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LANGFORD SEQUENCES AND A PRODUCT OF DIGRAPHS

S. C. LÓPEZ AND F. A. MUNTANER-BATLE

Abstract. Skolem and Langford sequences and their many generalizations have applications in
numerous areas. The ⊗h-product is a generalization of the direct product of digraphs. In this
paper we use the ⊗h-product and super edge-magic digraphs to construct an exponential number of
Langford sequences with certain order and defect. We also apply this procedure to extended Skolem
sequences.

1. Introduction

For m ≤ n, we denote the set {m,m+ 1, . . . , n} by [m,n]. A Skolem sequence [22, 25] of order m is
a sequence of 2m numbers (s1, s2, . . . , s2m) such that (i) for every k ∈ [1,m] there exist exactly two
subscripts i, j ∈ [1, 2m] with si = sj = k, (ii) the subscripts i and j satisfy the condition |i− j| = k. A
Skolem sequence of order 4 is for instance (4, 2, 3, 2, 4, 3, 1, 1). It is well known that Skolem sequences
of order m exist if and only if m ≡ 0 or 1 (mod 4).

Skolem introduced in [26] what is now called a hooked Skolem sequence of order m, where there exists
a zero at the second to last position of the sequence containing 2m + 1 elements. Later on, in 1981,
Abrham and Kotzig [2] introduced the extended Skolem sequence, where the zero is allowed to appear
in any position of the sequence. Notice that from every Skolem sequence we can obtain two trivial
extended Skolem sequences just by adding a zero either in the first or in the last position. In this
paper, all extended Skolem sequences that we refer to are non trivial, unless otherwise specified.

Let d be a positive integer. A Langford sequence of orderm and defect d [27] is a sequence (l1, l2, . . . , l2m)
of 2m numbers such that (i) for every k ∈ [d, d+m−1] there exist exactly two subscripts i, j ∈ [1, 2m]
with li = lj = k, (ii) the subscripts i and j satisfy the condition |i − j| = k. Langford sequences, for
d = 2, where introduced in [17] and they are referred as perfect Langford sequences. Notice that, a
Langford sequence of order m and defect d = 1 is a Skolem sequence of order m.

Bermond, Brower and Germa on one side [7] and Simpson on the other side [27] showed that Langford
sequences of order m and defect d exist if and only if the following conditions hold: (i) m ≥ 2d − 1,
and (ii) m ≡ 0 or 1 (mod 4) if d is odd; m ≡ 0 or 3 (mod 4) if d is even.

Denote by σm the number of Skolem sequences of order m. It is clear that if m ≡ 2 or 3 (mod 4) then
σm = 0. Abraham showed in [1] the next result.

Theorem 1.1. [1] It is σm ≥ 2⌊m/3⌋ for every m ≡ 0 or 1 (mod 4).

For the graph theory notation and terminology used in this paper, unless otherwise specified, we follow
[5, 9, 14, 28, 29]. However, in order to make this paper reasonably self contained, we mention that by
a (p, q)-graph we mean a graph of order p and size q. We also point out that we allow graphs (and
digraphs) to have loops. If we need to consider graphs without loops nor multiple edges we will refer
to them as simple graphs. The underlying graph of a digraph D, und(D), is the graph obtained from
D after removing the orientation of the arcs. In general, we say that a digraph D admits a labeling f if
its underlying graph admits the labeling f . Bloom and Ruiz [8] introduced a generalization of graceful
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labelings (see [14] for a formal definition of graceful labeling), that they called k-equitable labelings.
Let G be a (p, q)-graph and let g : V (G) −→ Z be an injective function with the property that the
new function h : E(G) −→ N defined by the rule h(uv) = |g(u) − g(v)| for every uv ∈ E assigns the
same integer to exactly k edges. Then g is said to be a k-equitable labeling and G a k-equitable graph.
In [8] the authors called a k-equitable labeling, optimal, when g assigns all the elements from the set
[1, p] to the elements of V (G). Barrientos [6] called a k-equitable labeling complete if the induced
edge labels are all the elements in [1, w], where w is the number of distinct edge-labels. Although,
1-equitable labelings are defined in the context of simple graphs, it is not hard to extend the concept
to graphs with loops, where the label of any loop is zero.

