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Modulated Unit-Norm Tight Frames for
Compressed Sensing

Peng Zhang, Lu Gan, Sumei Sun, and Cong Ling

Abstract—In this paper, we propose a compressed sensing
(CS) framework that consists of three parts: a unit-norm tight
frame (UTF), a random diagonal matrix and a column-wise
orthonormal matrix. We prove that this structure satisfies the
restricted isometry property (RIP) with high probability if the
number of measurements m = O(slog®slog?n) for s-sparse
signals of length n and if the column-wise orthonormal matrix
is bounded. Some existing structured sensing models can be
studied under this framework, which then gives tighter bounds
on the required number of measurements to satisfy the RIP.
More importantly, we propose several structured sensing models
by appealing to this unified framework, such as a general
sensing model with arbitrary/determinisic subsamplers, a fast
and efficient block compressed sensing scheme, and structured
sensing matrices with deterministic phase modulations, all of
which can lead to improvements on practical applications. In
particular, one of the constructions is applied to simplify the
transceiver design of CS-based channel estimation for orthogonal
frequency division multiplexing (OFDM) systems.

Index Terms—Compressed sensing, structured sensing
matrix, unit-norm tight frame, coherence analysis,
arbitrary/deterministic subsampling, phase modulation, Golay
sequence.

I. INTRODUCTION

Compressed sensing (CS) as an emerging field has attracted
vast consideration over recent years in the areas of applied
mathematics, computer science, and electrical engineering [[1]]-
[5]. The theory provides an efficient way to solve an ill-
conditioned linear inverse problem with the prior knowledge
that the signal of interest is sparse or compressible. A length-
n signal o is said to be s-sparse when it is in the form
of an orthogonal signal representation. That is, o can be
decomposed as @ = ¥x, where the unitary matrix ¥ € C"*"
is the sparsifying transform (or orthobasis), and x € C™ has s
non-zero entries, i.e. ||x|jo := |[{! : x; # 0}| < s. Similarly, a
signal is s-compressible if its orthogonal representation x can
be approximated by s non-zero entries. The CS measurement
model is expressed as

y=®Pa+w=Ax+w, (D

where ® € C™*" m < n, is referred to as the sensing matrix,
y is the measurement vector, w is the noise vector and A
is the product of the sensing matrix ® and the sparsifying
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transform ¥, A = ®W. The restricted isometry property
(RIP) as a sufficient condition implies uniform and stable
recovery of all s-sparse vectors via nonlinear optimization
(e.g. l;-minimization). Theoretically, there are two essential
parameters measuring the performance of a CS setup: the
probability of perfect (or nearly perfect) recovery of the
unknown sparse vectors, and the corresponding requirement on
the number of measurements. In this context, sensing matrices
constructed from independent Gaussian/Bernoulli distributions
are optimal in the sense that they can cope with any orthobasis
such that the resultant matrix A satisfies the RIP with high
probability if m > O(slogn/s) [1], [3].

Since Gaussian/Bernoulli random matrices incur large com-
putation and storage costs in practical implementations, a wide
variety of structured sensing matrices have been proposed
in recent years. Despite considerable progress in the field,
there are still some open questions in the aspect of theoretical
analysis or practical implementations.

1) In many numerical simulations, some structured sensing
models, e.g. random demodulation [6], exhibit compara-
ble recovery performances to that of Gaussian/Bernoulli
random matrices. However, there is still a large gap
between their existing theoretical bounds on the number
of measurements to satisfy the RIP and the optimal
bound given by Gaussian/Bernoulli random matrices. Is
it possible to reduce this gap through new mathematical
tools?

2) Many structured sensing models that involve a random
subsampling operator have been proposed in literature,
such as randomly subsampled orthogonal transforms [2]],
[7], random convolution [§]], [9], random subsampling
of bounded orthonormal system [10] and etc. However,
due to the constraints of practical implementations, mea-
surement models that consist arbitrary/deterministic se-
lection of each measurement vector are more preferable
(e.g. radio interferometry and magnetic resonance imag-
ing [11]). Can we design a general sampling scheme
with arbitrary/deterministic subsampling operators?

3) Although there exist some structured sensing models that
have an arbitrary/deterministic subsampling operator,
they perform well for sparse signals in very specific
sparsifying bases, e.g. partial random circulant matrices
[12] only exhibit good recovery performance for sparse
signals on the spatial domain. How to improve their
compatibility with different sparsifying bases without
introducing extra randomness?

In this paper, we propose a unified framework for struc-



tured sensing models, thus obtaining positive answers to the
questions above. Specifically, our framework consists of three
parts: a unit-norm tight frame (UTF), a random diagonal
matrix and a column-wise orthonormal matrix. The RIP anal-
ysis on the unified framework provides tighter bounds on the
number of measurements to satisfy RIP for some structured
sensing models by noticing that each of these constructions is
a special case of the framework.

More importantly, we demonstrate that several new struc-
tured sensing models can be constructed and analyzed in
the framework, including a general sensing model with ar-
bitrary/determinisic subsamplers, random block diagonal ma-
trices that support fast computation and efficient storage, and
structured sensing matrices with deterministic phase modu-
lations. Comparing with existing sensing models, these new
designs lead to better implementation schemes in practical
applications, such as imaging system and channel estimation of
orthogonal frequency division multiplexing (OFDM) systems.

A. Organization of the Paper

The remainder of the paper is organized as follows. In
Section [lI, we review structured sensing models commonly
discussed in the CS literature and introduce the motivation of
this paper. In Section we present the main theorem for the
RIP analysis on the proposed framework and provides tighter
bounds on the number of measurements to satisfy the RIP for
some existing structured sensing matrices. We apply the main
theorem to the construction of several new sensing models
in Section including a new channel estimation scheme
for OFDM systems by employing the idea of deterministic
phase modulation. Simulation results are given in Section
followed by conclusions in Section [VIl We defer all proofs to
the Appendices.

B. Notations and Preliminaries

We give the notations and review some important notions
in compressed sensing. For a vector a, we denote by a,,
(i € [n] = A0, ...,n — 1}), the i-th element of this vector. We
represent a sequence of vectors by ag,...,a,_1 and a column
vector with ¢ ones by 1,. For a matrix A, A;; denotes the
element on its j-th row and k-th column. The vector obtained
by taking the j-th row (k-th column) of A is represented
by A,y (A k). A(.q) denotes the submatrix consisting of
the first ¢ columns of A. We also denote by Ay, ...,A,_1 a
sequence of matrices. A~! and A* represent the inverse and
the conjugate transpose of A. A ® B denotes the Kronecker
product of A and B. The Frobenius norm and the operator
norm of matrix A are denoted by ||A|r = /tr(4*A) and
[[All2—s2 = sup ), =1 [|[Ax]|2 respectively.

