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Abstract: We consider the problem of estimating the context tree of a
stationary ergodic process with finite alphabet without imposing additional
conditions on the process. As a starting point we introduce a Hamming
metric in the space of irreducible context trees and we use the properties of
the weak topology in the space of ergodic stationary processes to prove that
if the Hamming metric is unbounded, there exist no consistent estimators
for the context tree. Even in the bounded case we show that there exist no
two-sided confidence bounds. However we prove that one-sided inference is
possible in this general setting and we construct a consistent estimator that
is a lower bound for the context tree of the process with an explicit formula
for the coverage probability. We develop an efficient algorithm to compute
the lower bound and we apply the method to test a linguistic hypothesis
about the context tree of codified written texts in European Portuguese.
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1. Introduction

In this work we address the issue of whether or not there exist consistent estima-
tors (and confidence bounds) for the context tree of a discrete time stationary
ergodic process with finite alphabet. In words, the context tree of a stochastic
process is a set of finite strings or left-infinite sequences that determines the
portion of the past the process has to look at in order to decide the distribution
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of its next symbol. For example, an i.i.d. process has the empty string as con-
text tree since it has no dependence on the past. A k-steps Markov chain has
a context tree containing at least one string of length k, and a non-Markovian
chain (sometimes coined infinite memory process) has a context tree having at
least one left-infinite sequence.

Finite context trees were introduced by Rissanen (1983) as an efficient tool
for data compression. The corresponding processes were originally called Vari-
able length Markov Chains (VLMC) and its estimation was first addressed in
Bühlmann and Wyner (1999). Recently, they have received increasing attention
in the applied statistics literature, being used in a wide range of problems from
different areas (Bejerano and Yona, 2001; Dalevi, Dubhashi and Hermansson,
2006; Busch et al., 2009; Galves et al., 2012, for instance). Its success in real word
applications seems to stem from its parsimony (including memory only where
data needs) and its capacity to capture structural dependencies in the data.
The counterpart of the model, when compared to finite step Markov models for
instance, is that estimation is a much complicated task. When he introduced the
model, Rissanen (1983) also provided an algorithm for recovering the context
tree out of a given sample. Since then, a large part of the related statistical liter-
ature has focussed on consistent estimation of the context tree in the finite and
infinite memory case, an incomplete list includes Bühlmann and Wyner (1999);
Galves and Leonardi (2008); Collet, Galves and Leonardi (2008); Csiszár and
Talata (2006); Garivier and Leonardi (2011).

Most of the above cited works make some assumptions on the processes,
such as lower bounding the transition probabilities or imposing mixing condi-
tions, additionally to ergodicity. In the present paper, we precisely refer to our
statistical inference problem as nonparametric because we make no further as-
sumptions concerning the distribution of the process, else than ergodicity. In
this nonparametric setting, Csiszár and Talata (2006) proved the consistency of
the Bayesian Information Criterion (BIC) when the context trees are truncated
to a given finite length (the truncation being necessary only for infinite context
trees). Interestingly, nothing has been done concerning confidence bounds as far
as we know.

Given a sample of a stationary ergodic process, it is natural to wonder
whether this process has a finite or infinite context tree. This cannot be con-
sistently decided in this general class (Bailey, 1976; Morvai and Weiss, 2005).
That is, there exists no two-valued function of the sample which, as the sample
increases, stabilizes to the value “yes” for every process having a finite context
tree and “no” for every process having an infinite context tree. Thus, when con-
sidering the discrete metric in the space of trees, the existence of a universal
consistent estimator relies on assumptions that cannot be checked empirically.
This situation has its counterpart in nonparametric statistics for i.i.d observa-
tions. For instance, Fraiman and Meloche (1999) observed that it is impossible
to decide, out of a random sample, whether or not the underlying distribution
has a finite number of modes. Assuming a priori that the number of modes is
finite, they can be consistently estimated.
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In the present work the space of irreducible context trees with finite alphabet
is equipped with the Hamming distance. Using only topological arguments we
prove that if this metric in the space of trees is unbounded, there exists no con-
sistent estimator of the context tree in the class of stationary ergodic processes.
In the bounded metric case, we construct an estimator that is consistent and
also a nonparametric lower bound with an explicit coverage probability, based
on a result of Garivier and Leonardi (2011). Finally, following Donoho (1988),
we also prove that it is not possible to obtain nonparametric upper bounds even
in the smaller class of processes having finite context trees. To our knowledge,
this is the first work considering the problem of construction of nonparametric
confidence bounds for context trees.

Notation, definitions and main results are given in the next section. In Sec-
tion 3 we show how to compute the lower confidence bound and we present
a practical application, testing a linguistic hypothesis about the memory of
stressed and non-stressed syllables in European Portuguese written texts. The
proofs of the results are given in Section 4.

2. Definitions and results

In this section we present the main definitions and theoretical results of this
paper. We begin by describing the notion of irreducible tree and we introduce a
Hamming distance in the set of all irreducible trees over a finite alphabet. Then
we proceed by defining the context tree of a stationary ergodic process and
by establishing some topological properties of the set of all stationary ergodic
probability measures with respect to the weak topology. The last part of the
section is dedicated to the statements of the main results of the paper.

2.1. Metric tree space

Let A be a finite set called alphabet. For any m ≤ n, we denote by anm the string
am . . . an of symbols in A with length n−m+ 1. This notation is also valid for
m = −∞ in which case we obtain a left-infinite sequence an−∞. If m > n we let
anm denote the empty string λ. The length of a string w will be denoted by |w|.
For any j ∈ {0, 1, . . .}, we let Aj denote the set of strings in A having length
j, in particular A0 = {λ}. We also let A? = ∪j≥0A

j denote the set of all finite
strings on A and we denote by A∞ the set of all left-infinite sequences an−∞ with
symbols in A.

We will need to concatenate strings; for instance, if v ∈ Ai and w ∈ Aj

are strings of length i and j respectively, then vw denotes the string of length
i+ j obtained by putting the symbols in w after the ones in v. We also extend
concatenation to the case where v ∈ A∞ is an infinite string on the left. We say
that w is a suffix of the sequence s if there exists a sequence v such that s = vw.
When |v| ≥ 1 we say that w is a proper suffix of s.

A tree τ is any set of strings or perhaps of left-infinite sequences, called
leaves, such that no w ∈ τ is a proper suffix of any other s ∈ τ . This property
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λ

0 1

0 1

0 1

τ1

λ

0 1

0 1

0 1
...

