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Abstract

We propose a simple model of landfill and study a minimal time control problem where the
re-circulation leachate is the manipulated variable. We propose a scheme to construct the optimal
strategy by dividing the state space into three subsets E0, Z1 and the complementary. On E0 and Z1,
the optimal control is constant until reaching target, while it can exhibit a singular arc outside these
two subsets. Moreover, the singular arc could have a barrier. In this case, we prove the existence of
a switching curve that passes through a point of prior saturation under the assumption that the set
E0 intersects the singular arc. Numerical computations allow then to determine the switching curve
and depict the optimal synthesis.
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1 Introduction

Landfills are controlled sites where the solid waste is disposed and it is slowly treated and stabilized under
anaerobic conditions. Depending on the specific region context this disposal method is highly encouraged
(developing countries and big developed countries) or they are being replaced by more sustainable ways
of waste treatment (small and medium-size developed countries).

Landfill leachate is the liquid effluent generated during the landfill operation. This waste-water
is quite problematic due to its complex composition thus the existing treatment technologies for this
waste-water are very costly. During the first years of the landfill operation the solubilization and fatty
acid transformation of the organic soluble compounds is mainly carried out, which means that methane
production is low [11]. Regardless, there are some key factor that influenced the landfill behavior such
as the re-circulation leachate flow which increases the bio-reaction rates since it improved the system
mixing. Overall and due to scale reason (this bio-reactor is humongous), the re-circulation flow may
represent the only variable that can be at a certain level manipulated and controlled once the landfill
has begun to operate. Mathematical models have been increasingly applied for analysis, control and
optimization of bio-processes. However few application may be found in the literature in regards to
control of landfill operation. Due to the complexity of the system PDEs-based models or Computational
Fluid dynamic has been mainly used to represent the process [9, 10, 15]. A mechanistic model assuming
several considerations and all the steps in anaerobic digestion was developed in [24] in which ordinary
differential were used assuming perfect mixing.

When dealing with complex system such as anaerobic digestion it has been observed that in some
cases, using simplifies mechanistic approaches may yield to results as good as the ones obtained using
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over-parameterized models [21]. Optimal control strategies to estimate minimal time have already been
shown to be quite useful in order to get an insight into the best performances of expect from piloting
efficiently bio-processes (see for instance [3, 4, 8, 16, 19, 20]).

In this work, we consider a simplified mathematical model of the dynamics of solubilized and un-
solubilized substrates to be bio-converted in a landfill. The objective of the control problem is to drive
the system as fast a possible to low values of both concentrations of substrate, controlling the leachate
re-circulation. We show that the optimal strategy is bang-bang with a possible singular arc, but the
determination of the optimal locus of switching is not straightforward and requires a precise analysis.
The number of switching times, and the on-line variables required to be known or estimated for making
the decision to switch at the right time, depend on both the characteristics of the bacterial growth and
on the initial condition. Therefore this analysis provide new insights for the real-time piloting of land-
fill, in terms of sensors, actuators and initial conditions to be chosen by the practitioners that have to
manipulate the re-circulation flow.

The paper is organized as follows. In Section 2, we introduce the optimal control problem, and we
give properties on the control system. In Section 3, we state the Pontryagin Maximum Principle and
introduce a partition of the state space. Section 4 shows that on two subsets of initial conditions, Z1

and E0, the target is reached optimally with a constant control (see Propositions 2 and 3). Then, Section
5 gives the complete optimal synthesis when there is no singular arc (see Proposition 4) or when the
singular arc is admissible which means that the singular control takes lower values than the upper bound
umax for controls (see Proposition 5). In Section 6, we study the particular case where the singular
control saturates the maximal admissible value. In this case, the singular arc has a barrier [7] that
corresponds to the set of points of the singular arc where the singular control takes larger values than
the upper bound. We prove the existence of a point of prior saturation and a switching curve C1 under
the condition that E0 intersects the singular arc. This means that optimal trajectories should leave the
singular locus before the saturation point (which is the unique point of the singular locus where the
singular control equals the maximal re-circulation flow. An optimal feedback of the problem is then
given in Theorem 1. The assumption of non-emptiness is crucial in order to obtain the optimal synthesis
in presence of a saturation point on the singular locus. In fact, an important feature of the system is that
the boundary of the state space is invariant by the system. Therefore, if this intersection is empty, then
the Pontryagin Maximum Principle does not allow us to exclude extremal trajectories with the constant
control umax to be optimal until reaching E0 (see Theorem 2). Section 7 depicts the optimal synthesis
in the different cases appearing in the analysis of the problem. We end the paper by a conclusion with
application perspectives.