We define F (F*) as the normalized (inverse) discrete
Fourier transform (DFT) matrix the dimension of which will
be clear from the context. For the identity matrix, we use
the subscript to denote the dimension, i.e. I; denotes the [ x [
identity matrix. We omit the subscript whenever the dimension
is clear to see from the context.

We represent the block diagonal matrix generated from a set
of L matrices {Ag, Ay, - ,Ar_1}, A; € CP*? for i € [L],

by

Ay
. L—1 A
dlag([Ai]i:O ) =

A

Let Q C {0,--- ,n— 1} be an arbitrary/deterministic set of
cardinality m, and denote by R : C* — C™ the subsampling
operator that restricts a vector x € C" to its entries in (2.
Similarly, Rg/ : C™ — C™ represents a random subsampling
operator where each elements in Q' is selected independently
and uniformly from {0,--- ,n—1}. We write A < B if there
is an absolute constant ¢ such that A < ¢B.

1) Coherence parameter: The coherence parameter p(A)
of an X n matrix A describes the maximum magnitude of
the elements of A [13]

A) = Al
H(A) Org]agﬁl ikl
0<k<n

For a unitary matrix ¥ € C"*", we have ﬁ <u(P) <1

2) Restricted Isometry Property: One important notion that
has been successfully used to establish uniform recovery
guarantees is the restricted isometry property (RIP). For a
CS measurement model (EI) uniform and stable recovery of
all s-sparse signals in the sparsifying basis W via nonlinear
optimization (e.g. !;-minimization) is ensured provided that
the matrix A = ®W satisfies the RIP. Therefore, in this
paper, the product of the sensing matrix ® and the sparsifying
transform W, e.g. A = ®W, is referred to as the sensing
model.

Definition L.1 ( [14])). A matrix A € C™*" is said to satisfy
the RIP of order s and level § if

(1= 0)lxl3 < lAx]3 < (1 +)lIx][3, 2)

holds for all s-sparse vectors x € C™ with respect to the
identity basis 1. The smallest 0 that satisfies @2)) is called the
restricted isometry constant of order s and denoted by §.

II. REVIEW OF STRUCTURED SENSING MODELS

Although Gaussian and Bernoulli random matrices have
been shown to satisfy the RIP with optimal bound on the
number of measurements, they have limitations in practice
for several reasons: the design of the measurement matrix
is usually subject to constraints of the application; the large
computation and storage cost by using Gaussian and Bernoulli
random matrices impedes their application in large scale
problems. This leads to the study of structured sensing models.
In this section, we briefly review standard structured sensing
models in the CS literature.

A. Randomly subsampled orthogonal system

The first structured sensing model proposed in the literature
consists of randomly chosen rows of the discrete Fourier
matrix, e.g. A = /IRgF (A = &, ¥ = 1) and F
here represents an n X n normalized DFT matrix [2]. This
model known as random partial Fourier can provide fast



matrix multiplication by using fast Fourier transform (FFT)
algorithm. However, it performs poorly when dealing with
signals in other sparsifying basis, e.g. wavelet basis. To tackle
this problem, a new group of sensing models have been
proposed by adding a diagonal matrix to the random partial
Fourier model. Their measurement matrices can be written as
® = /LR Fdiag(t). [15], [16] show that the measurement
matrices can efficiently sample a sparse signal in the identity
or Fourier or wavelet basis when t is a Golay sequence.
Whereas, [17] demonstrates that the measurement matrices
can guarantee faithful recovery for a sparse signal in any basis
provided that t is a random Bernoulli vector.

Another type of structured sensing models arises in appli-
cations where convolutions are involved. The sensing model,
known as random convolution based CS, is formed by ran-
domly selecting rows from a circulant matrix, e.g. A = ¥ =
\/%RQ’HI»W and H,. is a circulant matrix formed by a vector
r, ie.

ro p—1 -+ rp
ry ro e ro

H, =
n-1 TIp-2 - o

For this setup, the vector r can be either random or de-
terministic: when each element of t is drawn from i.i.d.
Gaussian/Bernoulli random variables, the model can ensure
good recovery performance for sparse signals in any basis [§]];
when t forms a nearly perfect sequence (e.g. Golay sequence),
good recovery guarantee can be proved for signals that are
sparse in identity or Fourier or DCT basis [9].

Actually, all of the above structured sensing models can
be analyzed in a general framework that consists of randomly
subsampling orthogonal system [10]. Suppose B is an arbitrary
unitary matrix, it has been proved that

A=,/"RoB
m

satisfies the RIP with high probability if m >
c62sn?u?(B) log® n. Besides those have been reviewed
so far, this framework encompasses many other structured
sensing models that consist of randomly subsampling
operators including [7]], [11]], [18]-[20]. In [13], a more
general structure was proposed and analyzed based on
nonuniform recovery guarantees, e€.g. no RIP is shown. We
note that structures considered in both [10] and [13] consist
in selecting each row vector independently from the others.
However, as will be introduced in the following subsections,
there exist other structured sensing models that can not be
grouped into this category.

B. System with fixed sampling locations

The partial random circulant sensing model can be ex-
pressed as A = ®¥ = —=RgqH,, where ¥ = I and H,
represents a circulant matrix formed by a random vector r
[12]. It is different from the random convolution sensing model
for two reasons: first, it consists of an arbitrary/deterministic

subsampling operator instead of a random one; second, it only
copes with sparse signals in the identity basis (¥ = I).

The second structured sensing model, named as random
demodulation, is motivated by analog to digital conversion.
Let 1, represent a column vector with g ones, the model can
be represented as [6]

A =P, 3F (3)

where

q

and 3 = diag(o) with o being a length-n Rademacher vector
(n =mgq). F € C"*" denotes a permuted DFT matrix, i.e.,

- 1 o

Fjr = %e ikl
where j = 0,---,n —1and k = 0,£1,--- ,£(5 — 1), 5.
In random demodulation, the matrix~P1 is known as the
integrator. Here, ® = P, ¥ and ¥ = F.

C. Multiple channel systems

This type of sensing models is constructed by concatenating
structured matrices. There are mainly two structured sensing
models belonging to this type: random probing and compres-
sive multiplexing. The random probing model was proposed
to estimate the channel response between multiple source-
receiver pairs, which can be applied in seismic exploration,
channel estimation of MIMO systems and coded aperture
imaging [21]]. Let G; = diag(g;) with g; € C™ being the
random probe signals. The random probing model can be
represented as below.

A =F"[GoFu, GiF(1y G1Fugyl @

where F represents an m X m normalized DFT matrix. In
this model, A = ® and ¥ = I. It is noted that each block
F*G;F (1,4 is a submatrix obtained by selecting the first
q columns of an circulant matrix. In [22]], the compressive
multiplexing sensing model was proposed and applied in
recovering of signals that are jointly sparse over the combined
bandwidth of a number of spectrum channels. Mathematically,
it can be represented as

A=[3 = .1 F, (5)

where F is an m x m normalized DFT matrix, X; = diag(o;)
and {o;} are independent length-m Rademacher vectors.
Here, ® = [Eo I EL,J and ¥ = F.