At this point, for any Skolem sequence of order m, that is to say, of 2m elements, we define a Skolem

labeling g of the directed matching m
−→
K2, up to isomorphism. Let f : E(m

−→
K2) → [1,m] be any

bijective function such that if f(u, v) = k, then the Skolem labeling g of m
−→
K2 assigns to u one of the

two positions occupied by k and to v the other position occupied by k, in such a way that the label
of u is strictly smaller than the label of v. See the following example.

Example 1.2. Consider the Skolem sequence (4, 2, 3, 2, 4, 3, 1, 1). Then, the corresponding Skolem

labeling of the matching 4
−→
K2 is shown in Fig. 1.
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Figure 1. The Skolem labeling of 4
−→
K2 associated to (4, 2, 3, 2, 4, 3, 1, 1).

Notice that, every Skolem labeling g of m
−→
K2 is a bijective function g : V (m

−→
K2) → [1, 2m] such that,

the set of differences {g(v) − g(u) : (u, v) ∈ E(m
−→
K2)} = [1,m]. Thus, g is a complete optimal 1-

equitable labeling of m
−→
K2. Moreover, any complete optimal 1-equitable labeling of m

−→
K2 raises an

associated Skolem sequence.

In a similar way, we can define a Langford labeling of m
−→
K2, up to isomorphism, for any Langford

sequence of order m and defect d. Let f : E(m
−→
K2) → [d, d +m − 1] be a bijective function defined

as follows: if f(u, v) = k, then the Langford labeling g of m
−→
K2 assigns to u one of the two positions

occupied by k and to v the other position occupied by k, in such a way that the label of u is strictly

smaller than the label of v. Once again, notice that every Langford labeling g of m
−→
K2 is a bijective

function g : V (m
−→
K2) → [1, 2m] and, the set of differences {g(v) − g(u) : (u, v) ∈ E(m

−→
K2)} =

[d, d+m− 1]. Thus, g is an optimal 1-equitable labeling of m
−→
K2. Moreover, any optimal 1-equitable

labeling ofm
−→
K2, with consecutive set of induced differences on the edges, raises an associated Langford

sequence of defect d, where d is the minimum of this set.

The bijection among Skolem and Langford sequences and the corresponding Skolem and Langford

labelings of m
−→
K2 can also be generalized when dealing with hooked (or extended) Skolem sequences,

in a natural way. In this case, instead of considering a labeling of m
−→
K2, we consider a labeling of

m
−→
K2 ∪

−→
L , where the vertex of the loop is labeled with the position of zero in the given sequence. We

will refer to this labeling as an extended Skolem labeling of m
−→
K2 ∪

−→
L .

Skolem, Langford sequences and their many generalizations have applications in numerous areas, see
for instance [13]. Although their origin is in the fifties, many recent papers have been contributed to
their study and applications from different points of view, as for instance [20, 21, 23, 24]. In this paper,

we study Skolem and Langford sequences through (extended) Skolem and Langford labelings of m
−→
K2.
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By multiplying a Skolem labeled matching m
−→
K2 by a particular family of labeled 1-regular digraphs

of order n, we obtain a Langford labeled matching (mn)
−→
K2. We will show that this procedure can

also be applied to obtain Langford sequences from existing ones, and that in this way, we can obtain
a lower bound for the number of Langford sequences, for particular values of the defect. We also
extend this procedure to hooked and extended Skolem sequences. The organization of the paper is
the following one. Section 2 contains the necessary terminology and previous known results. Section
3 is focused on the study of Skolem and Langford sequences, and finally, Section 4 shows an extension
to hooked and extended Skolem sequences.

