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Abstract

The paper considers causal smoothing of the real sequerzesiiscrete time processes in a
deterministic setting. A family of causal linear time-imizat filters is suggested. These filters ap-
proximate the gain decay for some non-causal ideal smapfhiiars with transfer functions vanish-
ing at a point of the unit circle and such that they transfecpsses into predictable ones. In this
sense, the suggested filters are near-ideal; a faster gad@ty eeould lead to the loss of causality.
Applications to predicting algorithms are discussed alhgtitated by experiments with forecasting
of autoregressions with the coefficients that are deemed tmbaceable.
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1 Introduction

The paper studies causal smoothing of the discrete timepses. For many applications, it is preferable
to replace a process by a more smooth process. In continimoeisétting, smoothness is associated with
predictability. Smooth analytic functions are predictalile., their values on any interval define uniquely
their values outside of this interval, and an ideal low-ddts converts a function into an analytic one.
For discrete time processes, it is hot obvious how to defirenaifog of the continuous time analyticity
and smoothness. A classical approach is to consider pabditt instead of analyticity. So far, the
predictability criterion for stochastic Gaussian stasigndiscrete time processes in the frequency do-

main setting are given by the classical Szegd-Kolmogoreecfem. This theorem says that the optimal
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prediction error is zero if

/7r log ¢ (eiw) dw = —o0, (1)

whereg is the spectral density; see Kolmogorov![20], Szego [2], @8blunsky [29], and more recent
literature reviews in |3, 26]. This means that a stationaaussian process is predictable if its spectral
density is vanishing on a part of the unit cirdle € C : |z| = 1}, i.e., if the process is "band-limited”
in this sense. This result was expanded on more generakstadghastic processes allowing spectral
representations with spectral density via processes witbdendent increments; see, elg., [7].

The stochastic setting is the most common in causal smaptiad sampling; see, e.g.; [1,12, 4,
5,13,18,09,[12] 11], 13, 14, 15,]16, 18, 20, 25, 24]. A transitiorthe predicability of discrete time
processes in deterministic setting is non-trivial andtesldo the concept of the randomness for the real
sequences in the pathwise setting without a probabilitysumea There are many classical works devoted
to this important concept, starting from Mises![24], Chuf6h Kolmogorov [20], Lovelandl[23]; see
the references in [21].

It was found that real sequences are predictable if themadsform vanishes on an arc of the unit
circle [11] on the complex plane or at a point= —1 of the unit circle [12]. Therefore, smoothing can
be interpreted as reduction of the energy on the higher énegjas. In particular, an ideal low-pass filter
is a smoothing filter. This filter is non-causal, i.e., it rega the future value of the process. Similarly, a
filter with too high rate of decay of the frequency response@rtain point of the unit circle also cannot
be causal, since causality is inconsistent with predititalaf outputs described in [12].

The present paper readdresses the problem of causal snpathihe discrete time processes in
the deterministic pathwise setting, without probabitistssumptions. We suggest a family of causal
smoothing filters that can be arbitrarily close to some ideai-causal smoothing filters defined by
equation[(R) below. The suggested filters are near-idedlersénse that they ensure "almost” ideal rate
of damping the energy at the point= —1; a faster decay of the frequency response is impossible for
causal filters. This follows from predictability criteriqdl]. In fact, the particular reference family
of non-causal ideal filter§2) was selected because thésss fitansfer non-predictable processes into
predictable ones satisfying the criterion fram/[12]. Semidpproach was used in [10] for the continuous
time setting.

The suggested near-ideal filters are discrete time canearltime-invariant filters (LTI filters); they
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are represented as convolution integrals over the hisiatita and approximate the real unity uniformly
on an arbitrarily large part of the unit circle.

It appears that these causal filters can be used to improyeetf@mance of predictors suggested in
[12]. These are robust with respect to the noise contanoimaéind the error caused by a high-frequency
noise depends on the intensity of this noise. A near-ideaosiing filter cannot remove the high-
frequency noise entirely but still can reduce it. This apgtois discussed in Sectibh 4, where we present
some numerical experiments with the suggested near-ideakfapplied to forecasting of autoregres-

sions in a setting where the autoregression coefficientdesmed to be untraceable.

