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We develop general theory for finding locally optimal designs in
a class of single-covariate models under any differentiable optimality
criterion. Yang and Stufken [Ann. Statist. 40 (2012) 1665–1681] and
Dette and Schorning [Ann. Statist. 41 (2013) 1260–1267] gave com-
plete class results for optimal designs under such models. Based on
their results, saturated optimal designs exist; however, how to find
such designs has not been addressed. We develop tools to find sat-
urated optimal designs, and also prove their uniqueness under mild
conditions.

1. Introduction. We consider the problem of finding locally optimal de-
signs for a class of single-covariate models under differentiable optimality
criteria. In order to avoid intricacies caused by the discreteness of the prob-
lem, we will work with approximate designs (see Section 2). Because the
information matrix usually depends on the unknown parameters, we con-
sider locally optimal designs by plugging in values for the parameters in
the information matrix. This gives good designs when prior knowledge of
the parameters is available, and it also provides a benchmark for evaluating
other designs. For the sake of simplicity, we omit the word locally hereafter.

We provide general theoretical results that help to find saturated opti-
mal designs for many of the models for which previous results, such as in
Yang and Stufken (2012) and Dette and Schorning (2013), have established
so-called complete class results. While efficient numerical algorithms, even
without using the complete class results, can be developed to approximate
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optimal designs, theory provides unified results, both with respect to models
and optimality criteria, and offers insights that cannot be obtained from al-
gorithms. In some instances the theory enables us to find closed-form optimal
designs; moreover, it can be used to develop faster and better algorithms.
For example, because of the theory we can avoid having to discretize the
design space. We also use the theory to develop uniqueness results under
mild conditions, which cannot be obtained from an algorithm approach.

Our work is based on the complete class results given in a series of papers,
including most recently Yang and Stufken (2012) and Dette and Schorning
(2013). Based on their results, optimal designs can be found in a small class
of designs called the complete class, and in many cases, this complete class
only contains designs with at most d design points, where d is the number of
parameters. However, theory and tools to identify optimal designs for mul-
tiple optimality criteria within the complete class have not been developed.
So in Section 2, we will present theorems to find optimal designs in these
classes and prove their uniqueness. Section 3 applies the theorems to a va-
riety of different models including polynomial regression models, nonlinear
regression models and generalized linear models. The computational bene-
fits will be shown in Section 4. Finally, Section 5 gives a short discussion
about limitations of the approach. The technical proofs have been relegated
to the Appendix.

2. Locally optimal design. The models under consideration include poly-
nomial regression models, nonlinear regression models and generalized linear
models, with a univariate response y and a single covariate x which belongs
to the design space [L,U ] (L or U could be −∞ or ∞, resp., with [L,U ]
being half open or open). The unknown parameter is a d × 1 vector de-
noted as θ = (θ1, . . . , θd)

T . To be specific, for polynomial regression models
and nonlinear models θ is the unknown parameter in the mean response
η(x,θ) = E(y). We assume the variance to be constant unless otherwise
specified, and take its value to be 1 since it does not affect the optimal
design. For generalized linear models, θ is the unknown parameter in the
linear predictor η(x,θ) = h(E(y)), where h is the link function.

In approximate design context, a design ξ with at most q design points can
be written as ξ = {(xi, ωi)}

q
i=1, where xi ∈ [L,U ], ωi ≥ 0, i= 1, . . . , q, xi’s and

ωi’s are the design points and corresponding design weights, and
∑q

i=1ωi =
1. If the weight of a certain design point is positive, then that design point
is a support point of the design, and the number of support points is the
support size of the design.

Under the assumption of independent responses, the Fisher information
matrix for θ under design ξ can be written as n

∑q
i=1ωiMxi

(θ), where n
is the total sample size and Mxi

(θ) is the information matrix of a single
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observation at xi. Since n is only a multiplicative factor, we prefer using the
normalized information matrix, which is Mξ(θ) =

∑q
i=1ωiMxi

(θ).

An optimal design is a design that maximizes the Fisher information
matrix Mξ(θ) under a certain criterion Φ. In this paper, we focus on a
general class of differentiable optimality criteria. Specifically, let NND(d) be

the set of all d× d nonnegative definite matrices, PD(d) be the set of all
d× d positive definite matrices, and Φ be any function defined on NND(d)
that satisfies Assumption A below [see Pukelsheim (1993), page 115].

Assumption A. Suppose the optimality criterion Φ is a nonnegative,
nonconstant function defined on NND(d) such that:

(1) it is concave, that is, Φ(αM1+(1−α)M2)≥ αΦ(M1)+(1−α)Φ(M2),

where α ∈ (0,1),M1,M2 ∈ NND(d);
(2) it is isotonic, that is, Φ(M1)≥Φ(M2) if M1 ≥M2 under the Loewner

ordering, M1,M2 ∈ NND(d);

(3) it is smooth on PD(d). By smooth, we mean the function is differen-
tiable and the first-order partial derivatives are continuous [for matrix differ-

entiation, Φ is to be interpreted as a function of the d(d+1)/2-dimensional
vector of elements in the upper triangle of M].

A design ξ∗ is Φ-optimal if it maximizes Φ(Mξ(θ)) with respect to ξ.

This class of optimality criteria is very broad and includes, for example,
the well-known Φp-optimality criteria with −∞< p ≤ 1, which are defined
as follows. Suppose we are interested in estimating a smooth function of θ,

say g(θ) :Rd → R
v, where v ≤ d and K(θ) = (∂g(θ)/∂θ)T has full column

rank v. It can be estimated as long as the columns of K(θ) are contained in
the range of Mξ(θ). The information matrix for g(θ) under design ξ is then

defined as Iξ(θ) = (K(θ)TMξ(θ)
−
K(θ))−1, where Mξ(θ)

− is a generalized
inverse if Mξ(θ) is singular. Then a Φp-optimal design for g(θ) is defined to

maximize

Φ(Mξ(θ)) = Φp(Iξ(θ)) =

(

1

v
trace(Ipξ(θ))

)1/p

, p ∈ (−∞,1].

However, E-optimality where g(θ) = θ and p = −∞, is not included here
since generally it does not satisfy the smoothness condition on PD(d); a

short discussion about this can be found in Section 5. In addition to the Φp-
optimality criteria, our general Φ-optimality criteria also include compound

optimality criteria, criteria for evaluating a mixture of information matrices
obtained from nested models [see Pukelsheim (1993), Chapter 11] and so on.
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2.1. Preliminary results. While finding optimal designs is an optimiza-
tion problem, the dimensionality of the optimization problem is unknown
since the number of design points, q, is unknown. However, it has been ob-
served in the literature that optimal designs are often saturated designs. This
phenomenon was first discovered in de la Garza (1954), and was generalized
to a class of models in Yang and Stufken (2009, 2012), Yang (2010) as well
as in Dette and Melas (2011) and Dette and Schorning (2013), where the
latter two papers provided a different perspective on this phenomenon using
Chebyshev systems. Based on these results, optimal designs can be found in
a small complete class of designs, denoted as Ξ, and in many cases Ξ only
consists of designs with at most d design points. Here, we briefly introduce a
fundamental theorem from Yang and Stufken (2012) for our later use. Using
the techniques there, we decompose the Fisher information matrix in the
following way (an example is given at the end of Section 2.1):

Mξ(θ) =P(θ)Cξ(θ)P(θ)T , Cξ(θ) =

(

q
∑

i=1

ωiC(θ, ci)

)

,(2.1)

where C(θ, c) is a d× d symmetric matrix,

C(θ, c) =











Ψ11(θ, c)

Ψ21(θ, c) Ψ22(θ, c)
...

...
. . .

Ψd1(θ, c) Ψd2(θ, c) · · · Ψdd(θ, c)











,

P(θ) is a d× d nonsingular matrix that only depends on θ, and c ∈ [A,B]
is a smooth monotonic transformation of x that depends on θ. For the
sake of simplicity, we drop θ from the notation of matrix C(θ, c) and its
elements hereafter [in fact, in many cases a nice decomposition can be found
so that C(θ, c) only depends on θ through c, and θ becomes redundant in
the notation].

For some d1, 1 ≤ d1 < d, define C22(c) as the lower d1 × d1 principal
submatrix of C(c), that is,

C22(c) =







Ψd−d1+1,d−d1+1(c) · · · Ψd−d1+1,d(c)
...

. . .
...

Ψd,d−d1+1(c) · · · Ψdd(c)






.

Choose a maximal set of linearly independent nonconstant functions from
the first d−d1 columns of the matrixC(c), let the number of functions in this
set be k−1, and rename them as Ψℓ(c), ℓ= 1, . . . , k−1. Let Ψk(c) =C22(c),
and define the functions fℓ,t(c), 1≤ t≤ ℓ≤ k, to be
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





































f1,1 =Ψ′
1

f2,1 =Ψ′
2 f2,2 =

(

f2,1
f1,1

)′

f3,1 =Ψ′
3 f3,2 =

(

f3,1
f1,1

)′

f3,3 =

(

f3,2
f2,2

)′

f4,1 =Ψ′
4 f4,2 =

(

f4,1
f1,1

)′

f4,3 =

(

f4,2
f2,2

)′

f4,4 =

(

f4,3
f3,3

)′

...
...