2. The tools: labelings and the ⊗h-product

We start this section by completing the terminology about labelings that we use in the paper. Kotzig
and Rosa defined in 1970 [16] the concept of edge-magic graphs and edge-magic labelings for simple
graphs as follows. Let G be a simple (p, q)-graph. A bijective function f : V (G) ∪ E(G) → [1, p+ q]
is an edge-magic labeling of G if the sum f(u) + f(uv) + f(v) = k, for every uv ∈ E(G). If such a
function exits then G is called an edge-magic graph. The constant k is the valence of the labeling in
[16]. However, different authors have denoted the valence by other names, as for instance, the magic
sum [28] or the magic weight [5].

Enomoto et al. in [10] defined in 1998 the concepts of super edge-magic labelings and of super edge-
magic graphs as follows. A super edge-magic labeling of a simple (p, q)-graph G is an edge-magic
labeling f that has the extra property that f(V (G)) = [1, p]. In that case, G is called a super edge-
magic graph. However, Acharya and Hegde had introduced in [3] an equivalent concept under the
name strongly indexable graphs. In this paper, we will use a more general definition of super edge-
magic labelings that does not restrict only to simple graphs, but to graphs that admit at most one
loop attached at each vertex in a natural way. That is, the magic sum of a loop is obtained by adding
the label on the loop plus twice the label of the vertex of the loop. Such a generalization was implicitly
provided by Figueroa et al. in [11]. One of the key ideas when dealing with super edge-magic labelings
is that to obtain such a labeling of a graph it is enough to exhibit the labels of the vertices.

Lemma 2.1. [12] A (p, q)-graph G is super edge-magic if and only if there exists a bijective function
f : V (G) → [1, p] such that the set S = {f(u) + f(v) : uv ∈ E(G)} consists of q consecutive integers.
In such case, f extends to a super edge-magic labeling of G with magic sum p+q+s, where s = min(S).

Unless otherwise specified, whenever we refer to a function as a super edge-magic labeling we will
assume that it is a function f as in Lemma 2.1. In [11] Figueroa et al., introduced the concept of
super edge-magic digraph as follows: a digraph D = (V,E) is super edge-magic if its underlying graph
is super edge-magic.

2.1. The ⊗h-product. The ⊗h-product was introduced by Figueroa et al. [11] as a tool to obtain
(super) edge-magic graphs from existing ones. Later on, this product has been applied to different
types of labelings. See for instance [15, 18, 19]. Let D be a digraph and let Γ be a family of
digraphs such that V (F ) = V , for every F ∈ Γ. Consider any function h : E(D) −→ Γ. Then the
product D ⊗h Γ is the digraph with vertex set the Cartesian product V (D) × V and ((a, x), (b, y)) ∈
E(D ⊗h Γ) if and only if (a, b) ∈ E(D) and (x, y) ∈ E(h((a, b))). Let A(D) and A(F ) be the
adjacency matrices of D and F ∈ Γ, respectively, when the vertices of D are indexed as V (D) =
{a1, a2, . . . , am} and the vertices of F as V = {x1, x2, . . . , xn}. Let the vertices of D⊗h Γ be indexed
as {(a1, x1), . . . , (a1, xn), (a2, x1), . . . , (am, xn)}. Then, the adjacency matrix of D ⊗h Γ, A(D ⊗h Γ),
is obtained by multiplying every 0 entry of A(D) by the |V | × |V | null matrix and every 1 entry of
A(D) by A(h(a, b)), where (a, b) is the arc related to the corresponding 1 entry. Notice that when h
is constant, the adjacency matrix of D⊗h Γ is just the classical Kronecker product A(D)⊗A(h(a, b)).
Thus, when |Γ| = 1, we just write D ⊗ Γ.
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Example 2.1. Let D be the digraph defined by V (D) = [1, 8] and E(D) = {(1, 5), (2, 4), (3, 6), (7, 8)}.
Let Γ = {F1, F2}, where V (F1) = V (F2) = [1, 3], E(F1) = {(1, 1), (2, 3), (3, 2)} and E(F2) =
{(1, 2), (2, 1), (3, 3)}. Consider the function h : E(D) → Γ defined by h((1, 5)) = h((2, 4)) = F1