τ2

Fig 1. Graphical representation of the trees τ1 = {00, 010, 110, 1} and τ2 = {10i1 : i =
0, 1, . . . } ∪ {0∞}. In both cases, the contexts corresponds to the sequences obtained by con-
catenating the symbols from the leaves to the root of the trees. In the case of τ2 we only show
the strings of length at most 3.

enables us to represent the set τ as a graphical rooted tree by identifying the
elements in τ with paths from the terminal nodes of the tree to the root. As an
example of finite tree, consider the set τ1 = {00, 010, 110, 1} over the alphabet
A = {0, 1}. On the other hand, an example of an infinite tree over A is given by
τ2 = {10i1 : i = 0, 1, . . . } ∪ {0∞}, which has a unique infinite element, the left-
infinite sequence 0∞. The graphical representation of these trees can be found
in Fig. 1. Special cases of trees are given by the entire set A∞ of left-infinite
sequences, denoted in this paper by τ∞, and the tree consisting of the unique
empty string λ, denoted by τ root.

We say that the tree τ is irreducible if no w ∈ τ can be replaced by a
proper suffix without violating the tree property. Both trees in Fig. 1 are ir-
reducible, as well as τ∞ and τ root. An example of a non-irreducible tree is
τ3 = {000, 010, 110, 1}, because substituting 000 by 00 leads to τ1 that satisfies
the tree property.

We will call a node of τ any finite string that is a suffix of some s ∈ τ .
Sometimes it will be convenient to identify τ with the set of its nodes τ̄ ⊂ A?.
In fact it is easy to verify that τ uniquely determines τ̄ and vice versa. In the
case of τ1 given before, the set τ̄1 is the set of all strings represented in Fig. 1,
that is τ̄1 = {010, 110, 00, 10, 0, 1, ∅}. In the case of τ2 we have τ̄2 = τ2∪{0i1 : i =
0, 1, . . . }.

Let T denote the set of all irreducible trees on A, with the following partial
order

τ ≺ (�) τ ′ if and only if τ̄ ( (⊆) τ̄ ′.

Given a tree τ ∈ T and a constant k ∈ N, we denote by τ |k the truncated tree
at level k, defined by the set of its nodes

τ̄ |k = {v ∈ τ̄ : |v| ≤ k} .
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Finally, T is equipped with the Hamming distance defined by

dφ(τ, τ ′) =
∑
v∈A?

φ(v) |1{v∈τ̄} − 1{v∈τ̄ ′}| , (2.1)

where φ : A? → R+. In the summable case
∑
v∈A? φ(v) < +∞ we have that

(T , dφ) is a bounded metric space.

2.2. Context tree of a stationary ergodic process

Let {Xi : i ∈ Z} be a stationary and ergodic process assuming values in the
alphabet A. We denote by P (amn ) the stationary probability of the string amn ,
that is

P (amn ) = Prob
(
Xm
n = amn

)
.

If s ∈ A? is such that P (s) > 0 we write

P (a|s) = Prob
(
X0 = a |X−1

−|s| = s
)
,

with the convention that if s = ∅ then P (a|s) = Prob
(
X0 = a

)
.

A process as above is said to have law, or measure, P .

Definition 2.1. We say that the string s ∈ A? is a context for a process with
measure P if it satisfies

1. P (s) > 0 or s = ∅ .
2. For all a ∈ A and all w ∈ A? such that s is suffix of v

Prob
(
X0 = a |X−1

−|v| = v
)

= P (a|s) . (2.2)

3. No proper suffix of s satisfies 2.

An infinite context is a left-infinite sequence x−1
−∞ such that its finite suffixes

x−1
−n, n = 1, 2, . . . have positive probability but none of them is a context.

By this definition, the set of contexts of a process with measure P is an
irreducible tree, it will be denoted by τP .

Example 2.2. Consider the stationary Markov chain of order 3 over the alphabet
A = {0, 1} defined by the transition probabilities

w P (0|w) P (1|w)
ab1 0.2 0.8
a00 0.5 0.5
010 0.3 0.7
110 0.7 0.3

where a, b ∈ A are arbitrary. This is an example of what is called a Variable
Length Markov Chain (VLMC). By Definition 2.1, the only contexts of this
process are the strings 1, 00, 010 and 110. The context tree τP is the tree τ1
represented in Fig. 1.
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Example 2.3. Suppose that the process {Xi : i ∈ Z} takes values in {0, 1}, and
in order to decide the probability distribution of the next symbol based on the
past realization, we only need to know the distance to the last occurrence of a
1. Then, for any k ≥ 0, any i ≥ 1 and any v, w ∈ Ai

P (1|v10k) = P (1|w10k).

According to Definition 2.1, the strings 10k, k ≥ 0, as well as the semi-infinite
sequence 0∞ are context of this process. Therefore, the context tree τP is τ2
shown in Fig. 1.

2.3. The weak topology in the space of stationary ergodic processes

Let Σ be the σ-algebra on Ω = AZ obtained as the product of the discrete σ-
algebra on A. Let P denote the set of all stationary ergodic probability measures
over (Ω,Σ).

Define the following distance in P

D(P,Q) =
∑
k∈N

2−k|P −Q|k ,

where
|P −Q|k =

∑
ak1∈Ak

|P (ak1)−Q(ak1)|

is the k-th order variational distance. This distance is known in the literature as
the weak distance, and the topology induced by it is known as the weak topology
(Shields, 1996, Section I.9).

We now state a basic lemma about the topological properties of the space P
with respect to the weak topology.

Lemma 2.4. The space (P, D) is a Baire space.

2.4. Consistent estimation and confidence bounds

As mentioned in the Introduction, in this paper we are interested in the esti-
mation of properties of the context tree τP from samples X1, . . . , Xn of size n
of the corresponding stationary and ergodic process P . Up to now this problem
has been reduced to the consistent identification of the set of contexts (in the
finite case) or of a truncated version of the context tree (in the infinite case).
The latter corresponds to a special case of our distance dφ; for instance when the
interest is in estimating contexts of length at most k we can consider φ(v) = 0
for all |v| > k. In the sequel we define the notion of consistency of a sequence
of estimators in a general setting.

Let F : P → F be a functional with values in some metric space (F , d).
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Definition 2.5. We say that F is consistently estimable on P (in probability)
if there exists a sequence {Fn}n∈N of statistics, with Fn : An → F , such that for
all P ∈ P

d (Fn(X1, . . . , Xn), F (P ))
P−→ 0 .