Some definitions and notations

We denote byZ the set of all integers.

Forr € [1,+oc], we denote by, the set of all sequences= {z(t)}+cz C R, such that|z||,, =
(X Ja(®)")" < oo forr € [1,00) of ||z]ls.. = sup, [(t)] < oo for r = +oo. We denote by
¢ the set of all sequencese ¢, such that:(¢) = 0 for ¢ < 0.

We denote byL,(—m, ) the usual Banach space of complex valugdintegrable functions: :
[, 7] — C.

LetD¢ 2 {z e C:|z| >1},andletT = {z € C: |2| = 1}.

Forx € ¢1 orz € {5, we denote byX = Zz the Z-transform

oo

X(z) = Z z(t)z7t, ze€C.

t=—00

Respectively, the inverse Z-transform= Z~! X is defined as

T or

1 (7 , ,
x(t) /X(e’“)e’“tdw, t=0,%1,42,....

If z € ¢y, thenX|r is defined as an element @5(T), i.e., X (e*) € Lo(—m, ). If X (e) €
Li(—m, ), thenz = Z71 X is defined as an element 6f..

Let H2(D¢) be the Hardy space of functions that are holomorphicxnincluding the point at
infinity with finite norm [|Allpz2(pey = sup -1 [|(pe™))ll L,y (—xx)- Note that Z-transform defines a
bijection between the sequences frdgn and the restrictions (i.e., traced)|r of the functions from
H?(D°) such thatX (e*) = X (e~™) for w € R; see, e.g.,[22], Section 4.3. X (™) € L;(—m, )

andX (ev) = X (e~™), thenz = Z~'X is defined as an element &f..
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2 Problem setting

Letz(¢) be a discrete time procegs¢ Z. The output of a linear filter is the process
o
y(t) = Y h(t—s)a(s),
S=—00
whereh : Z — R is a given impulse response function.
If h(t) = 0 fort < 0, then the output of the corresponding filter is
t
y(t) = Y h(t—s)z(s).
§=—00
In this case, the filter and the impulse response functiosaitkto be causal. The output of a causal filter
at timet can be calculated using only past historical valués)|;<; of the currently observable input
process.
The goal is to approximate by a "smooth” filtered procesg via selection of an appropriate causal
impulse response function
We are looking for families of the causal smoothing impulesponse functionsé satisfying the

following conditions.

(A) The outputsy approximate inputs; an arbitrarily close approximation can be achieved viacsel

tion of a filter from this family.
(B) The spectrum of the outpytvanishes on higher frequencies.

(C) The effectiveness of the damping on the energy on theehiffequencies approximates the ef-
fectiveness of some reference family of non-causal smogtfiiters that transfer processes into

predictable ones, i.e., such that the future values areughjiglefined by the past values.

Note that it is not a trivial task to satisfy Conditions (AJ)(simultaneously. For example, there are
sets of ideal low-pass filters such that the distance of teetsefrom the set of all causal filters is zero.
In [2], this was shown for the set of low-pass filters with e&sing pass interva-A, A], whereA €
(0, 7). However, Condition (B) is not satisfied for the correspogdtausal approximations. Moreover,
all known causal approximations of ideal filters do not feazero values for the transfer functions. The

present paper suggests transfer functions vanishing=at-1 together with their derivatives.



The targeted properties of the near ideal filters

Our purpose is to construct a family of causal filters such tte Conditions (A)—(C) are satisfied. We

will be using a reference family of “ideal” smoothing filtarsth the frequency response

. 0
M@,q (€W) = €Xp <—m> s (2

whereq > 1 andf > 0 are parameters. For these filters, Condition (A) is satisieéd — 0, and
Conditions (B) is satisfied for all > 0. However, these filters are non-causal because, forranys,
the valuest(t + 1) of the output processes of these filters are weakly predecttttimet [12]. This is
sinceMy,, (™) — 0 fast enough as — —.