It is noted that the sensing models in this category can not
be analyzed by the existing framework proposed in [10], [13]
since none of these models consists in selecting each row
vector independently from the others. Is it possible to find
a new framework that encompasses these sensing models? At
the first glance, the answer may be pessimistic since these four
sensing models seem isolated to each other.



However, we will develop a unified framework and demon-
strate that it includes all of the sensing models in Section
II-B| and Generally, our framework and the one pro-
posed in [10], [13] complement each other; many of the
structured sensing models commonly discussed in CS can
now be classified and analyzed in one of both frameworks.
The contributions of our proposed framework are twofold.
Firstly, it proves tighter RIP bounds on the required number
of measurements for some existing structured sensing models
(see Section[[II). Secondly, our newly designed sensing models
can bring various improvements in practical applications (see
Section [IV)).

III. MAIN RESULTS

In this section, we present our main theoretical results on the
recovery of sparse (or compressible) signals from structured
measurements and demonstrate how to obtain tighter RIP
bounds for some of the existing structured sensing models
by using the proposed framework.

Before continuing, we pause to review the definition and
useful properties of unit-norm tight frames (UTF) that are
essential for our theorem. For more details, see [23], for
example.

A. Unit-norm Tight Frames

A set of vectors V = {V;}c[, in a complex Hilbert Space
C™ is called a finite frame if

2 2 2
allx3 < > [(vi,x)* < BlxI3,
i€[n]
for all x € C™. If @ = f3, then the frame is tight. When the
frame vectors all have unit norm, i.e. |v;||2 = 1, it is called
a unit-norm frame. A unit-norm tight frame (UTF) has
a=—. (6)
m
We form an associated m x m matrix with the frame vectors
as its columns

V=I[vg vi v V1]

then the following proposition can be adapted from [24].

Proposition III.1 (Proposition 1 [24]). An m X n normalized
matrix 'V is a UTF if and only if it satisfies one (hence both)
of the following conditions.

o The m nonzero singular values of V equal \/’%

e The rows of \/TELV form an orthonormal family.

By Proposition [III.1} it is easy to verify that the following
matrices are UTFs.

P =1,®1]
11---1
11---1
= (D
111
P,=1] @ F* = [F* F* F*], (8)

P;=1®L,=[1 I --- 1. 9)

In general, a UTF can be obtained from Harmonic frames or
Gabor frames [25].

B. Main theorem

We are now ready to present the main theorem of this paper.

Theorem IIL.2. Consider a framework that consists of three
parts A = UDB, where U € C"™*" jsa UTF, D = diag(&) is
a diagonal matrix with & being a length-n random vector with
independent, zero-mean, unit-variance, and r-subgaussian en-
tries, and B e Cxn represents a column-wise orthonormal

matrix, i.e. B*B =L If. for § € (0,1),
m > c10 2sap®(B)(log? slog® 1),

where 1 := max{n,n} and ¢; > 0 is a constant, then with

A 5 2 . .
probability at least 1—~n7(1°g 7)(1025)"  the restricted isometry
constant of A = UDB satisfies §5 < 0.

Proof: Details of the proof are given in Appendix [ ]

In this paper, we coin the combination UD a randomly

modulated UTF since the diagonal of D is a random sequence.

Clearly, the theorem still holds if Bisa unitary matrix. When

B is a bounded column-wise orthonormal matrix, i.e. u(B) =

O(1/+v/n), and n = con for a constant ¢y > 0, the bound on
the number of measurements can be reduced to

m > c36 2s(log? slog?n), 3 >0, (10)

which indicates that the number of measurements is linear in
the sparsity level s and (poly-)logarithmic in the signal dimen-
sion n. We term this construction a UDB (UTF, Diagonal and
Bounded) framework.

The construction of sensing matrices by the use of UTF
has been considered recently in literature [26]—[28]]. However,
none of their recovery performances is based on the RIP
analysis. We refer the readers to [29] for the background on
r-subgaussian random variables/vectors. A simple example is
a Rademacher or Steinhaus vector.

Our framework is both simple and general: first, it charac-
terizes a variety of existing structured sensing models; second,
many new structured sensing models can be constructed and
analyzed within this framework (see Section [[V).

In the following subsection, we demonstrate how to obtain
tighter RIP bounds for some structured sensing models by
using the proposed framework. (See Table [[| for a summary of
the comparison results.)

C. Tighter RIP Bounds

With the help of our framework, the RIP analysis for
some structured sensing models can be easily accomplished
by noticing that the sensing model can be decomposed into
three parts, all of which match exactly with those specified in
Theorem

Firstly, it can be seen that the random demodulation sensing
model (3) consists of three matrices, each of which matches
with the three parts specified in our framework: P; = I ® 1qT
is a UTF (), F is a column-wise orthonormal matrix. Since
1(F) = 1/,/n, the required number of measurements for this
model to satisfy the RIP is given by (10).

Secondly, the random probing sensing model (@) can be
decomposed into

A = Podiag(g)Q, (11)



Table I: The RIP bounds of some sensing models obtained by the UDB framework

[ Sensing models [ Our bound

[ Previous bound [ Ref |

Random demodulation

m > O(6 2slog? slog? n)

m > O(62slog® n)

Random probing

m > O(62slog? slog? n)

m > O(6 2s1log® n)

Compressive multiplexing

m > O(6 2slog? slog? n)

Theorem 16 [61
Theorem 3.3 [21]]
m > O(62slog®n) [ | Theorem 3.1 [30]

“an expectation bound

where Py = 17 ® F* is row-wise concatenation of L
inverse DFT matrices, § = [gf gf g7_,| and
Q=I,®Fq, € C™" (f =mL >n = qL, L = O(1)).
Here, Py is a UTF (8), and Q is a bounded column-wise
orthonormal matrix with p(Q) = ﬁ = \/% Suppose
each g; is an independently subgaussian random vectors, an
application of Theorem leads to a better bound on the
number of measurements than the existing results.

Similarly, the compressive multiplexing sensing model (3]

can be written as
A = Psdiag(e)B, (12)

where P; = 1T @ 1,, € C™" (n = mL, L = O(1))
is row-wise concatenation of L identity matrices, o :=
6§ of - ol_,] with o; € C™ being independent
Rademacher vectors and B = I}, @ F with F being an m x m
normalized DFT matrix. Here, P3 is a UTF @])

Besides achieving tighter RIP bounds, another benefit of
analyzing these models in our framework is that these bounds
still holds when the third decomposed part (the unitary ma-
trix or column-wise orthonormal matrix) is replaced by any
bounded unitary matrix (or column-wise orthonormal matrix).
In this way, the above sensing models can be generalized
and applied in more applications. For example, consider an
image that is sparse in a basis ¥ € C"*" and W is bounded
unitary, then an imaging system by the sensing model (12)
with B = W first divides the n-pixel image into L subimages,
each of which is then randomly modulated by a Rademacher
vector before combing onto a single detector of m pixels.
Similarly, we can compress L m-pixel images (n = mL pixels
in total) into one image provided that each image is sparse on
a bounded bases ¥, € C"*™, §=0,...,L — 1.

