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Abstract

The paper considers causal smoothing of the real sequences,i.e., discrete time processes in a

deterministic setting. A family of causal linear time-invariant filters is suggested. These filters ap-

proximate the gain decay for some non-causal ideal smoothing filters with transfer functions vanish-

ing at a point of the unit circle and such that they transfer processes into predictable ones. In this

sense, the suggested filters are near-ideal; a faster gain decay would lead to the loss of causality.

Applications to predicting algorithms are discussed and illustrated by experiments with forecasting

of autoregressions with the coefficients that are deemed to be untraceable.
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1 Introduction

The paper studies causal smoothing of the discrete time processes. For many applications, it is preferable

to replace a process by a more smooth process. In continuous time setting, smoothness is associated with

predictability. Smooth analytic functions are predictable, i.e., their values on any interval define uniquely

their values outside of this interval, and an ideal low-passfilter converts a function into an analytic one.

For discrete time processes, it is not obvious how to define ananalog of the continuous time analyticity

and smoothness. A classical approach is to consider predictability instead of analyticity. So far, the

predictability criterion for stochastic Gaussian stationary discrete time processes in the frequency do-

main setting are given by the classical Szegö-Kolmogorov Theorem. This theorem says that the optimal
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prediction error is zero if

∫ π

−π
log φ

(
eiω

)
dω = −∞, (1)

whereφ is the spectral density; see Kolmogorov [20], Szegö [27, 28], Verblunsky [29], and more recent

literature reviews in [3, 26]. This means that a stationary Gaussian process is predictable if its spectral

density is vanishing on a part of the unit circle{z ∈ C : |z| = 1}, i.e., if the process is ”band-limited”

in this sense. This result was expanded on more general stable stochastic processes allowing spectral

representations with spectral density via processes with independent increments; see, e.g., [7].

The stochastic setting is the most common in causal smoothing and sampling; see, e.g., [1, 2, 4,

5, 3, 8, 9, 12, 11, 13, 14, 15, 16, 18, 20, 25, 24]. A transition to the predicability of discrete time

processes in deterministic setting is non-trivial and related to the concept of the randomness for the real

sequences in the pathwise setting without a probability measure. There are many classical works devoted

to this important concept, starting from Mises [24], Church[6], Kolmogorov [20], Loveland [23]; see

the references in [21].

It was found that real sequences are predictable if their Z-transform vanishes on an arc of the unit

circle [11] on the complex plane or at a pointz = −1 of the unit circle [12]. Therefore, smoothing can

be interpreted as reduction of the energy on the higher frequencies. In particular, an ideal low-pass filter

is a smoothing filter. This filter is non-causal, i.e., it requires the future value of the process. Similarly, a

filter with too high rate of decay of the frequency response ata certain point of the unit circle also cannot

be causal, since causality is inconsistent with predictability of outputs described in [12].

The present paper readdresses the problem of causal smoothing of the discrete time processes in

the deterministic pathwise setting, without probabilistic assumptions. We suggest a family of causal

smoothing filters that can be arbitrarily close to some idealnon-causal smoothing filters defined by

equation (2) below. The suggested filters are near-ideal in the sense that they ensure ”almost” ideal rate

of damping the energy at the pointz = −1; a faster decay of the frequency response is impossible for

causal filters. This follows from predictability criterion[11]. In fact, the particular reference family

of non-causal ideal filters (2) was selected because these filters transfer non-predictable processes into

predictable ones satisfying the criterion from [12]. Similar approach was used in [10] for the continuous

time setting.

The suggested near-ideal filters are discrete time causal linear time-invariant filters (LTI filters); they

2



are represented as convolution integrals over the historical data and approximate the real unity uniformly

on an arbitrarily large part of the unit circle.

It appears that these causal filters can be used to improve theperformance of predictors suggested in

[12]. These are robust with respect to the noise contamination, and the error caused by a high-frequency

noise depends on the intensity of this noise. A near-ideal smoothing filter cannot remove the high-

frequency noise entirely but still can reduce it. This approach is discussed in Section 4, where we present

some numerical experiments with the suggested near-ideal filters applied to forecasting of autoregres-

sions in a setting where the autoregression coefficients aredeemed to be untraceable.

Some definitions and notations

We denote byZ the set of all integers.

For r ∈ [1,+∞], we denote byℓr the set of all sequencesx = {x(t)}t∈Z ⊂ R, such that‖x‖ℓr =
(∑∞

t=−∞ |x(t)|r
)1/r

< +∞ for r ∈ [1,∞) or ‖x‖ℓ∞ = supt |x(t)| < +∞ for r = +∞. We denote by

ℓ+r the set of all sequencesx ∈ ℓr such thatx(t) = 0 for t < 0.