In this case we say that {Fn}n∈N is a consistent estimator for F on P. We
say that F is strongly consistent on P if the convergence takes place almost
surely with respect to the probability measure P , and in this case we say that
{Fn}n∈N is a strongly consistent estimator for F on P.

The following result establishes a necessary condition for the existence of
consistent estimators of a bounded real functional defined on P.

Proposition 2.6. Assume F : P → R is bounded (that is there exists R ∈ R
such that |F (P )| ≤ R for all P ∈ P). If F is consistently estimable on P then
F must be continuous on a dense subset of P.

In this paper we are concerned with the functional T : P → T that assigns
to any measure P ∈ P its associated context tree τP ∈ T . The first question we
address here is if it is possible to decide, out from a finite sample, if the sum of
the function φ over the nodes of the context tree is finite or not.

Theorem 2.7. If
∑
v∈A? φ(v) = +∞ then the functional

L(P ) = 1{
∑
v∈τ̄P

φ(v) < +∞}

is not consistently estimable on P.

This result states, in particular, that the functional that attributes the value
1 if the measure is Markovian, and 0 otherwise, is not consistently estimable
when φ is not summable. This is a known result; see Morvai and Weiss (2005)
and references therein. However, our proof is completely different from theirs
and it is mainly based on topological properties of P.

Our main result about consistent estimation for the context tree on P is given
in the following theorem.

Theorem 2.8. T is consistently estimable on P if and only if
∑
v∈A? φ(v) is

finite.

The only if part of this theorem is a direct consequence of Theorem 2.7. The
if part is proved constructively later, because the estimator {T cn}n∈N defined by
(2.3) below will be proved to be consistent when φ is summable.

As mentioned before, the present work is also concerned with the obtention
of confidence bounds for the context tree of a stationary and ergodic process.
We use the following general definition of upper and lower confidence bounds,
taken from Donoho (1988). Suppose F is equipped with a partial order < with
supremum and infimum.

Definition 2.9. Given n ≥ 1, a statistic Un : An → F is called a non-trivial
upper confidence bound for F on P with coverage probability at least 1− α if

sup
P∈P

P (Un < sup
P ′∈P

F (P ′)) = 1
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and
inf
P∈P

P (F (P ) ≤ Un) ≥ 1− α.

Analogously we say that Ln is a non-trivial lower confidence bound for F on P
with coverage probability at least 1− α if −Ln is a non-trivial upper confidence
bound for −F on P with coverage probability at least 1− α.

Our first theorem concerning confidence bounds is a negative result stating
that the functional T does not admit a non-trivial upper confidence bound nei-
ther on P nor in the class of stationary ergodic measures with finite context tree.

Theorem 2.10. If Un is an upper bound that satisfies supP∈P P (Un ≺ τ∞) = 1
then the coverage probability infP∈P P (τP � Un) = 0. This is also satisfied
even in the smaller class Pf ⊂ P of stationary ergodic measures having finite
context tree.

The functional T does however admit non-trivial lower confidence bounds on
P. In what follows, we construct a sequence of statistics which will be proved
to be a non-trivial lower confidence bound and a consistent estimator of T on
P, when

∑
v∈A? φ(v) < +∞.

We will first define a discrepancy measure between a sample X1, . . . , Xn and
a measure Q ∈ P. To do so, we need to introduce some more notation and
definitions. Given a string w, denote by Nn(w) the number of occurrences of w
in the sample X1, . . . , Xn; that is

Nn(w) =

{∑n−|w|
i=0 1{Xi+|w|

i+1 = w} n ≥ |w|
0 n < |w|.

If Nn−1(w) > 0, we define for any a ∈ A the estimated transition probability

p̂n(a|w) :=
Nn(wa)

Nn−1(w)
.

Denote also by Cn−1(w) the set of children of w that appear in the sample at
least once, that is

Cn−1(w) = {bw : b ∈ A and Nn−1(bw) > 0}

and by Sn the set of all such strings w; that is

Sn = {w ∈ A? : Nn−1(w) > 0} .

Finally, for any context tree τ , let

τ∗ := {u ∈ A? : u /∈ τ̄}.

Now, we can define our discrepancy measure as a function dn : An × P → R

dn(Xn
1 , Q) := max

w∈Sn∩τ∗Q
{Nn−1(w) max

a∈A
|p̂n(a|w)−Q(a|w)| }
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if Sn ∩ τ∗Q 6= ∅. If Sn ∩ τ∗Q = ∅ we define dn(Xn
1 , Q) = 0.

We are now ready to introduce the lower bound for the functional T . Given
a constant c > 0, for any n ∈ N let T cn : An → T be defined by

T cn(Xn
1 ) = inf { τQ : dn(Xn

1 , Q) ≤ c log(n) } , (2.3)

where the infimum is taken with respect to the order ≺ between trees, and the
logarithm is taken in base 2. Note that since the tree τ root is the smallest element
of T with respect to ≺, this infimum always exists. In Section 3 we show how
to practically compute T cn(Xn

1 ).
We now state the main result of this paper.

Theorem 2.11. Given 0 < α < 1 and n > 2, for any c satisfying

(|A| − 1)
( log((|A| − 1)/α)

log(n)
+ 2
)
≤ c ≤ n− 1

2|A| log(n)
(2.4)

we have that the statistic T cn is a non-trivial lower confidence bound for T
on P, with nonparametric coverage probability of at least 1 − α. Moreover, if∑
v∈A? φ(v) < ∞, for any c > 2(|A| − 1) the sequence {T cn}n∈N is a consistent

estimator of T on P and if c > 3(|A| − 1) then {T cn}n∈N is strongly consistent.

3. Computation and application of the lower confidence bound

In this section we show how to compute the confidence bound (2.3) and we
present a practical application of Theorem 2.11 to linguistic data.

3.1. Tree lower bound algorithm

Let X1, . . . , Xn be a given sample and let c > 0 be a fixed constant. To compute
the tree T cn(Xn

1 ), we will identify its nodes, i.e. the set T̄ cn(Xn
1 ). By definition,

we know that w ∈ T̄ cn(Xn
1 ) if and only if every process Q satisfying dn(Xn

1 , Q) ≤
c log(n) has context tree with w as a node. The following proposition gives a
simple criteria to check whether or not we have to include a string w in the set
T̄ cn(Xn

1 ). It relies on two quantities, ln(w, a) and un(w, a), which are defined for
any w ∈ Sn and any a ∈ A by

ln(w, a) = max
sw∈Sn

{
p̂(a|sw)− c log(n)

Nn−1(sw)

}
(3.1)

un(w, a) = min
sw∈Sn

{
p̂(a|sw) +

c log(n)

Nn−1(sw)

}
. (3.2)

Proposition 3.1. Let w be a finite string with Nn−1(w) > 0. Then there exists
a process Q satisfying dn(Xn

1 , Q) ≤ c log(n) and having w as a context if and
only if the following conditions hold

1. For any a ∈ A, ln(w, a) ≤ un(w, a).
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2.
∑
a∈A ln(w, a) ≤ 1 ≤

∑
a∈A un(w, a) .