2 Model and preliminaries

In the spirit of mathematical modeling in microbiology [18, 25], we propose a model of homogeneous
landfill with a specific effect of a re-circulation flow on the bacterial activity, that is described by the
following differential equations.







Ṡ1 = −γ(Q)f(S1),

Ṡ2 = γ(Q)f(S1)− µ(S2)X,

Ẋ = µ(S2)X,

(1)

where S1, S2 stand respectively for unsolubilized and solubilized substrates. X is the concentration of
the biomass that degrades the solubilized substrate with a yield factor kept equal to one (without any
loss of generality, at the price to change the biomass unit, one can always make this assumption) and
specific growth rate µ(·). We assume that the reaction takes place in (closed) batch conditions. In
addition, the re-circulation of the leachate, to be controlled with the flow rate Q ∈ [0, Qmax], induces a
solubilization of the unsolubilized substrate S1 into S2 at a speed that depends on Q, S1 and possibly X ,
along with the following assumptions. Following for instance [24], we assume that γ is increasing over
R+ with γ(0) = 0. Therefore, we may set

u :=
γ(Q)

γ(Qmax)
,
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which can be chosen as new control variable. Without any loss of generality, we can assume that u is a
measurable function w.r.t. the time t taking values within [0, 1], i.e. the set of admissible controls is

U := {u : [0,∞) → [0, 1] ; u meas.}.

We also require the following hypothesis on f :

H0. The function f(·) is increasing over R+ and satisfies f(0) = 0.

We shall consider a general class of growth curves µ(·), that includes the usual Monod and Haldane
ones:

H1. The function µ(·) is non-negative and equal to zero only at S2 = 0. Furthermore, there exists
S⋆
2 > 0 such that µ(·) is increasing on [0, S⋆

2), decreasing on (S⋆
2 ,+∞), or µ(·) is increasing and we put

S⋆
2 = +∞.

One can straightforwardly check from (1) that the following property holds:

Ṡ1 + Ṡ2 + Ẋ = 0 ⇒ ∃M ≥ 0 s.t. S1(t) + S2(t) +X(t) =M, ∀t .

Given a positive value of the constant M that characterizes a landfill, one can rewrite the dynamics as
a two-dimensional system

{

Ṡ1 = −uf(S1),

Ṡ2 = uf(S1)− µ(S2)(M − S1 − S2),
(2)

defined on the invariant domain

D := {(S1, S2) ∈ R+ × R+ with 0 < S1 + S2 < M}.

An important feature of the system is that the boundary sub-sets {0} × [0,M ] and N := {(S1, S2) ∈
R+ × R+ ; S1 + S2 = M} are invariant by (2) (this property has several consequences on the optimal
synthesis, see section 6.2).

The optimal control problem can be stated as follows. Given an initial condition in D, the objective
is to drive in minimal time the state S(·) = (S1(·), S2(·)) to a target T for which S1 and S2 are below
given positive thresholds S1, S2:

T := {(S1, S2) ∈ [0, S1]× [0, S2]},

with (S1, S2) ∈ D.

Let us first study the attainability of the target from any initial condition in D.

Proposition 1 Given an initial condition S0 ∈ D \ T , the feedback law

u[S] :=

∣

∣

∣

∣

1 if S1 > S1,
0 otherwise,

drives the state in finite time in T .