For a given integern > 1, we will construct a family of causal filters with impulse pesses
h, € %, and with the corresponding Z-transforfi = Zh,, wherea € (0, 1) is a parameter. For this
family, the following more special Conditions (a)-(c) whiié satisfied (the numbet is used in Condition

(b1) below).
(a) Approximation of the identity operator:
o @DSUPL i | Ha () | < +o0.
e (a2) Forany) > 0, H, (¢™) — 1 asa — 1 — 0 uniformly inw € [, ©].
e (a3) ForanyX (e) € Ly(—m, ) and anyz = Z' X,
l9a() = 2()lle. 0 @S a—1-0,

wherey, is the output process
t
Ya(t) = Z ho(t — T)x(T).

(b) The spectrum is vanishing at a pointat

e (bl) Foralla, H, (¢*) is m times differentiable at = 7, and

dkHa W
H,(-1) =0, Aok (e )

W=T



e (b2) For any: > 0, there exist$ > 0 anda € (0, 1) such that

sup  |H, (eiw) | <e.
we€[mr—6§,7+0]

(c) Approximation of non-causal filterisl(2) with respect to tifeaiveness in dampindzor anys > 0
and anyQ2 € (0,7), Qo € (Q,7), A € (Qo, ) there exist® > 0, ¢ > 1, a > 0 such that

’Ha (eiw) - 1’ < g, weg [_979]7 (3)

[Ha (€) | < [Mog (€¥) ], w e [~Q1,—Q] U [0, 2. )

Conditions (a)-(c) represent particular versions of lgsscEic Conditions (A)-(C). In particular,

estimate[(4) ensures that Condition (C) is satisfied.

3 A family of near-ideal smoothing filters

Letareal numbep € (1/2,1) and integersV > 1 andm > 1 be given. For the real numbeis= (0, 1),

we define transfer functions

HA@=<ng;2p+GA@>, sec, )
where

Col2) = ~(a,p) + 1EB) (1N ),
and where

&(a,p) = exp[—(1—a)’™"], ~(a,p) = |1 —al’>¢(a,p).
We consider the s€tH, },¢ 0,1y Of transfer functions (5) with a fixed tripléin, N, p).

Theorem 1 Conditions (a)-(c) are satisfied for the family of filters defi by the transfer functions

{Ha}ae(o,1)- (Therefore, Conditions (A)-(C) are satisfied for this fini

Proof of TheorerhllLet us assume first that = 1.
Clearly, the functiond?,, are holomorphic inD¢ and bounded iD¢ U T for anya € (0,1). Hence
the inverse Z-transforms, = Z~' H, are causal impulse responses, g (t) = 0 for t < 0; see, e.g.,

[22], Theorem 4.3.2.



Let f(a) = (1 —a)? and¥,(z) = f(a)(z +a)~'. By the definitionsH,(z) = exp U, (2) + Ga(2),

and

cos(w) + a — isin(w)

Vo () = f(a) (cos(w) + a)? + sin(w)?’

Let us prove that Condition (a) holds.

Clearly,|G, (¢™) | = 0 asa — 1 — 0 uniformly inw € (—, 7).

Letw, € (/2, ) be such thatos(w,)+a = 0. We have thaRe ¥, (™) > Oforallw € [~w,, wa)
andRe ¥, () < 0forallw € [—7,w,) U (—w,, 7).

Further, we have that

inf [ +al > V1 —a

WE[—Wa,wa)

Hence

sup ¥, ()] < f(a) (1= ap /2 <1.

WE[~wa,wa “Vi-a2  (1+a)/?
Therefore, the valug, (e™) | is uniformly bounded im, w. Hence Condition (al) holds.