We now give a simple algorithm (see Fig 2) to construct the estimated tree.
Let us explain how it works. Since every context tree has the root λ as node,
then λ ∈ T̄ cn(Xn

1 ), and we can inicialize the algorithm with λ. We then proceed
iteratively as follows, until we exhaust the set Sn.

Suppose that a string w has been included in T̄ cn(Xn
1 ). If Cn−1(w)∩Sn 6= ∅ and

at least one of the conditions of Proposition 3.1 is not satisfied for w, this means
that there do not exist processes Q satisfying dn(Xn

1 , Q) ≤ c log(n) and having
w as a context. In other words, all processes such that dn(Xn

1 , Q) ≤ c log(n) has
w as a proper suffix of their contexts. Thus the set Cn−1(w)∩Sn must belong to
T̄ cn(Xn

1 ). On the other hand, if both conditions of Proposition 3.1 are satisfied
for w, then there exists at least one process Q such that dn(Xn

1 , Q) ≤ c log(n)
and having w as a context. In this case we let w be a context of T̄ cn(Xn

1 ) and we
stop checking its descendants (strings of the form sw ∈ Sn, with s ∈ A?).

Tree lower bound (TLB) algorithm

(1) Initialise with T̄ cn(Xn
1 )← {λ} and S ← {λ}.

(2) While S 6= ∅, pick any w ∈ S and do:

(a) Remove w from S;

(b) For any a ∈ A compute the values ln(w, a) and un(w, a) (see
(3.1) and (3.2)).

(c) If for some a ∈ A, un(w, a) < ln(w, a) or if

1 /∈
[∑
a∈A

ln(w, a) ;
∑
a∈A

un(w, a)
]

then add Cn(w) to T̄ cn(Xn
1 ) and to S.

Fig 2. Algorithmic steps to compute the lower bound in (2.3).

3.2. One-sided test of hypotheses for context trees

In this subsection we present an application of the lower confidence bound in-
troduced in (2.3) to test a hypothesis about the context tree of codified texts
written in European Portuguese. This dataset, that is publicly available, was
first analyzed in Galves et al. (2012) where a method to estimate a context
tree was proposed and then applied to solve a linguistic conjecture about the
rhythmic distinction between European and Brazilian Portuguese. The written
texts were codified into the alphabet A = {0, 1, 2, 3, 4} taking into account the
stressed syllables and the boundaries of words; see Galves et al. (2012) for de-
tails. The European Portuguese context tree obtained in the cited work is the
one shown in Fig. 3(a). Another analysis of the same dataset with similar results
can be found in Belloni and Oliveira (2015).
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λ

0 1 2 3 4

0 1 3 4
0 1

2 3
0

2

0 1 2 3 0 2 0 2

(a) European Portuguese context tree.

τ∞τ∞ τ∞ τ∞

λ

0 1 2 3 4

(b) Tree τ0 for the test of hypotheses.

λ

0 1 2 3 4

0 1 3 4
0

1 2 3
0

2

0 1 2 3 0 2

(c) Estimated lower bound.

Fig 3. On top we show the European Portuguese context tree over the alphabet A =
{0, 1, 2, 3, 4} estimated from a corpus of codified written texts. On the middle we show a
representation of the tree τ0 used for the definition of the test of hypotheses. The triangles
with τ∞ written inside represent infinite complete trees that ramify from symbols 0, 1, 3 and
4. In other words, τ0 has a unique finite context, which is 2. The bottom tree corresponds to
the lower bound T cn(Xn

1 ) computed on the same sample as the tree on top, with α = 0.05.
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An interesting difference with a corresponding linguistic interpretation be-
tween the two languages observed from the codified data was the ramification
of string “2” into the set of contexts “02”, “12”, “32”and “42” that appears in
the European Portuguese context tree in Fig. 3(a) (in the Brazilian Portuguese
context tree this ramification did not occur and the string “2” was identified
as a context). A natural idea is then to test if there is enough evidence in the
data supporting that the European Portuguese context tree ramifies from the
sequence “2” or not.

It is well known that tests of hypotheses can be constructed using confidence
bounds. Let τ0 be a tree and suppose we want to test the hypotheses

H0 : τP � τ0 vs. H1 : τP � τ0 .

Given n and α, consider the test that rejects H0 if and only if T cn(Xn
1 ) ∈ R =

{τ ∈ T : τ � τ0}, with c = (|A| − 1)(log((|A| − 1)/α)/ log(n) + 2). By Theorem
2.11 we have that

sup
P :τP�τ0

P (T cn(Xn
1 ) � τ0) ≤ sup

P∈P
P (T cn(Xn

1 ) � τP ) ≤ α .

Thus, the test defined by the rejection region R has significance level α for the
hypotheses H0 : τP � τ0 vs. H1 : τP � τ0.

In our application the null hypothesis is defined by a tree τ0 having the string
“2” as a context. Since we impose no further condition, we let 2 be the unique
finite context of τ0, that is

τ0 = {2} ∪ {wa : w ∈ τ∞, a ∈ A, a 6= 2} .

This tree is represented in Fig. 3(b). We set the significance level α = 0.05, and
as our sample size is n = 107.761 we have c = 9, 513. The estimated tree with
the TLB algorithm of Fig 2 is given in Fig. 3(c). We see that T cn(Xn

1 ) belongs to
the rejection region R therefore we reject the null hypothesis at the significance
level α = 0.05, confirming in this way the results of Galves et al. (2012) about
the ramification of sequence “2” in the European Portuguese context tree.

The algorithm described in Fig. 2 was coded in the R language and is available
upon request.

4. Proofs

Proof of Lemma 2.4. With respect to the weak topology, the set of all stationary
probability measures over (Ω,F) is a compact Hausdorff space (Shields, 1996)
and the subspace P of all stationary and ergodic probability measures over
(Ω,F) is a Gδ set (Parthasarathy, 1961, Theorem 2.1). Therefore, P is a Baire
space with the induced topology.