...
...

. . .

fk,1 =Ψ′
k fk,2 =

(

fk,1
f1,1

)′

fk,3 =

(

fk,2
f2,2

)′

fk,4 =

(

fk,3

f3,3

)′

· · · fk,k =

(

fk,k−1

fk−1,k−1

)′







































,

where the entries in the last row are matrices, and the derivatives of matrices
are element-wise derivatives (assuming all derivatives exist). Define matrix

F(c) =
∏k

ℓ=1 fℓ,ℓ(c). Then the following theorem due to Yang and Stufken
(2012) is available [see also Dette and Schorning (2013), Theorem 3.1].

Theorem 2.1 [Yang and Stufken (2012)]. For a regression model with
a single covariate, suppose that either F(c) or −F(c) is positive definite for
all c ∈ [A,B]. Then the following results hold:

(a) If k = 2m−1 is odd and F(c)< 0, then designs with at most m design
points, including point A, form a complete class Ξ.

(b) If k = 2m−1 is odd and F(c)> 0, then designs with at most m design
points, including point B, form a complete class Ξ.

(c) If k = 2m is even and F(c)< 0, then designs with at most m design
points, form a complete class Ξ.

(d) If k = 2m − 2 is even and F(c) > 0, then designs with at most m
design points, including both A and B, form a complete class Ξ.

It is helpful to sketch how Theorem 2.1 is proved. For some carefully
chosen d1 (see example below) where one of the conditions in Theorem 2.1
holds, it can be proved that for any design ξ /∈ Ξ, we can find a design
ξ̃ ∈ Ξ such that Cξ̃(θ)≥Cξ(θ) under the Loewner ordering, hence Mξ̃(θ)≥

Mξ(θ). To be specific, Cξ̃(θ)−Cξ(θ) has a positive definite lower d1 × d1
principal submatrix, and is 0 everywhere else. So the search for optimal
designs can be restricted within Ξ.

Theorem 2.1 also applies to generalized linear models. Besides, while it
is stated in terms of the “transformed design point” c, the result can be
easily translated back into x using the relationship between them, and we
will state results in x unless otherwise specified.

In Theorem 2.1, there are four different types of complete classes, the
difference being whether one or both of the endpoints are fixed design points
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(note however a fixed design point can have weight 0 so that it need not be
a support point). To make it easier to distinguish, let fix(Ξ) denote the set
of fixed design points for the designs in the complete class Ξ. For example,
fix(Ξ) =∅ and {L,U} refers to the complete classes in Theorem 2.1(c) and
(d), respectively.

Applications of Theorem 2.1 can be found in Yang and Stufken (2009,
2012) and Yang (2010). Obviously, m ≥ d, however, in many applications
we actually find m = d. Take the LINEXP model from Yang and Stufken
(2012) as an example.

The LINEXP model is used to characterize tumor growth delay and re-
growth. The natural logarithm of tumor volume is modeled using a nonlinear
regression model with mean

η(x,θ) = θ1 + θ2e
θ3x + θ4x,(2.2)

where x ∈ [L,U ] is the time, θ1+ θ2 is the logarithm of initial tumor volume,
θ3 < 0 is the rate at which killed cells are eliminated, θ4 > 0 is the final
growth rate.

The information matrix for θ can be written in the form of (2.1) with

P (θ) =









1 0 0 0

0 1 0 0

0 0 0 θ2/θ3
0 0 1/θ3 0









, C(c) =









1

ec e2c

c cec c2

cec ce2c c2ec c2e2c









,

where c = θ3x ∈ [A,B] = [θ3U,θ3L]. Let d1 = 2, C22(c) be the lower 2 × 2
principal submatrix of C(c), and Ψ1(c) = c,Ψ2(c) = ec,Ψ3(c) = cec,Ψ4(c) =
e2c,Ψ5(c) = ce2c be the set of linearly independent nonconstant functions
from the first two columns of C(c). Then k = 6, f1,1 = 1, f2,2 = ec, f3,3 =
1, f4,4 = 4ec, f5,5 = 1, and

f6,6(c) =

(

2e−2c e−c/2

e−c/2 2

)

, F(c) =

6
∏

ℓ=1

fℓ,ℓ(c) =

(

8 2ec

2ec 8e2c

)

.

Because F(c) > 0, Theorem 2.1(d) can be applied with m = 4 = d, and Ξ
consists of designs with at most four design points including both endpoints,
thus fix(Ξ) = {L,U}.

2.2. Identifying the optimal design. If one of the cases in Theorem 2.1
holds, an optimal design exists of the form ξ = {(xi, ωi)}

m
i=1, where xi’s are

strictly increasing, with x1 or xm possibly fixed to be L or U , respectively;
ωi’s are nonnegative, and ω1 = 1−

∑m
i=2ωi. Let Z be the vector of unknown

design points (i.e., exclude x1 or xm if fixed to be the endpoint) and m− 1
unknown weights ω2, . . . , ωm. For example, for the LINEXP model in (2.2),
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Z= (x2, x3, ω2, ω3, ω4)
T since m= 4 and x1 = L,x4 = U . Thus we can use Z

to represent the design ξ. Now the objective function Φ(Mξ(θ)) is a function

of Z, denoted as Φ̃(Z), and it is smooth by the smoothness of Φ. To find an
optimal design, we need to maximize Φ̃(Z) with respect to Z. The simplest
way is to find the critical points, specifically, the feasible critical points, as
defined below.

Definition 2.1. A critical point of Φ̃(Z), Zc, is a feasible critical point
if all the design points in Z

c are within [L,U ] and all m − 1 weights are
positive with summation less than 1.

With Definition 2.1, a feasible critical point gives a design with m support
points. Moreover, Theorem 2.2 states the conditions such that a feasible
critical point gives a globally optimal design.

Theorem 2.2. Assume one of the cases in Theorem 2.1 holds, then for
any feasible critical point of Φ̃(Z), its corresponding design is a Φ-optimal
design.

Proof. See the Appendix. �

Theorem 2.2 gives an implicit solution of an optimal design if there ex-
ists a feasible critical point. Such a point can be given explicitly in special
situations, but not in general due to the complexity of the objective func-
tion. Nevertheless, we have an implicit solution and it can be easily solved
using Newton’s algorithm. However, we need to guarantee the existence of
a feasible critical point in the first place. Theorem 2.3 gives some sufficient
conditions that a feasible critical point exists.

Theorem 2.3. Suppose one of the cases in Theorem 2.1 holds and any
Φ-optimal design has at least m support points. Further assume one of the
following four conditions holds:

(a) fix(Ξ) = {L}, and the information matrix MU (θ) is 0;
(b) fix(Ξ) = {U}, and ML(θ) = 0;
(c) fix(Ξ) =∅, and MU (θ) =ML(θ) = 0;
(d) fix(Ξ) = {L,U}.

Then a feasible critical point of Φ̃(Z) must exist, and by Theorem 2.2, any
such point gives a Φ-optimal design.

Proof. Let ξ∗ ∈ Ξ be a Φ-optimal design, then ξ∗ has at least m sup-
port points. By Theorem 2.1, designs in the complete class have at most
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m support points, hence ξ∗ has exactly m support points. Let Z
∗ be the

vector corresponding to ξ∗ according to the definition in the beginning of
Section 2.2. For each of conditions (a)∼(d), we know the design points in Z

∗

do not include any of the endpoints (recall the fixed design points are ex-
cluded in Z

∗), hence they all belong to the open interval (L,U). The weights
in Z

∗ are all positive, hence all belong to the open interval (0,1), so Z
∗ is

not on the boundary and must be a critical point of Φ̃(Z). This proves the
existence. �

The condition in Theorem 2.3 that every Φ-optimal design has at least m
support points is met with m= d for many models and optimality criteria.
For example, when K(θ) is a nonsingular matrix, any Φ-optimal design has
at least d support points for commonly used optimality criteria. On the
other hand, as we have stated, for many models, the complete class given
by Theorem 2.1 only consists of designs with at most d support points.
The condition (d) is found to be satisfied for several models, as we will see
in Section 3. For condition (a), usually MU (θ) = 0 only when U = ∞, so
the condition fails if we are interested in a finite design region, and so do
conditions (b) and (c). This issue will be addressed later in Theorem 2.6.

Useful results can be obtained by applying Theorem 2.3 to the most com-
monly used Φp-optimality criteria. In particular, we are interested in Φp-
optimal designs for θ or aTθ, where a= (a1, . . . , ad)

T is a d× 1 vector such
that a

Tθ is only estimable with at least d support points. Adopting the
notation in Kiefer and Wolfowitz (1965), define

A∗ = {a|aTθ is only estimable with at least d support points}.

