficiently
small, Υ̃0

c∗/q(Θ) is strictly increasing in q. Further, the assumption Θ2 = aΘ1 for some

a > 1 implies q(Θ1)/qi(Θ1) = q(Θ2)/qi(Θ2) and q(Θ2) > q(Θ1). Together, these facts
imply ˜̀

i(Θ2) > ˜̀
i(Θ1). Uniformity of the bounds (4.6) along with ω1(·)2 +ω2(·)2 = 1 gives

ω1(xi)
2(˜̀

i(Θ1)− ˜̀
i(Θ2))− ω1(xj)

2(˜̀
j(Θ1)− ˜̀

j(Θ2)) = ˜̀
j(Θ2)− ˜̀

i(Θ2),

ω2(xj)
2(˜̀

j(Θ1)− ˜̀
j(Θ2))− ω2(xi)

2(˜̀
i(Θ1)− ˜̀

i(Θ2)) = ˜̀
j(Θ1)− ˜̀

i(Θ1).
(4.8)

Combining (4.7) and (4.8) with the fact that ˜̀
i(Θ) is an increasing function of qi(Θ) for

small qi(Θ) gives

qj(Θ1) < qi(Θ1) and qj(Θ2) < qi(Θ2).

That is, a uniform bound on (4.6) is achieved by an experimental design X which has smaller
separation distance, with respect to either dΘ1

or dΘ2
, in regions with more emphasis on

the local, more quickly decaying, correlation and less emphasis on the global, more slowly
decaying, correlation. Note that in the numeric accuracy context, the global and local
emphases, for small qi(Θ1) and qi(Θ2), at xi are given concretely by ω1(xi)

2(˜̀
i(Θ2) −

˜̀
i(Θ1)) and ω2(xi)

2(˜̀
i(Θ2)− ˜̀

i(Θ1)), respectively.
Example high quality 23 run experimental designs for the numeric situations described

in Subsection 4.1 (Stationary Model) and Subsection 4.2 (Non-Stationary Model) are il-
lustrated in the left and right panels, respectively, of Figure 2. For the Stationary Model
example, ϕ(d) = exp{−d2}, the so-called Gaussian correlation function. For the Non-
Stationary Model example, ϕ(d) is Wendland’s kernel with k = 10 [43], ω1(u)2 = 1−‖u‖22/2,
ω2(u)2 = ‖u‖22/2, Θ1 = 0.1 ·I2, and Θ2 = 1 ·I2. For both cases, σ2 = 1. As expected, in the
first panel, illustrating the stationary situation, the design points lie near a triangular lattice
(subject to edge effects), similar to, but expanded towards the edges of the design space rel-
ative to, the nominal design. Similarly, in the second panel, illustrating the non-stationary
correlation situation, the design points in the upper right-hand corner, where the shorter
range, more quickly decaying, correlation is emphasized, are more dense than in the lower
left-hand corner, where the longer range, more slowly decaying, correlation is emphasized.
While the provided bounds hold for all c∗ > 0, the actual value of the bounds depends on

the selected value of c∗. Here, we take c∗ = 1.1× 12
(

18
πΓ2(d/2+1)

)−1/(d+1)

. Similarly to the

nominal examples, the optimization routine was initialized at a triangular lattice, scaled to
maximize the separation distance. For the stationary situation, a homotopy continuation
[12] approach was used, slowly transitioning from maximizing the mean of the local bounds
`i(Θ) to maximizing the minimum of the local bounds. For the non-stationary situation, a
homotopy continuation approach with two stages was used, first transitioning from ω1, ω2

constant to varying over the input space, then transitioning from maximizing the mean of
the local bounds ω1(xi)

2 ˜̀
i(Θ1) + ω2(xi)

2 ˜̀
i(Θ2) to maximizing the minimum of the local

bounds. Nelder-Mead [32] black box optimization was used throughout.
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Figure 2: Left Panel: Numeric error design for stationary correlation. Right Panel: Nu-
meric error design for the Case 2 model of non-stationary correlation with ϕ(d) Wendland’s
kernel with k = 10, ω1(u)2 = 1− ‖u‖22/2, ω2(u)2 = ‖u‖22/2, Θ1 = 0.1 · I2, and Θ2 = 1 · I2

5 Parameter Estimation

Consider maximum likelihood estimation and let E denote the expectation conditional on
X and f(X). Then, for n not too small,

E
{
f̂ϑ∗(x)− f̂ϑ̂(x)

}2

≈ ∂f̂ϑ∗(x)

∂ϑ′∗
Var ϑ̂

∂f̂ϑ∗(x)

∂ϑ∗

≈ ∂f̂ϑ∗(x)

∂ϑ′∗
I(ϑ∗)

−1 ∂f̂ϑ∗(x)

∂ϑ∗
,

(5.1)

where I(ϑ∗) = E ∂`
∂ϑ∗

∂`
∂ϑ′∗

denotes the information matrix and ` denotes the log-likelihood of

the data f(X). Roughly, a high-quality design for parameter estimation will have
∥∥∥∂f̂ϑ∗ (x)

∂ϑ∗

∥∥∥
2

small and λmin(I(ϑ∗)) large. Arrange the vector of parameters as ϑ =
(
β′ θ′

)′
and

θ =
(
σ2 %′

)′
. Throughout the parameter estimation section, take

Ψθ(u,v) = σ2Φ%(u,v). (5.2)

Expressions for the components of the right-hand side of (5.1) are provided in Lemma F.1
in Appendix F. These expressions are in turn used to develop the approximate upper bound
for the mean squared prediction error given in Theorem 5.1. Proofs of Lemma F.1 and
Theorem 5.1 are provided in Appendix F.

Theorem 5.1. Suppose f(·) ∼ GP(h(·)′β, σ2Φ%(·, ·)) for fixed, known regression functions
h(·) and positive definite Φ%(·, ·). Further, assume that the input locations X have large

sample distribution F . Let ϑ̂ denote the maximum likelihood estimator of the unknown
parameters ϑ =

(
β′ σ2 %′

)′
. Then, an approximate upper bound for

E
{
f̂ϑ∗(x)− f̂ϑ̂(x)

}2

is given by

sup
u,v∈Ω

Φ%(u,v)

(
‖c1‖22
s1

+
2 supu,v∈Ω Φ%(u,v)‖c3‖22

s2

)
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where

c1 = h(x)−H(X)
′
Ψθ(X,X)−1Ψθ(X,x),

c3 =

(
∂Ψθ(x,X)

∂%
− (Id ⊗Ψθ(x,X)Ψθ(X,X)−1)

∂Ψθ(X,X)

∂%

)
Ψθ(X,X)−1δ(X),

s1 = λmin

(∫
h(y)h(y)′dF (y)

)
, and s2 is implicitly defined in (F.15). In particular, s1 > 0

unless h(y)′a = 0 with probability 1 with respect to F for some a 6= 0 and s2 > 0 unless
∂Φ%(x,y)
∂%′ a = Φ%(x,y)b with probability 1 with respect to F × F for some (a′ b)

′ 6= 0.

This upper bound is approximate in the sense that for a sequence of experimental designs
for which the maximum likelihood estimates converge, the probability that the upper bound
is violated by more than ε > 0 goes to zero.