I'V. DESIGN OF NEW SENSING MODELS

In this section, we apply the general framework of Section
to construct new structured sensing models and draw
comparisons to existing literature where relevant.

We first show that random subsamplers in many exist-
ing structured sensing models can be replaced by arbi-
trary/deterministic subsamplers by noticing that any partial
Fourier matrix is a UTF. This idea is then extended to
a construction of fast and efficient random block diagonal
matrices (Section [[V-A)).

Suppose B1,Bs,...,B; is a set of arbitrary unitary ma-
trix, then we can easily obtain the RIP analysis on A =
UDB;Bs; - - - B; by noticing that the product of any unitary
matrices is still unitary. We construct the other two sensing
models based on this observation: in Section we demon-
strate that the combination of deterministic phase modulations

with partial random circulant matrices brings the new sensing
matrices the compatibility with more sparsifying bases, and
hence more practical applications; in the last part, we propose
another sensing model and discuss a natural application of
this model for the channel estimation of OFDM systems. This
scheme can supersede previous CS based methods due to
its capability to achieve a low Peak-to-Average Power Ratio
(PAPR) and a low sampling rate simultaneously.

We note that construction of new structured sensing models
based on the proposed framework is not limited to those
included in this section. Our setup provides a simple and
general design mechanism for structured sensing models due
to the existence of multiple ways on constructing a UTF and
a column-wise orthonormal matrix. Design of more structured
sensing models by our framework is an interesting possible
future direction.

A. (Block) CS with arbitrary/deterministic subsamplers

Consider the following sensing model

A=,/ RQEDW,
m

where E € C"*" is a normalized DFT or Hadamard matrix
and ¥ € C"*" is an arbitrary unitary matrix. By Proposition
, it can be seen that U = \/ZRqE is a UTE. Then,
Theorem [[II.2] implies that this sensing model satisfies the RIP
with high probability if

13)

m > 6 2snp?(®) log? slog? n. (14)

As we mentioned in Section it has been shown that
A = /ZRqV¥ satisfies the RIP with high probability
if m > 6 2snu?(®)log* n [10], which indicates similar
requirement on m as (14). Hence, for many existing structured
sensing models [2], [7]-[9]], [11] encompassed in the frame-
work [10]], a replacement of the random subsampling operators
R by RED does not change the recovery performance of
the new sensing model. Moreover, the arbitrary/deterministic
subsampling operator can bring the new model advantages
in practical implementations. For example, it is preferable to
consider non-random measurements in the Fourier plane in
realistic data acquisitions such as radio interferometry [31]
and magnetic resonance imaging (MRI) [20]], [32].

In a similar way, we can construct random block diagonal
matrices which support fast matrix multiplication. The mea-



surement matrix is as below.

where R : C? — CP is an arbitrary/deterministic subsam-
pling operator, E is a ¢ X ¢ normalized DFT or Hadamard
matrix and {&,} are independent length-¢ sub-Gaussian ran-
dom vectors. We can easily prove the RIP of A = & in our
framework by noticing that

® = P,diag(€),
E=[ef & €11
where P, = \/gIL ® (RqF) is a UTF by Proposition [[IL.1

Theorem [II1.2] then indicates that A satisfies the RIP with high
probability when

]T

b

m > 46 2snp? (W) log? slog? n,

where m = pL < n = ¢L and L = O(1). When the sparsi-
fying basis ¥ is a bounded unitary matrix, our construction
requires less memory and computations than existing random
block diagonal matrices [33].

B. Convolutional CS with deterministic phase modulation

As we have reviewed in earlier section, the partial ran-
dom circulant sensing model only provides good recovery
guarantee for sparse signals in the identity basis. Here, we
propose a new convolution-based CS scheme that not only
retains the arbitrary/deterministic subsampling feature, but
also exhibits compatibility with various sparsifying transforms
without introducing additional randomness. Specifically, our
scheme modulates the signal with a deterministic sequence
prior to the partial random circulant matrix.

We denote A = diag(\) a unitary diagonal matrix of size
n xn, i.e. |A;] =1 for all 0 < ¢ < n. Our sensing matrix is
as below

P = LRQHEA,
N

where H. denotes the circulant matrix generated from e,

and R : C* — C™ represents an arbitrary/deterministic

subsampling operator. Suppose € = F*£, where £ is a length-

n random vector with independent, zero-mean, unit-variance,

and sub-Gaussian entries. Let D = diag(€), it follows that

& =,/ “RoF*DFA.
m

Consider a combined matrix A = ®W¥, where W denotes the
sparsifying basis, it can be observed that U = /ZRqF* is
a UTF and B = FAW is a unitary matrix. By Theorem
A satisfies the RIP with high probability if

m > 46 2snp? (FAW) log? slog® n.

This result provides a generic framework for the RIP analysis
on any sampling scheme that involves a partial random circu-
lant matrix followed by a deterministic phase modulation and
any orthornormal basis. For such sampling schemes, it implies
that the recovery performance under nonlinear optimization
such as [;-minimization solely depends on the coherence
parameter u(FA®).

In the case of no phase modulation, we can easily verify that
the partial random circulant matrix provides a faithful recovery
for sparse signals in the identity basis with the number of
measurement m > cd~2s(log s)?(logn)? since the coher-
ence parameter becomes p(FII) = 1/y/n. This conclusion
coincides with that in [[12]. Similarly, the incompatibility of
a partial random circulant matrix with sparse signals in the
Fourier basis (¥ = F*) can be explained by Theorem
the coherence parameter is pu(FIF*) = 1.

Our problem now is reduced to finding a proper modu-
lation sequence such that in certain orthonormal bases, the
corresponding coherence parameter is O(1/y/n). Next, we
propose using Golay sequences for the phase modulations and
demonstrate the performance of the corresponding sampling
scheme for various orthonormal bases by analyzing the coher-
ence parameter. To begin with, we briefly review the definition
of Golay sequences.

Definition IV.1 ( [34]])). Consider two length-n bipolar se-
quences a = [ag,...,an—1], b = [by,...,bn_1]. Define two
n—1

polynomials A(z) = Zz;é ayz® and B(z) =Y, _,byz". a
and b are said to be a Golay complementary pair if

[A(2)]* + |B(2)]* = 2n
for all z on the unit circle, i.e. |z| = 1.

This immediately gives us
A(2)] < V2n.

Suppose that A is a diagonal matrix whose diagonal entries
form a Golay sequence. For ¥ = 1, it can be easily shown that
the coherence parameter gives u(FAI) = 1/4/n. In the case
of W* is Fourier, DCT, block DCT, or Haar wavelet transform,
the analysis on the coherence parameters has been studied in
[9lI, [16].