Now Corollary 2.4 gives applications of Theorem 2.3 to Φp-optimal designs.

Corollary 2.4. Suppose that one of the cases in Theorem 2.1 holds
with m= d, and one of the four conditions in Theorem 2.3 is met. Consider
Φp-optimal design for g(θ) where g(θ) satisfies either case (i) or (ii) below:

(i) g(θ) = θ or a reparameterization of θ;
(ii) g(θ) = a

Tθ,a ∈A∗.

Then a feasible critical point of Φ̃(Z) exists, and any such point gives a
Φp-optimal design for g(θ).

Remark 2.1. In Corollary 2.4(i), a special case of a reparameterization
is g(θ) =Wθ, whereW is a diagonal matrix with positive diagonal elements.

This makes cov(g(θ̂)) a rescaled version of cov(θ̂), and it makes sense when

var(θ̂i)’s are of different orders of magnitude. For example, in Dette (1997),
the author proposed “standardized” optimality criteria, where the matrix
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W has diagonal elements Wii =
√

1/(M−1
ξ∗
i
)ii , ξ

∗

i is the c-optimal design for

estimating θi alone, i = 1, . . . , d. Under the conditions of Corollary 2.4(i),
finding such optimal designs is easy after we find ξ∗i ’s.

Remark 2.2. Corollary 2.4(ii) considers c-optimality. When a ∈A∗, the
c-optimal design is supported at the full set of Chebyshev points in many
cases [see Studden (1968)], but our method gives another way of finding
c-optimal designs. When a /∈ A∗, sometimes a feasible critical point still
exists, and it still gives an optimal design. However, if there is no such
critical point, then the c-optimal design must be supported at fewer points,
which may not be the Chebyshev points, and this problem becomes harder.
Nevertheless, we can approximate such c-optimal designs. Suppose a1 6= 0,
consider gǫ(θ) = (aTθ, ǫθ2, . . . , ǫθd)

T , ǫ > 0. A Φp-optimal design for gǫ(θ)
can be found easily by Corollary 2.4(i). Let ǫ → 0, it can be shown that
these Φp-optimal designs will eventually converge to the c-optimal design for
a
Tθ (i.e., the efficiencies of these Φp-optimal designs under c-optimality will

converge to 1), for any p≤−1. Some examples are provided in Section 3.2.

To verify the condition a ∈ A∗, let f(x,θ) = (f1(x,θ), . . . , fd(x,θ)) =
∂η(x,θ)/∂θ. The condition a ∈A∗ is equivalent to

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1(x1,θ) · · · f1(xd−1,θ) a1
f2(x1,θ) · · · f2(xd−1,θ) a2

...
. . .

...
...

fd(x1,θ) · · · fd(xd−1,θ) ad

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0(2.3)

for all L≤ x1 < x2 < · · ·< xd−1 ≤ U (this is also true for generalized linear
models). In particular, if we are interested in estimating the individual pa-
rameter θi, that is, a= ei where ei = (0, . . . ,0,1,0, . . . ,0)T denotes the ith
unit vector, then ei ∈A∗ is equivalent to f−i = {fj |j ∈ {1, . . . , d} \ {i}} be-
ing a Chebyshev system [see Karlin and Studden (1966)], which is easier to
verify. Here, the traditional definition of a Chebyshev system is used, which
only requires the determinant in (2.3) to be nonzero instead of positive.

Next, the uniqueness of optimal designs can also be established under
mild conditions. We first introduce some additional terminology. A criterion
Φ is called strictly isotonic on PD(d) if

Φ(M1)>Φ(M2) for any M1 ≥M2 > 0 and M1 6=M2.

It is called strictly concave on PD(d) if

Φ(αM1 + (1−α)M2)> αΦ(M1) + (1−α)Φ(M2),

for any α ∈ (0,1),M1 > 0,M2 ≥ 0 and M2 6∝M1.
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For example, Φp-optimality criteria are both strictly isotonic and strictly
concave on PD(d) when g(θ) is θ or a reparameterization of θ and p ∈
(−∞,1) [see Pukelsheim (1993), page 151]. Moreover, a compound optimal-
ity criterion which involves a strictly isotonic and strictly concave criterion
is also strictly isotonic and strictly concave. For these criteria, we have The-
orem 2.5.

Theorem 2.5. Assume that one of the cases in Theorem 2.1 holds. If Φ
is both strictly isotonic and strictly concave on PD(d) and there exists a Φ-
optimal design ξ∗ which has at least d support points, then ξ∗ is the unique Φ-
optimal design. In particular, the Φp-optimal design under Corollary 2.4(i)
is unique for p ∈ (−∞,1).

Proof. See the Appendix. �

Remark 2.3. The c-optimality criterion with g(θ) = a
Tθ maybe neither

strictly concave nor strictly isotonic on PD(d). However, if a ∈A∗ and f(x,θ)
is a Chebyshev system, the uniqueness is proved in Studden (1968).

The uniqueness is not only of interest in itself, but also has implications
for finding optimal designs. As we have stated earlier, conditions (a), (b)
and (c) in Theorem 2.3 may only hold on a large design region, call it the
full design region. Let ξ∗∗ be a Φ-optimal design on the full design region
with smallest support point x∗∗min and largest support point x∗∗max. Then for a
smaller design region [L,U ], under the same optimality criterion Φ, we have
Theorem 2.6.

Theorem 2.6. Assume that one of the cases in Theorem 2.1 holds for
the full design region, and both Φ-optimal designs on [L,U ] and the full
design region are unique with support size m, then we have:

(a) under fix(Ξ) = {L}, if U < x∗∗max, then the Φ-optimal design on [L,U ]
has both L and U as support points; otherwise, the optimal design is ξ∗∗;

(b) under fix(Ξ) = {U}, if x∗∗min <L, then the Φ-optimal design on [L,U ]
has both L and U as support points; otherwise, the optimal design is ξ∗∗;

(c) under fix(Ξ) =∅, if x∗∗min <L or U < x∗∗max, then the Φ-optimal design
on [L,U ] has at least one endpoint as a support point; otherwise, the optimal
design is ξ∗∗.

Proof. We only give the proof for case (a), others being similar. When
U ≥ x∗∗max, the design ξ∗∗ is still a feasible design on the region [L,U ], and it
is optimal because it is optimal on the full design region. When U < x∗∗max,
ξ∗∗ is no longer a feasible design, let ξ∗ be the optimal design on [L,U ].
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A complete class of the same type exists for design region [L,U ] because,
for example, F(c) > 0 on the full design region implies F(c) > 0 on the
smaller design region. So x∗1 = L. If the largest support point x∗m <U , then

Z
∗ = (x∗2, . . . , x

∗

m, ω∗

2 , . . . , ω
∗

m)T must be a critical point of Φ̃(Z). Now if we
consider the optimal design problem on the full design region again, Z∗ is
a feasible critical point, and by Theorem 2.2, ξ∗ must be an optimal design
on the full design region. However, ξ∗ 6= ξ∗∗, this contradicts the uniqueness
assumption. �

3. Application. The theorems we have established can be used to find
optimal designs for many models. In Sections 3.1 through 3.3, we consider
Φp-optimal designs for models with two, three and four or six parameters,
respectively. In Section 3.4, we consider polynomial regression models with
arbitrary d parameters under more general optimality criteria.

3.1. Models with two parameters. Yang and Stufken (2009) considered
complete class results for two-parameter models, including logistic/probit
regression model, Poisson regression model and Michaelis–Menten model.
The theorems we have established can be used to find the optimal designs.
Take the Poisson regression model as an example (the applications to other
models are similar). It has the following form:

η(x,θ) = log(E(y)) = θ1 + θ2x, x ∈ [L,U ].

Theorem 2.1(b) can be applied to this model, and a complete class consists
of designs with at most 2 design points including one boundary point [see
Yang and Stufken (2009), Theorem 4]. Specifically, when θ2 > 0, U is a fixed
design point, and M−∞(θ) = 0 [since Mx(θ) = eθ1+θ2x(1, x)T (1, x)]; when
θ2 < 0, L is a fixed design point, and M∞(θ) = 0. Thus, on any one-sided
restricted region (−∞,U ] (when θ2 > 0) or [L,∞) (when θ2 < 0), Φp-optimal
designs for θ can be found by solving for the critical points, according to
Corollary 2.4(i). For c-optimality, recall f(x,θ) = ∂η(x,θ)/∂θ = (1, x), thus
f−2 = {1} is a Chebyshev system, which means θ2 can only be estimated
with at least d= 2 support points. Therefore, according to Corollary 2.4(ii),
an e2-optimal design (c-optimal design for θ2) can also be found by solving
for the critical points.