The term ‖c3‖22 admits the simple upper bound∥∥∥∥∂Ψθ(x,X)

∂%
− (Iu ⊗Ψθ(x,X)Ψθ(X,X)−1)

∂Ψθ(X,X)

∂%

∥∥∥∥2

2

‖δ(X)‖22
/
λmin (Ψθ(X,X))

2
.

The term ‖δ(X)‖2 = ‖f(X)−H(X)β‖2 is an approximation to
√
n
∥∥f(·)− h(·)′β

∥∥
L2(F )

with respect to the large sample distribution of the data F . Further, λmin (Ψθ(X,X)) is
well-controlled by experimental designs which maintain high-quality numeric properties.
Similarly, both h(x)−H(X)′Ψθ(X,X)−1Ψθ(X,x) and
∂Ψθ(x,X)

∂% − (Iu ⊗ Ψθ(x,X)Ψθ(X,X)−1)∂Ψθ(X,X)
∂% are nominal interpolation errors, respec-

tively for the regression functions and (the transpose of) the Jacobian of Ψθ(X,x) with
respect to the correlation parameters. As discussed towards the end of Section 3, we expect
the norms of both of these interpolation errors to behave in a manner similar to Gaussian
process or RKHS interpolation. That is, the norms of both of these terms will be small for
experimental designs which are high-quality with respect to nominal error.

As discussed towards the end of Section 3, s1 will be large for sets of input locations
which have good traditional experimental design properties. The term s2 will be large for

experimental designs whose system of differences {xi − xj} make
∂Φ%(xi,xj)

∂% far from zero,

balanced with respect to a basis of Rdim %, and not collinear with Φ%(xi,xj). Consider as
an example, underlying kernels which depend only on the difference between their arguments
and are radially decreasing in the sense that Φ(δ1) ≥ Φ(δ2) if ‖δ1‖2 ≤ ‖δ2‖2 with Φ%(·) =

Φ(diag{%}(·)). For radially decreasing underlying kernels Φ, the term
∂Φ%(xi−xj)

∂% is near zero

if xi−xj is near zero or far from zero, while the term
∂Φ%(xi−xj)

∂% has negative components if

the difference xi−xj is slightly beyond the location where Φ(diag{θ}(·)) is decreasing most

rapidly along each coordinate axis, since
∂Φ%(xi−xj)

∂% = diag{xi−xj}∇Φ(diag{%}(xi−xj)).

In this situation,
∂Φ%(xi−xj)

∂% has negative components and Φ%(xi − xj) is a non-negative

weighting function, so they could only be (nearly) collinear for experimental designs which

make almost all
∂Φ%(xi−xj)

∂% near zero. Figure 3 shows Φ%(·) and both components of
∂Φ%(·)
∂%

for Φ(d) = exp{−d′d} and % =
(
1 2

)′
. Pairs of points xi, xj whose difference lies

slightly beyond the location where Φ(diag{θ}(·)) is decreasing most rapidly along each

coordinate axis have potential to increase eigenvalues of
∑
ij
∂Φ%(xi−xj)

∂%
∂Φ%(xi−xj)

∂%′ . Further,

λmin

(∑
ij
∂Φ%(xi−xj)

∂%
∂Φ%(xi−xj)

∂%′

)
is large for sets of differences {xi−xj} which balance the
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Figure 3: Left Panel: Φ%(·). Middle and Right Panels: Components of
∂Φ%(·)
∂% .

differences along coordinate axes in the sense that

nk max
d

{
∂Φ%(d)

∂%

}2

k

≈ nl max
d

{
∂Φ%(d)

∂%

}2

l

,

for k, l = 1, . . . , d where {·}k denotes element k of its argument and nk denotes the number
of differences (of length slightly beyond the location where Φ(diag{θ}(·)) is decreasing most
rapidly) along coordinate axis k. In the example described above and illustrated in Figure

3, {∇Φ(diag{%}(d))′diag{d}}21 ≈ (0.8)2 and {∇Φ(diag{%}(d))′diag{d}}22 ≈ (0.4)2, respec-

tively at
(
±1 0

)′
and

(
0 ±0.5

)′
, so an experimental design solely targeting the eigenvalues

of
∑
ij
∂Φ%(xi−xj)

∂%
∂Φ%(xi−xj)

∂%′ would have roughly n1 differences xi − xj =
(
±1 0

)′
and n2

differences xi − xj =
(
0 ±0.5

)′
where

n1(0.8)2 = n2(0.4)2 =⇒ n1 =
n2

4
.

Consider another example with Φ(d) = exp{−d′d}, Φ%(·) = Φ(diag{%}(·)), and % =

( 3 3 )
′
. An experimental design maximizing λmin

(∑
ij
∂Φ%(xi−xj)

∂%
∂Φ%(xi−xj)

∂%′

)
is shown in

the left panel of Figure 4. There are 11 points at the middle location and 3 at each peripheral
location. In particular, this design is not space-filling. A high quality experimental design
with respect to the upper-bound in Theorem 5.1 is shown in the right panel of Figure 4.

The influence of λmin

(∑
ij
∂Φ%(xi−xj)

∂%
∂Φ%(xi−xj)

∂%′

)
is substantially less than the influence of

the space-filling properties controlling the nominal and numeric error.

6 Discussion

Broadly applicable and rigorously justified principles of experimental design for Gaussian
process emulation of deterministic computer experiments have been developed. The space-
filling properties “small fill distance” and “large separation distance”, potentially with re-
spect to an input space rescaling to accommodate varying rates of correlation decay de-
pending on displacement orientation, are only weakly conflicting and ensure well-controlled
nominal, numeric, and parameter estimation error. The presence of non-stationarity in
correlation requires a higher density of input locations in regions with more emphasis on
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Figure 4: Left Panel: Experimental design maximizing λmin(C′θCθ) and minimizing
κ(C′θCθ) for Φ(d) = exp{−d′d} and % = ( 3 3 )

′
. Note that there are 11 points at

the middle location and 3 at each peripheral location. Right Panel: Parameter estimation
error design with respect to the upper-bound in Theorem 5.1.

the local, more quickly decaying, correlation, relative to input locations in regions with
more emphasis on the global, more slowly decaying, correlation. Designs of this type can
potentially be constructed via homotopy continuation techniques [12]. Alternatively, tech-
niques in [8] or [24] may be useful for constructing high-quality experimental designs in
a non-stationary setting. The inclusion of regression functions results in high quality de-
signs which balance traditional experimental design properties, targeting the variance of
regression function coeffecients, with space-filling properties, while consideration of error in
parameter estimation results in high quality designs slightly favoring pairs of input locations
having particular lengths and orientations of their displacement vector. The influence on
the accuracy of emulation of regression functions and error in parameter estimation appears
to be substantially less than the influence of the space-filling properties “small fill distance”
and “large separation distance”.