Lemma IV.2 ([16], Lemma 1 and 2. [9], Corollary 1.). Denote
by C the Type-1I DCT transform, C the block DCT transform
and W the Haar wavelet transform. For any Golay sequence
A, we have

15)

PO

e 2
H(FAC?) < 7
pFACY) <

If the Golay sequence are constructed by the Rudin-Shapiro
iterative process [34]],

pW(FAW™) < (16)

S



The proof on was omitted in [16]]. For completeness,
we include the proof in Appendix

The additional Golay modulation process in our scheme can
be easily implemented for the reason that a Golay sequence
is simply a pseudorandom bipolar sequence. Actually, this
process can be regarded as a phase modulation process, where
only the two bipolar phases (i.e. +1, -1) are required. For
the coded aperture imaging described in [[19], [21], [35] a
simple pre-modulation process by a Golay sequence extends
the ability of the imaging system to handle images that are
sparse in more bases. How to design the deterministic phase
modulations such that the coherence parameter u(FAW) is
small for other sparsifying bases W is an interesting open
problem.

C. OFDM channel estimation with low speed ADC and low
PAPR

In this part, we present a novel CS-based OFDM channel
estimation scheme. Our channel estimation scheme includes
two key ingredients: a pilot signal generated by a Golay
sequence and a random demodulator. Figure [I] displays a
block diagram for the scheme. We denote A a length-n Golay
sequence, which is employed as the pilot signal. The discrete
signal is then passed through an n-point IDFT transform
before being converted by a digital-to-analog converter (DAC)
with a clock speed of m» Hz into an analog signal. At the
receiver, the convolution of the transmitted signal and the
channel response is sampled by a random demodulator. More
specifically, the received signal is multiplied by a high-rate
pseudonoise sequence, then integrated by a low-pass anti-
aliasing filter (the integrator). The discrete samples are cap-
tured by a low rate ADC with a clock speed of m Hz. We
note that the cyclic prefix addition and removal block of the
OFDM system are omitted in the block diagram.

Let x € C™ denote the channel response vector with s
taps, o € C" be the chipping sequence (e.g. a Rademacher
vector) of the random demodulator and y € C™ represent the
received samples. Then, the matrix form of our scheme can
be expressed as

y =P ZF'AFx +w,

where Py = I, ® 17, n = mgq, ¥ = diag(o), A = diag(\)
and w € C" is the noise vector. Clearly, this model is in
the UDB framework since P _is a UTFE. Due to the fact
that u(F*AF) < \/g (Lemma [[V.2), this scheme guarantees
stable channel estimation performance if

m > cs0 2slog? slog? n.

When the channel is sparse, this result indicates that an n-
resolution channel can be faithfully estimated by a low rate
ADC (a clock speed of m Hz).

Comparison with existing CS approaches: In [36]]-[38]], the
pilot signals were generated by random sequences. Although
only a low rate ADC is required at the receiver, the PAPR of
the random sequences is asymptotically log n with probability
1 [39], which results in difficulty in the transmitter design
in an OFDM system. In [9]], the pilot signals were designed

by Golay sequences, in which case the associated PAPR
is bounded by 2. However, this scheme requires a random
downsampling operator at the receiver, which cannot truly
satisfies the requirement of low sampling frequencies due
to the possibility of consecutive sampling. The combination
of a Golay sequence and a random demodulator in our
scheme resolves this dilemma; it achieves a low PAPR and
a low sampling rate simultaneously. The only tradeoff in our
scheme might be the implementation of the chipping sequence.
However, we have seen end-to-end simulations of a transistor-
level implementation [40] and practical circuit designs for
the receivers with random demodulators [41]. In [41], an
effective instantaneous bandwidth of 2 GHz is achieved with
an aggregate digitization rate f; = 320 MSPS.

Remark IV.3 (Random demodulation with deterministic phase
modulation). We note that the above structure can be regarded
as a special case of the following sensing model

A =P,SFAY,

where A = diag(\) is a unitary diagonal matrix of size n X n,
ie. |X\i| =1 forall 0 < i < n and ¥ is an arbitrary unitary
matrix. Clearly, this model is in the UDB framework, and it
satisfies the RIP with high probability when

m > 46 2snp? (FAW) log? slog? n.

V. SIMULATIONS

In this section, we demonstrate the performance of the
sensing models proposed in Section and

The first simulation demonstrates the improvement on the
performance of partial random circulant matrices with the
addition of Golay phase modulations. Figure 2] shows the
simulation results of compression and recovery on two dif-
ferent 256 x 256 images based on existing and the proposed
convolution-based CS models. We employ the sparsify av-
eraging prior and the re-weighted BPDN from [42]]. We set
the input SNR as 30 dB for both images and the down
sampling ratio r = i. In the caption, R+R denotes the random
convolution scheme consisting a random subsampling operator
and a random sequence [8]], D+R represents the partial random
circulant matrix constructed by an arbitrary/deterministic sub-
sampling operator and a random sequence [12], R+E-Golay
is the construction of a random subsampling operator and
an extended Golay sequence [9] and D+R+Golay-PM is our
measurement scheme constructed by adding a Golay phase
modulation to the partial random circulant matrix (D+R).
The results show that the D+R scheme performs poorly on
the recovery of the images. However, with a simple Golay
phase modulation process, the proposed scheme exhibits com-
parable performance to the R+R and R+E-Golay schemes.
Moreover, our scheme possesses the advantages of both the
arbitrary/deterministic subsampling and the compatibility with
varies sparsifying bases.

In the second simulation, we compare the performance of
our proposed OFDM channel estimation scheme with those
given by existing CS based methods. We set the number of
carriers as N = 1024 and collect M = 64 samples at the
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Figure 1: Block Diagram for OFDM Channel Estimation

receiver side. The channel model is the ATTC (Advanced
Television Technology Center) and the Grande Alliance DTV
laboratory ensemble E model. Here, the static case impulse
response x(n) can be written as [43]]

x = 6(n) 4 0.31625(n — 2) 4 0.19955(n — 17)
+0.12966(n — 36) + 0.16(n — 75) + 0.16(n — 137).

We vary the input SNR from 0 dB to 30 dB, and run 1000 trials
for each input SNR using the subspace pursuit algorithm [44].
In Figure [3] the channel estimation performances based on
three different schemes are shown. The ‘Random Phase’ plot
represents the performance by the channel estimation method
proposed in [38[], where the pilot signal is generated by a
random vector and the received signal is sampled by a low-
rate ADC. The ‘Golay+Rand subsampling’ one indicates the
performance by the method proposed in [9], where now the
pilot signal is from a Golay sequence and the received signal
needs to be randomly subsampled. The ‘Golay+Det subsam-
pling’ one is the performance given by our proposed scheme.
It can be seen that all of these three schemes reveal similar
reconstruction performance. However, our scheme achieves
both a low PAPR and a low sampling rate simultaneously.