In particular,D- and e2-optimal designs can be found analytically through
symbolic computation software (e.g., by using the solve function in Matlab)
and are listed in (3.1) and (3.2). Note that they do not depend on θ1 since
eθ1 is merely a multiplicative factor in Mx(θ):

ξ∗D =

{

{(U − 2/θ2,1/2), (U,1/2)}, θ2 > 0,

{(L− 2/θ2,1/2), (L,1/2)}, θ2 < 0,
(3.1)

ξ∗e2 =

{

{(U − 2.557/θ2,0.782), (U,0.218)}, θ2 > 0,

{(L− 2.557/θ2,0.782), (L,0.218)}, θ2 < 0.
(3.2)
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Table 1

A-optimal designs for Poisson regression model on
[0,∞)

A-optimal

θ2 (x1, x2) (ω1, ω2)

−1 (0, 2.261) (0.444, 0.556)
−2 (0, 1.193) (0.320, 0.680)

However, A-optimal designs do not have explicit forms. Nevertheless, the
solutions can be found easily using Newton’s algorithm. For the case of
θ2 < 0, some examples are listed in Table 1 (again the optimal designs do
not depend on θ1).

In addition, the Φp-optimal design for θ and e2-optimal design are unique,
due to Theorem 2.5. For finite design regions, Theorem 2.6 can be applied.
For example, the A-optimal design for θ = (1,−1)T on [0,U ] when U ≥
2.261 is {(0,0.444), (2.261,0.556)}; when U < 2.261, the optimal design is
supported at exactly two points 0 and U , and the weights can be determined
easily.

3.2. Models with three parameters. Dette et al. (2008, 2010) considered
optimal designs for the Emax and log-linear models. These models, often
used to model dose-response curves, are nonlinear regression models with
means

η(x,θ) =

{

θ1 + θ2x/(x+ θ3), Emax,

θ1 + θ2 log(x+ θ3), log-linear.

Here, x ∈ [L,U ]⊆ (0,∞) is the dose range, θ2 > 0 and θ3 > 0. Theorem 2.1(d)
can be applied to both models, and a complete class consists of designs with
at most 3 design points including both endpoints [Yang (2010), Theorem 3].
Hence, Corollary 2.4 is applicable on design space [L,U ]. In particular, D-
optimal designs can be computed explicitly using symbolic computation soft-
ware, and are listed in (3.3). They are consistent with the results in Dette
et al. (2010):

ξ∗D =

{

{(L,1/3), (x∗E,1/3), (U,1/3)}, Emax,

{(L,1/3), (x∗l ,1/3), (U,1/3)}, log-linear,
(3.3)

where

x∗E =
L(U + θ3) +U(L+ θ3)

L+U +2θ3
,

(3.4)

x∗l =
(L+ θ3)(U + θ3)

U −L
log

(

U + θ3
L+ θ3

)

− θ3.
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Table 2

A-optimal designs for the Emax model on [0,150]

θ2 θ3 (x1, x2, x3) (ω1, ω2, ω3)

7/15 15 (0, 12.50, 150) (0.250, 0.500, 0.250)
7/15 25 (0, 18.75, 150) (0.250, 0.500, 0.250)
10/15 25 (0, 18.75, 150) (0.250, 0.500, 0.250)

For A-optimality, numerical solutions can be obtained easily by Newton’s
algorithm. Table 2 gives some examples for the Emax model using parameter
settings in Dette et al. (2008) (the optimal designs do not depend on θ1 since
it is not involved in the information matrix; and although it seems that the
optimal weights are constant, they do change gradually with θ2 and θ3).

For c-optimality, Dette et al. (2010) gave explicit solutions for EDp-
optimal designs, where an EDp-optimal design is a design that is optimal for
estimating the dose that achieves 100p% of the maximum effect in dose range
[L,U ], 0< p < 1. In fact, EDp-optimality is equivalent to e3-optimality re-
gardless of p, and we can find the optimal designs using our method. First,
we have

f(x,θ) =

{

(1, x/(x+ θ3),−θ2x/(x+ θ3)
2), Emax,

(1, log(x+ θ3), θ2/(x+ θ3)), log-linear.

It is easy to prove for both the Emax and log-linear models that f−3 is a
Chebyshev system, which means that θ3 is only estimable with at least d= 3
support points. So e3-optimal designs can be found by solving for the criti-
cal points, by Corollary 2.4(ii). The solutions can be found explicitly using
symbolic computation software and are listed in (3.5). They are consistent
with the results in Dette et al. (2010):

ξ∗e3 = ξ∗EDp
=

{

{(L,1/4), (x∗E,1/2), (U,1/4)}, Emax,

{(L,ω∗

l ), (x
∗

l ,1/2), (U,1/2− ω∗

l )}, log-linear,
(3.5)

where x∗E and x∗l are the same as in (3.4), and

ω∗

l =
log(x∗l + θ3)− log(U + θ3)

2(log(L+ θ3)− log(U + θ3))
.

Regarding f−2, it can be shown that it is always a Chebyshev system
for the log-linear model, and it is a Chebyshev system for the Emax model
if θ3 /∈ (L,U). In such cases, e2-optimal designs can be found according to
Corollary 2.4(ii), and the solutions can be derived analytically as shown
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Table 3

Approximating two point e2-optimal design using three point designs for the Emax model

p ǫ |x2 −
25
6
|/ 25

6
|ω1| |ω2 − 0.5| |ω3 − 0.5| 1− eff

−1 10−5 10−2 4 · 10−3 4 · 10−3 2 · 10−4 6 · 10−4

10−6 10−3 4 · 10−4 4 · 10−4 2 · 10−5 6 · 10−5

10−7 10−4 4 · 10−5 4 · 10−5 2 · 10−6 6 · 10−6

−3 10−5 3 · 10−4 1 · 10−4 9 · 10−5 4 · 10−6 2 · 10−5

10−6 8 · 10−6 3 · 10−6 3 · 10−6 5 · 10−8 5 · 10−7

10−7 7 · 10−7 3 · 10−7 2 · 10−7 1 · 10−8 4 · 10−8

in (3.6):

ξ∗e2 =



































{(

L,
1

4
−

(U −L)θ3
8(θ23 −LU)

)

,

(

x∗E,
1

2

)

,

(

U,
1

4
+

(U −L)θ3
8(θ23 −LU)

)}

,

Emax, θ3 /∈ (L,U),
{(

L,
(U − x∗l )(L+ θ2)

2(U −L)(x∗l + θ2)

)

,

(

x∗l ,
1

2

)

,

(

U,
(x∗l −L)(U + θ2)

2(U −L)(x∗l + θ2)

)}

,

log-linear.
(3.6)

When θ3 ∈ (L,U), f−2 is no longer a Chebyshev system for the Emax
model. However, if |(U − L)θ3| < |2(θ23 − LU)|, the weights of ξ∗e2 in (3.6)
are still positive, and the design is still e2-optimal; otherwise, the optimal
design is supported at fewer than 3 points, which may not be the Chebyshev
points. Nevertheless, we can approach the optimal design using the method
in Remark 2.2. To show this, consider the setting where the dose range is
[0,150], θ2 = 7/15 and θ3 = 25. The exact e2-optimal design can be found
to be ξ∗e2 = {(θ23/U,0.5), (U,0.5)} = {(25/6,0.5), (150,0.5)} using Elfving’s
method [Elfving (1952)]. Now let ǫ = 10−5,10−6,10−7; the Φp-optimal de-
signs for estimating gǫ(θ) = (ǫθ1, θ2, ǫθ3)

T can be found by Corollary 2.4(i)
and are used to approximate the e2-optimal design. Table 3 shows the errors
and 1− efficiencies of the approximation for p=−1 and −3. As we can see,
the error gets sufficiently small after a few iterations, especially when |p| is
larger; however, due to singularity issues, the error cannot be made arbitrary
small.

3.3. Models with four or six parameters. Demidenko (2004) used a dou-
ble exponential model to characterize the regrowth of tumor after radiation.
The natural logarithm of tumor volume can be modeled using a nonlinear
regression model with mean

η(x,θ) = θ1 + log(θ2e
θ3x + (1− θ2)e

−θ4x),
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Table 4

A-optimal designs for the LINEXP model on [0,1]

θ2 θ3 (x1, x2, x3, x4) (ω1, ω2, ω3, ω4)

0.5 −1 (0, 0.220, 0.717, 1) (0.156, 0.324, 0.344, 0.176)
1 −1 (0, 0.220, 0.717, 1) (0.151, 0.319, 0.349, 0.181)
1 −2 (0, 0.195, 0.681, 1) (0.146, 0.315, 0.355, 0.184)

where 0 ≤ x ∈ [L,U ] is the time, θ1 is the logarithm of the initial tumor
volume, 0< θ2 < 1 is the proportional contribution of the first compartment,
and θ3, θ4 > 0 are cell proliferation and death rates.

Demidenko (2006) used the LINEXP model to characterize tumor growth
delay and regrowth. The model was described in Section 2.1 and re-presented
below:

η(x,θ) = θ1 + θ2e
θ3x + θ4x.