The results presented in Theorems 3.1, 4.1, 5.1, and their subsequent discussions are
generally well-aligned with distance-based design criteria, such as minimax (minimize the
maximum distance from inputs of interest to the design) and maximin (maximize the mini-
mum distance between design points). On their surface, the results appear to be somewhat
less well-aligned with designs which emphasize low-dimensional projections, such as Latin
hypercube [29], orthogonal array-based Latin hypercube [38], or MaxPro [25]. On the other
hand, when some inputs to the unknown target function are inert, having little or no impact
on the response, the presented results indicate that the corresponding correlation parame-
ters (here described as inverse bandwidths) are near zero and high-quality designs should
have space-fillingness in the relevant lower-dimensional projections. Throughout this work,
it has been tacitly assumed that a relatively accurate a priori guess for the correlation pa-
rameters is available. Explicitly handling of a priori uncertainty in correlation parameters
could form an important extension of this work. In the case where one expects several inert
variables, a design with good projection properties might reasonably be expected.

As a brief exploration, several of the proposed high-quality designs were compared to
one another and a spectrum of designs from the literature, in stationary, non-stationary,
non-trivial regression functions, and inert inputs settings. In particular, five examples were
considered, with results presented in Table 1. The Stationary Example follows the setting
illustrated in the left panel of Figure 1, Ψ(u,v) = exp{−‖u − v‖22}. The Non-Stationary
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Nominal Example follows the non-stationary example illustrated in the middle panel of Fig-
ure 1, ϕ(d) = exp{−d2}, ω1(u)2 = 1− ‖u‖2/2, ω2(u)2 = ‖u‖2/2, Θ1 = 1 · I2, Θ2 = 10 · I2.
The Regression Functions Example follows the setting illustrated in the right panel of Fig-
ure 1, Ψ(u,v) = exp{−‖u − v‖22} and a linear regression function for each dimension.
The Non-Stationary Numeric Example follows the non-stationary example illustrated in
the right panel of Figure 2, ϕ(d) Wendland’s kernel with k = 10, ω1(u)2 = 1 − ‖u‖2/2,
ω2(u)2 = ‖u‖2/2, Θ1 = 0.1 · I2, Θ2 = 1 · I2. The x2 Inert Example follows a setting where
the unknown function does not depend on x2, Ψ(u,v) = exp{−(u1 − v2)2}. Compared
designs include Nominal, Nominal Non-Stationary, and Regression shown respectively in
the left, middle, and right panels of Figure 1, Numeric and Numeric Non-Stationary shown
respectively in the left and right panels of Figure 2, and Parameter Estimation shown in the
right panel of Figure 4. Designs from the literature include random uniform design points,
random Latin hypercube, maximin Latin hypercube, S-optimal [26] Latin hypercube, and
MaxPro [25]. Comparison was performed by generating 500 draws from the corresponding
Gaussian process with mean zero, then for each generating a random uniform design, a
random Latin hypercube, a maximin Latin hypercube, an S-optimal Latin hypercube, and
a MaxPro design as well as a 100 point random uniform testing set. For each Gaussian
process draw emulators were built, for both fixed, known correlation parameters and es-
timated parameters, predictions generated on the testing set, and the maximum squared
prediction error computed. The R packages SLHD [9], MaxPro [5], mlegp [10], and CGP [4]
were used for generating Latin hypercube and MaxPro designs, fitting stationary Gaussian
process emulators with estimated correlation parameters, and fitting composite Gaussian
process emulators with estimated correlation parameters, respectively. All computation was
performed in R 3.1.1 (R Core Team, Vienna, Austria).

Results are summarized in Table 1. Broadly, the proposed high-quality designs, as well
as the MaxPro designs, performed well across situations, while random uniform design
points, random Latin hypercube, maximin Latin hypercube, S-optimal Latin hypercube
performed relatively poorly. There are a handful of deviations from and nuances to this basic
pattern. First, designs which are tailor-built for non-stationarity can outperform space-
filling designs (nominal and numeric/minimax and maximin), but do not always outperform
them in practice when nominal, numeric, and potentially parameter estimation sources
of inaccuracy come into play simultaneously. In particular, the influence of parameter
estimation in the context of the composite Gaussian process is not clear, and could be a
fruitful arena for future research. Second, in a situation where inert variables are expected,
designs with very poor projection properties (such as the stationary numeric design) should
be avoided. Poor performance of designs which emphasize low-dimensional projections is
almost certainly partly due to the fact that no low-order functional ANOVA is present in
the Gaussian process in the first four examples. However, lower dimensional projections of
the distance-based criteria may be the relevant quantities. On the other hand, the results
in Theorem 3.2 indicate that the nominal and parameter estimation sources of inaccuracy
can be controlled via the star discrepancy.

This work has a several limitations. All results are in terms of controlling error rates
with upper bounds. Actual error rates (of the nominal, numeric, or parameter estimation
variety) could be substantially less in a particular situation. In a specific practical context,
a sequential approach to data collection may be appropriate, see for example [23] or [16].
Further, no consideration is given to numeric error in parameter estimation and this error
could be substantial, especially if the design is poor with respect to information about the
parameters. However, given the secondary importance of experimental design properties
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Table 1: Comparisons of expected maximum squared error of emulators based on nominal,
numeric, parameter estimation, random uniform, random Latin hypercube, maximin Latin
hypercube, S-optimal Latin hypercube, and MaxPro designs, potentially along with nomi-
nal non-stationary, regression, and numeric non-stationary, for several situations, stationary
covariance, linear regression functions, non-stationary covariance, and inert prediction vari-
ables.

Stationary Example Non-Stationary Nominal Example
Design True Parameters Estimated Parameters Design True Parameters Estimated Parameters

Nominal 2.54×10−9 7.86×10−6 Nominal 5.02 5.65
Numeric 4.48×10−10 2.65×10−6 Numeric 7.27 6.47

Parameter Estimation 5.56×10−10 3.15×10−6 Parameter Estimation 6.29 5.58
Random Uniform 4.67×10−6 1.20×10−1 Random Uniform 9.13 15.24

Random LH 1.81×10−6 7.98×10−5 Random LH 8.79 11.90
Maximin LH 5.06×10−8 2.78×10−5 Maximin LH 7.13 9.12

S-Optimal LH 5.50×10−8 2.89×10−5 S-Optimal LH 7.69 9.23
MaxPro 8.67×10−8 4.58×10−5 MaxPro 6.37 6.69

Nominal Non-Stationary 4.57 10.04

Regression Functions Example Non-Stationary Numeric Example
Design True Parameters Estimated Parameters Design True Parameters Estimated Parameters

Nominal 5.13×10−2 1.25×10−2 Nominal 7.13×10−1 3.52
Numeric 8.52×10−3 4.56×10−3 Numeric 1.07 3.54

Parameter Estimation 1.41×10−2 2.48×10−2 Parameter Estimation 1.19 2.17
Random Uniform 9.00×10−1 1.19 Random Uniform 6.80 1.63×101

Random LH 4.38×10−1 8.33×10−2 Random LH 5.05 1.08×101

Maximin LH 1.75×10−1 3.69×10−2 Maximin LH 2.66 7.30
S-Optimal LH 2.10×10−1 3.24×10−1 S-Optimal LH 3.17 7.93