Proof. Consider trajectories generated with the proposed feedback law. If S1(0) > S1, S1(·) is solution
of

Ṡ1 = −f(S1),

until S1(·) reaches S1 in a finite time T , the right member of the differential equation being strictly
negative. If S1(0) ≤ S1 we simply take T = 0. At time T , if S2(T ) ≤ S2, the state is in the target.
Otherwise, from time T , S1(t) stays equal to S1(T ) for any future time t, and S2(·) is solution of the
differential equation

Ṡ2 = −µ(S2)(M − S1(T )− S2).
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Consequently, S2(·) is decreasing and therefore one has S2(t) → 0 when t goes to +∞ (this follows from
the definition of D, the monotonicity of S2(·) for t ≥ T , and the fact that µ(0) = 0). Thus, the solution
reaches S2 in finite time, that is the state enters the target.

So the minimal time problem is well defined in D.

We shall denote in the following Su(·), resp. Smax(·), a solution of (2) in the domain D \ T for the
control u(·) resp. the constant control u = 1.

Lemma 1 For any S0 ∈ D\T and control u(·), the solutions Su(·), Smax(·) with Su(0) = Smax(0) = S0

fulfill

Su(t) ∈ Smax :=
⋃

τ≥0

{S ∈ D \ T ; S1 = Smax
1 (τ), S2 ≤ Smax

2 (τ)} , ∀t ≥ 0.

Proof. Let τ ≥ 0 be given, and consider the point (Smax
1 (τ), Smax

2 (τ)) ∈ Smax. Then the cross product
of (Ṡmax

1 (τ), Ṡmax
2 (τ)) with (Su

1 (τ), S
u
2 (τ)) at (S

max
1 (τ), Smax

2 (τ)) satisfies:

(Ṡmax
1 (τ), Ṡmax

2 (τ)) ∧ (Su
1 (τ), S

u
2 (τ)) = µ(S2)(M − S1 − S2)f(S1)(1 − u) ≥ 0.

Moreover, at a given point on the segment {Smax
1 (0)}× [0, Smax

2 (0)), one has Ṡu
1 ≤ 0 for any control u(·).

Therefore, a trajectory cannot leave the set Smax on its boundary (Smax
1 (·), Smax

2 (·)) and {Smax
1 (0)} ×

[0, Smax
2 (0)).

3 Pontryagin’s Principle and domain partition

We use the Pontryagin Maximum Principle [17] in order to derive necessary conditions on optimal
trajectories. The Hamiltonian H = H(S1, S2, λ0, λ1, λ2, Q) associated to the control system is defined
as :

H(S1, S2, λ0, λ1, λ2, Q) := λ0 + u(λ2 − λ1)f(S1)− λ2µ(S2)(M − S1 − S2). (3)

The Pontryagin Maximum Principle can be stated as follows. Let u(·) an optimal control steering
a point (S0

1 , S
0
2) in minimal time to the target, and S = (S1, S2) the associated trajectory. Then,

there exists tf > 0, λ0 ≥ 0, and an absolutely continuous map λ = (λ1, λ2) : [0, tf ] → R
2 such that

(λ0, λ1(·), λ2(·)) 6= 0 and :
{

λ̇1 = −∂H/∂S1 = −u(λ2 − λ1)f
′(S1)− λ2µ(S2),

λ̇2 = −∂H/∂S2 = λ2(µ
′(S2)(M − S1 − S2)− µ(S2)).

(4)

for a.e. t ∈ [0, tf ]. Moreover, the Hamiltonian is minimized w.r.t. the control u which means:

u(t) ∈ arg minα∈[0,1]H(S1(t), S2(t), λ0, λ1(t), λ2(t), α), a.e. t ∈ [0, tf ]. (5)

We call extremal trajectory a triple (S(·), λ(·), u(·)) satisfying (2)-(4)-(5). When λ0 = 0, then we say
that an extremal is abnormal whereas if λ0 6= 0, then we say that an extremal is normal. Abnormal
trajectories are studied in Corollary 1. As tf is free, H is equal to zero along any extremal trajectory.
Taking into account the geometry of the target set T , we obtain the transversality conditions:

λ(tf ) =

∣

∣

∣

∣

∣

∣

(1, 0) if S1(tf ) = S1 and S2(tf ) < S2,
(α, (1 − α)) if S1(tf ) = S1 and S2(tf ) = S2, (with α ∈ [0, 1]),
(0, 1) if S1(tf ) < S1 and S2(tf ) = S2.