We denote byLr(−π, π) the usual Banach space of complex valuedLr-integrable functionsx :

[−π, π] → C.

LetDc ∆

= {z ∈ C : |z| > 1}, and letT = {z ∈ C : |z| = 1}.

Forx ∈ ℓ1 or x ∈ ℓ2, we denote byX = Zx the Z-transform

X(z) =

∞∑

t=−∞

x(t)z−t, z ∈ C.

Respectively, the inverse Z-transformx = Z−1X is defined as

x(t) =
1

2π

∫ π

−π
X

(
eiω

)
eiωtdω, t = 0,±1,±2, ....

If x ∈ ℓ2, thenX|T is defined as an element ofL2(T), i.e., X
(
eiω

)
∈ L2(−π, π). If X

(
eiω

)
∈

L1(−π, π), thenx = Z−1X is defined as an element ofℓ∞.

Let H2(Dc) be the Hardy space of functions that are holomorphic onDc including the point at

infinity with finite norm ‖h‖H2(Dc) = supρ>1 ‖h(ρeiω))‖L2(−π,π). Note that Z-transform defines a

bijection between the sequences fromℓ+2 and the restrictions (i.e., traces)X|T of the functions from

H2(Dc) such thatX (eiω) = X
(
e−iω

)
for ω ∈ R; see, e.g., [22], Section 4.3. IfX

(
eiω

)
∈ L1(−π, π)

andX (eiω) = X
(
e−iω

)
, thenx = Z−1X is defined as an element ofℓ+∞.
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2 Problem setting

Let x(t) be a discrete time process,t ∈ Z. The output of a linear filter is the process

y(t) =

∞∑

s=−∞

h(t− s)x(s),

whereh : Z → R is a given impulse response function.

If h(t) = 0 for t < 0, then the output of the corresponding filter is

y(t) =

t∑

s=−∞

h(t− s)x(s).

In this case, the filter and the impulse response function aresaid to be causal. The output of a causal filter

at timet can be calculated using only past historical valuesx(s)|s≤t of the currently observable input

process.

The goal is to approximatex by a ”smooth” filtered processy via selection of an appropriate causal

impulse response functionh.

We are looking for families of the causal smoothing impulse response functionsh satisfying the

following conditions.

(A) The outputsy approximate inputsx; an arbitrarily close approximation can be achieved via selec-

tion of a filter from this family.

(B) The spectrum of the outputy vanishes on higher frequencies.

(C) The effectiveness of the damping on the energy on the higher frequencies approximates the ef-

fectiveness of some reference family of non-causal smoothing filters that transfer processes into

predictable ones, i.e., such that the future values are uniquely defined by the past values.

Note that it is not a trivial task to satisfy Conditions (A)-(C) simultaneously. For example, there are

sets of ideal low-pass filters such that the distance of thesesets from the set of all causal filters is zero.

In [2], this was shown for the set of low-pass filters with increasing pass interval[−∆,∆], where∆ ∈

(0, π). However, Condition (B) is not satisfied for the corresponding causal approximations. Moreover,

all known causal approximations of ideal filters do not feature zero values for the transfer functions. The

present paper suggests transfer functions vanishing atz = −1 together with their derivatives.
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The targeted properties of the near ideal filters

Our purpose is to construct a family of causal filters such that the Conditions (A)–(C) are satisfied. We

will be using a reference family of ”ideal” smoothing filterswith the frequency response

Mθ,q

(
eiω

)
= exp

(
− θ

|1 + eiω|q
)
, (2)

whereq > 1 and θ > 0 are parameters. For these filters, Condition (A) is satisfiedasθ → 0, and

Conditions (B) is satisfied for allθ > 0. However, these filters are non-causal because, for anyx ∈ ℓ2,

the valuesx(t + 1) of the output processes of these filters are weakly predictable at timet [12]. This is

sinceMθ,q

(
eiω

)
→ 0 fast enough asω → −π.

For a given integerm ≥ 1, we will construct a family of causal filters with impulse responses

ha ∈ ℓ+∞ and with the corresponding Z-transformsHa = Zha, wherea ∈ (0, 1) is a parameter. For this

family, the following more special Conditions (a)-(c) willbe satisfied (the numberm is used in Condition

(b1) below).

(a) Approximation of the identity operator:

• (a1)supω∈[0,π],a |Ha

(
eiω

)
| < +∞.