VI. CONCLUSION

In this paper, we proposed a generic CS framework for
the construction of structured sensing models and proved its
RIP based on the estimates of a suprema of chaos processes
of a certain type. We have demonstrated that our framework
is general and encompasses many existing/new structured
sensing models. For any sensing model that involves selecting
each measurement vector independently from each other,
we provided a universal way to transform it into one with
arbitrary/deterministic sampling operators. Moreover, we have
proposed other structured sensing models that can motivate
better practical implementation schemes, including distributed
sensing, imaging and channel estimation. In particular, our
OFDM channel estimation scheme outperforms existing CS-
based methods by offering a low PAPR and a low sampling
rate to the OFDM system simultaneously.

APPENDIX A
PROOF OF THE MAIN THEOREM

In this section, we first review definitions and a useful
lemma about covering number estimates, then present the
proof.

45 T T T
—%—— Random Phase
40 | ---%--- Golay+Rand subsampling

Golay+Det subsampling
35 -

30

25

20 -

Average Reconstructed SNR

0 5 10 15 20 25 30
Input SNR

Figure 3: Performance comparison of different CS-based
OFDM channel estimation methods

A. Covering number estimates

A metric space is denoted by (7', d), where T is a set and
d is the notion of distance (metric) between elements of the

set. For example, (A, || - ||2—2) is a metric space where the
matrices in the set A have a distance measured by the operator
norm, i.e. d(A1,As) = ||A; — Asz|2—2. For a metric space

(T, d), the covering number N (7', d, u) is the minimal number
of open balls of radius u needed to cover (7, d).

Define the set of all s-sparse signals with unit norm as

Dsn = {x € C": [Ix]2 = L[Ix[lo < s}- (17)

The following lemma is summarized from the results in
Section 8 of [[10].

Lemma A.1 ( [10]). Let x¢,X1, - ,X7_1 be vectors in C"
with ||X;|lec < K for i € [n]. Consider the semi-norm

Jul[x = max [(xi,w)|, uweC” (18)
e|n

then we have the following two estimates on the covering



Figure 2: Partial Random Circulant Matrix with Golay Modulations. (i) Original image;(ii)) R+R: SNR = 29.5703 dB;(iii)
D+R: SNR = 11.0224 dB;(iv) R+E-Golay: SNR = 29.3712 dB;(v) D+R+Golay-PM: SNR = 29.5606 dB;(vi) Original
image;(vil) R+R: SNR = 24.7431 dB;(viii) D+R: SNR = 9.2057 dB;(ix) R+E-Golay: SNR = 24.7586 dB;(x) D+R+Golay-

PM: SNR = 24.6195 dB.

number N(Ds ., || - || x,t)

VIog N (D, |- 1, 1)
< 3K/2s+/log(107) log(4n)t ™,

VI0g N (D, |- lx 1)

< \/%\/log(%) +log(1+2K+/s/t), t>0.

0<t<2K+/s,

Next, we present a lemma that will be used in the following
subsection. ~

Consider a matrix B € C™*", and define the semi-norm for
any vector u € C” as

Il == | Bul|oc

By setting B(i,:) = x; for i € [n], it can be seen that

lu]lx = ||u|lx for any u € C™ and u(B) = K as in the
setting of Lemma [A-T] Therefore, the following lemma on the
covering number N (D; n, || - ||, ) is an immediate result of

Lemma [A1]

Lemma A.2. For a matrix B € C"*™ and an associated
semi-norm || - || %, we have

VIoE N (D, |- )
< u(B)Vslogat ™,
VIog N(D, o |- 1 .1)

< \/%\/log(%) +log(1 4 2u(B)V/s/t), t>0,

0 <t <2u(B)Vs,

where 7 := max{n,n}.

We note that the alternative forms of this lemma have been

used in (33]1.

B. Proof of Theorem

Proof: By Proposition 2.5 of [[10], the restricted isometry
constant of our framework A = UDB can be written as

ds = sup |[[|Ax]3 — [x[l3]. (19)
X s,n

To complete the proof, our objective is to show that 6, < §
for 6 € (0,1) under the conditions in Theorem 1.2

We require the following important result due to Krahmer
et al.:

Theorem A.3 ( [12], Theorem 3.1). Let A be a set of matrices,
and let & be a random vector whose entries §; are independent,
mean 0, variance 1, and r-subgaussian random variables. Set

dr(A) = sup [|S|F,
Sed
da—s2(A) = sup [|S||22.
SeA

and

Ca(€) = sup |||SE|I3 — E{||SE|I3}] , (20)
SeA

E=(A - ll2»2) 2 (A - ll2-2) + dr(A)]

+dp(A)daa(A),
V =daso(A) [v2(A | - [l2=2) + dr(A)],
U= dg—ﬂ(A)'



Then, for t > 0,
2t

P(CA(€) > 1 E+1t) <2exp(—cy Inin{ﬁ7 E})

2D
The constants c1, co depends only on L.

Here, C4(&) represents the suprema of chaos processes
associated with a set of matrices 4. This theorem implies
that C'4(€) can be bounded by three parameters: the suprema
of Frobenius norms dp(.A), the suprema of operator norms
da—2(A) and a ~yo-functional 2 (A, || - ||2—2)-

Without going into the details, we note that the «5-functional
~v2(A, || - |l2—2) can be bounded in terms of the covering
numbers N (A, || - [|2—2,u) as below.

da—2(A)
wam-m%gsc/‘ VIog N(A T oo, u)du,
0
(22)

where the integral is known as Dudley integral or entropy
integral [45].

We now proceed to express the restricted isometry constant
of our framework in such a form that its bound can be derived
by appealing to Theorem Recall that A = UDB and

D = diag(¢). Let Vx = Udiag(Bx), then the restricted
isometry constant of A is
0s = sup [[Ax]3 — [IxI3|
= II13]

sup ||| Vx€l3 -
XEDs n

and clearly
E{[[Vx|I3} = E{[Ax]3} = [Ix]3.
Hence, the restricted isometry constant § can be expressed as

2

0s= sup !IIVxéllz E{|[Vx€[3}]- (23)
For each vector x € Dsm, there exists a corresponding matrix
V. We define the set of matrices associated with all s-sparse
signals x € D, ,, as

Ay ={Vx :x €D, ,}.
Then the restricted isometry constant (23) can be written as

0s= sup [[Vx£l5 —E{|VE[3}]. @4
VxeAy
Therefore, we have completely express the restricted isometry
constant of our framework in the form of Theorem [A.3] (by
comparing and (24)), where S and A are replaced with
Vi and Ay, respectively.