and h((3, 6)) = h((7, 9)) = F2. Then, the digraph D ⊗h Γ is shown in Fig. 2.
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Figure 2. The digraph D ⊗h Γ.

2.2. The ⊗h-product applied to labelings. Let Sk
n denote the set of all super edge-magic labeled

digraphs of order and size equal to n with the minimum sum of the labels of the adjacent vertices
being k (that is, the minimum of the set S introduced in Lemma 2.1), where each vertex takes the
name of its label. López et al. obtained in [19] the following result.

Theorem 2.2. [19] Assume that D is any (super) edge-magic digraph and h is any function h :
E(D) → Sk

n. Then und(D ⊗h Sk
n) is (super) edge-magic.

Let Sn denote the set of all 1-regular super edge-magic labeled digraphs of order n. In [4], Bača et al.
gave a lower bound for the size of Sn.

Theorem 2.3. [4] Let Cn be a cycle on n vertices, n ≥ 11 odd. The number of super edge-magic
labelings of the cycle Cn is at least 5/4 · 2⌊(n−1)/3⌋ + 1.

Let Σn be the set of all 1-regular digraphs of order n. Figueroa et al. obtained in [11] the next result.

Theorem 2.4. [11] Let F be an acyclic graph. Consider any function h : E(
−→
F ) → Σn. Then,

−→
F ⊗h Σn

∼= n
−→
F .

A rotation super edge-magic digraph of order n was introduced in [18]. Let M = (ai,j) be a square
matrix of order n. The matrix (aRi,j) is the rotation of the matrix M , denoted by MR, when aRi,j =

an+1−j,i. Graphically this corresponds to a rotation of the matrix by π/2 radiants clockwise. A digraph
S is said to be a rotation super edge-magic digraph of order n, if its adjacency matrix is the rotation
of the adjacency matrix of an element in Sn. The expression RSn denotes the set of all digraphs that
are rotation super edge-magic digraphs of order n.

The following lemma and application of the ⊗h-product to k-equitable digraphs were given in [18].

Lemma 2.2. [18] Let S be a digraph in RSn and let k be any integer. If |k| ≤ (n − 1)/2 then there
exists an unique arc (i, j) ∈ E(S) such that i− j = k.

Theorem 2.5. [18] Let D be an (optimal) k-equitable digraph and let h : E(D) → RSn be any
function. Then D ⊗h RSn is (optimal) k-equitable.

Remark 2.6. As a key point in what follows, we want to mention how the k-equitable labeling of
Teorem 2.5 is obtained from the labelings of the elements involved in it. If we assume that each vertex
of D is identified with the label assigned to it by a k-equitable labeling then, a vertex (a, i) of D⊗hRSn

is labeled with n(a− 1) + i.
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3. Using SEM labelings of (p, p)-graphs and Skolem sequences to generate Langford
sequences

The problem of counting Langford sequences has proven to be an interesting and challenging one.
This section is devoted to introduce new techniques that will allow us to find lower bounds for the
number of Langford sequences of certain order and defect d for some particular values of d. We feel
that the techniques introduced are unexpected since we use graph labelings and the ⊗h-product. By
using this procedure, we have a different way to understand the problem.

In the next theorem, we show that for every Langford sequence L of order m and defect d we can
construct a new Langford sequence L′ of order mn and defect nd − (n − 1)/2. We believe that the
proof that we provide is remarcable since it is a constructive technique to obtain such sequences. It is
precisely this constructive technique that allows us to obtain lower bounds for the number of distinct
Langford sequences for certain orders and defects (see Theorem 3.3 and Corollary 3.1).