Proof of Proposition 2.6. The proof uses the same arguments of Lemma 1.1
in Fraiman and Meloche (1999). The difference is that here we do not have
independent random variables and the space P is not a complete metric space
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with respect to D. But the same result can be obtained in our setting, as we
show in the sequel. Recall that in the conditions of the proposition, there exists
R ∈ R such that |F (P )| ≤ R for all P ∈ P, and assume that {Fn}n∈N is a
consistent estimator for F . Define

Sn = FnI{|Fn|≤R} + sg(Fn)RI{|Fn|>R},

where I is the indicator function and sg is the sign of Fn. It is not hard to show
that {Sn}n∈N is also a consistent estimator for F , for details see (Fraiman and
Meloche, 1999, Lemma 1.1). As for any n ∈ N the function Sn is bounded by
R we have that the convergence in probability to F (P ) implies convergence in
mean. Therefore we have that

φn(P ) := EP (Sn) → F (P )

as n→∞. Moreover,

|φn(P )− φn(Q)| =
∣∣ ∑
xn1∈An

Sn(xn1 )P (xn1 )−
∑

xn1∈An
Sn(xn1 )Q(xn1 )

∣∣
≤

∑
xn1∈An

∣∣Sn(xn1 )
∣∣ ∣∣P (xn1 )−Q(xn1 )

∣∣
≤ R 2nD(P,Q) .

Therefore, for each n, φn is uniformly continuous with respect to the weak
topology (induced by D) on P. Then, by Lemma 2.4 and the Baire’s Cathegory
Theorem, the function F must be continuous on a dense subset of P.

To continue we need two basic lemmas that constitute the core of all our
negative results.

Lemma 4.1. Any measure P ∈ P can be approximated with respect to D by a
sequence of measures {Pn}n∈N in P each of which have as context tree a given
tree τ , with τP � τ . In particular, τ can be infinite.

Proof. We proceed in two steps, first we define a sequence of Markov measures
{P [k]}k∈N converging to P and then for any k ∈ N, we construct a sequence of

stationary ergodic measures {P [k]
i }i∈N each of which have context tree τ and

that converges to P [k]. The conclusion of the proof then follows by a diagonal
argument, since convergence in D (or in the weak topology) corresponds to
convergence of the measure of cylinders (Shields, 1996, Section I.9).

For any k ∈ N, let P [k] be the k-steps canonical Markov approximation of P ,
which is a Markov chain of order k with transition probabilities

P [k](a|a−1
−k) := P (a|a−1

−k) , a ∈ A , a−1
−k ∈ A

k . (4.1)

An important observation is that τP [k] � τP , since for any semi-infinite sequence
a−1
−∞ ∈ A∞ the length of the context of P [k] along a−1

−∞ is at most the length

of the context of P . Moreover, it is well known that the sequence {P [k]}k∈N
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converges weakly to P (see Rudolph and Schwarz (1977) for instance), then the
first step is proven.

To continue, let us introduce the continuity rate of a process P̃ along a given

past a−1
−∞, which is the non-increasing sequence {βP̃l (a−1

−∞)}l∈N defined as

βP̃l (a−1
−∞) := sup

a,b−1
−∞,c

−1
−∞

|P̃ (a|b−1
−∞a

−1
−l )− P̃ (a|c−1

−∞a
−1
−l )| , l ≥ 1.

Observe that βP̃l−1(a−1
−∞) > 0 means a−1

−l ∈ τ̄P̃ and therefore βP̃l (a−1
−l ) > 0 for all

l means that the infinite sequence a−1
−∞ ∈ τP̃ . Let P̃ be a measure in P satisfying

the following three conditions:

(i) infa0−∞{P̃ (a0|a−1
−∞)} > 0.

(ii) For any a−1
−∞ ∈ A∞ and any l ∈ N, βP̃l (a−1

−∞) > 0.

(iii)
∑
l∈N supa−1

−∞
βP̃l (a−1

−∞) <∞.

It should be clear to the reader that such a measure P̃ ∈ P can always be
selected. An example of this is the observable chain in a Hidden Markov Model,
that under simple assumptions satisfy conditions (i)-(iii) above, see for instance
Collet and Leonardi (2014).

Now consider any context tree τ such that τP � τ . For all i ∈ N define the
kernel

P
[k]
i (a|a−1

−∞) = (1− 1/i)P [k](a|a−1
−k) + 1/i P̃ (a|a−1

−l ) , a ∈ A , a
−1
−l ∈ τ .

We have infa0−∞{P
[k]
i (a0|a−1

−∞)} ≥ 1/i infa0−∞{P̃ (a0|a−1
−∞)} > 0 for any i ∈ N.

Thus, this kernel satisfies (i) and let us show that it also satisfies property (iii).
For any a−1

−∞ with a−1
−l ∈ τ we have

|P [k]
i (a|b−1

−∞a
−1
−r)− P

[k]
i (a|c−1

−∞a
−1
−r)| = 1/i |P̃ (a|b−l−1

−∞ a−1
−r)− P̃ (a|c−l−1

−∞ a−1
−r)|

for all r < l or |P [k]
i (a|b−1

−∞a
−1
−r) − P

[k]
i (a|c−1

−∞a
−1
−r)| = 0 if r ≥ l, for all a ∈ A

and all b−1
−∞, c

−1
−∞ ∈ A∞. Conditions (i) and (iii) ensure that there exists a

unique stationary ergodic measure having kernel P
[k]
i ; see for instance Bressaud,

Fernández and Galves (1999); Fernández and Galves (2002).

By the above observations, the contexts of P
[k]
i are exactly the sequences in

τ , since τP [k] � τP � τ . Now, since {P [k]
i }i∈N converges uniformly to P [k] as

i→∞ we also have {P [k]
k }k∈N converging in D to P as k diverges.

Lemma 4.2. Any measure P ∈ P can be approximated with respect to D by a
sequence of measures {Pn}n∈N in P each of which have a finite context tree.

Proof. We prove this lemma using a similar two-steps argument as in the pre-
vious one. First, we use the same sequence of canonical Markov approximations
{P [k]}k∈N defined in (4.1) to approximate P . Second, as we do not know whether
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these Markov measures are ergodic or not, we construct, for any k ≥ 1, a se-

quence {P [k]
i }i∈N of ergodic Markov measures converging to P [k] when i→∞.

The conclusion of the proof also follows from a diagonal argument.