Li and Balakrishnan (2011) considered D- and c-optimal designs for these
two models, but our approach yields more general results. For both models,
Theorem 2.1(d) can be applied, and a complete class consists of designs with
at most four design points including both endpoints [see Yang and Stufken
(2012)]. Thus, Corollary 2.4 can again be applied on the design space [L,U ],
and Φp-optimal designs for θ and certain c-optimal designs can be found
by solving for the critical points. In particular, f−3 and f−4 are Chebyshev
systems under both models [see Li and Balakrishnan (2011)], thus e3- and
e4-optimal designs for both models can be found by solving for the critical
points.

There is no explicit solution for the optimal designs, but numerical so-
lutions can be easily found using Newton’s algorithm. Here, we give some
A-optimal designs for the LINEXP model in Table 4 (the optimal designs for
the LINEXP model do not depend on θ1 and θ4 since they are not involved
in the information matrix). For D- and c-optimality, our approach gives the
same results as in Li and Balakrishnan (2011).

Consider one more example. Dette, Melas and Wong (2006) studied D-
optimal designs for exponential regression models, which are nonlinear re-
gression models with mean

η(x,θ) =
S
∑

s=1

θ2s−1e
−θ2sx, 0≤ x ∈ [L,U ],(3.7)

where θ2s−1 6= 0, s = 1, . . . , S,0 < θ2 < · · · < θ2S . When S = 2 and θ4/θ2 <
61.98 or S = 3,2θ4 = θ2 + θ6 and θ4/θ2 < 23.72, Theorem 2.1(b) can be ap-
plied, and a complete class consists of designs with at most 2S design points
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Table 5

A- and e2-optimal designs for exponential regression model on [0,∞) when
S = 2, θ1 = θ2 = 1

Criterion θ3 θ4 (x1, x2, x3, x4) (ω1, ω2, ω3, ω4)

A-optimality 1 2 (0,0.275,1.196,3.416) (0.078, 0.178, 0.251, 0.493)
1 4 (0,0.170,0.768,2.472) (0.118, 0.261, 0.287, 0.334)
3 4 (0,0.172,0.760,2.450) (0.083, 0.199, 0.296, 0.422)

e2-optimality 1 2 (0,0.273,1.197,3.425) (0.054, 0.124, 0.200, 0.623)
1 4 (0,0.168,0.769,2.492) (0.033, 0.082, 0.201, 0.683)
3 4 (0,0.168,0.769,2.492) (0.033, 0.082, 0.201, 0.683)

including the lower endpoint L [see Yang and Stufken (2012), Theorems 3
and 4]. Moreover, it is easy to see that the information matrix Mx goes to 0
when x approaches infinity, thus Corollary 2.4 can be applied on any design
region [L,∞). Table 5 gives some A-optimal designs for S = 2.

For c-optimality, first we have

f(x,θ)

=

{

(e−θ2x,−θ1xe
−θ2x, e−θ4x,−θ3xe

−θ4x), S = 2,

(e−θ2x,−θ1xe
−θ2x, e−θ4x,−θ3xe

−θ4x, e−θ6x,−θ5xe
−θ6x), S = 3.

Both are Chebyshev systems. In addition, we can show that f−2s, s= 1, . . . , S
are Chebyshev systems for S = 2 and S = 3, so the c-optimal designs for
θ2s, s = 1, . . . , S on [L,∞) can be found by solving for the critical points.
Table 5 gives some e2-optimal designs for S = 2.

Moreover, the Φp-optimal designs for θ and c-optimal design for θ2s’s
are unique by Theorem 2.5. For a finite design region, Theorem 2.6 can
be applied. For example, the A-optimal design for θ = (1,1,1,2)T on [0,U ]
when U ≥ 3.416 is the same as in Table 5; when U < 3.416, the optimal
design is supported at 4 design points including both 0 and U .

3.4. Polynomial regression model with d parameters. Yang (2010) con-
sidered the general (d− 1)th degree polynomial regression model Pd−1 with
variance σ2/λ(x) and mean

η(x,θ) = θ1 +
d
∑

i=2

θix
i−1.(3.8)

For different choices of the efficiency function λ(x), Theorem 2.1 gives the
following complete class results [see Yang (2010), Theorem 9]:

(a) When (i) λ(x) = 1 − x,x ∈ [−1,1] or (ii) λ(x) = e−x, x ∈ [0,∞), a
complete class consists of designs with at most d design points including the
left endpoint. Moreover, the information matrix MU (θ) = 0.
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(b) When λ(x) = 1 + x, x ∈ [−1,1], a complete class consists of designs
with at most d design points including the right endpoint. Moreover, the
information matrix ML(θ) = 0.

(c) When (i) λ(x) = (1−x)u+1(1+x)v+1, x ∈ [−1,1], u+1> 0, v+1> 0 or

(ii) λ(x) = xu+1e−x, x ∈ [0,∞), u + 1 > 0 or (iii) λ(x) = e−x2
, x ∈ (−∞,∞)

or (iv) λ(x) = (1 + x2)−t, x ∈ (−∞,∞), d ≤ t, a complete class consists of
designs with at most d design points. Moreover, the information matrices
ML(θ) =MU (θ) = 0.

(d) When λ(x) ≡ 1, x ∈ [L,U ], a complete class consists of designs with
at most d design points including both endpoints.

Corollary 2.4 can be applied to the above models on the respective (full)
design regions, thus Φp-optimal designs for θ and c-optimal designs for θd
can be found by solving for the critical points. Furthermore, those designs
are unique, so Theorem 2.6 can be used when the design regions are small.

Finally, we apply our theorems to more general optimality criteria. Dette
and Studden (1995) considered optimal designs under nested polynomial
regression models. To be specific, suppose the degree of the polynomial re-
gression model is an unknown integer between 1 and d− 1. The D-optimal
design ξℓD under a given model Pℓ, 1≤ ℓ≤ d− 1, may not be efficient under
another model with a different degree. To take this uncertainty into con-
sideration, the authors proposed the following weighted optimality criteria
Φp′,β:

Φp′,β(Mξ) =

[

d−1
∑

ℓ=1

βℓ(eff
ℓ
D(ξ))

p′

]1/p′

,(3.9)

where p′ ∈ [−∞,1], β = {β1, . . . , βd−1} is a prior on the set {1, . . . , d − 1}
with βd−1 > 0,

effℓ
D(ξ) =

(

detMℓ
ξ

detMℓ
ξℓ
D

)1/(ℓ+1)

, ℓ= 1, . . . , d− 1,

M
ℓ
ξ is the information matrix of ξ under model Pℓ, and effℓ

D(ξ) is the D-
efficiency of ξ under model Pℓ.

Dette and Studden (1995) gave the solution of Φp′,β-optimal design for
λ(x) ≡ 1, x ∈ [−1,1]. The solution is rather complicated, and it requires
knowledge of canonical moments. An alternative way is to use Theorem 2.3,
and it can be applied to more general settings.

First, the D-efficiency in the definition of Φp′,β can be generalized to any
Φp-efficiency, p ∈ (−∞,1] (e.g., A-efficiency when p = −1), and we denote
the resulting optimality criteria as Φp,p′,β. Second, the efficiency function
λ(x) can be generalized to any function in cases (a)∼(d) in this subsection,
where x belongs to the respective (full) design regions.
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Table 6

Φp,p′,β-optimal designs for polynomial regression models

p′ (x1, x2, x3, x4) (ω1, ω2, ω3, ω4) (eff1
A(ξ), eff

2
A(ξ), eff

3
A(ξ))

0 (−0.860, −0.346, 0.346, 0.860) (0.263, 0.237, 0.237, 0.263) (0.692, 0.745, 0.902)
−1 (−0.854, −0.343, 0.343, 0.854) (0.268, 0.232, 0.232, 0.268) (0.701, 0.753, 0.879)
−3 (−0.846, −0.339, 0.339, 0.846) (0.273, 0.227, 0.227, 0.273) (0.714, 0.759, 0.846)

Under this general setting, Φp,p′,β always satisfies Assumption A about
optimality criteria in Section 2 [see Pukelsheim (1993), page 285]. Moreover,
while this optimality criterion is defined on a mixture of different models,
these models are nested within the largest model Pd−1, thus our complete
class result for Pd−1 can be applied to Φp,p′,β. Finally, to use Theorem 2.3,
any Φp,p′,β-optimal design must have at least d support points. This re-
quirement is reasonable since otherwise the optimal design will not be able
to estimate the model Pd−1, which may be the true model. To meet the
requirement, it is sufficient to restrict ourselves to p, p′ ∈ (−∞,0], since any
singular matrix will result in Φp,p′,β to be 0. So by Theorem 2.3, Φp,p′,β-
optimal designs for models in cases (a)∼(d) of this subsection can be found
by solving for the critical points. Some examples are given in Table 6 for the
case λ(x) = 1 − x2, x ∈ [−1,1], p = −1 [i.e., for A-efficiency in (3.9)], d = 4
and β a uniform prior.