Now, before bounding the restricted isometry constant d5 by
using Theorem [A.3] (ZI), we only need to estimate the three
associated parameters dp(Ay), da—2(Ay) and y2(Avy,| -
)

By Proposition [III.1{ and BB =1,
IVl = IBx]l2 = [|x[|l2 = 1,Vx € Dy 1,
which means

dr(Av) = 1. (25)

Since any induced norm is a sub-multiplicative matrix norm,

[Vxl2s2 < U252 ]|diag(Bx) (|22

R
<4/ —[1Bxleo,
m

where the last step is due to Proposition [T}

For any vector x € D, ,, we denote by x° the length-
s vector that retains only the non-zero elements in x. And
correspondingly for any z € C”, we denote by z* the length-s
vector that retains only the elements that have the same indexes
as those of the non-zero elements in x. Thus, we immediately
have ||x°||2 = ||x|l2 = 1, and (z,x) = (z°,x®). Hence, for
any x € Dy,

(26)

1B/ _max{| B X }

*maX{| B(] ), }

j€ln]
<
s LB a2
Bé
=[xl macx {|| ol
< Vau(B)|x]

= Vsu(B),

where the first inequality is due to Cauchy-Schwarz inequality,
and the second one is due to the definition of coherence.
Thus, we have

dosa(Av) = \[ —p(B). 27)

By (26), it follows that for any two elements V, Vy € Ay

n
Vi = Vyllasz = [Viyll22 < EHX —¥ll-

Thus, for every u > 0 we have

n
N(Av, [ ll2=2,u) < N(DPsins [ - Dl w)
By Lemma and the fact that N(Dy, /2| - ||, u) =

Dons ||+ lsor /Zu), N(D A |l &, u) satisfies the
following two bounds

i ~ sM .
\/10g N(Ds,na \/;' : ||O_Oau) f/ ILL(B) muQ logn
n
\/logN('Ds,m \/7| ’ ||0~07u
m

<2s log(

5,m

) + log(1 +

2u(B)vs [a )

U m
We combine these inequalities to estimate the entropy integral
22): VEu®B) < u <

da—2(Ay), and the second bound for 0 < u < ¢y/ 2 (B),

we apply the first bound for ¢



where da_o(Ay) = ,/%M(B), ¢ >0 and ¢® < s. It reveals
that

sn ~

12(Avs [ ll2w2) S 4/ n(B)(og s)(logn).  (28)
With the bounds for the three parameters dr( Ay ), da_s2(Ay)
and v2( Ay, ||-]|2—2), the proof is completed by using Theorem
[A3] Detail steps on the application of Theorem [A.3] follow

those in Section 4 of [[12]. [ |

APPENDIX B
COHERENCE ANALYSIS

Consider an n x n (n = 2%) unitary matrix B = FAW*,
where F is the normalized DFT matrix, A is a diagonal matrix
whose diagonal entries are a Golay sequence constructed by
the Rudin-Shapiro iterative process and W* corresponds to the
transpose of the orthonormal Haar matrix, which is defined by

Wi =1,

oo e )

where ® denotes the operation of kronecker product. We need

to prove that u(B) < \/%

Proof: Let 1, denote a column vector with g ones. Define
Y2, as a length-2g sequence by

1, }
Yoq = .
2q |:1q
Note that the columns of W™ can be written as
W? .\ = 1
(0) = J5atet
N 1
W(:,l) = @72‘1
1 0,.04-1
W7 ] = —F— Yod—1
(:,21+3) fod—1 2 )
2 O(Qz,s,l).gdfz

where 1 <1 <d—-1,0< s <2 —1. Let A represent a
length-2¢ Golay sequence constructed from the Rudin-Shapiro
recursive process. Suppose we divide this sequence into L =
2! segments \; (i = 0, --- , 2! — 1), each of which is of length
2=l (1<1<d—-1),1ie.,

By definition of the recursive process, each segment )\iT is
still a Golay sequence. And it is also clear that )\iT © Yod—1
is a Golay sequence, where © represents the element-wise
multiplication. Therefore, we can easily get the bound p(B) <

[1

—

[2]

[3]
[4]

[5

=

[6]

[7

—

[8]
[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

(25]

[26]

REFERENCES

E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489-509, Feb 2006.
E. Candes and T. Tao, “Near-optimal signal recovery from random pro-
jections: Universal encoding strategies?” IEEE Trans. Inform. Theory,
vol. 52, no. 12, pp. 5406 —5425, Dec. 2006.

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory,
vol. 52, no. 4, pp. 1289-1306, Apr. 2006.

Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applica-
tions. Cambridge University Press, 2012.

S. Foucart and H. Rauhut, A mathematical introduction to compressive
sensing. Springer, 2013.

J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg, and R. G.
Baraniuk, “Beyond Nyquist: Efficient sampling of sparse bandlimited
signals,” IEEE Trans. Inform. Theory, vol. 56, no. 1, pp. 520-544, 2010.
M. Rudelson and R. Vershynin, “On sparse reconstruction from Fourier
and Gaussian measurements,” Communications on Pure and Applied
Mathematics, vol. 61, no. 8, pp. 1025-1045, 2008.

J. Romberg, “Compressive sensing by random convolution,” SIAM J.
Imaging Sciences, vol. 2, no. 4, pp. 1098-1128, 2009.

K. Li, L. Gan, and C. Ling, “Convolutional compressed sensing using
deterministic sequences,” IEEE Trans. Signal Processing, vol. 61, no. 3,
pp. 740-752, 2013.

H. Rauhut, “Compressive sensing and structured random matrices,”
Theoretical foundations and numerical methods for sparse recovery,
vol. 9, pp. 1-92, 2010.

G. Puy, P. Vandergheynst, R. Gribonval, and Y. Wiaux, “Universal and
efficient compressed sensing by spread spectrum and application to
realistic Fourier imaging techniques,” EURASIP J. Advances in Signal
Processing, vol. 2012, no. 1, pp. 1-13, 2012.

F. Krahmer, S. Mendelson, and H. Rauhut, “Suprema of chaos processes
and the restricted isometry property,” Communications on Pure and
Applied Mathematics, 2014.

E. J. Candes and Y. Plan, “A probabilistic and RIPless theory of
compressed sensing,” IEEE Trans. Inform. Theory, vol. 57, no. 11, pp.
7235-7254, 2011.

E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Trans. Information Theory, vol. 51, no. 12, pp. 4203-4215, 2005.

L. Gan, K. Li, and C. Ling, “Golay meets Hadamard: Golay-paired
Hadamard matrices for fast compressed sensing,” in IEEE Information
Theory Workshop (ITW). 1EEE, 2012, pp. 637-641.

L. Gan, L. Liu, and Y.-c. Shen, “Golay sequence for parital Fourier and
Hadamard compressive imaging,” in /IEEE Int. Conf. Acoustics, Speech
and Signal Processing (ICASSP), 2013, pp. 6048-6052.

T. T. Do, L. Gan, N. H. Nguyen, and T. D. Tran, “Fast and efficient
compressive sensing using structurally random matrices,” IEEE Trans.
Signal Process., vol. 60, no. 1, pp. 139-154, 2012.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and
R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE
Signal Processing Magazine, vol. 25, no. 2, pp. 83-91, March 2008.
J. Ma, “Single-pixel remote sensing,” IEEE Geoscience and Remote
Sensing Letters, vol. 6, no. 2, pp. 199-203, 2009.