• (a2) For anyΩ > 0, Ha

(
eiω

)
→ 1 asa → 1− 0 uniformly in ω ∈ [−Ω,Ω].

• (a3) For anyX
(
eiω

)
∈ L1(−π, π) and anyx = Z−1X,

‖ya(·)− x(·)‖ℓ∞ → 0 as a → 1− 0,

whereya is the output process

ya(t) =

t∑

τ=−∞

ha(t− τ)x(τ).

(b) The spectrum is vanishing at a point atT:

• (b1) For alla, Ha

(
eiω

)
is m times differentiable atω = π, and

Ha(−1) = 0,
dkHa

dωk

(
eiω

) ∣∣∣
ω=π

= 0, k = 1, ...,m.

5



• (b2) For anyε > 0, there existsδ > 0 anda ∈ (0, 1) such that

sup
ω∈[π−δ,π+δ]

|Ha

(
eiω

)
| < ε.

(c) Approximation of non-causal filters (2) with respect to the effectiveness in damping:For anyε > 0

and anyΩ ∈ (0, π), Ω0 ∈ (Ω, π), Ω1 ∈ (Ω0, π) there existsθ > 0, q > 1, a > 0 such that

|Ha

(
eiω

)
− 1| ≤ ε, ω ∈ [−Ω,Ω], (3)

|Ha

(
eiω

)
| ≤ |Mθ,q

(
eiω

)
|, ω ∈ [−Ω1,−Ω0] ∪ [Ω0,Ω1]. (4)

Conditions (a)-(c) represent particular versions of less specific Conditions (A)-(C). In particular,

estimate (4) ensures that Condition (C) is satisfied.

3 A family of near-ideal smoothing filters

Let a real numberp ∈ (1/2, 1) and integersN ≥ 1 andm ≥ 1 be given. For the real numbersa ∈ (0, 1),

we define transfer functions

Ha(z) =

(
exp

(1− a)p

z + a
+Ga(z)

)m

, z ∈ C, (5)

where

Ga(z) = −ξ(a, p) +
γ(a, p)

N

(
(−1)Nz−N − 1

)
,

and where

ξ(a, p) = exp[−(1− a)p−1], γ(a, p) = |1− a|p−2ξ(a, p).

We consider the set{Ha}a∈(0,1) of transfer functions (5) with a fixed triplet(m,N, p).

Theorem 1 Conditions (a)-(c) are satisfied for the family of filters defined by the transfer functions

{Ha}a∈(0,1). (Therefore, Conditions (A)-(C) are satisfied for this family).

Proof of Theorem 1.Let us assume first thatm = 1.

Clearly, the functionsHa are holomorphic inDc and bounded inDc ∪ T for anya ∈ (0, 1). Hence

the inverse Z-transformsha = Z−1Ha are causal impulse responses, i.e.,ha(t) = 0 for t < 0; see, e.g.,

[22], Theorem 4.3.2.
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Let f(a) = (1− a)p andΨa(z) = f(a)(z+ a)−1. By the definitions,Ha(z) = expΨa(z) +Ga(z),

and

Ψa

(
eiω

)
= f(a)

cos(ω) + a− i sin(ω)

(cos(ω) + a)2 + sin(ω)2
.

Let us prove that Condition (a) holds.

Clearly,|Ga

(
eiω

)
| → 0 asa → 1− 0 uniformly in ω ∈ (−π, π].

Letωa ∈ (π/2, π) be such thatcos(ωa)+a = 0. We have thatReΨa

(
eiω

)
> 0 for all ω ∈ [−ωa, ωa]

andReΨa

(
eiω

)
< 0 for all ω ∈ [−π, ωa) ∪ (−ωa, π].

Further, we have that

inf
ω∈[−ωa,ωa]

|eiω + a| ≥
√

1− a2.

Hence

sup
ω∈[−ωa,ωa]

|Ψa

(
eiω

)
| ≤ f(a)√

1− a2
=

(1− a)p−1/2

(1 + a)1/2
≤ 1.

Therefore, the value|Ha

(
eiω

)
| is uniformly bounded ina, ω. Hence Condition (a1) holds.

Further, we have that

ωa → π − 0 as a → 1.

Hence, for anyΩ ∈ [0, π), we have that

sup
ω∈[−Ω,Ω]

|Ψa

(
eiω

)
| → 0 as a → 1

and

sup
ω∈[−Ω,Ω]

|Ha

(
eiω

)
− 1| → 0 as a → 1.

Hence Condition (a2) holds.