Further, we have that
weg—>m—0 as a—1.
Hence, for any) € [0, 7), we have that
sup [P, (e*)] =0 as a—1
we[—Q,9Q]
and
sup |H, (¢*) -1/ —0 as a— 1
we[—Q,Q]
Hence Condition (a2) holds.
Let as show that Condition (a3) holds. ¥t = H,X. By Condition (a2)Y, (¢*) — X (e*) as
a —1—0forallw € R. Clearly, there exists, € (0,1) andcy > 0 such thatup,, ,>, [Ha (¢) | <
co- HencdY, (¢) — X () | < (co+1)|X (™) |. By the assumptionsY (e) = Zz € Li(—m, ).

By the Lebesgue Dominance Theorem, it follows that

HYa (ei‘“) - X (eiw)HLl(_mﬂ) —+0 as a—1-0.

7



Therefore, Condition (a3) holds and Condition (a) holds.

Let us show that Condition (b) holds. We have that

exp (W (¢7)) = exp  F(0) o ) = exo (=)
=¢(a,p) = —Gq(-1).

HenceH,(—1) = exp (¥, (—1)) + G4(—1) = 0.

Let us show thate () ‘ = 0. Let

r(w) =Re exp (Vo (€*)),  s(w) = Im exp (¥ (€))

q(w) = %Im <e_iN(“’_”) - 1) .

Clearly, the function¥,, (e) is differentiable inw € R for any a, as well as functions(w), s(w),
andg¢(w). In addition, we have that(w) = r(r — w). Hencer(w) is even about the point = 7 and

differentiable. This implies that

ol =o.

@ W=T
By the definitions s(w) = exp(Re ¥,) sin(ImRe ¥,) andexp(Re ¥,,) (™) — &(a,p) asw — 7. We

have thats(m) = ¢(7) = 0. The L'Hopital’s rule gives that

ds(w) s(w) ¢(a,p) sin <(a+_cfals(_o.?)))];ji-zi(:()w)2)
lim dd‘” = lim = lim T
w—T Zl(:)) wor g(w)  wor N sin(N(w — 7))
1—a)?
= _g(aap) Ea — 1;2 = _fY(aap)'
Clearly, d‘il(j) lo=r = —1. Hence
d iw ds(w .
% exp V¥, (e ) ‘w:ﬂ: Z%L}:w = w(a,p).

On the other hand,

dGa (€*))  d @) (N
= —w(a,p)
Hence
iH (ein) — i exp (\Ij (em)) ‘ +dGa (eiw) .
dw “ w=m dw “ w=m dw w=m ’




Therefore, Condition (b1) holds.

Let us show that Condition (b2) holds. We have that

f(a)(cos(w) + a)
(cos(w) + a)? + sin(w)?

Re (e + a)
le™ +al?

Re VY, (eiw) = = f(a)

We have that-Re (¢ +a)/|e™ + a| is non-decreasing i@ € |w,, 7] and converges tbasw — m — 0,
and1/|e* + a| is non-decreasing iw € [w,, 7] and converges t0l — a)~! asw — 7 — 0. Hence
the product of these functions; f(a) 'Re ¥, (¢), is non-decreasing i@ € [w,, 7] . Hence we can
selectiv, € [wq, 7] such that-Re ¥, (¢™) > —Re ¥, (e'™) /2 for all w € [y, 7, i.€.,Re ¥, () <
Re ¥, (¢'™) /2 for all w € [@,, 7. In addition,Re ¥, (¢’) = Re ¥, (e~*). HenceRe ¥, (™) <
Re ¥, (') /2 for all w € [@4, 2T — @o) = [T — 0a, T + 84, Whered, = 7w — &,.

Further, we have that

‘ 1
Re \I’a (elﬂ-) = (1 — a)pﬁ ——00 as a— 1.
— a

For a givere > 0, let us select such thaRe ¥, (e'™) /2 < log(¢/2) for all @ > a. In addition, we
can select > a such thatG, (¢™) | < /2 for all « > @ and allw. Then Condition (b2) holds with
a = a andd = 3 selected for givem. Therefore, Condition (b) holds.