Y. Wiaux, G. Puy, R. Gruetter, J.-P. Thiran, D. Van De Ville, and
P. Vandergheynst, “Spread spectrum for compressed sensing techniques
in magnetic resonance imaging,” in /IEEE International Symposium on
Biomedical Imaging: From Nano to Macro. 1EEE, 2010, pp. 756-759.
J. Romberg and R. Neelamani, “Sparse channel separation using random
probes,” Inverse Problems, vol. 26, no. 11, p. 115015, 2010.

J. P. Slavinsky, J. N. Laska, M. A. Davenport, and R. G. Baraniuk,
“The compressive multiplexer for multi-channel compressive sensing,”
in IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP),
2011, pp. 3980-3983.

O. Christensen, An introduction to frames and Riesz bases.
2002.

J. A. Tropp, I. S. Dhillon, R. W. Heath, and T. Strohmer, “Designing
structured tight frames via an alternating projection method,” IEEE
Trans. Inform. Theory, vol. 51, no. 1, pp. 188-209, 2005.

P. G. Casazza and J. Kovacevié, “Equal-norm tight frames with erasures,”
Advances in Computational Mathematics, vol. 18, no. 2-4, pp. 387430,
2003.

A. S. Bandeira, M. Fickus, D. G. Mixon, and P. Wong, “The road to
deterministic matrices with the restricted isometry property,” Journal of
Fourier Analysis and Applications, vol. 19, no. 6, pp. 1123-1149, 2013.

Springer,



[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

W. Chen, M. R. Rodrigues, and I. J. Wassell, “Projection design for
statistical compressive sensing: A tight frame based approach,” IEEE
Trans. Signal Processing, vol. 61, no. 8, pp. 2016-2029, 2013.

E. Tsiligianni, L. Kondi, and A. Katsaggelos, “Construction of inco-
herent unit norm tight frames with application to compressed sensing,”
IEEE Trans. Inform. Theory, vol. 60, no. 4, pp. 2319-2330, April 2014.
R. Vershynin, “Introduction to the non-asymptotic analysis of random
matrices,” in Compressed sensing: theory and applications. Cambridge
Univ. Press, 2012, pp. 210-268.

J. Romberg, “Multiple channel estimation using spectrally random
probes,” in SPIE Optical Engineering+Applications. International
Society for Optics and Photonics, 2009, pp. 606-744.

Y. Wiaux, G. Puy, Y. Boursier, and P. Vandergheynst, “Spread spectrum
for imaging techniques in radio interferometry,” Monthly Notices of the
Royal Astronomical Society, vol. 400, no. 2, pp. 1029-1038, 2009.

G. Puy, J. P. Marques, R. Gruetter, J. Thiran, D. Van De Ville,
P. Vandergheynst, and Y. Wiaux, “Spread spectrum magnetic resonance
imaging,” IEEE Trans. Medical Imaging, vol. 31, no. 3, pp. 586-598,
2012.

A. Eftekhari, H. L. Yap, C. J. Rozell, and M. B. Wakin, “The restricted
isometry property for random block diagonal matrices,” Applied and
Computational Harmonic Analysis, 2014.

M. J. Golay, “Complementary series,” IEEE Trans. Inform. Theory,
vol. 7, no. 2, pp. 82-87, 1961.

H. Rauhut, J. Romberg, and J. A. Tropp, “Restricted isometries for par-
tial random circulant matrices,” Applied and Computational Harmonic
Analysis, vol. 32, no. 2, pp. 242-254, 2012.

J. Haupt, W. U. Bajwa, G. Raz, and R. Nowak, “Toeplitz compressed
sensing matrices with applications to sparse channel estimation,” /EEE
Trans. Inform. Theory, vol. 56, no. 11, pp. 5862-5875, 2010.

C. R. Berger, S. Zhou, J. C. Preisig, and P. Willett, “Sparse channel
estimation for multicarrier underwater acoustic communication: From
subspace methods to compressed sensing,” IEEE Trans. Signal Process-
ing, vol. 58, no. 3, pp. 1708-1721, 2010.

J. Meng, W. Yin, Y. Li, N. T. Nguyen, and Z. Han, “Compressive sensing
based high-resolution channel estimation for OFDM system,” IEEE J.
Selected Topics Signal Process., vol. 6, no. 1, pp. 15-25, 2012.

M. Sharif and B. Hassibi, “On multicarrier signals where the PMEPR
of a random codeword is asymptotically logn,” IEEE Trans. Inform.
Theory, vol. 50, no. 5, pp. 895-903, 2004.

J. N. Laska, S. Kirolos, M. FE. Duarte, T. S. Ragheb, R. G. Baraniuk, and
Y. Massoud, “Theory and implementation of an analog-to-information
converter using random demodulation,” in IEEE International Sympo-
sium. Circuits and Systems, ISCAS. 1EEE, 2007, pp. 1959-1962.

J. Yoo, S. Becker, M. Loh, M. Monge, E. Candes, and A. Emami-
Neyestanak, “A 100mhz-2ghz 12.5x sub-Nyquist rate receiver in 90nm
CMOS,” in [EEE Radio Frequency Integrated Circuits Symposium
(RFIC), June 2012, pp. 31-34.

R. Carrillo, J. McEwen, D. Van De Ville, J.-P. Thiran, and Y. Wiaux,
“Sparsity averaging for compressive imaging,” IEEE Signal Processing
Letters, vol. 20, no. 6, pp. 591-594, June 2013.

S. Coleri, M. Ergen, A. Puri, and A. Bahai, “Channel estimation
techniques based on pilot arrangement in ofdm systems,” IEEE Trans.
Broadcasting, vol. 48, no. 3, pp. 223-229, 2002.

W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing
signal reconstruction,” IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230-
2249, May 2009.

M. Talagrand, The generic chaining. Springer, 2005, vol. 154.



	I Introduction
	I-A Organization of the Paper
	I-B Notations and Preliminaries
	I-B1 Coherence parameter
	I-B2 Restricted Isometry Property


	II Review of structured sensing models
	II-A Randomly subsampled orthogonal system
	II-B System with fixed sampling locations
	II-C Multiple channel systems

	III Main results
	III-A Unit-norm Tight Frames
	III-B Main theorem
	III-C Tighter RIP Bounds

	IV Design of new sensing models
	IV-A (Block) CS with arbitrary/deterministic subsamplers
	IV-B Convolutional CS with deterministic phase modulation
	IV-C OFDM channel estimation with low speed ADC and low PAPR

	V Simulations
	VI Conclusion
	Appendix A: Proof of the Main Theorem
	A-A Covering number estimates
	A-B Proof of Theorem III.2

	Appendix B: Coherence Analysis
	References