In addition, Φp,p′,β-optimality is strictly isotonic and strictly concave on
PD(d) since βd−1 > 0 and the Φp-efficiency under model Pd−1 is strictly iso-
tonic and strictly concave on PD(d) for p ∈ (−∞,0]. Hence by Theorem 2.5,
the optimal designs are unique. However, for smaller design regions, the op-
timality criterion Φp,p′,β changes as the design region changes. For example,
when p = 0, the design ξℓD changes when the design region changes, which
causes Φp,p′,β to change. So the optimal design on the full design region
cannot be used to obtain the optimal design on a smaller region as we did
in Theorem 2.6.

4. Computational advantages. Although it is not the main motivation,
our method does provide computational advantages over other algorithms,
as Newton’s algorithm is well studied, easy to program and fast. For compar-
ison, we choose the optimal weight exchange algorithm (OWEA) proposed
in Yang, Biedermann and Tang (2013), which is among the most general
and fastest algorithms.

OWEA algorithm starts with an initial design on a grid of the design
space, then iterates between optimizing the weights for the current set of
support points and adding a new grid point to the current support points,
until the condition for optimality in general equivalence theorem is satisfied.
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Table 7

Computation time (seconds) for A- and D-optimal designs for the LINEXP model

A-optimal D-optimal

κ= 100 κ= 1000 κ= 10,000 κ= 100 κ= 1000 κ= 10,000

Newton’s 0.08 0.08 0.08 0.08 0.08 0.08
OWEA I 0.19 0.22 0.63 0.24 0.37 1.28
OWEA II 0.17 0.18 0.21 0.20 0.23 0.29

The computing time increases as the grid size κ becomes larger. So to re-
duce the computing time, the authors proposed a modified algorithm. The
modified algorithm starts with a coarse grid and finds the optimal design
on the coarse grid. Based on that, the grid near the support points of the
optimal design is refined and a more accurate optimal design is found on
the finer grid. We refer to their original and modified algorithm as OWEA
I and OWEA II, respectively. All algorithms are coded using SAS IML and
run on a Dell Desktop (2.5 GHz and 4 Gb RAM). Comparisons are made for
different grid sizes, different models and under both A- and D-optimality
criterion.

First, we consider the LINEXP model given in (2.2). The parameters are
set to be θ = (1,0.5,−1,1)T , and the design space is [0,1]. Three different
grid sizes, κ= 100,1000 and 10,000, are used for OWEA I and II; and for
OWEA II, the initial coarse grid sizes are chosen to be 10, 100 and 100,
respectively. The computing times are shown in Table 7. Note the grid size
κ is irrelevant for the speed of Newton’s algorithm.

From Table 7, we can see all three algorithms are very efficient in finding
optimal designs. Newton’s algorithm is at least twice as fast as the other two
algorithms. The speed gain is more prominent when comparing to OWEA
I, especially when the grid size κ is large.

Second, we consider a polynomial regression model given in (3.8) with
d= 6 and λ(x) = 1−x2, x ∈ [−1,1]. It has more parameters than the previous
example so finding optimal designs takes longer. The results are shown in
Table 8, with a similar conclusion as in the previous example.

5. Discussion. In this paper, we present a general theory for finding sat-
urated optimal designs based on the complete class results in Yang and
Stufken (2012) as well as Dette and Schorning (2013). While we focus on
locally optimal designs, Theorem 2.2 also applies in a multistage design set-
ting, and we have constructed optimal two-stage designs for the Michaelis–
Menten model using this approach. However, unlike in the locally optimal
design case, we cannot guarantee the existence of a feasible critical point in
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Table 8

Computation time (seconds) for A- and D-optimal designs for polynomial regression
model

A-optimal D-optimal

κ= 100 κ= 1000 κ= 10,000 κ= 100 κ= 1000 κ= 10,000

Newton’s 0.17 0.17 0.17 0.14 0.14 0.14
OWEA I 0.33 0.61 3.49 0.48 1.09 4.83
OWEA II 0.34 0.48 0.89 0.44 0.72 1.35

the multistage design context, so there is no guarantee this approach always
works in that case.

For E-optimality, as long as the smallest eigenvalue of the information
matrix Mξ∗

E
has multiplicity 1, where ξ∗E is the E-optimal design, we have

that Φ−∞ is smooth in a neighborhood of Mξ∗
E
, and E-optimal designs can

still be found by solving for the critical points. For nonlinear models, we find
the smallest eigenvalue of Mξ∗

E
often does have multiplicity 1, but we usually

do not know this ahead of time. On the other hand, we can approach E-
optimal designs using Φp-optimal designs as |p| →∞. We can show whenever
|p| ≥ − log d/ log 0.95, the Φp-optimal design has at least 95% E-efficiency.
This is not a tight bound; in practice, we find a much smaller |p| is enough.

We now point out models that cannot be accommodated. First, this occurs
when the complete class given by Theorem 2.1 is not small enough. For
example, in Dette et al. (2010), D-optimal designs for a nonlinear model with
mean η(x,θ) = θ1 + θ2 exp(x/θ3), x ∈ [L,U ] are found to be 3-point designs
with both endpoints, whereas a complete class consists of designs with at
most 3 design points including only the upper endpoint as a fixed design
point [Yang (2010), Theorem 3]. So the D-optimal designs are actually on
the boundary of the Z-space, hence no feasible critical points can be found,
and the approach fails.

Second, the method fails when the model contains multiple covariates.
In general, theoretical results are very hard to obtain for multi-covariate
models, and only a couple of papers have provided some theoretical guid-
ance. Specific to our approach, complete class results similar to Theorem 2.1
are not available. The reason is that complete class results are built upon
Chebyshev systems. However, there is no satisfactory multidimensional gen-
eralization of the Chebyshev system yet. While Yang, Zhang and Huang
(2011) gave complete class results for logistic and probit models with multi-
ple covariates, the complete classes are not derived using multidimensional
Chebyshev systems, and they are not small enough for our method to be
applied.
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APPENDIX: PROOFS

We will prove Theorems 2.2 and 2.5. Before proving Theorem 2.2, we first
provide a lemma. This lemma is easier stated in terms of c, but it can be
translated into x. Recall that Theorem 2.1 gives the form of a complete class.
For any design ξ, we can find a design ξ̃ = {(c̃j , ω̃j)}

m
j=1 in the complete class

that is noninferior (Mξ̃ ≥Mξ).

In particular, for ξ specified in Lemma A.1, let Ψ0(c)≡ 1, a design ξ̃ can
be found by solving the following nonlinear equation system [see Yang and
Stufken (2012) and Dette and Schorning (2013)]:

∑

i

ωiΨℓ(ci) =
∑

j

ω̃jΨℓ(c̃j), ℓ= 0,1, . . . , k− 1,(A.1)

where c̃1 and c̃m may be fixed to be boundary points (see Lemma A.1).
Multiply both sides of (A.1) by a positive constant, the equation system
still holds, so we can remove the constraint of

∑

iwi = 1 for ξ and allow
∑

iwi to be any positive number in the following Lemma A.1; similarly for

ξ̃ (but we still refer to them as designs for convenience). Let X= (cT ,ωT )T

be the vector of all ci’s and ωi’s in ξ. Let S1 and S2 be the sets of all
possible vectors X corresponding to designs in cases (1a)∼(1d) and (2) of
Lemma A.1, respectively. Further, let Y be the vector of all c̃j ’s except

those fixed as boundary points (if any) and all ω̃j ’s in design ξ̃ given in the
following Lemma A.1. We will define function H , H(X) = Y , where X ∈ S=
S1 ∪ S2, and show this function is smooth on S under certain conditions.

Lemma A.1. Suppose one of the conditions in Theorem 2.1 holds.

(1a) If k = 2m−1 and F(c)< 0, then for any design ξ = {(ci, ωi)}
m
i=1,A <

c1 < · · · < cm ≤ B,ωi > 0 for i ≥ 1, there exists a noninferior design ξ̃ =
{(c̃j , ω̃j)}

m
j=1, where c̃1 =A, ω̃j > 0 for j ≥ 1, that solves (A.1).

(1b) If k = 2m−1 and F(c)> 0, then for any design ξ = {(ci, ωi)}
m
i=1,A≤

c1 < · · · < cm < B,ωi > 0 for i ≥ 1, there exists a noninferior design ξ̃ =
{(c̃j , ω̃j)}

m
j=1, where c̃m =B, ω̃j > 0 for j ≥ 1, that solves (A.1).

(1c) If k = 2m and F(c)< 0, then for any design ξ = {(ci, ωi)}
m+1
i=1 ,A≤

c1 < · · ·< cm+1 ≤ B,ωi > 0 for i ≥ 1, there exists a noninferior design ξ̃ =
{(c̃j , ω̃j)}

m
j=1, where ω̃j > 0 for j ≥ 1, that solves (A.1).