Theorem 3.1. Let L = (l1, l2, . . . , l2m) be a Langford sequence of order m and defect d. Then, there
exists a Langford sequence L′ of order mn and defect d′, where d′ = nd − (n − 1)/2, for each odd
integer n.

Proof.
Let L = (l1, l2, . . . , l2m) be a Langford sequence of order m and defect d and consider the Langford

labeling of D = m
−→
K2 induced by L, where the vertices of m

−→
K2 are identified by the labels. Clearly,

RSn ⊂ Σn. By Theorem 2.4, if we consider any function h : E(D) → RSn, then D′ = D ⊗h RSn
∼=

(mn)
−→
K2. Moreover, since a Langford labeling of m

−→
K2 is an optimal 1-equitable labeling of D, by

Theorem 2.5 and Remark 2.6, the induced labeling of (mn)
−→
K2, namely g, is optimal 1-equitable.

What remains to be proven is that this labeling g is in fact a Langford labeling of (mn)
−→
K2 with

induced differences in [d′, d′ +mn− 1]. That is, the set of induced edge differences is {|g(y)− g(x)| :
(x, y) ∈ D′} = [d′, d′+mn−1], where d′ = nd−(n−1)/2. Suppose that (u, v) is an arc in D. Then, for
every (i, j) ∈ h((u, v)), ((u, i), (v, j)) ∈ E(D′). By Lemma 2.2, for every integer k with |k| ≤ (n− 1)/2
there exists a unique arc (i, j) ∈ h((u, v)) such that i− j = k. Thus, for every (u, v) ∈ E(D), we have
that the set S(u,v) of induced edge differences of the arcs obtained from (u, v) is the following one:

S(u,v) = {|g((u, i))− g((v, j))| : (i, j) ∈ E(h((u, v))}

= {|n(u− 1) + i− n(v − 1)− j| : (i, j) ∈ E(h((u, v))}

= [n(v − u)− (n− 1)/2, n(v − u) + (n− 1)/2].

Hence, the set S = ∪(u,v)∈E(D)S(u,v) is S = [nd− (n− 1)/2, nd− (n− 1)/2 +mn− 1]. Therefore, we
obtain a Langford labeling of D′, from which we can recover a Langford sequence of order mn and
defect d′. ✷ ✷

Example 3.2. Consider Example 2.1. The digraph D is in fact, a Skolem labeling of 4
−→
K2, and Γ is

the family RSn, for n = 3. Thus, by replacing each vertex (a, x) of D⊗h Γ by n(a− 1)+ x, we obtain
a Langford labeling of order 12 and defect d′ = 2. This labeling is shown in Fig. 3
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Figure 3. A Langford labeling of 12
−→
K2.
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Thus, the associated Langford sequence of order 12 and defect 2 is:

(12, 13, 11, 6, 7, 5, 10, 8, 9, 6, 5, 7, 12, 11, 13, 8, 10, 9, 4, 2, 3, 2, 4, 3).

Denote by λd
n the number of Langford sequences of order n and defect d.

Theorem 3.3. Let m and n be two positive integers, n odd. Then,

λd′

mn ≥ |Sn|
mλd

m,

where d′ = nd− (n− 1)/2.

Proof.
By definition, it is clear that |RSn| = |Sn|. Thus, according to the construction shown in the proof of
Theorem 3.1, it is enough to show that (i) every pair L1 and L2 of different Langford sequences of order
m and defect d will produce a pair L′

1 and L′
2 of different Langford sequences of ordermn and defect d′,

where d′ = nd−(n−1)/2, and (ii), for a fix Langford sequence L of defect d, if we consider two different
functions h1, h2 : E(D) → RSn, where D is the labeled digraph associated to L, of size m, then the
resulting Langford sequences L′

1 and L′
2 of defect d′, are different. Let us prove (i). Suppose that D1

and D2 are the digraphs associated to L1 = (l11, l
1
2, . . . , l

1
2m) and L2 = (l21, l

2
2, . . . , l

2
2m), respectively.