Let us show that Condition (c) holds. It follows from the prab (a) above, that, for a given > 0
and(2, we can select such that[(B) holds fos > a. Further, lety > 1 be any. For any}, > © and
07 > Qp,

sup | Mg 4 (eiw) -1 —0 as 6—0.
we[—Q1,—Q0]U[Q0,021]
Clearly, [4) holds for small enough Hence Condition (c) holds.
We have proved the theorem for the case where- 1. The extension on the case whene> 1 is

straightforward. This completes the proof of Theofgnl.

[llustrative examples

Figureg 1-B shows examples of the frequency responsesaimdphlse functions for the filters described
above.

Figurell shows the shapes of gain curlés , (eiw) for reference non-causal filtéd (2) with= 0.02,
q = 1.01, and|H, (¢™) | for near-ideal causal filterEl(5) with= 0.99, p = 0.6, N = 50, m = 2.
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Figure2 shows the shapes of error curves for approximafiateatity operator on low frequencies.
More precisely, it showgMy , (¢™) — 1] for reference non-causal filtd (2) ap, (e*’) — 1| for near-
ideal causal filterd {5), with the same parameters as for&ligjiu

Figure[3 shows an example of impulse respolse Z~!H, calculated as the inverse Z-transform
for causal filter[(b) withu = 0.8, p = 0.6, N = 10, m = 1. Since the properties dff, guarantee that
Im h,(t) = 0 for all t and thath, () = 0 for all t < 0, we show the values far> 0 only.

In particular, these examples show that the impulse regplumetionsh,, can take negative values;

i.e., these filters do not represent an averaging with aipesiernels.

4 Applications to the forecasting

A possible application of suggested above filters is prelany smoothing of the input signals for the
predicting algorithms. For this task, the causality is @ldt is known that the band-limited sequences
are predictable, i.e., the sequences are predictablehftivé spectrum vanishing on a intervalln In
addition, there are predictable sequences such that tietr@peis vanishing in a single point @f; see
[11,/12], where some predicable algorithms were suggested.

It can be noted that, the suggested above filters do not chihageput sequences significantlyuifs
close to 1; the energy of the input is not damped on a givenfdlt tn fact, the energy is damped on a
small neighborhood of the poiat™ = —1, and the size of this neighborhood converges to zeto-asl.
Therefore, one cannot expect that the filters introducedelbgll help to improve the performance of
the predicting algorithms [11] requiring that the spectismanishing on a fixed arc on the unit circle.

However, it appears that these filters can help to improveénmrmance of predictors [12] oriented
on processes with spectrum vanishing in a single point. More precisehgdictors [12] are applicable

for discrete time processessuch that, for somé > 0, ¢ > 1, ¢ > 0,

sup  |X (e™)| < eMpq (e¥), X = Zax. (6)

w€[—m,7]
In particular, it follows that filters[{2) transfer sequesa# a general type into predictable sequences
such that[(B) holds; respectively, filteks (2) cannot be ahus

The predicting kernel [12] was definedlas= k(-,v) = Z' K, where

K(z)2 2 (1 — exp [—ﬁb : (7)
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and where- > 0 andy > 0 are parameters. This predictor produces the process
t
y(t)= > k(t—d)a(t)
d=—00
approximatingz(t + 1) for v — +oo for all inputsz satisfying [6) withg > 1 + 2/r. (In the notations
from [12],7 = 2u/(¢— 1), wherep > 1, ¢ > 1 are the parameters ). The functiéi(e’’) approximates
the functione™ representing the forward one-step shift in the time donthievalue| K (¢™) — ¢™| is
small everywhere but in a small neighborhoodwof= 7. Therefore, the procesgt) represents an one

step prediction of:(¢ + 1) if X (e’) vanishes with a certain rateat= —. It was shown in/[12] that
sup lz(t+1) —y(t)] -0 as v —0,
t

for real sequences such that[(b) holds, i.e., that the prediction error varsshey — +oco. Moreover,
the error vanishes uniformly over classes of procesdesm some bounded sets frofy,, such that[(b)
holds with a giverr.