Let as show that Condition (a3) holds. LetYa = HaX. By Condition (a2),Ya

(
eiω

)
→ X

(
eiω

)
as

a → 1− 0 for all ω ∈ R. Clearly, there existsa0 ∈ (0, 1) andc0 > 0 such thatsupω,a≥a0 |Ha

(
eiω

)
| ≤

c0. Hence|Ya

(
eiω

)
−X

(
eiω

)
| ≤ (c0+1)|X

(
eiω

)
|. By the assumptions,X

(
eiω

)
= Zx ∈ L1(−π, π).

By the Lebesgue Dominance Theorem, it follows that

∥∥Ya

(
eiω

)
−X

(
eiω

)∥∥
L1(−π,π)

→ 0 as a → 1− 0.
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Therefore, Condition (a3) holds and Condition (a) holds.

Let us show that Condition (b) holds. We have that

exp
(
Ψa

(
eiπ

))
= exp

(
f(a)

−1 + a

(1− a)2

)
= exp

(
−(1− a)p

1− a

)

= ξ(a, p) = −Ga(−1).

HenceHa(−1) = exp (Ψa (−1)) +Ga(−1) = 0.

Let us show thatdHa

dω

(
eiω

) ∣∣∣
ω=π

= 0. Let

r(ω) = Re exp
(
Ψa

(
eiω

))
, s(ω) = Im exp

(
Ψa

(
eiω

))
,

q(ω) =
1

N
Im

(
e−iN(ω−π) − 1

)
.

Clearly, the functionΨa

(
eiω

)
is differentiable inω ∈ R for any a, as well as functionsr(ω), s(ω),

andq(ω). In addition, we have thatr(ω) = r(π − ω). Hencer(ω) is even about the pointω = π and

differentiable. This implies that

dr

dω
(ω)

∣∣∣
ω=π

= 0.

By the definitions,s(ω) = exp(ReΨa) sin(ImReΨa) andexp(ReΨa)
(
eiω

)
→ ξ(a, p) asω → π. We

have thats(π) = q(π) = 0. The L’Hôpital’s rule gives that

lim
ω→π

ds(ω)
dω

dq(ω)
dω

= lim
ω→π

s(ω)

q(ω)
= lim

ω→π

ξ(a, p) sin
(

−(1−a)p sin(ω)
(a+cos(ω))2+sin(ω)2

)

1
N sin(N(ω − π))

= −ξ(a, p)
(1 − a)p

(a − 1)2
= −γ(a, p).

Clearly, dq(ω)dω |ω=π = −1. Hence

d

dω
expΨa

(
eiω

) ∣∣∣
ω=π

= i
ds(ω)

dω
|ω=π = iγ(a, p).

On the other hand,

dGa

(
eiω

)

dω

∣∣∣
ω=π

=
d

dω

(
−ξ(a, p) +

γ(a, p)

N

(
e−iN(ω−π) − 1

)) ∣∣∣
ω=π

= −iγ(a, p).

Hence

d

dω
Ha

(
eiπ

) ∣∣∣
ω=π

=
d

dω
exp

(
Ψa

(
eiπ

)) ∣∣∣
ω=π

+
dGa

(
eiω

)

dω

∣∣∣
ω=π

= 0.
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Therefore, Condition (b1) holds.

Let us show that Condition (b2) holds. We have that

ReΨa

(
eiω

)
=

f(a)(cos(ω) + a)

(cos(ω) + a)2 + sin(ω)2
= f(a)

Re (eiω + a)

|eiω + a|2 .

We have that−Re (eiω+a)/|eiω +a| is non-decreasing inω ∈ [ωa, π] and converges to1 asω → π−0,

and1/|eiω + a| is non-decreasing inω ∈ [ωa, π] and converges to(1 − a)−1 asω → π − 0. Hence

the product of these functions,−f(a)−1ReΨa

(
eiω

)
, is non-decreasing inω ∈ [ωa, π] . Hence we can

selectω̂a ∈ [ωa, π] such that−ReΨa

(
eiω

)
≥ −ReΨa

(
eiπ

)
/2 for all ω ∈ [ω̂a, π], i.e.,ReΨa

(
eiω

)
≤

ReΨa

(
eiπ

)
/2 for all ω ∈ [ω̂a, π]. In addition,ReΨa

(
eiω

)
= ReΨa

(
e−iω

)
. HenceReΨa

(
eiω

)
≤

ReΨa

(
eiπ

)
/2 for all ω ∈ [ω̂a, 2π − ω̂a] = [π − δa, π + δa], whereδa = π − ω̂a.