(1d) If k = 2m−2 and F(c)> 0, then for any design ξ = {(ci, ωi)}
m−1
i=1 ,A <

c1 < · · ·< cm−1 < B,ωi > 0 for i ≥ 1, there exists a noninferior design ξ̃ =
{(c̃j , ω̃j)}

m
j=1, where c̃1 =A, c̃m =B, ω̃j > 0 for j ≥ 1, that solves (A.1).

Such solution is unique under each case, hence H is well defined on S1.
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(2) For each case of (1a)∼(1d), let ξ be similarly defined as above except
that there is exactly one 0 weight and all other weights are positive. Then
rewriting ξ in the form of ξ̃ in each corresponding case solves (A.1) and
defines H on S2. Moreover, H is smooth on S= S1 ∪ S2.

Proof. We only prove for case (a), others being similar. First, let us
consider (1a). From Lemma 1 in Yang (2010) [see also Dette and Schorning
(2013), Theorem 3.1], we know that a solution to (A.1) exists with c̃1 =
A, ω̃j > 0, j ≥ 1. Moreover, F(c) < 0 implies that {Ψ0,Ψ1, . . . ,Ψ2m−2} is a
Chebyshev system [see Yang and Stufken (2012), Proposition 4], thus such
solution is unique. So H is well defined on S1. Now we show the smoothness
on S1.

We have X = (c1, . . . , cm, ω1, . . . , ωm)T ,Y = (c̃2, . . . , c̃m, ω̃1, . . . , ω̃m)T by
definition (c̃1 is excluded in Y since it is fixed to be A). Subtract the left-
hand side from the right-hand side in (A.1), we get an equation system
G(X,Y) = 0, where G is smooth. So Y = H(X) is the implicit function
defined by G(X,Y) = 0. By implicit function theorem, to ensure H to be
smooth, we only need the Jacobian matrix GY(X,Y) = ∂G(X,Y)/∂Y to
be nonsingular, that is,

detGY(X,Y)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 · · · 0 1 · · · 1

ω̃2Ψ
′

1(c̃2) · · · ω̃mΨ′

1(c̃m) Ψ1(A) · · · Ψ1(c̃m)
...

. . .
...

...
...

. . .

ω̃2Ψ
′

2m−2(c̃2) · · · ω̃mΨ′

2m−2(c̃m) Ψ2m−2(A) · · · Ψ2m−2(c̃m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

(

m
∏

j=2

w̃j

)

d(c̃) 6= 0,

where

d(c̃) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1 0 · · · 0

Ψ1(A) · · · Ψ1(c̃m) Ψ′

1(c̃2) · · · Ψ′

1(c̃m)
...

. . .
...

...
. . .

...

Ψ2m−2(A) · · · Ψ2m−2(c̃m) Ψ′

2m−2(c̃2) · · · Ψ′

2m−2(c̃m)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.(A.2)

Since w̃j > 0 for all 1 ≤ j ≤m, we only need to show d(c̃) 6= 0. We first
do some column manipulations to the matrix in (A.2). Subtract the first
column from the second to the mth column, then for the resulting matrix,
subtract the second column from the third to the mth column, continue
doing this until finally subtract the (m−1)th column from the mth column.
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Because the determinant does not change during this process,

d(c̃) =

∣

∣

∣

∣

∣

∣

∣

Ψ1(c̃2)−Ψ1(A) · · · Ψ1(c̃m)−Ψ1(c̃m−1)
...

. . .
... D

Ψ2m−2(c̃2)−Ψ2m−2(A) · · · Ψ2m−2(c̃m)−Ψ2m−2(c̃m−1)

∣

∣

∣

∣

∣

∣

∣

,

(A.3)
where D is the (2m− 2)× (m− 1) matrix,

D=







Ψ′

1(c̃2) · · · Ψ′

1(c̃m)
...

. . .
...

Ψ′

2m−2(c̃2) · · · Ψ′

2m−2(c̃m)






.

Treat A in the first column of the matrix in (A.3) as a variable and fix
everything else, then the determinant becomes a real-valued function of A.
Using the mean value theorem, we get

d(c̃) = (c̃2 −A)

×

∣

∣

∣

∣

∣

∣

∣

Ψ′

1(ĉ1) Ψ1(c̃3)−Ψ1(c̃2) · · ·
...

...
. . .

Ψ′

2m−2(ĉ1) Ψ2m−2(c̃3)−Ψ2m−2(c̃2) · · ·

(A.4)

Ψ1(c̃m)−Ψ1(c̃m−1)
... D

Ψ2m−2(c̃m)−Ψ2m−2(c̃m−1)

∣

∣

∣

∣

∣

∣

∣

,

where A < ĉ1 < c̃2. Let ε = signd(c̃) be the sign of d(c̃), treat c̃2 in the
second column of the matrix in (A.4) as a variable, and use the mean value
theorem again to obtain

ε= sign

∣

∣

∣

∣

∣

∣

∣

Ψ′

1(ĉ1) Ψ′

1(ĉ2) · · · Ψ1(c̃m)−Ψ1(c̃m−1)
...

...
. . .

... D

Ψ′

2m−2(ĉ1) Ψ′

2m−2(ĉ2) · · · Ψ2m−2(c̃m)−Ψ2m−2(c̃m−1)

∣

∣

∣

∣

∣

∣

∣

,

where c̃2 < ĉ2 < c̃3. Keep on doing this, and finally get

ε= sign

∣

∣

∣

∣

∣

∣

∣

Ψ′

1(ĉ1) · · · Ψ′

1(ĉm−1) Ψ′

1(c̃2) · · · Ψ′

1(c̃m)
...

. . . · · · · · ·
. . . · · ·

Ψ′

2m−2(ĉ1) · · · Ψ′

2m−2(ĉm−1) Ψ′

2m−2(c̃2) · · · Ψ′

2m−2(c̃m)

∣

∣

∣

∣

∣

∣

∣

,

and A = c̃1 < ĉ1 < c̃2 < ĉ2 < · · · < ĉm−1 < c̃m. Since {Ψ′

1, . . . ,Ψ
′

2m−2} is a
Chebyshev system, ε 6= 0. Hence, the Jacobian matrix is invertible, and the
function H is smooth on S1.

Turning to case (2), without loss of generality, assume ω1 = 0, ωi > 0 for
i≥ 2. If we can show the function H(X) is continuous on S2 and its partial
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derivatives can be extended continuously to S2, then it can be proved that
H(X) is also differentiable on S2. So first, we prove its continuity.

To show this, for any sequenceXn = (cn1 , . . . , c
n
m, ωn

1 , . . . , ω
n
m)T , n≥ 1, ωn >

0 and X
n approaching X

0 = (c1, . . . , cm,0, ω2, . . . , ωm)T , we need to show
Y

n = (c̃n2 , . . . , c̃
n
m, ω̃n

1 , . . . , ω̃
n
m)T approaches Y0 = (c2, . . . , cm,0, ω2, . . . , ωm)T .

By definition, we have

m
∑

i=1

ωn
i Ψℓ(c

n
i ) =

m
∑

j=1

ω̃n
j Ψℓ(c̃

n
j ), ℓ= 0, . . . ,2m− 2.(A.5)

Suppose we have Y
n
j1

does not converge to Y
0
j1

for some j1, then because
Y

n is a bounded sequence, there exists a subsequence {nt|t= 1,2, . . .} such
that Ynt converges to some Ȳ

0 = (c̄2, . . . , c̄m, ω̄1, . . . , ω̄m)T and Ȳ
0
j1
6=Y

0
j1
.

Now let nt →∞, take the limit of (A.5) on both sides, we get

m
∑

i=2

ωiΨℓ(ci) =
m
∑

j=1

ω̄jΨℓ(c̄j), ℓ= 0, . . . ,2m− 2.(A.6)

Since {Ψ0, . . . ,Ψ2m−2} is a Chebyshev system and the maximum number of
different support points in (A.6) is 2m− 1, (A.6) only holds if ω̄1 = 0, ω̄i =
ωi, c̄i = ci for i≥ 2, which means Ȳ0 =Y

0, leading to a contradiction.
Next, we show the partial derivatives can be extended continuously to S2.

Using the implicit function theorem, we know

∂H(X)

∂X
=−G−1

Y
(X,H(X))GX(X,H(X)),

GX(X,Y) =
∂G(X,Y)

∂X
,

for X ∈ S1. When X → X
0, H(X) → H(X0) by continuity, hence GY(X,

H(X)) → GY(X0,H(X0)) since GY(X,Y) is continuous. Furthermore,
GY(X0,H(X0)) is nonsingular by the similar argument as previously, there-
fore, G−1

Y
(X,H(X))→G−1

Y
(X0,H(X0)). It is easy to see GX(X,H(X))→

GX(X0,H(X0)), therefore, the derivative ∂H(X)/∂X → −G−1
Y

(X0,
H(X0))×GX(X0,H(X0)), that is, the derivative can be extended continu-
ously to S2. So H(X) is differentiable on S2 and the partial derivatives are
continuous. �

Now we are ready to prove Theorem 2.2; the proof is stated in terms of
x to be consistent with the theorem.