Predictors[(l7) are robust with respect to some small nois&aagination, meaning that the prediction
error depends continuously on the intensity of the contatitig noise. However, for large, the values
of K (¢) can be very large in a neighborhoodwf= =; in this case, the error can be large even for a
small noise.

We suggest to apply filtef5) to compensate the presencergé kalues ofK (¢*) in a small
neighborhood ofv = 7 and therefore to reduce the impact of the presence of theffégiency noise.
This is illustrated by Figurel4 showing the shapes of errovesifor approximation of the forward one
step shift operator. More precisely, it shows the shapkl{o(ei“) — e™| for the predictor[{I7) and the
shape of K (¢') H, (™) —e™| for the transfer function{5) and (7), which correspondsrédiminary
smoothing of the input process by filtefs (5). These shapasacterize imperfection of the predictors,
since the transfer functio#i’ corresponds to the one-step forward shift operator in tioreain, i.e. g
represents an ideal non-causal error-free one-step amedidtpr. It appears that the application of the
filter improves the approximation ef.

Our setting does not involve stochastic processes and lpifitpaneasure; it is oriented on smoothing
the real sequences. However, to provide an example of thicaggn of our smoothing filters, we

considered a toy example with prediction of a stochasticSSian stationary process$t) evolving as an
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autoregression of AR(2) type
2(t) = Pra(t — 1) + foa(t —2) + on(t), teZ. (8)

Heren(t) is a stochastic discrete time Gaussian white ndidg¢) = 0, En(t)? = 1. The coefficient
o > 0 describes the intensity of the noise.

For the estimation of the effectiveness of predictors, veeths ratio
(Sps lyt = 1) — a()?)

(i bt = 1) + baa(t — 2) — a())'
whereb, € R are parameters. The valug& — 1) are supposed to be the predictions, at time 1,

e(b1,b2) = (9)

of the future values:(¢). Since the sequende:(¢)} does not satisfy (6) due to the presence of noise, a
forecasting error is inevitable. Rat{d (9) allows to congptire error of a predicting algorithm generating
y and the error generated by a linear predictor with the caeffisb; andb,. More precisely, the value
e(b1, by) represent the ratio of the error generated by the predictmfyzingy and the error generated
with the error of the linear predictor based on the hypoth#®ts; = b; andfs = bs.

If the vector(3;, B2) is known, then the optimal one step predictor:¢f) is
y(t —1) = Bra(t — 1) + fox(t — 2). (10)

In this case, the value™1 Y7 | [B1z(t — 1) + Baz(t — 2) — z(t)|? represents the sample mean of the
squared error of this optimal predictor with known valueg @f, 52). Therefore, the optimal predictor
(I0) ensures that(s1, 52) ~ 1 for a large enough. Similarly, for any givenn, an average value for
e(f1, B2) is also close to one for a sufficiently large number of Montel€trials, for optimal predictor
(@0). Respectively, any other predictor besided (10),uiliclg predictor[{I7), cannot achieve a lesser
average value of(3;, 32 ) for a sufficiently largen or as an average value for a sufficiently large number
of Monte-Carlo trials.

However, in many practical situations, the valug 6f, 52) is unknown, and, respectively, predictor
(10) cannot be used. On the other hand, predittor (7) doesqoire to know3;, 52) and can be applied
in models with unknown or random and time variabe, 52) where predictord (10) is not applicable. In
other words, predictof{7) can be applied for processesumkimown shape of the spectral representation.
Therefore, it is reasonable to estimate the performancepoéaictor using(by, by) with by # 5y, for

instance, withb,, selected as the expected value, or the median, or upper er lmundaries of unknown

Br.-
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Since it is impossible to implement convolution with infedit supported kernels and inputs, one has
to use truncated kernels and inputs for calculations. Ireiperiments described below, we replaéed

andh, = Z~'H, by the truncated kernels
ka(t) = Lyp<ayk(t),  haa(t) = Ly<ayha(t), d>0. (11)

In other words, the originat = Z~'K andh, = Z~'H, were used as some benchmarks; only their
truncated versions were actually implemented.
We will use value[(R) to estimate the performance of predlictlgorithms for the following two

cases:

e The algorithm is applied without filtering and produages= k; o x; we denote by (b1, by) the

corresponding valuek](9).

e The algorithm is applied with filtering and producgs= (k; o h, q) © x; we denote by, (b1, b2)

the corresponding valu€s| (9).