Further, we have that

ReΨa

(
eiπ

)
= (1− a)p

−1 + a

(−1 + a)2
→ −∞ as a → 1.

For a givenε > 0, let us select̄a such thatReΨa

(
eiπ

)
/2 < log(ε/2) for all a ≥ ā. In addition, we

can select̃a ≥ ā such that|Ga

(
eiω

)
| ≤ ε/2 for all a ≥ ã and allω. Then Condition (b2) holds with

a = ã andδ = δã selected for givenε. Therefore, Condition (b) holds.

Let us show that Condition (c) holds. It follows from the proof of (a) above, that, for a givenε > 0

andΩ, we can select̄a such that (3) holds fora ≥ ā. Further, letq > 1 be any. For anyΩ0 > Ω and

Ω1 > Ω0,

sup
ω∈[−Ω1,−Ω0]∪[Ω0,Ω1]

|Mθ,q

(
eiω

)
− 1| → 0 as θ → 0.

Clearly, (4) holds for small enoughθ. Hence Condition (c) holds.

We have proved the theorem for the case wherem = 1. The extension on the case wherem > 1 is

straightforward. This completes the proof of Theorem 1.�

Illustrative examples

Figures 1-3 shows examples of the frequency responses and the impulse functions for the filters described

above.

Figure 1 shows the shapes of gain curves|Mθ,q

(
eiω

)
for reference non-causal filter (2) withθ = 0.02,

q = 1.01, and|Ha

(
eiω

)
| for near-ideal causal filters (5) witha = 0.99, p = 0.6, N = 50, m = 2.
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Figure 2 shows the shapes of error curves for approximation of identity operator on low frequencies.

More precisely, it shows|Mθ,q

(
eiω

)
− 1| for reference non-causal filter (2) and|Ha

(
eiω

)
− 1| for near-

ideal causal filters (5), with the same parameters as for Figure 1.

Figure 3 shows an example of impulse responseh = Z−1Ha calculated as the inverse Z-transform

for causal filter (5) witha = 0.8, p = 0.6, N = 10, m = 1. Since the properties ofHa guarantee that

Imha(t) = 0 for all t and thatha(t) = 0 for all t < 0, we show the values fort ≥ 0 only.

In particular, these examples show that the impulse response functionsha can take negative values;

i.e., these filters do not represent an averaging with a positive kernels.

4 Applications to the forecasting

A possible application of suggested above filters is preliminary smoothing of the input signals for the

predicting algorithms. For this task, the causality is crucial. It is known that the band-limited sequences

are predictable, i.e., the sequences are predictable if with the spectrum vanishing on a interval inT. In

addition, there are predictable sequences such that the spectrum is vanishing in a single point ofT; see

[11, 12], where some predicable algorithms were suggested.

It can be noted that, the suggested above filters do not changethe input sequences significantly ifa is

close to 1; the energy of the input is not damped on a given arc of T. In fact, the energy is damped on a

small neighborhood of the pointeiπ = −1, and the size of this neighborhood converges to zero asa → 1.

Therefore, one cannot expect that the filters introduced above will help to improve the performance of

the predicting algorithms [11] requiring that the spectrumis vanishing on a fixed arc on the unit circle.

However, it appears that these filters can help to improve theperformance of predictors [12] oriented

on processesx with spectrum vanishing in a single point. More precisely, predictors [12] are applicable

for discrete time processesx such that, for someθ > 0, q > 1, c > 0,

sup
ω∈[−π,π]

|X
(
eiω

)
| ≤ cMθ,q

(
eiω

)
, X = Zx. (6)

In particular, it follows that filters (2) transfer sequences of a general type into predictable sequences

such that (6) holds; respectively, filters (2) cannot be causal.

The predicting kernel [12] was defined ask = k(·, γ) = Z−1K, where

K(z)
∆

= z

(
1− exp

[
− γ

z + 1− γ−r

])
, (7)

10



and wherer > 0 andγ > 0 are parameters. This predictor produces the process

y(t) =
t∑

d=−∞

k(t− d)x(t)

approximatingx(t+ 1) for γ → +∞ for all inputsx satisfying (6) withq > 1 + 2/r. (In the notations

from [12], r = 2µ/(q−1), whereµ > 1, q > 1 are the parameters ). The functionK
(
eiω

)
approximates

the functioneiω representing the forward one-step shift in the time domain;the value|K
(
eiω

)
− eiω| is

small everywhere but in a small neighborhood ofω = π. Therefore, the processy(t) represents an one

step prediction ofx(t+ 1) if X
(
eiω

)
vanishes with a certain rate atω = −π. It was shown in [12] that

sup
t

|x(t+ 1)− y(t)| → 0 as γ → 0,

for real sequencesx such that (6) holds, i.e., that the prediction error vanishes asγ → +∞. Moreover,

the error vanishes uniformly over classes of processesx from some bounded sets fromℓ∞, such that (6)

holds with a givenc.