Let t be the minimum r ∈ [1, 2m] such that l1r 6= l2r . Assume that l1t = k. Then, k /∈ {l11, l
1
2, . . . , l

1
t−1}.

Otherwise, we get l1t = l2t = k, that is a contradiction. Thus, there exists an arc (t, v1) ∈ D1 such that
v1 − t = k, and (t, v1) /∈ D2. Hence, there exists v2 ∈ [1, 2m] such that (t, v2) ∈ E(D2) and v2 6= v1.
Then, for every i ∈ [1, n], n(t − 1) + i is adjacent to exactly one vertex {n(v1 − 1) + j : j ∈ [1, n]}
in D′

1 and to exactly one vertex {n(v2 − 1) + j : j ∈ [1, n]} in D′
2. Therefore, the induced L′

1 and
L′
2 Langford sequences of defect d′ are different. Let us prove (ii). Let L be a Langford sequence of

defect d and consider two different functions h1, h2 : E(D) → RSn, where D is the labeled digraph
associated to L. Then, there exists (u, v) in D, such that h1((u, v)) 6= h2((u, v)). Thus, there exists
(i, j) ∈ E(h1((u, v))) \E(h2((u, v))). Hence, n(u− 1) + i is adjacent to n(v − 1) + j in D′

1, and is not
in D′

2. Therefore, the associated Langford sequences of defect d′ are different and the result follows.
✷ ✷

In particular, if we use the lower bound given in Theorem 1.1, we obtain the next result.

Corollary 3.1. Let m and n be two positive integers such that m ≡ 0 or 1 (mod 4) with n odd. Then,

λ(n+1)/2
mn ≥ |Sn|

m2⌊m/3⌋.

Proof.
A Langford sequence of defect d = 1 is a Skolem sequence. Thus, the result follows from Theorem 3.3
and Theorem 1.1. ✷ ✷

Remark 3.4. Let m and n be two positive integers such that m ≡ 0 or 1 (mod 4) and let n be odd.
Since every cycle admits two possible strong orientations, by Theorem 2.3, the bound presented in
Corollary 3.1 implies that

λ(n+1)/2
mn ≥ (

5

2
· 2⌊(n−1)/3⌋ + 2)m2⌊m/3⌋.

4. Hooked and extended Skolem sequences

In this section, we consider the problem of generating extended Skolem sequences using hooked and
extended Skolem sequences together with the ideas already developed in the paper.

The fact that there is a position occupied by zero, namely i, in the hooked (or extended) Skolem
sequences can be interpreted as position i being occupied by two zeros and hence, we have |i− i| = 0.
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In fact, we believe that this is a natural way to understand this type of sequences. Nevertheless, this
idea presents some technical difficulties when we pretend to apply the ideas developed so far. For

instance, the sequence is no longer related with a 1-equitable labeling of the digraph m
−→
K2 but to

a 1-equitable labeling of the digraph m
−→
K2 ∪

−→
L , where

−→
L is a loop. Observe that, in this case, the

1-equitable labeling is not optimal. Next, we present what has been said up to this point in a formal
way.

For any, hooked or extended Skolem sequence of order m, we define an extended Skolem labeling g of

the digraph m
−→
K2 ∪

−→
L , up to isomorphism, as follows. Let f : E(m

−→
K2 ∪

−→
L ) → [0,m] be a bijective

function that assigns 0 to the loop. If f(u, v) = k, where k 6= 0, then the extended Skolem labeling
g assigns to u the smallest position occupied by k and to v the other one. Furthermore, g assigns to
the loop vertex the position occupied by zero. See an example in Fig. 4.
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Figure 4. The Skolem labeling of 2
−→
K2 ∪

−→
L associated to (1, 1, 2, 0, 2).