In both casesy(¢) is calculated using historical dafa(s) };—q<s<¢-

In our experiments, we used equatidns (5) amd (7) with
vy=11, r=11, a=06, p=0.7, N=100, m=2. (12)

Note that selection of too largemakes calculation df challenging, since it involves precise integration
of fast growingK (e’’). The choice of parameters in_{12) ensures that the valugls ¢£“’) | are not
large. Figurd b shows the corresponding impulse resp@nsed,. Figure[® shows the corresponding
impulse responseg 'K andZ~' (K H,).
In our experiment with AR(2) process, we used 10,000 MoradeCtrials withn = d = 100 and
o = 0.3. For each trial, we selectéd; , 5,) randomly and independently. The distribution(6f, 32) at
each trial was the following3; has the uniform distribution on the interv@d, 1), andg, = £/1 — 57,
where¢ is a random variable independent @nand uniformly distributed on the intervél-1,1). This
choice ensures that the eigenvalues of the autoregredapinside of the unit circlé almost surely.
We used MATLAB and standard personal computers; an expatimi¢h 10,000 Monte-Carlo trials

would take about five minutes of calculation time.
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First, we compared the relative performance of our predioidth respect to the performance of the
optimal predictor that requires that the valygsand 5, are known. We obtained that the mean value
over all Monte-Carlo trials ok (51, 52) is 1.5019 and the mean value @fy (51, 52) is 1.1177. This
indicates that application of filte[](5) improves the pemfiance of the predictor. As was mentioned
above, we cannot expect, for sufficiently many Monte-Canikdd, the mean values ef; (51, 52) and
exu (B1,52) to be less than one, so the performance of the predictor Mpced with filters [(5) is
reasonably good.

Second, we calculated the mean valagéb, , by) ande .y (b1, b2) with b, = ESy, whereEjy is the
population mean fof, kK = 1, 2. For our parameters of the Monte-Carlo trials, we hByg = 0.5 and
Eps = 0. The corresponding valueg (0.5, 0) ande . (0.5, 0) represent comparison of the performance

of our predictor (without or with preliminary filtering) witan one-step predictor ef(¢) given by
y(t—1) = (Efy)z(t — 1) + (ES2)z(t — 2).

Note that this predictor requires to know the population mseaf 5; and ;. We obtained that the mean
value fore,(0.5,0) is 1.2292 and the mean value far, (0.5,0) is 0.9545. These numbers indicate a
good performance of our filter/predictor system, espacifillve take into account that our system does
not require to know the valudsgy,.

Figure[T shows a sample path of AR(2) process and a filtered process obtained using filfdr (5)
with the parameters defined Hy {12). Figlie 8 shows samples mtAR(2) process:(¢) and outputs
y(t) of predictor [12] without preliminary filtering and with dieinary filtering using filter [(5) with the
parameters defined by (12). It shows the valygs— 1), i.e., predictions of:(t), versus the values of
x(t).

In addition, we considered a modification of procéss (8) with= 0, i.e., AR(1) process. We used
the same predictors and filters as for the experiments wit{fRABrocess described above.

We set againl0,000 Monte-Carlo trials withn = d = 100, with ¢ = 0.3, and with randomly
selecteds; such thats; was distributed uniformly on the interva@l, 1). We compared the relative
performance of our predictors with respect to the perfoiraasf the optimal predictor that requires that
the values; is known. We obtained that the mean valuee{ 51, 0) is 1.2830 and the mean value of
exn(P1,0) is 1.1023. The numbers indicate again that the use of the ififteroves the performance

of the predictor. Again, the mean valuesegf(51,0) andexy(/1,0) cannot be less than one, so the
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performance of the predictdrl(7) combined with filtérs (S)gasonably good.