Predictors (7) are robust with respect to some small noise contamination, meaning that the prediction

error depends continuously on the intensity of the contaminating noise. However, for largeγ, the values

of K
(
eiω

)
can be very large in a neighborhood ofω = π; in this case, the error can be large even for a

small noise.

We suggest to apply filter (5) to compensate the presence of large values ofK
(
eiω

)
in a small

neighborhood ofω = π and therefore to reduce the impact of the presence of the high-frequency noise.

This is illustrated by Figure 4 showing the shapes of error curves for approximation of the forward one

step shift operator. More precisely, it shows the shape of|K
(
eiω

)
− eiω| for the predictor (7) and the

shape of|K
(
eiω

)
Ha

(
eiω

)
−eiω| for the transfer functions (5) and (7), which corresponds topreliminary

smoothing of the input process by filters (5). These shapes characterize imperfection of the predictors,

since the transfer functioneiω corresponds to the one-step forward shift operator in time domain, i.e.,eiω

represents an ideal non-causal error-free one-step ahead predictor. It appears that the application of the

filter improves the approximation ofeiω.

Our setting does not involve stochastic processes and probability measure; it is oriented on smoothing

the real sequences. However, to provide an example of the application of our smoothing filters, we

considered a toy example with prediction of a stochastic Gaussian stationary processx(t) evolving as an

11



autoregression of AR(2) type

x(t) = β1x(t− 1) + β2x(t− 2) + ση(t), t ∈ Z. (8)

Hereη(t) is a stochastic discrete time Gaussian white noise,Eη(t) = 0, Eη(t)2 = 1. The coefficient

σ > 0 describes the intensity of the noise.

For the estimation of the effectiveness of predictors, we use the ratio

e(b1, b2) =

(∑n
t=1 |y(t− 1)− x(t)|2

)1/2

(
∑n

t=1 |b1x(t− 1) + b2x(t− 2)− x(t)|2)1/2
, (9)

wherebk ∈ R are parameters. The valuesy(t − 1) are supposed to be the predictions, at timet − 1,

of the future valuesx(t). Since the sequence{x(t)} does not satisfy (6) due to the presence of noise, a

forecasting error is inevitable. Ratio (9) allows to compare the error of a predicting algorithm generating

y and the error generated by a linear predictor with the coefficientsb1 andb2. More precisely, the value

e(b1, b2) represent the ratio of the error generated by the predictor producingy and the error generated

with the error of the linear predictor based on the hypothesis thatβ1 = b1 andβ2 = b2.

If the vector(β1, β2) is known, then the optimal one step predictor ofx(t) is

y(t− 1) = β1x(t− 1) + β2x(t− 2). (10)

In this case, the valuen−1
∑n

t=1 |β1x(t − 1) + β2x(t − 2) − x(t)|2 represents the sample mean of the

squared error of this optimal predictor with known values of(β1, β2). Therefore, the optimal predictor

(10) ensures thate(β1, β2) ≈ 1 for a large enoughn. Similarly, for any givenn, an average value for

e(β1, β2) is also close to one for a sufficiently large number of Monte-Carlo trials, for optimal predictor

(10). Respectively, any other predictor besides (10), including predictor (7), cannot achieve a lesser

average value ofe(β1, β2) for a sufficiently largen or as an average value for a sufficiently large number

of Monte-Carlo trials.

However, in many practical situations, the value of(β1, β2) is unknown, and, respectively, predictor

(10) cannot be used. On the other hand, predictor (7) does notrequire to know(β1, β2) and can be applied

in models with unknown or random and time variable(β1, β2) where predictors (10) is not applicable. In

other words, predictor (7) can be applied for processes withunknown shape of the spectral representation.

Therefore, it is reasonable to estimate the performance of apredictor usinge(b1, b2) with bk 6= βk, for

instance, withbk selected as the expected value, or the median, or upper or lower boundaries of unknown

βk.
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Since it is impossible to implement convolution with infinitely supported kernels and inputs, one has

to use truncated kernels and inputs for calculations. In theexperiments described below, we replacedk

andha = Z−1Ha by the truncated kernels

kd(t) = I{t≤d}k(t), ha,d(t) = I{t≤d}ha(t), d > 0. (11)

In other words, the originalk = Z−1K andha = Z−1Ha were used as some benchmarks; only their

truncated versions were actually implemented.