The following lemma will be useful.

Lemma 4.1. Let n be odd. Then the digraph formed by a loop and the union of cyclic oriented digons
is a rotation super edge-magic digraph of order n.

Proof.
Let Cn be the graph with vertex set V (Cn) = {vi}

n
i=1 and set of edges E(Cn) = {vivi+1}

n−1
i=1 ∪{v1vn}.

Consider the super edge-magic labeling f of Cn, n odd, (see [16]) defined by:

f(vi) =

{

(i + 1)/2, i odd,
(n+ i+ 1)/2, i even.

Let S1 and S2 be the two possible strong orientations obtained from the induced the super edge-magic
labeled graph. Then, the two rotations R1 and R2 meet the required conditions. ✷ ✷

1

2

3

4

1

1 2 3 4 5 6

b

5
b

2

b
4

b
1

S1 : R1 :

b
3

b
1

b
3

b
4

b
5

b

2

1

2

3

4

1

1 2 3 4 5 6

b

5
b

2

b
4

b
1

S2 : R2 :

b
3

b
1

b
2

b
3

b
5

b

4

Figure 5. The digraphs S1, S2, R1 and R2 introduced in Lemma 4.1, for n = 5.

Theorem 4.1. Let (s1, s2, . . . , s2m+1) be a hooked or extended Skolem sequence of order m. Then,
there exists an extended sequence L′ of order mn+ (n− 1)/2, for each odd integer n.

Proof.
Let (s1, s2, . . . , s2m+1) be either a hooked or an extended Skolem sequence of order m and consider

the digraph D = m
−→
K2 ∪

−→
L induced by the sequence, where the vertices of m

−→
K2 ∪

−→
L are identified
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with the corresponding labels. By definition of the ⊗h-product, for any function h : E(D) → RSn, we

have that D⊗hRSn
∼= (m

−→
K2⊗h1

RSn)∪R, where h1 is the restriction of h over E(m
−→
K2) and R is the

digraph of RSn assigned to the loop
−→
L . Assume that R is either R1 or R2 introduced in the proof of

Lemma 4.1. Clearly, RSn ⊂ Σn. By Theorem 2.4, if we consider any function h1 : E(m
−→
K2) → RSn,

then m
−→
K2 ⊗h RSn

∼= (mn)
−→
K2.

Moreover, since an extended Skolem labeling of m
−→
K2 ∪

−→
L induces a complete 1-equitable labeling of

m
−→
K2 with set of induced differences [1,m], by Theorem 2.5 and Remark 2.6, the induced labeling

of (mn)
−→
K2 is 1-equitable. What remains to be proven is that from this labeling we can obtain an

extended labeling g of (mn+ (n− 1)/2)
−→
K2 ∪

−→
L with induced differences in [0,mn+ (n− 1)/2]. That

is, the set of induced edge differences is {|g(y)− g(x)| : (x, y) ∈ D′} = [0,mn+ (n− 1)/2]]. Suppose
that (u, v) is an arc in D. Then, for every (i, j) ∈ h((u, v)), ((u, i), (v, j)) ∈ E(D′). By Lemma 2.2,
for every integer k with |k| ≤ (n− 1)/2 there exists a unique arc (i, j) ∈ h((u, v)) such that i− j = k.
Thus, for every (u, v) ∈ E(D), we have that the set S(u,v) of induced edge differences of the arcs
obtained from (u, v) is the following one:

S(u,v) = {|g((u, i))− g((v, j))| : (i, j) ∈ E(h((u, v))}

= {|n(u− 1) + i− n(v − 1)− j| : (i, j) ∈ E(h((u, v))}

= [n(v − u)− (n− 1)/2, n(v − u) + (n− 1)/2].