The construction of P
[k]
i is also carried as in the previous lemma, by specifying

the kernel of transition probabilities

P
[k]
i (a|a−1

−∞) = (1− 1/i)P [k](a|a−1
−k) +

1

i|A|
, a ∈ A , a−1

−∞ ∈ A∞ .

Is is easy to see that this definition leads to a Markovian (i.e. with finite context

tree) ergodic measure, and that the sequence {P [k]
i }i∈N converges to P [k] when

i→∞. As before we have that {P [k]
k }k∈N converges to P when k →∞ and this

concludes the proof.

We are now ready to prove Theorem 2.7.

Proof of Theorem 2.7. Assume that
∑
v∈τ̄∞ φ(v) = +∞. Then Lemmas 4.1 and

4.2 imply that any P ∈ P having L(P ) = 0 (respectively L(P ) = 1) is limit in
D of a sequence of measures {Pn}n∈N in P satisfying L(Pn) = 1 (respectively
L(Pn) = 0) for all n ∈ N. In other words, the functional L is discontinuous (with
respect to the D-distance) at any point of P. Together with Proposition 2.6, this
proves that L is not consistently estimable on P when

∑
v∈τ̄∞ φ(v) = +∞.

Proof of Theorem 2.8. As we already mentioned, the proof of the if part of
the theorem follows from Theorem 2.11 which states that {T cn}n∈N is actually
a consistent estimator of τP . It remains to prove the only if part. Assume∑
v∈τ̄∞ φ(v) = +∞ and suppose there exists {Tn}n∈N, a consistent estimator of

T on P. Define Ln : An → {0, 1} by Ln(xn1 ) = 1{
∑
v∈T̄n(xn1 ) φ(v) < +∞}. We

will prove that {Ln}n∈N is a consistent estimator of L, which is a contradiction
with Theorem 2.7, concluding the proof of the theorem.

Fix P ∈ P. As {Tn}n∈N is consistent we have that for any ε > 0

lim
n→∞

P (dφ(Tn(Xn
1 ), τP ) ≤ ε) = 1 .

We will prove that for any ε > 0 the ball of center τP and radius ε contains only
trees where L is constant and equal to L(τP ). By the definition of dφ, see (2.1),
for τ ′ ∈ T ,

dφ(τP , τ
′) =

∑
v∈τ̄ ′

φ(v) +
∑
v∈τ̄P

φ(v)− 2
∑

v∈τ̄ ′∩τ̄P

φ(v).

Then if dφ(τP , τ
′) < ε we have L(τP ) = 1 if and only if L(τ ′) = 1. Therefore

lim
n→∞

P (Ln(Xn
1 ) = L(P ) ) ≥ lim

n→∞
P ( dφ(Tn(Xn

1 ), τP ) ≤ ε ) = 1

which proves that L is consistently estimable on P. But by Theorem 2.7, L is
not consistently estimable on P, which is a contradiction.
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Proof of Theorem 2.10. Suppose Un satisfies

sup
P∈P

P (Un ≺ τ∞) = 1 .

Given δ > 0 choose a measure Pδ ∈ Pf such that

Pδ(Un ≺ τ∞) ≥ 1− δ

3
. (4.2)

This can always be done because the set Pf is dense in P (see Lemma 4.2). Let
{τk}k∈N be an increasing sequence of finite trees and denote by Vk the event

Vk = {τk ≺ Un} .

We have Vk ⊃ Vk+1 for all k ≥ 1 and ∩k≥1Vk = {Un = τ∞}. Therefore

lim
k→∞

Pδ(Vk) = Pδ(Un = τ∞) ≤ 1

3
δ .

Now let k∗ be such that

Pδ(Vk∗) <
2

3
δ ,

and denote by τ the finite tree given by τ̄ = τ̄k∗ ∪ τ̄Pδ . We have

Pδ(τ � Un) ≥ Pδ(τk∗ � Un) ≥ 1− 2

3
δ .

By Lemma 4.1, there exists a measure Qδ ∈ Pf with τQδ = τ such that

D(Pδ, Qδ) < 2−n
δ

3
.

Moreover we have

Pδ(τ � Un) − Qδ(τ � Un)

=
∑

xn1∈An
1{τ�Un(xn1 )} Pδ(x

n
1 )−

∑
xn1∈An

1{τ�Un(xn1 )}Qδ(x
n
1 )

≤
∑

xn1∈An
1{τ�Un(xn1 )} |Pδ(xn1 )−Qδ(xn1 ) |

≤ 2nD(Pδ, Qδ) <
δ

3
.

Therefore

Qδ(τ � Un) > Pδ(τ � Un) − δ

3
≥ 1− δ .

As δ is arbitrary we have just proved that

inf
Q∈P

Q(τQ � Un) = inf
Q∈Pf

Q(τQ � Un) = 0 .
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In order to prove Theorem 2.11 we will need the following lemma.

Lemma 4.3. Given P ∈ P, let X1, . . . , Xn be a sample of size n with law P .
Then for any constant c > 0 we have

P
(
dn(Xn

1 , P ) ≤ c log(n)
)
≥ 1− |A| − 1

nc/(|A|−1)−2
.

Proof. First note that if Sn ∩ τ∗P = ∅ then the assertion of the lemma is trivial
because in this case dn(Xn

1 , P ) = 0 and then P (dn(Xn
1 , P ) ≤ c log n) = 1. Now

suppose Sn ∩ τ∗P 6= ∅ and let w ∈ Sn ∩ τ∗P . We recall the reader that all the
logarithms are taken in base 2. This is not in fact a real restriction, as if the
base is r > 1 we can replace c by c/ log2(r) and the result holds as well. First
note that we can write

max
a∈A
|p̂n(a|w)− p(a|w)| =

∑
a∈A

p(a|w)>p̂n(a|w)

p(a|w)− p̂n(a|w) .

For a proof of this equivalence see for instance (Levin, Peres and Wilmer, 2009,
Proposition 4.2 and Remark 4.3). Therefore we have that the event

Bn(w) = {Nn−1(w) max
a∈A
|p̂n(a|w)− p(a|w)| > c log(n)}

is included in the event
En(w) =

⋃
a∈A

En(w, a) (4.3)

where

En(w, a) =
{

(Nn−1(w)p(a|w)−Nn(wa))1{p(a|w) > p̂n(a|w)} > c log(n)

|A| − 1

}
.

and the union (4.3) has at most |A|− 1 non empty sets. Now define the random
variables

Wn(w, a) = 2Nn−1(w) log(1+p(a|w))−Nn(wa) , n ≥ |w| .