We will use value (9) to estimate the performance of predicting algorithms for the following two

cases:

• The algorithm is applied without filtering and producesy = kd ◦ x; we denote byeK(b1, b2) the

corresponding values (9).

• The algorithm is applied with filtering and producesy = (kd ◦ ha,d) ◦x; we denote byeKH(b1, b2)

the corresponding values (9).

In both cases,y(t) is calculated using historical data{x(s)}t−d≤s≤t.

In our experiments, we used equations (5) and (7) with

γ = 1.1, r = 1.1, a = 0.6, p = 0.7, N = 100, m = 2. (12)

Note that selection of too largeγ makes calculation ofk challenging, since it involves precise integration

of fast growingK
(
eiω

)
. The choice of parameters in (12) ensures that the values of|K

(
eiω

)
| are not

large. Figure 5 shows the corresponding impulse responseZ−1Ha. Figure 6 shows the corresponding

impulse responsesZ−1K andZ−1(KHa).

In our experiment with AR(2) process, we used 10,000 Monte-Carlo trials withn = d = 100 and

σ = 0.3. For each trial, we selected(β1, β2) randomly and independently. The distribution of(β1, β2) at

each trial was the following:β1 has the uniform distribution on the interval(0, 1), andβ2 = ξ
√
1− β2

1 ,

whereξ is a random variable independent onβ1 and uniformly distributed on the interval(−1, 1). This

choice ensures that the eigenvalues of the autoregression stay inside of the unit circleD almost surely.

We used MATLAB and standard personal computers; an experiment with 10,000 Monte-Carlo trials

would take about five minutes of calculation time.
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First, we compared the relative performance of our predictors with respect to the performance of the

optimal predictor that requires that the valuesβ1 andβ2 are known. We obtained that the mean value

over all Monte-Carlo trials ofeK(β1, β2) is 1.5019 and the mean value ofeKH(β1, β2) is 1.1177. This

indicates that application of filter (5) improves the performance of the predictor. As was mentioned

above, we cannot expect, for sufficiently many Monte-Carlo trials, the mean values ofeK(β1, β2) and

eKH(β1, β2) to be less than one, so the performance of the predictor (7) combined with filters (5) is

reasonably good.

Second, we calculated the mean valueseK(b1, b2) andeKH(b1, b2) with bk = Eβk, whereEβk is the

population mean forβk, k = 1, 2. For our parameters of the Monte-Carlo trials, we haveEβ1 = 0.5 and

Eβ2 = 0. The corresponding valueseK(0.5, 0) andeKH(0.5, 0) represent comparison of the performance

of our predictor (without or with preliminary filtering) with an one-step predictor ofx(t) given by

y(t− 1) = (Eβ1)x(t− 1) + (Eβ2)x(t− 2).

Note that this predictor requires to know the population means ofβ1 andβ2. We obtained that the mean

value foreK(0.5, 0) is 1.2292 and the mean value foreKH(0.5, 0) is 0.9545. These numbers indicate a

good performance of our filter/predictor system, especially if we take into account that our system does

not require to know the valuesEβk.

Figure 7 shows a sample path of AR(2) processx(t) and a filtered process obtained using filter (5)

with the parameters defined by (12). Figure 8 shows sample paths of AR(2) processx(t) and outputs

y(t) of predictor [12] without preliminary filtering and with preliminary filtering using filter (5) with the

parameters defined by (12). It shows the valuesy(t − 1), i.e., predictions ofx(t), versus the values of

x(t).

In addition, we considered a modification of process (8) withβ2 ≡ 0, i.e., AR(1) process. We used

the same predictors and filters as for the experiments with AR(2) process described above.

We set again10, 000 Monte-Carlo trials withn = d = 100, with σ = 0.3, and with randomly

selectedβ1 such thatβ1 was distributed uniformly on the interval(0, 1). We compared the relative

performance of our predictors with respect to the performance of the optimal predictor that requires that

the valueβ1 is known. We obtained that the mean value ofeK(β1, 0) is 1.2830 and the mean value of

eKH(β1, 0) is 1.1023. The numbers indicate again that the use of the filter improves the performance

of the predictor. Again, the mean values ofeK(β1, 0) andeKH(β1, 0) cannot be less than one, so the
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performance of the predictor (7) combined with filters (5) isreasonably good.