MaxPro 1.20×10−1 2.85×10−2 MaxPro 1.38 3.53
Regression 1.43×10−2 6.35×10−2 Numeric Non-Stationary 9.30×10−1 1.87

x2 Inert Example
Design True Parameters Estimated Parameters

Nominal 3.34×10−19 2.23×10−5

Numeric 3.78×10−19 7.18
Parameter Estimation 2.56×10−19 4.83×10−6

Random Uniform 1.10×10−11 3.20
Random LH 4.23×10−18 1.71×10−3

Maximin LH 1.33×10−18 2.67×10−7

S-Optimal LH 3.66×10−18 2.37×10−5

MaxPro 1.81×10−19 2.30×10−8

specific to parameter estimation, this source of error is not expected to strongly impact
the error in interpolation. Also, the discussed model for non-stationarity is capable of
approximating only non-constant correlation decay across the input space and, in particular,
does not allow non-constant underlying variability in the Gaussian process model. However,
non-constant underlying variability can be modeled as Ψ(u,v) = σ(u)σ(v)Φ(u−v) and this
non-stationary model behaves intuitively, with regions having more underlying variability
requiring a higher density of points than regions having relatively less variability. The
results follow in a manner similar to non-stationarity in correlation, although they are in
fact simpler, and this development is omitted due to space constraints. Lastly, the impact
on interpolator accuracy of a number important modeling and design considerations, such
as low-order functional ANOVAs, orthogonality of inputs [7], or mixed categorical and
quantitative input variables [33] has not been examined.

A Proof of Proposition 3.1

Express MSPE2 from equation (3.1) in terms of partitioned matrices,

MSPE2 = Ψθ(x,x)−
(
a′1 a′2

)(B11 B12

B21 B22

)−1(
a1

a2

)
, (A.1)
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where

a1 =

(
h(x)

Ψθ(X1,x)

)
, a2 = Ψθ(X∗2,x), B11 =

(
0 H(X1)′

H(X1) Ψθ(X1,X1)

)
,

B12 =

(
H(X∗2)′

Ψθ(X1,X
∗
2)

)
, B21 = B′12, B22 = Ψθ(X∗2,X

∗
2), and X∗2 = X2 \X1.

Applying partitioned matrix inverse results [19] and simplifying (A.1) gives,

MSPE2 = MSPE1 − (a2 −B21B
−1
11 a1)′ B−1

22·1 (a2 −B21B
−1
11 a1),

where B22·1 = B22 − B21B
−1
11 B12. Now, the proof is completed by showing that B22·1 is

non-negative definite (B22·1 � 0). Once again applying partitioned matrix inverse results
gives,

B22·1 = Ψθ(X∗2,X
∗
2)−

(
H(X∗2) Ψθ(X∗2,X1)

)( 0 H(X1)′

H(X1) Ψθ(X1,X1)

)−1(
H(X∗2)′

Ψθ(X1,X
∗
2)

)
= Ψθ(X∗2,X

∗
2)−Ψθ(X∗2,X1)Ψθ(X1,X1)−1Ψθ(X1,X

∗
2)

+
(
H(X∗2)−Ψθ(X∗2,X1)Ψθ(X1,X1)−1H(X1)

) (
H(X1)′Ψθ(X1,X1)−1H(X1)

)−1

×
(
H(X∗2)−Ψθ(X∗2,X1)Ψθ(X1,X1)−1H(X1)

)′
The first two terms are non-negative definite because they represent a conditional variance.
The third term is non-negative definite since H(X1)′Ψθ(X1,X1)

−1
H(X1) � 0 .

B Proof of Theorem 3.1

For xi ∈ X, an arbitrary set A ⊂ Ω, and positive definite function Ψθ, the uppermost terms
in (3.2) can be locally bounded as

sup
x∈A

Ψθ(x,x)−Ψθ(x,X)Ψθ(X,X)−1Ψθ(X,x)

= sup
x∈A

Ψθ(x,x)−
[
(Ψθ(x,X)−Ψθ(xi,X)) Ψθ(X,X)−1 (Ψθ(X,x)−Ψθ(X,xi))

+2Ψθ(xi,X)Ψθ(X,X)−1Ψθ(X,x)−Ψθ(xi,X)Ψθ(X,X)−1Ψθ(X,xi)
]

= sup
x∈A

Ψθ(x,x)− 2Ψθ(xi,x) + Ψθ(xi,xi)

− (Ψθ(x,X)−Ψθ(xi,X)) Ψθ(X,X)−1 (Ψθ(X,x)−Ψθ(X,xi))

≤ sup
x∈A

Ψθ(x,x)− 2Ψθ(xi,x) + Ψθ(xi,xi)−
‖Ψθ(X,x)−Ψθ(X,xi)‖22

λmax(Ψθ(X,X))

≤ sup
x∈A

Ψθ(x,x)− 2Ψθ(xi,x) + Ψθ(xi,xi)−
(Ψθ(xi,x)−Ψθ(xi,xi))

2

n supu,v∈Ω Ψθ(u,v)
,

(B.1)

where the first equality follows by cancellation of terms, the second equality follows from
the fact that Ψθ(X,X)−1Ψθ(X,xi) equals the ith component of the n dimensional identity,
the first inequality follows from a′B−1a ≥ λmin(B−1)‖a‖22 and λmin(B−1) = 1/λmax(B),
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and the second inequality is true since a sum of squares ‖ · ‖22 is larger than any one of its
elements squared and Gershgorin’s theorem [41] implies

λmax(Ψθ(X,X)) ≤ max
j

n∑
i=1

Ψθ(xi,xj) ≤ n sup
u,v∈Ω

Ψθ(u,v). (B.2)

Then for Ψθ(x,x) = σ2 across x ∈ Ω, and k = n supu,v∈Ω Ψθ(u,v), the right-hand side of
(B.1) can be rewritten as

1

k
sup
x∈A

(
σ2 −Ψθ(xi,x)

) (
2k − σ2 + Ψθ(xi,x)

)
. (B.3)

Expression (B.3) is a concave down quadratic in Ψθ(xi,x) with axis of symmetry σ2 − k,
which is ≤ 0 for n ≥ 1. That is, (B.1) is bounded above by

1

k

(
σ2 − inf

x∈A
Ψθ(xi,x)

)(
2k − σ2 + inf

x∈A
Ψθ(xi,x)

)
.

If Ω ⊆ ∪ni=1Ai and xi ∈ Ai, then

sup
x∈Ω

Ψθ(x,x)−Ψθ(x,X)Ψθ(X,X)−1Ψθ(X,x)

≤ 1

k

(
σ2 −min

i
inf

x∈Ai

Ψθ(xi,x)

)(
2k − σ2 + min

i
inf

x∈Ai

Ψθ(xi,x)

)
.

C Proof of Theorem 3.2

If f ∼ GP(0,Ψ(·, ·)), then f can be represented as f =
∑∞
i=1〈f, ϕi〉ϕi, where 〈·, ·〉 is the

inner product in L2([0, 1]d), 〈f, ϕi〉
ind.∼ N (0, λi), and Ψ(·, ·) has eigenvalue, eigenfunction

decomposition Ψ(·, ·) =
∑∞
i=1 λiϕi(·)ϕi(·). Further, f̂(x) = Ψ(x,X)Ψ(X,X)−1f(X) min-

imizes the mean squared prediction error (MSPE) E
(
f(x)− f̂(x)

)2

over functions of the

data X, f(X). Consider another predictor based on the data

f̂∗(x) =

n∑
i=1

ûiϕi(x), ûi =
1

n

n∑
j=1

ϕi(xj)f(xj).