Proof of Theorem 2.2. We only prove the case where the com-
plete class consists of designs with at most m points including L, other
cases being similar. Assume the design ξc given by a feasible critical point
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is not an optimal design, and an optimal design exists as ξ∗ = {(L,1 −
∑m

i=2ω
∗

i ),{(x
∗

i , ω
∗

i )}
m
i=2}, where L< x∗2 < · · ·< x∗m is a strictly increasing se-

quence (some of the weights ω∗

i may be 0 if the support size of ξ∗ is less than
m). We have Φ(Mξ∗)>Φ(Mξc). Consider the linear combination of the two
designs, ξǫ = ǫξ∗ + (1− ǫ)ξc, 0≤ ǫ≤ 1, so

ξǫ =

{(

L,1− (1− ǫ)

m
∑

i=2

ωc
i − ǫ

m
∑

i=2

ω∗

i

)

,{(xci , (1− ǫ)ωc
i )}

m
i=2,{(x

∗

i , ǫω
∗

i )}
m
i=2

}

.

By the concavity of the optimality criterion Φ, we have

Φ(Mξǫ)≥ (1− ǫ)Φ(Mξc) + ǫΦ(Mξ∗).(A.7)

Utilizing (A.7), we can get

Φ(Mξǫ)−Φ(Mξc)

ǫ
≥Φ(Mξ∗)−Φ(Mξc)> 0.(A.8)

Now, if we can find a series of designs with m support points, ξ̃ǫ = {(L,1−
∑m

i=2ωi,ǫ),{(xi,ǫ, ωi,ǫ)}
m
i=2}, ǫ≥ 0 belongs to a neighborhood of 0, such that:

1. Φ(Mξ̃ǫ
)≥Φ(Mξǫ);

2. Zǫ = (xǫ,ωǫ) depends smoothly on ǫ, where xǫ = (x2,ǫ, . . . , xm,ǫ), ωǫ =
(ω2,ǫ, . . . , ωm,ǫ);

3. Z0 = Z
c = (xc,ωc), thus ξ̃0 = ξc.

Then, applying (A.8), we obtain

Φ(Mξ̃ǫ
)−Φ(Mξ̃0

)

ǫ
≥

Φ(Mξǫ)−Φ(Mξc)

ǫ
≥Φ(Mξ∗)−Φ(Mξc)> 0.

Because ξ̃ǫ has m≥ d support points, Mξ̃ǫ
must belong to PD(d). By our

smoothness assumption of Φ, Φ(Mξ̃ǫ
) is a smooth function of ǫ. Take the

limit as ǫ→ 0, it gives

∂Φ(Mξ̃ǫ
)

∂ǫ

∣

∣

∣

∣

ǫ=0

> 0.(A.9)

On the other hand, by our definition, Φ(Mξ̃ǫ
) = Φ̃(Zǫ). Applying the chain

rule and using the fact that Z0 = Z
c is a critical point of Φ̃(Z), we can get

∂Φ(Mξ̃ǫ
)

∂ǫ

∣

∣

∣

∣

ǫ=0

=
∂Φ̃(Zǫ)

∂ǫ

∣

∣

∣

∣

ǫ=0

=
∂Φ̃(Z)

∂Z

∣

∣

∣

∣

Z=Z0

∂Zǫ

∂ǫ

∣

∣

∣

∣

ǫ=0

= 0.

This contradicts with (A.9). Hence, ξc must be an optimal design.
To find such designs ξ̃ǫ, first, if the design ξ∗ does not have new design

points other than those in ξc, that is, ∀2≤ i≤m, we have either ω∗

i = 0 or
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x∗i ∈ x
c, then the design ξǫ is itself a design with m support points, we can

simply let ξ̃ǫ = ξǫ, and conditions 1 ∼ 3 are satisfied.
Otherwise, suppose we have r > 0 new design points x∗i1 , . . . , x

∗

ir
intro-

duced by ξ∗, with ω∗

ik
> 0, k = 1, . . . , r. Let δii ′ = 1 if xci = x∗i′ and 0 otherwise.

Rewrite the design ξǫ as

ξǫ =

{(

L,1− (1− ǫ)

m
∑

i=2

ωc
i − ǫ

m
∑

i=2

ω∗

i

)

,

{(

xci , (1− ǫ)ωc
i + ǫ

m
∑

i′=1

ω∗

i′δii ′

)}m

i=2

}

∪ {(x∗ik , ǫω
∗

ik
)}rk=1

= {(L,ω
(0)
1,ǫ ),{(x

(0)
i,ǫ , ω

(0)
i,ǫ )}

m
i=2} ∪ {(x∗ik , ǫω

∗

ik
)}rk=1,

where the second equation simply renames the design points and design

weights. It is easy to verify that conditions 2 ∼ 3 are satisfied for Z
(0)
ǫ =

(x
(0)
ǫ ,ω

(0)
ǫ ) = (x

(0)
2,ǫ , . . . , x

(0)
m,ǫ, ω

(0)
2,ǫ , . . . , ω

(0)
m,ǫ).

To find the desired m-point design ξ̃ǫ, we need to reduce the number of de-
sign points in a “smooth” way. We reduce one point at a time. First, consider

the design {(x
(0)
i,ǫ , ω

(0)
i,ǫ )}

m
i=2 ∪ {(x∗i1 , ǫω

∗

i1
)}, all the weights are positive when

0 < ǫ < 1, and when ǫ = 0, only one weight is 0. So applying Lemma A.1

to this design we can get a new design {(L,ω
(1)
1,ǫ ),{(x

(1)
i,ǫ , ω

(1)
i,ǫ )}

m
i=2} that is

noninferior, and conditions 2∼ 3 are satisfied for Z
(1)
ǫ = (x

(1)
ǫ ,ω

(1)
ǫ ), where

ω
(1)
ǫ > 0 for 0≤ ǫ < 1.

Next, we add point x∗i2 to {(x
(1)
i,ǫ , ω

(1)
i,ǫ )}

m
i=2 (we can always assume x∗i2 is

a new point to x
(1)
ǫ by taking ǫ small enough). Again, all the weights are

positive when ǫ > 0, and when ǫ = 0, only one weight is 0. Use the same
method to reduce one design point again. Keep on doing this until all r
new points have been added and reduced, and we finally get ξ̃ǫ = {(L,1−
∑m

i=2ω
(r)
i,ǫ ),{(x

(r)
i,ǫ , ω

(r)
i,ǫ )}

m
i=2}, that is not inferior to ξǫ, with the conditions

1∼ 3 satisfied. �

Finally, we prove Theorem 2.5, the proof is stated in terms of c for con-
venience.

Proof of Theorem 2.5. We only consider the case of Theorem 2.1(a).
First, ξ∗ must belong to the complete class. Otherwise, we can find a design
ξ̃∗ with Mξ̃∗ ≥ Mξ∗ and Mξ̃∗ 6= Mξ∗ . Because ξ∗ has at least d support

points, Mξ∗ is positive definite. Since Φ is strictly isotonic on PD(d), we
have Φ(Mξ̃∗)>Φ(Mξ∗), which is a contradiction.



SATURATED OPTIMAL DESIGNS UNDER DIFFERENTIABLE CRITERIA 27

Now suppose there is another optimal design ξ̃∗.
(i) If ξ̃∗ also has at least d support points, then it also belongs to the

complete class by previous arguments, and we can write ξ∗ = {(c∗i , ω
∗

i )}
m
i=1,

ξ̃∗ = {(c̃∗i , ω̃
∗

i )}
m
i=1, c

∗

1 = c̃∗1 = A. By strict concavity, we must have Mξ∗ ∝
Mξ̃∗ since otherwise Φ(αMξ∗ +(1−α)Mξ̃∗)> αΦ(Mξ∗)+ (1−α)Φ(Mξ̃∗) =

Φ(Mξ∗) for all α ∈ (0,1). Let Mξ∗ = δMξ̃∗ , then Φ(δMξ̃∗) = Φ(Mξ̃∗). The
strict isotonicity of Φ implies δ = 1, hence Mξ∗ =Mξ̃∗ and Cξ∗ =Cξ̃∗ . Then

we have (A.1) holds. Because F(c) < 0, {Ψ0, . . . ,Ψ2m−2} is a Chebyshev
system. The maximum number of different support points in (A.1) is 2m−1,
so (A.1) only holds if the design points and weights on two sides of the
equations are equal, which means ξ∗ = ξ̃∗.

(ii) If ξ̃∗ has less than d support points, let ξα = αξ∗+(1−α)ξ̃∗,0<α< 1.
By concavity, ξα is also an optimal design, moreover, it has at least d support
points. Thus following the arguments in case (i), we have ξα = ξ∗, which
means ξ∗ = ξ̃∗. This contradicts with the fact that ξ̃∗ has less than d support
points. �
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