Finally, we calculated the values; (b1,0) andexy (b1,0) with b; = Eg; = 0.5 for AR(1) process
defined by [(B) with, = 0. In other words, we compared the relative performance ofotie step
predictor [(5) with or without filtering with respect to theeglictory(¢t) = (Ef;)xz(t) that requires to
known the population mean fgt;. We obtained that (0.5,0) = 1.1824 andex,(0.5,0) = 1.0155.
This shows again that application of the filter reduces thedasting error. Given that our system does
not require to knowE 5, the performance is reasonably good.

The results of these experiments appear to be consisterdtalple with respect to the variations of

the parameters.

On the impact of truncation

Since it is impossible to implement convolution with infalit supported kernels and inputs, we have
to run numerical calculations with truncated processed.ukeshow that the described above filtering
and forecasting are robust with respect to the truncatien,that the truncation if_(11) has a vanishing
impact for larged. SinceH, (™) € Loo(—, ), we have thah, € ¢5. Henceh, 4oz — hq oz in lo
asd — +oo for x € £5; in practice, only truncated inputs € /5 are available. It can be also noted that
the predicting kernet = Z~! K defined by (7) belongs t6,. Therefore, the kerndl o hq,q converges
tok o hy in fo, asd — +o00.

Our numerical experiments for autoregressions with théficants deemed to untraceable demon-

strated that truncation with relatively smdlk= 100 does not diminish a good forecasting performance.

5 Conclusion

The paper proposes a family of causal smoothing filters. &liidters are near-ideal meaning that a
higher rate of damping of the energy on the high frequenciegldviead to the loss of causality; this is
because they approximate non-causal filters transferongpnedicable processes into predictable ones.
A possible application is preliminary smoothing of the itgpfor predicting algorithms. Certain mild but
stable improvement of forecasting accuracy is demonstiiatexperiments with simple autoregressions
in a setting where theirs coefficients are deemed to be wahde.

It could be interesting to investigate the computatioraité of the algorithms described above, for
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instance, for long sequences, for higher order autoragressor for other types of input processes. It
could be interesting to find other filters with similar projes. It could be useful to represent the filtering
algorithm in the terms of the discrete Fourier transform. l@éwe this for future work.
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Figure 1:Gain decay: the values |Mp 4 (ei“’) | for a non-causal filter @) with § = 0.02 and ¢ = 1.01,
and |H, (eiw) | for a causal filter (B with a = 0.99, p = 0.6, N = 50, m = 2.
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Figure 2: Approximation of identity operator: shapes of the distances from 1, i.e, for the values
| Mo, (eiw) — 1] and |H, (eiw) — 1|, for a non-causal filter @) with # = 0.02 and ¢ = 1.01, and

|H, (eiw) | for a causal filter ([B) with a = 0.99, p = 0.6, N = 50, m = 2.
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Figure 3:Tmpulse response hy(t) = (F~1H,)(t) for causal filter (§) with a = 0.8, p = 0.6, N = 10,

m = 1.
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Figure 4:Approximation of the one-step forward shift operator: the values |K (eiw) —e™| for the transfer
function of the predictor (@) and | K (eiw) H, (eiw) — €|, i.e., with smoothing of the input process by

filters (Bl) with v = 2.5, r =0.225, a = 0.8, p = 0.7, N = 30, m = 3.
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Figure 5:Impulse response hq(t) = (F~1H,)(t) for causal filter (@) with the parameters given in (2.
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Figure 6: The impulse response Z~ 'K of predictor (7)) and the impulse response Z~1(K H,) of the

predictor combined with filters (Bl with the parameters given in (I2)).
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Figure 7:A path of AR(2) process x(t) versus the output of filter (B]) with the parameters given in ([[2).
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Figure 8: A path of AR(2) process x(t) versus two predictions y(t — 1) of x(t); one was calculated

without filtering, and another was calculated after application of filter (B) with the parameters given in

@.
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