Then, the integrated MSPE of f̂ is bounded above by the integrated MSPE of f̂∗,

E‖f − f̂∗‖2L2([0,1]d) = E

∥∥∥∥∥
∞∑
i=1

〈f, ϕi〉ϕi(·)−
n∑
i=1

ûiϕi(·)

∥∥∥∥∥
2

L2([0,1]d)

=

∞∑
j=n+1

λj +

n∑
j=1

E

∫
[0,1]d

ϕi(x)f(x)dx− 1

n

n∑
j=1

ϕi(xj)f(xj)

2

.
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Respective Koksma-Hlawka and modulus of continuity bounds on the error rate for numeric
integration [31] give the bounds∣∣∣∣∣∣

∫
[0,1]d

ϕi(x)f(x)dx− 1

n

n∑
j=1

ϕi(xj)f(xj)

∣∣∣∣∣∣ ≤ V (ϕif)D∗(X),

∣∣∣∣∣∣
∫

[0,1]d
ϕi(x)f(x)dx− 1

n

n∑
j=1

ϕi(xj)f(xj)

∣∣∣∣∣∣ ≤ 4ω(ϕif,D
∗(X)1/d),

where V (·) denotes the total variation in the sense of Hardy and Kraus of f , D∗(X) denotes
the star discrepancy, and ω denotes the modulus of continuity [31].

D Proof of Proposition 4.1

We will make use of the following lemma on the accuracy of floating point matrix inversion
which is a combination of Lemmas 2.7.1 and 2.7.2 in [15].

Lemma D.1. Suppose Ax = b and Ãx̃ = b̃ with ‖A− Ã‖2 ≤ δ‖A‖2, ‖b− b̃‖2 ≤ δ‖b‖2,
and κ(A) = r/δ < 1/δ for some δ > 0. Then, Ã is non-singular,

‖x̃‖2
‖x‖2

≤ 1 + r

1− r
, and

‖x− x̃‖2
‖x‖2

≤ 2δ

1− r
κ(A),

where κ(A) = ‖A‖2‖A−1‖2.

Additionally, note that for (conformable) a, ã, b, and b̃,∣∣∣a′b− ã′b̃
∣∣∣ =

∣∣∣a′(b− b̃)− (ã− a)′b̃
∣∣∣

≤
∣∣∣a′(b− b̃)

∣∣∣+
∣∣∣(ã− a)′b̃

∣∣∣ ≤ ‖a‖2‖b− b̃‖2 + ‖a− ã‖2‖b̃‖2.
(D.1)

The inner portion of the numeric error in the second term in (2.4) can be bounded as follows.
Here, and throughout, A−1b and Ã−1b̃ denote the solutions to the linear systems Ax = b
and Ãx̃ = b̃, respectively, as opposed to the actual matrix multiplication. The hats on
parameter estimates are suppressed for simplicity. In fact, all the below results hold for an
arbitrary, fixed parameter or parameter estimate.∣∣∣f̂ϑ(x)− f̃ϑ(x)

∣∣∣
=

∣∣∣∣(h(x)− h̃(x)
)′
β −

(
Ψθ(x,X)Ψθ(X,X)−1H(X)− Ψ̃θ(x,X)Ψ̃θ(X,X)−1H̃(X)

)
β

+
(

Ψθ(x,X)Ψθ(X,X)−1f(X)− Ψ̃θ(x,X)Ψ̃θ(X,X)−1f̃(X)
)∣∣∣

≤ ‖h(x)− h̃(x)‖2‖β‖2 + |Ψθ(x,X)Ψθ(X,X)−1f(X)− Ψ̃θ(x,X)Ψ̃θ(X,X)−1f̃(X)|
+ ‖Ψθ(x,X)Ψθ(X,X)−1H(X)− Ψ̃θ(x,X)Ψ̃θ(X,X)−1H̃(X)‖2‖β‖2

= ‖h(x)− h̃(x)‖2‖β‖2 + |Ψθ(x,X)Ψθ(X,X)−1f(X)− Ψ̃θ(x,X)Ψ̃θ(X,X)−1f̃(X)|

+

√√√√ p∑
j=1

(
Ψθ(x,X)Ψθ(X,X)−1hj(X)− Ψ̃θ(x,X)Ψ̃θ(X,X)−1h̃j(X)

)2

‖β‖2,

(D.2)
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where hj(X) and h̃j(X) denote the jth regression function evaluated at X and its floating

point approximation, respectively. Let u = Ψθ(X,X)−1f(X), ũ = Ψ̃θ(X,X)−1f̃(X), vj =

Ψθ(X,X)−1hj(X), and ṽj = Ψ̃θ(X,X)−1h̃j(X). Then, (D.2) along with inequality (D.1)
implies∣∣∣f̂ϑ(x)− f̃ϑ(x)

∣∣∣
≤ ‖h(x)− h̃(x)‖2‖β‖2 + ‖Ψθ(x,X)‖2‖u− ũ‖2 + ‖Ψθ(x,X)− Ψ̃θ(x,X)‖2‖ũ‖2

+

√√√√ p∑
j=1

(
‖Ψθ(x,X)‖2‖vj − ṽj‖2 + ‖Ψθ(x,X)− Ψ̃θ(x,X)‖2‖ṽj‖2

)2

‖β‖2.

(D.3)

Under Assumption 4.1, Lemma D.1 can be applied to (D.3) to obtain∣∣∣f̂ϑ(x)− f̃ϑ(x)
∣∣∣

≤ δ‖h(x)‖2‖β‖2 + ‖Ψθ(x,X)‖2
2δ

1− r
κ(Ψθ(X,X))‖u‖2 + δ‖Ψθ(x,X)‖2

1 + r

1− r
‖u‖2

+

√√√√ p∑
j=1

(
‖Ψθ(x,X)‖2

2δ

1− r
κ(Ψθ(X,X))‖vj‖2 + δ‖Ψθ(x,X)‖2

1 + r

1− r
‖vj‖2

)2

‖β‖2.

Note that ‖u‖2 = ‖Ψθ(X,X)−1f(X)‖2 ≤ ‖Ψθ(X,X)−1‖2‖f(X)‖2 = ‖f(X)‖2/λmin(Ψθ(X,X)).
Similarly, ‖vj‖2 ≤ ‖hj(X)‖2/λmin(Ψθ(X,X)). Using these facts along with r < 1 and
grouping terms gives the proposition.