Finally, we calculated the valueseK(b1, 0) andeKH(b1, 0) with b1 = Eβ1 = 0.5 for AR(1) process

defined by (8) withβ2 ≡ 0. In other words, we compared the relative performance of theone step

predictor (5) with or without filtering with respect to the predictory(t) = (Eβ1)x(t) that requires to

known the population mean forβ1. We obtained thateK(0.5, 0) = 1.1824 andeKH(0.5, 0) = 1.0155.

This shows again that application of the filter reduces the forecasting error. Given that our system does

not require to knowEβ1, the performance is reasonably good.

The results of these experiments appear to be consistent andstable with respect to the variations of

the parameters.

On the impact of truncation

Since it is impossible to implement convolution with infinitely supported kernels and inputs, we have

to run numerical calculations with truncated processes. Let us show that the described above filtering

and forecasting are robust with respect to the truncation, i.e., that the truncation in (11) has a vanishing

impact for larged. SinceHa

(
eiω

)
∈ L∞(−π, π), we have thatha ∈ ℓ2. Henceha,d ◦ x → ha ◦ x in ℓ∞

asd → +∞ for x ∈ ℓ2; in practice, only truncated inputsx ∈ ℓ2 are available. It can be also noted that

the predicting kernelk = Z−1K defined by (7) belongs toℓ2. Therefore, the kernelk ◦ ha,d converges

to k ◦ ha in ℓ∞ asd → +∞.

Our numerical experiments for autoregressions with the coefficients deemed to untraceable demon-

strated that truncation with relatively smalld = 100 does not diminish a good forecasting performance.

5 Conclusion

The paper proposes a family of causal smoothing filters. These filters are near-ideal meaning that a

higher rate of damping of the energy on the high frequencies would lead to the loss of causality; this is

because they approximate non-causal filters transferring non-predicable processes into predictable ones.

A possible application is preliminary smoothing of the inputs for predicting algorithms. Certain mild but

stable improvement of forecasting accuracy is demonstrated in experiments with simple autoregressions

in a setting where theirs coefficients are deemed to be untraceable.

It could be interesting to investigate the computational limits of the algorithms described above, for
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instance, for long sequences, for higher order autoregressions, or for other types of input processes. It

could be interesting to find other filters with similar properties. It could be useful to represent the filtering

algorithm in the terms of the discrete Fourier transform. Weleave this for future work.
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Figure 1:Gain decay: the values |Mθ,q

(
eiω

)
| for a non-causal filter (2) with θ = 0.02 and q = 1.01,

and |Ha

(
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)
| for a causal filter (5) with a = 0.99, p = 0.6, N = 50, m = 2.
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Figure 2: Approximation of identity operator: shapes of the distances from 1, i.e, for the values
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− 1| and |Ha
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− 1|, for a non-causal filter (2) with θ = 0.02 and q = 1.01, and

|Ha

(
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)
| for a causal filter (5) with a = 0.99, p = 0.6, N = 50, m = 2.
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Figure 3:Impulse response ha(t) = (F−1Ha)(t) for causal filter (5) with a = 0.8, p = 0.6, N = 10,

m = 1.

20



−3 −2 −1 0 1 2 3
0

2

4

6

8

10

12

14

16

18

ω

 

 
∣

∣K
(

e
iω
)

− e
iω
∣

∣

∣

∣K
(

e
iω
)

H
(

e
iω
)

− e
iω
∣

∣

Figure 4:Approximation of the one-step forward shift operator: the values |K
(
eiω

)
−eiω| for the transfer

function of the predictor (7) and |K
(
eiω

)
Hν

(
eiω

)
− eiω|, i.e., with smoothing of the input process by

filters (5) with γ = 2.5, r = 0.225, a = 0.8, p = 0.7, N = 30, m = 3.

0 5 10 15
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

 

 
h(t) for a=0.6, p=0.7, N=100 ,m=2

Figure 5:Impulse response ha(t) = (F−1Ha)(t) for causal filter (5) with the parameters given in (12).
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Figure 6: The impulse response Z−1K of predictor (7) and the impulse response Z−1(KHa) of the

predictor combined with filters (5) with the parameters given in (12).
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Figure 7:A path of AR(2) process x(t) versus the output of filter (5) with the parameters given in (12).

22



180 185 190 195 200
−1.5

−1

−0.5

0

0.5

1

t

 

 

x(t)
prediction of x(t)
prediction of filtered x(t)

Figure 8: A path of AR(2) process x(t) versus two predictions y(t − 1) of x(t); one was calculated

without filtering, and another was calculated after application of filter (5) with the parameters given in

(12).
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