Then, by the inequality p(a|w) ≤ log2(1 + p(a|w)) valid in the interval (0, 1] we
have that for a ∈ A such that p(a|w) > p̂n(a|w), the event En(w, a) is included
in the event

Fn(w, a) =
{
Wn(w, a) > nc/(|A|−1)

}
, (4.4)

As in (Garivier and Leonardi, 2011, Proposition A.1), we will show that when
w ∈ τ∗P , the sequence {Wn(w, a)}n∈N is a martingale with respect to the fil-
tration {σ(X1, . . . , Xn−1)}n∈N. In fact, note that by the definition of Nn(·) we
have that

E(2(Nn+1(wa)−Nn(wa))|X1, . . . , Xn) = E(2
1{Xn+1

n+1−|w|=wa}|X1, . . . , Xn)

= 2(1{Xnn+1−|w|=w}) log(1+p(a|w))

= 2(Nn(w)−Nn−1(w)) log(1+p(a|w))
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which implies that E(Wn+1(w, a)|X1, . . . , Xn) = Wn(w, a). Thus E(Wn(w, a)) =
E(W|w|(w, a)) = 1 and therefore, by Markov’s inequality and a union bound we
have that

P (En(w)) ≤ (|A| − 1) sup
a∈A

P (Fn(w, a)) ≤ |A| − 1

nc/(|A|−1)
.

One more union bound over Sn ∩ τ∗P yields

P
(
dn(Xn

1 , P ) > c log n
)

= P
(
∪w∈Sn Bn(w)

)
≤ n2 sup

w∈Sn
{P
(
En(w)

)
}

≤ |A| − 1

nc/(|A|−1)−2
.

Proof of Theorem 2.11. Observe that for any P ∈ P the event {dn(Xn
1 , P ) ≤

c log(n)} implies {T cn(Xn
1 ) � τP }. Therefore, by Lemma 4.3 and the condition

on c we have

P (T cn(Xn
1 ) � τP ) ≥ P (dn(Xn

1 , P ) ≤ c log(n))

≥ 1− (|A| − 1)/nc/(|A|−1)−2

≥ 1− α .

To prove that T cn(Xn
1 ) is not trivial we have to prove that

sup
P∈P

P (τ root ≺ T cn(Xn
1 )) = 1 . (4.5)

For that consider the transition matrix Qε on A = {1, . . . , k} defined by

Qε(i, i) = 1−Qε(i, i+ 1) = ε , for i = 1, . . . , k − 1, and

Qε(k, k) = 1−Qε(k, 1) = ε .

The parameter ε will be chosen adequately later. Observe that if ε > 0 there
exists a unique stationary ergodic Markov chain P specified by Qε. It is also
easy to see, by symmetry, that P (i) = 1/k for any i = 1, . . . , k. Now for any
n ≥ 3 denote by Mn the set of strings xn1 ∈ An such that xi+1 = xi + 1 for
i = 1, . . . , n − 1. Observe that there are exactly k such strings, independently
of n, each beginning in a different symbol of A. Moreover, each of these strings
have equal measure

P (xn1 ) =
1

k
(1− ε)n−1.

On the other hand, thanks to Proposition 3.1 and the TLB algorithm in Fig. 2,
the k trees {T cn(xn1 ) : xn1 ∈ Mn} will be different from τ root, because if c ≤
(n− 1)/2|A| log(n), as Nn−1(x1) ≥ Nn−1(x2) ≥ dn−1

|A| e we will have

un(x2, x2) ≤ p̂n(x2|x2) +
c log(n)

Nn−1(x2)
< 1/2.

imsart-generic ver. 2011/11/15 file: gallo-leonardi-ejs-7.tex date: September 19, 2021



S. Gallo and F. Leonardi/Nonparametric statistical inference for context trees 19

and

ln(x1, x2) ≥ p̂n(x2|x1)− c log(n)

Nn−1(x1)
> 1/2 .

In other words,

P (τ root ≺ T cn(Xn
1 )) ≥ P (Xn

1 ∈Mn) = k × 1

k
(1− ε)n−1 .

To conclude, observe that for any δ > 0, we can take ε = 1− (1− δ)1/(n−1), and
we get

P (τ root ≺ T cn(Xn
1 )) ≥ 1− δ

proving that (4.5) holds.
Now we will prove the consistency of the estimator {T cn(Xn

1 )}n∈N for any
c > 2(|A| − 1), by showing that for any P ∈ P and any ε > 0 the event
dφ(T cn(Xn

1 ), τP ) ≤ ε occurs with probability converging to 1 as n → ∞. To
begin, notice that by Lemma 4.3 we have that

P (dn(Xn
1 , P ) ≤ c log n) ≥ 1− |A| − 1

nδ
for all n ≥ 1 ,

where δ = c/(|A| − 1)− 2 > 0. This implies, by the definition of T cn(Xn
1 ), that

P (T cn(Xn
1 ) � τP ) ≥ 1− |A| − 1

nδ
for all n ≥ 1 . (4.6)

Now, recall that in the conditions of the theorem
∑
v∈τ̄∞ φ(v) < ∞, and take

k ∈ N such that ∑
u∈τ̄P : |u|>k

φ(u) < ε . (4.7)

Thus we have with probability at least 1− (|A| − 1)/nδ that

dφ(T cn(Xn
1 ), τP ) ≤

∑
u∈τ̄P |k\T̄ cn(Xn1 )

φ(u) +
∑

u∈τ̄P : |u|>k

φ(u)

≤
∑

u∈τ̄P |k\T̄ cn(Xn1 )

φ(u) + ε . (4.8)

Therefore it is enough to prove that τ̄P |k \ T̄ cn(Xn
1 ) = ∅ with probability con-

verging to 1 as n → ∞, or what is stronger, with probability equal to 1 for n
sufficiently large, a fact that we refer as to occur eventually almost surely or e.a.s.
for short. To prove this last assertion, for any v ∈ τ̄P |k we will show that the set
{Q : dn(Xn

1 , Q) ≤ c log n} is included in the set {Q : v ∈ τ̄Q} e.a.s. As the set
τ̄P |k is finite we will have {Q : dn(Xn

1 , Q) ≤ c log n} ⊂ {Q : τQ � τP |k} e.a.s. and
therefore T cn(Xn

1 ) � τP |k e.a.s., which in turns implies that τ̄P |k \ T̄ cn(Xn
1 ) = ∅

e.a.s. So, let v ∈ τ̄P |k, v = vj1, and denote by v′ its largest proper suffix, that is

v′ = vj2. It can be shown that we can always find a symbol b ∈ A and another
finite string w ∈ A? such that the following conditions hold
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(i) P (a|v1wv
′) 6= P (a|bwv′) for some a ∈ A and

(ii) v is a suffix (proper or not) of v1wv
′.