E Proof of Theorem 4.1

For a continuous, positive definite, translation invariant kernel Φ which has Fourier trans-
form Φ̂ ∈ L1(Rd),

n∑
j=1

n∑
k=1

αjαkΦ(xj − xk) = (2π)−d/2
n∑
j=1

n∑
k=1

αjαk

∫
Rd

eiω
′(xj−xk)Φ̂(ω)dω

= (2π)−d/2
∫
Rd

∣∣∣∣∣∣
n∑
j=1

αje
iω′xj

∣∣∣∣∣∣
2

Φ̂(ω)dω,

(E.1)

for α ∈ Rn, xi ∈ Rd. Representation (E.1) implies that a lower bound for
∑
j,k αjαkΦ(xj −

xk) is provided by
∑
j,k αjαkΥ(xj − xk), where Υ has Υ̂(ω) ≤ Φ̂(ω). Consider ΥM with

Υ̂M (ω) =
Φ̂∗(M)Γ(d/2 + 1)

2dMdπd/2
(χM ∗ χM )(ω),

where M > 0, Φ̂∗(M) = inf‖ω‖2≤2M Φ̂(ω), χM (ω) = 1 for ‖ω‖2 ≤M and 0 otherwise, and
∗ denotes the convolution operator

(f ∗ g)(x) =

∫
Rd

f(y)g(x− y)dy.
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For ‖ω‖2 > 2M , Υ̂M (ω) = 0 ≤ Φ̂(ω). On the other hand, for ‖ω‖2 ≤ 2M ,

Υ̂M (ω) =
Φ̂∗(M)Γ(d/2 + 1)

2dMdπd/2

∫
Rd

χM (t)χM (ω − t)dt

≤ Φ̂∗(M)Γ(d/2 + 1)

2dMdπd/2
vol B(0, 2M) = Φ̂∗(M) ≤ Φ̂(ω),

where B(0, 2M) = {‖ω−0‖2 ≤ 2M} denotes a ball of radius 2M centered at the origin. So,
Υ̂(ω) ≤ Φ̂(ω) for all ω ∈ Rd. The candidate Υ can be recovered from the inverse Fourier
transform (Υ̂M )∨

ΥM (t) =
Φ̂∗(M)Γ(d/2 + 1)

2dMdπd/2
(χM ∗ χM )∨(t)

=
Φ̂∗(M)Γ(d/2 + 1)

2dMdπd/2
(2π)d/2((χM )∨(t))2

=
Φ̂∗(M)Γ(d/2 + 1)

2d/2
‖t‖−d2 J2

d/2(M‖t‖2),

where Jν is a Bessel function of the first kind. A proof of the final equality is given as
Lemma 12.2 in [43]. Define ΥM (0) as

ΥM (0) ≡ lim
t→0

ΥM (t) =
Φ̂∗(M)

Γ(d/2 + 1)

(
M

23/2

)d
.

This limit follows from the Taylor series representation of the Bessel function [42].
Now, a lower bound on the quadratic form involving Υ is developed.

n∑
j=1

n∑
k=1

αjαkΥM (xj − xk) =

n∑
j=1

α2
jΥM (0) +

∑
j 6=k

αjαkΥM (xj − xk)

≥
n∑
j=1

α2
jΥM (0)−

∑
j 6=k

|αj ||αk|ΥM (xj − xk)

≥
n∑
j=1

α2
jΥM (0)− 1

2

∑
j 6=k

(α2
j + α2

k)ΥM (xj − xk)

=

n∑
j=1

α2
jΥM (0)−

n∑
j=1

α2
j

n∑
k=1, k 6=j

ΥM (xj − xk)

=

n∑
j=1

α2
j

ΥM (0)−
n∑

k=1, k 6=j

ΥM (xj − xk)

 .

(E.2)

Each
∑n
k=1, k 6=j |Υ(xj − xk)| can be bounded in terms of the separation distances

qj =
1

2
min

k=1,...,n, k 6=j
‖xj − xk‖2 and q = min

j
qj .

For m ∈ N, let

Ejm = {x ∈ Rd : mqj ≤ ‖xj − x‖2 < (m+ 1)qj}.
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Then, every xk, k 6= j is contained in exactly one Ejm. Further, every B(xk, q) is essentially
disjoint and completely contained in

{x ∈ Rd : mqj − q ≤ ‖xj − x‖2 < (m+ 1)qj + q}.

So, each Ejm can contain no more than

((m+ 1)qj + q)d − (mqj − q)d

qd
=

(
(m+ 1)qj

q
+ 1

)d
−
(
mqj
q
− 1

)d
data points. We now make use of the following lemma.

Lemma E.1. For d ∈ N and qj ≥ q > 0,(
(m+ 1)qj

q
+ 1

)d
−
(
mqj
q
− 1

)d
≤ (3qj/q)

dmd−1.

Proof. Take d = 1, then(
(m+ 1)qj

q
+ 1

)
−
(
mqj
q
− 1

)
= 2 + qj/q ≤ 3qj/q.

Now, assume the result is true for 1 ≤ d∗ < d. Let c = 3qj/q. Then,(
(m+ 1)qj

q
+ 1

)d−1

−
(
mqj
q
− 1

)d−1

≤ cd−1md−2

=⇒
(

(m+ 1)qj
q

+ 1

)d
−
(

(m+ 1)qj
q

+ 1

)(
mqj
q
− 1

)d−1

≤
(

(m+ 1)qj
q

+ 1

)
cd−1md−2

=⇒
(

(m+ 1)qj
q

+ 1

)d
−
(
mqj
q
− 1

)d
≤
(

(m+ 1)qj
q

+ 1

)
cd−1md−2 +

(
qj
q

+ 2

)(
mqj
q
− 1

)d−1

.

The proof is completed by showing that the right-hand side of the final inequality is bounded
above by cdmd−1. The right-hand side can be represented in terms of c as(

(m+ 1)c

3
+ 1

)
cd−1md−2 +

( c
3

+ 2
)(mc

3
− 1
)d−1

= cdmd−1

[
(m+ 1)

3m
+

1

mc
+

(
1

3
+

2

c

)(
1

3
− 1

mc

)d−1
]

≤ cdmd−1

[
1

3
+

1

3m
+

1

mc
+

(
1

3
− 1

mc

)d−1
]

≤ cdmd−1

[
1

3
+

1

3m
+

1

mc
+

1

3
− 1

mc

]
= cdmd−1

[
2

3
+

1

3m

]
≤ cdmd−1,

where the first inequality is true because 1/3 + 2/c ≤ 1 and the second inequality is true
because (1/3− 1/(mc))d−1 is a decreasing function of d ≥ 2.
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Lemma E.1 implies that each Ejm contains no more than (3qj/q)
dmd−1 points. Note

that on Ejm, Υ(xj − xk) is bounded above as

Υ(xj − xk) =
Φ̂∗(M)Γ(d/2 + 1)

2d/2
‖xj − xk‖−d2 J2

d/2(M‖xj − xk‖2)

≤ Φ̂∗(M)Γ(d/2 + 1)

2d/2
‖xj − xk‖−d2

2d+2

Mπ‖xj − xk‖

= ΥM (0)
Γ2(d/2 + 1)

π

(
4

M‖xj − xk‖2

)d+1

≤ ΥM (0)
Γ2(d/2 + 1)

π

(
4

Mmqj

)d+1

,

(E.3)

where the first inequality follows from the Bessel function bound provided in Lemma 3.3 of
[30]. Combining Lemma E.1 with (E.3) gives

n∑
k=1, k 6=j

Υ(xj − xk) ≤
∞∑
m=1

ΥM (0)
Γ2(d/2 + 1)

π

(
4

Mmqj

)d+1

(3qj/q)
dmd−1

= ΥM (0)
Γ2(d/2 + 1)π

18

(
q

qj

)(
12

Mq

)d+1

,

where the equality follows from the fact that
∑∞
m=1m

−2 = π2/6. Now, taking M = c∗/q
and referring back to (E.2), the quadratic form can be bounded as

n∑
j=1

n∑
k=1

αjαkΦ(xj − xk) ≥ Υc∗/q(0)

n∑
j=1

α2
j

(
1− Γ2(d/2 + 1)π

18

(
q

qj

)(
12

c∗

)d+1
)
.