Hence, the set S = ∪
(u,v)∈E(m

−→
K2)∪

−→
L
S(u,v) is S = [−(n−1)/2,mn+(n−1)/2]. Notice that, by Lemma

2.2 the set of induced differences of the arcs in R is the set [−(n− 1)/2, (n− 1)/2]. Hence, removing

the negative arc from every digon, we obtain the digraph R′ ∼= ((n− 1)/2)
−→
K2∪

−→
L , with set of induced

differences [0, (n− 1)/2]. Therefore, the resulting labeling of (mn+ (n− 1)/2)
−→
K2 ∪

−→
L is an extended

Skolem labeling from which we can recover an extended Skolem sequence of order mn+ (n− 1)/2.✷

✷

Example 4.2. Let S3 be the super edge-magic labeled digraph of order 5 defined by V (S3) = [1, 5] and
E(S3) = {(1, 5), (5, 2), (2, 3), (3, 1), (4, 4)}. By rotating its adjacency matrix π/2 radiants clockwise,
we obtain the digraph with V (R3) = [1, 5] and E(R3) = {(1, 3), (3, 4), (4, 2), (2, 1), (5, 5)}. Consider
Γ = {RSi}

3
i=1, where R1 and R2 are the digraphs that appear in Fig. 5. Let D the digraph that

appears in Fig. 4 and let h : E(D) → Γ be the function defined by h((1, 2)) = R3, h((3, 5)) = R2 and
h((4, 4)) = R1. Then, by replacing each vertex (a, x) of D⊗hΓ by 5(a−1)+x, we obtain the extended

Skolem labeling of 12
−→
K2 ∪

−→
L of Fig. 6. The induced extended Skolem sequence is:

(7, 4, 6, 3, 5, 4, 3, 7, 6, 5, 11, 9, 12, 10, 8, 2, 0, 2, 1, 1, 9, 11, 8, 10, 12).

1
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4

1

2

1 2 3 4 5 6 7 8 9 10 11 12

b
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b
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b
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b
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b
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b
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b
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b
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b
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b
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b
11

b
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b
12

b
21

b
13

b
25

b
14

b
24

b
15

b
23

b
16

b
18

b
19

b
20

7̄ 4̄ 6̄ 3̄ 5̄ 1̄1 9̄ 1̄2 1̄0 8̄ 2̄ 1̄

17

0̄

b

Figure 6. An extended Skolem labeling of 12
−→
K2 ∪

−→
L .

Denote by ǫm the number of extended Skolem sequences of order m.

Theorem 4.3. Let m and n be two positive integers, n odd. Then,

ǫmn ≥ 2|Sn|
mǫm.
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Proof.
The proof is similar to the one of Theorem 3.3. The only difference is that, when we consider the
function h, the loop only has two possible images under h, namely the digraphs R1 or R2 introduced
in the proof of Lemma 4.1. ✷ ✷

5. Conclusions

The goal of this paper is to show a new application of labeled super edge-magic digraphs to a well
known and deeply studied problem: Skolem and Langford sequences. It is possible to find in the
literature applications of Skolem and Langford sequences to graph labelings. However, we are not
aware of applications of graph labelings to construct Skolem and Langford sequences. In this paper,
we use super edge-magic labelings of digraphs in order to get an exponential number of Langford
sequences with certain orders and defects. Furthermore, we also obtain, using similar techniques, an
exponential number of extended hooked sequences. Recall that, for every Skolem sequence, we can
associate a trivial extended Skolem sequence just by placing a 0 in the last position of the sequence.
This fact is not very interesting by itself. Nevertheless, these type of extended Skolem sequences
may be interesting, since using them together with (certain) super edge-magic labelings will allow
us to produce many extended (hooked) Skolem sequences. We have introduced this approach to the
problem of finding Langford, extended and hooked Skolem sequences since we believe that it is a new
and unexpected way to attack the problem. This introduces new light into an old problem that has
proven to be very hard.
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