If v is a context for P , i.e if v ∈ τP ∩ τ̄P |k then it is enough to take w = λ and
b 6= v1 satisfying (i) (such b must always exist because v is a context). In this
case we have v = v1wv

′ and (ii) is also satisfied. On the other hand, if v is not
a context then it is an internal node of τP and we must have some w = w′v1,
with w′ ∈ A?, and b ∈ A such that (i)-(ii) are satisfied. If not, this would imply
that for any u ∈ A? P (·|uv) = P (·|v), contradicting the fact that v is a proper
suffix of a context. Using the triangle inequality we have, for any Q ∈ P, that

|Q(a|v1wv
′)−Q(a|bwv′)| ≥ |P (a|v1wv

′)− P (a|bwv′)|
− |P (a|v1wv

′)− p̂n(a|v1wv
′)| − |p̂n(a|v1wv

′)−Q(a|v1wv
′)|

− |Q(a|bwv′)− p̂n(a|bwv′)| − |p̂n(a|bwv′)− P (a|bwv′)| . (4.9)

Now, by ergodicity we have that P -almost surely, for any finite sequence s ∈ A?∣∣∣Nn(s)

n
− P (s)

∣∣∣→ 0 (4.10)

when n→∞, which in turns implies that for any s ∈ A?

|p̂n(a|s)− P (a|s)| → 0 . (4.11)

In particular by (4.10), for any finite sequence s ∈ A? we will have Nn(s) ≥
nP (s)/2 e.a.s. This fact, together with (4.11) and the inequality (4.9) implies
that for a sufficiently large n, any measure Q such that dn(Xn

1 , Q) ≤ c log n will
satisfy

|Q(a|v1wv
′)−Q(a|bwv′)| > 0 (4.12)

and thus v ∈ τ̄Q. Therefore {Q : dn(Xn
1 , Q) ≤ c log n} ⊂ {Q : v ∈ τ̄Q} and

τ̄P |k \ T̄ cn(Xn
1 ) = ∅ e.a.s, as required, showing that

P (dφ(T cn(Xn
1 ), τP ) ≤ ε) → 1 when n→∞ .

To finish the proof we only emphasize that if c > 3(|A| − 1) then δ > 1 and
therefore the bound in (4.6) is summable. This fact together with the Borel-
Cantelli lemma implies that T cn (Xn

1 ) � τ e.a.s. Therefore, as the other inclusion
τ |k � T cn (Xn

1 ) also holds e.a.s, by (4.8) we will have that for all n sufficiently
large

dφ(T cn(Xn
1 ), τP ) ≤ ε

with probability one.

Proof of Proposition 3.1. First suppose there exists a process Q satisfying
dn(Xn

1 , Q) ≤ c log(n) and having w as a context. Then for any s ∈ A∗ such
that sw ∈ Sn ∩ τ∗Q and any a ∈ A we have that

|Q(a|sw)− p̂(a|sw)| ≤ c log(n)

Nn−1(sw)
.
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Therefore for any a ∈ A and any s ∈ A∗ such that sw ∈ Sn ∩ τ∗Q we have

p̂(a|sw)− c log(n)

Nn−1(sw)
≤ Q(a|w) ≤ p̂(a|sw) +

c log(n)

Nn−1(sw)
(4.13)

because w is a context for Q which implies

ln(w, a) ≤ Q(a|w) ≤ un(w, a)

by maximizing (minimizing) with respect to s the left (right) side of (4.13),
and the first condition is proven. Now, by summing this last inequality over
a ∈ A we obtain that

∑
a∈A ln(w, a) and

∑
a∈A un(w, a) must satisfy the second

condition as well.
Now suppose 1. and 2. hold. Then it is easy to see that these conditions al-

low us to choose some positive values Q(a|w) in the interval (ln(w, a);un(w, a))
for any a ∈ A in such a way that

∑
a∈AQ(a|w) = 1. Then, it is straightfor-

ward to construct a stationary ergodic Variable Length Markov chain having
{Q(a|w)}a∈A as the conditional distribution of the next symbol in the sequence
given the past string w, and such that w is a context for Q. The other contexts
v ∈ τQ \ {w} can be chosen arbitrarily large in such a way that Nn−1(v) = 0,
implying that Sn ∩ τ∗Q = {sw : Nn−1(sw) > 0}. The conditions on {Q(a|w)}a∈A
implies that for all sw ∈ Sn and all a ∈ A we have

p̂n(a|sw)− c log(n)

Nn−1(sw)
≤ Q(a|sw) ≤ p̂n(a|sw) +

c log(n)

Nn−1(sw)

and therefore

dn(Xn
1 , Q) = max

v∈Sn∩τ∗Q
{Nn−1(v) max

a∈A
|p̂n(a|v)−Q(a|v)|1} ≤ c log(n) .

Discussion

The main contribution of this work is the introduction of a lower confidence
bound for the context tree in the class of stationary ergodic probability mea-
sures over AZ, with A a finite alphabet. We derive an explicit formula for the
coverage probability of this confidence bound, based on a martingale deviation
inequality developed in Garivier and Leonardi (2011), and we show the almost
sure convergence of this estimator with respect to the Hamming distance dφ,
when φ is summable. To our knowledge, this is the first lower confidence bound
for context trees and it is also the first strong consistent estimator that do not re-
strict the length of the estimated contexts, as for example does the BIC context
tree estimator in Csiszár and Talata (2006) that only allows candidate contexts
of length o(log n). Using only topological arguments we also prove that if φ is
not summable then there exists no consistent estimator of the context tree in
the class of stationary and ergodic processes. This is not the case in the class of
processes having finite context trees because in this case the BIC estimator is
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strongly consistent. On the other hand we also prove that it is not possible to
obtain nonparametric upper confidence bounds even in the smaller class of pro-
cesses having finite context trees, because any process can be approximated in
D by stationary ergodic processes having arbitrary large context trees, as shown
in Lemma 4.1. We also show in this work a practical application of the lower
confidence bound to test a hypothesis involving the presence of finite contexts
in codified written texts of European Portuguese. We support at the confidence
level of 95% the results obtained in Galves et al. (2012) for this dataset, where
only point estimation of the context tree was addressed.
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