The stated version of the theorem follows by applying the previous development to the
transformed space, v 7→ v∗ = Θv.

F Proof of Theorem 5.1

First, we develop expressions for the components of the approximate mean squared predic-
tion error in Lemma F.1 below.

Lemma F.1. If f ∼ GP (h(·)′β,Ψθ(·, ·)), for fixed, known regression functions h(·), and
Ψθ(·, ·) as defined in (5.2), then

∂f̂ϑ(x)

∂ϑ′
I(ϑ)−1 ∂f̂ϑ(x)

∂ϑ
= c′1I−1

11 c1 + c′3(I33 − I32I−1
22 I23)−1c3, (F.1)
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for x ∈ Rd where

c1 = h(x)−H(X)
′
Ψθ(X,X)−1Ψθ(X,x),

c3 =

(
∂Ψθ(x,X)

∂%
− (Id ⊗Ψθ(x,X)Ψθ(X,X)−1)

∂Ψθ(X,X)

∂%

)
Ψθ(X,X)−1δ(X),

I11 = H(X)′Ψθ(X,X)−1H(X),

I22 =
n

2σ4
,

I32 =
1

2σ4
C′θvec Φ%(X,X)−1,

I33 =
1

2σ4
C′θ(Φ%(X,X)−1 ⊗ Φ%(X,X)−1)Cθ,

Cθ =
∂(vec Ψθ(X,X))

∂%′
,

where δ(X) = f(X)−H(X)β.

Proof. Up to an additive constant, the log-likelihood is

` = −1

2
log det Ψθ(X,X)− 1

2
(f(X)−H(X)β)′Ψθ(X,X)−1(f(X)−H(X)β).

Throughout Appendix F, we will use matrix differentiation, see for example [27]. Then, the

vector of derivatives of the emulator with respect to the unknown parameter values ∂f̂ϑ(x)
∂ϑ

has block components

c1 =
∂f̂ϑ(x)

∂β
=

∂

∂β

{
h(x)

′
β + Ψθ(x,X)Ψθ(X,X)−1 (f(X)−H(X)β)

}
= h(x)−H(X)

′
Ψθ(X,X)−1Ψθ(X,x),

c2 =
∂f̂ϑ(x)

∂σ2
= 0.

Developing an expression for ∂f̂ϑ(x)
∂% is more complex and broken into a few parts. Let

δ(X) = f(X)−H(X)β. Then,

c3 =
∂f̂ϑ(x)

∂%
=

(
∂Ψθ(x,X)

∂%
Ψθ(X,X)−1 + (Id ⊗Ψθ(x,X))

∂Ψθ(X,X)−1

∂%

)
δ(X). (F.2)

Note that,

0 =
∂Ψθ(X,X)Ψθ(X,X)−1

∂%

=
∂Ψθ(X,X)

∂%
Ψθ(X,X)−1 + (Id ⊗Ψθ(X,X))

∂Ψθ(X,X)−1

∂%
.

So,

∂Ψθ(X,X)−1

∂%
= −(Id ⊗Ψθ(X,X)−1)

∂Ψθ(X,X)

∂%
Ψθ(X,X)−1 (F.3)
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Plugging (F.3) into equation (F.2) gives the third block component

c3 =
∂f̂ϑ(x)

∂%

=

(
∂Ψθ(x,X)

∂%
− (Id ⊗Ψθ(x,X)Ψθ(X,X)−1)

∂Ψθ(X,X)

∂%

)
Ψθ(X,X)−1δ(X).

Now, we develop an expression for I(ϑ∗). First,

∂`

∂β
= H(X)′Ψθ(X,X)−1(f(X)−H(X)β),

∂`

∂σ2
= − n

2σ2
+

1

2σ4
(f(X)−H(X)β)

′
Φ%(X,X)−1(f(X)−H(X)β).

The derivative of ` with respect to % can be broken into three parts via the chain rule,

∂`

∂%
=
∂(vec Ψθ(X,X))′

∂%

∂(vec Ψθ(X,X)−1)′

∂vec Ψθ(X,X)︸ ︷︷ ︸
A

∂`

∂vec Ψθ(X,X)−1︸ ︷︷ ︸
B

. (F.4)

Let

Cθ =
∂(vec Ψθ(X,X))

∂%′
. (F.5)

Parts A and B can be treated in turn. Consider part A. Similarly to (F.3),

0 =
∂(vec In)′

∂vec Ψθ(X,X)
=
∂(vec Ψθ(X,X)−1Ψθ(X,X))′

∂vec Ψθ(X,X)

=
∂(vec Ψθ(X,X)−1)′

∂vec Ψθ(X,X)
(Ψθ(X,X)⊗ In)

+
∂(vec Ψθ(X,X))′

∂vec Ψθ(X,X)
(In ⊗Ψθ(X,X)−1)

=⇒∂(vec Ψθ(X,X)−1)′

∂vec Ψθ(X,X)
= −(Ψθ(X,X)−1 ⊗Ψθ(X,X)−1).

(F.6)

Next, consider part B,

∂`

∂vec Ψθ(X,X)−1
=

1

2
[vec Ψθ(X,X)− (f(X)−H(X)β)⊗ (f(X)−H(X)β)] . (F.7)

Equations (F.5), (F.6), and (F.7), and can be plugged into equation (F.4) to give

∂`

∂%
= −1

2
C′θ(Ψθ(X,X)−1 ⊗Ψθ(X,X)−1) [vec Ψθ(X,X)− (f(X)−H(X)β)⊗ (f(X)−H(X)β)]

= −1

2
C′θ
[
vec Ψθ(X,X)−1 −Ψθ(X,X)−1δ(X)⊗Ψθ(X,X)−1δ(X)

]
.
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So, the information matrix has block components

I11 = I(β,β) = −E ∂2`

∂β∂β′
= H(X)′Ψθ(X,X)−1H(X),

I21 = I(σ2,β) = −E ∂2`

∂σ2∂β′
=

1

σ4
E(f(X)−H(X)β)′Φ%(X,X)−1H(X) = 0′,

I31 = I(%,β) = −E ∂2`

∂%∂β′

= C′θ
(
Ψθ(X,X)−1H(X)⊗Ψθ(X,X)−1E(f(X)−H(X)β)

)
= 0,

I22 = I(σ2, σ2) = −E ∂2`

∂σ2∂σ2

= − n

2σ4
+

1

σ6
E(f(X)−H(X)β)′Φ%(X,X)−1(f(X)−H(X)β)

= − n

2σ4
+

1

σ6
trace Φ%(X,X)−1σ2Φ%(X,X) =

n

2σ4
,

I32 = I(%, σ2) = −E ∂2`

∂%∂σ2

=
1

2
C′θE

(
− 1

σ4
vec Φ%(X,X)−1 +

2

σ6
Φ%(X,X)−1δ(X)⊗ Φ%(X,X)−1δ(X)

)
=

1

2
C′θ

(
− 1

σ4
vec Φ%(X,X)−1 +

2

σ4
vec Φ%(X,X)−1

)
=

1

2σ4
C′θvec Φ%(X,X)−1.

Developing a formula for I(%,%) is more complex and broken into parts.

I(%,%) = −E ∂2`

∂%∂%′

=
1

2
E
(
Id ⊗

[
(vec Ψθ(X,X)−1)′ − (δ(X)′Ψθ(X,X)−1 ⊗ δ(X)′Ψθ(X,X)−1)

]) ∂Cθ
∂%

+
1

2
E
(
∂(vec Ψθ(X,X)−1)′

∂%
− ∂(δ(X)′Ψθ(X,X)−1 ⊗ δ(X)′Ψθ(X,X)−1)

∂%

)
Cθ.

(F.8)

Note that the expectation of the first term in (F.8) is zero, since

E(δ(X)′Ψθ(X,X)−1 ⊗ δ(X)′Ψθ(X,X)−1)

= E
(
vec (Ψθ(X,X)−1δ(X)δ(X)′Ψθ(X,X)−1)

)′
= (vec Ψθ(X,X)−1)′.

So,

I(%,%) =
1

2

(
−C′θ(Ψθ(X,X)−1 ⊗Ψθ(X,X)−1)

−E
∂
(
vec (Ψθ(X,X)−1δ(X)δ(X)′Ψθ(X,X)−1)

)′
∂%

)
Cθ.

(F.9)

30



The expectation in (F.9) is

E
∂
(
vec (Ψθ(X,X)−1δ(X)δ(X)′Ψθ(X,X)−1)

)′
∂%

=
∂(vec (Ψθ(X,X)−1)′

∂%
(Eδ(X)δ(X)′Ψθ(X,X)−1 ⊗ In)

+
∂(vec (Ψθ(X,X)−1)′

∂%
(In ⊗ Eδ(X)δ(X)′Ψθ(X,X)−1)

= −2C′θ(Ψθ(X,X)−1 ⊗Ψθ(X,X)−1).

(F.10)

Plugging (F.10) into (F.9) gives

I33 = I(%,%) =
1

2
C′θ(Ψθ(X,X)−1 ⊗Ψθ(X,X)−1)Cθ.

Using partitioned matrix inverse results [19] and noting that c2, I21, I12, I31, and I13 are
matrices of zeros gives (F.1).

Now, the expressions in Lemma F.1 are used to prove Theorem 5.1. The first term on
the right-hand side of (F.1) can be bounded above as

c′1I−1
11 c1 = c′1

(
H(X)

′
Ψθ(X,X)−1H(X)

)−1
c1

≤ λmax(Ψθ(X,X))

λmin (H(X)′H(X))
‖c1‖22 ≤

n supu,v∈Ω Ψθ(u,v)

λmin (H(X)′H(X))
‖c1‖22 .

The eigenvalue λmin (H(X)′H(X)) has approximation

λmin (H(X)′H(X)) = λmin

(
n∑
i=1

h(xi)h(xi)
′

)
≈ nλmin

(∫
h(y)h(y)′dF (y)

)
= ns1,

(F.11)

where F denotes the large sample distribution of the input locations X, s1 ≥ 0, and s1 > 0
unless h(y)′a = 0 with probability 1 with respect to the large sample distribution F for
some a 6= 0. Giving approximate upper bound to the first term on the right-hand side of
(F.1)

c′1I−1
11 c1 ≤

supu,v∈Ω Ψθ(u,v)

s1
‖c1‖22 , (F.12)

where s1 is implicitly defined in (F.11) and the probability of the inequality being violated
by more than ε > 0 goes to zero as n→∞. The second term on the right-hand side of the
approximate parameter estimation error expression (F.1) has

c′3(I33 − I32I−1
22 I23)−1c3 ≤ ‖c3‖22

/
λmin

(
I33 − I32I−1

22 I23

)
. (F.13)

Note that

I33 − I32I−1
22 I23

=
1

2σ4
C′θ

((
Φ%(X,X)−1 ⊗ Φ%(X,X)−1

)
− 1

n

(
vec Φ%(X,X)−1

) (
vec Φ%(X,X)−1

)′)
Cθ.
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The matrix inside the quadratic form has eigenvector u1 = vec Φ%(X,X)/‖vec Φ%(X,X)‖2
with corresponding eigenvalue 0. So, the minimum eigenvalue of the above expression can
be bounded below by

1

2σ4
λmin (C′θ(In2 − u1u

′
1)Cθ)

× λ2

((
Φ%(X,X)−1 ⊗ Φ%(X,X)−1

)
− 1

n

(
vec Φ%(X,X)−1

) (
vec Φ%(X,X)−1

)′)
,

where λ2 (·) denotes the second smallest eigenvalue of its argument. By Weyl’s theorem
[21], the second smallest eigenvalue of the perturbed matrix can be bounded below by

λmin

((
Φ%(X,X)−1 ⊗ Φ%(X,X)−1

))
= 1/λmax (Φ%(X,X))

2 ≥ 1/(n sup
u,v∈Ω

Φ%(u,v))2.

(F.14)

Further,

C′θ(In2 − u1u
′
1)Cθ

= σ4

∑
i,j

∂Φ%(xi,xj)

∂%

∂Φ%(xi,xj)

∂%′

− 1

‖vec Φ%(X,X)‖22

∑
i,j

∂Φ%(xi,xj)

∂%
Φ%(xi,xj)

∑
i,j

∂Φ%(xi,xj)

∂%
Φ%(xi,xj)

′
≈ n2σ4

[∫
∂Φ%(x,y)

∂%

∂Φ%(x,y)

∂%′
dF × F (x,y)

− 1

‖Φ%‖2L2(F×F )

(∫
∂Φ%(x,y)

∂%
Φ%(x,y)dF × F (x,y)

)(∫
∂Φ%(x,y)

∂%
Φ%(x,y)dF × F (x,y)

)′]
� n2σ4s2,

(F.15)

where F × F denotes the product measure [6]. Applying a version of the Cauchy-Schwarz

inequality for random vectors in L2(F ×F ), provides s2 ≥ 0 and s2 > 0, unless
∂Φ%(x,y)
∂%′ a =

Φ%(x,y)b with probability 1 with respect to the large sample distribution F × F for some
(a′ b)

′ 6= 0 [39]. Combining the bounds in equations (F.13), (F.14), and (F.15), gives

c′3(I33 − I32I−1
22 I23)−1c3 ≤

2 supu,v∈Ω Φ%(u,v)2

s2
‖c3‖22, (F.16)

with s2 implicly defined in equation (F.15) and the probability of the inequality being
violated by more than ε > 0 going to zero as n→∞. Combining the approximate bounds
(F.12) and (F.16) gives the result.
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