(6)

The switching function φ defined as φ := λ2−λ1 provides the control law. An optimal control u satisfies:











φ(t) > 0 ⇒ u(t) = 0,

φ(t) = 0 ⇒ u(t) ∈ [0, 1],

φ(t) < 0 ⇒ u(t) = 1.

4



We say that a time t0 ∈ [0, tf ] is a switching point (or switching time) if the control u is non-constant in
any neighborhood of t0. In this case, one has φ(t0) = 0, and we say that φ switches at time t0. We say
that an extremal trajectory has a singular arc if there exists a time interval I := [t1, t2] ⊂ [0, tf ] such

that we have φ(t) = 0 for any time t ∈ I (see [5]). We then have φ = φ̇ = 0 on I. Moreover, one can
easily check that φ = 0 implies φ̇ = λ2µ

′(S2)(M − S1 − S2) = 0. As φ and λ2 cannot be equal to zero
simultaneously, we must have µ′(S2) = 0 along the singular arc. Therefore, the singular locus is defined
as the set

∆ := (0,M − S⋆
2 )× {S⋆

2},

If S⋆
2 ≥M , then the singular arc no longer exists. When S⋆

2 < M , we define the singular feedback control
as:

us(S1) :=
µ(S⋆

2 )(M − S1 − S⋆
2 )

f(S1)
, S1 > 0 . (7)

Under Assumption H0, the map S1 7→ us(S1) is decreasing with us(0
+) = +∞. The function

ν(S1) := f(S1)− µ(S⋆
2 )(M − S1 − S⋆

2), (8)

being increasing and such that ν(0) < 0 and ν(M −S⋆
2) > 0, one can then define Smin

1 as the unique root
of ν(·) on the interval (0,M −S⋆

2 ). The number Smin
1 defines the left point limit of the admissible subset

of the singular arc S2 = S⋆
2 as one can easily check from (2) that the following property is fulfilled

S1 ≥ Smin
1 , S2 = S⋆

2 ⇒ us(S1) ≤ 1 and Ṡ2 = 0 for u = us(S1),

S1 < Smin
1 , S2 = S⋆

2 ⇒ Ṡ2 < 0, ∀u ∈ [0, 1].

The point (Smin
1 , S⋆

2 ) is called saturation point. Following [7], the part of the singular arc where us
is strictly larger than the maximal admissible value is called barrier, i.e. the singular control saturates
the value u = 1. This phenomena and its consequence on the optimal synthesis are studied precisely in
Section 6.

It is convenient for the characterization of the optimal synthesis to consider the following partition
of the domain D \ T :

Z0 := {(S1, S2) ∈ D \ T ; S1 ≤ S1, S2 > S2} ,

Z1 := {(S1, S2) ∈ D \ T ; S1 ∈ (S1, σ1], S2 ≤ σ2(S1)} ,

Zs := (D \ T ) \ (Z0 ∪ Z1),

where σ2(·) is solution of the differential equation

dσ2
dσ1

=
µ(σ2)(M − σ1 − σ2)

f(σ1)
− 1

for the Cauchy problem with initial condition σ2(S1) = S2 on the interval [S1, σ1], where σ1 is the
smallest σ1 > S1 such that σ2(σ1) = 0.

Remark 1 It is worth pointing out that σ1 7−→ σ2(σ1) is the unique solution of (2) backward in time
starting at (S1, S2) with the control u = 1. Since the set N is invariant and (S1, S2) ∈ D, this trajectory
necessarily intersects the line segment (0,M)× {0}.
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T

Z1

Z0

Zs

Figure 1: Illustration of the subsets T , Z0, Z1 and Zs.

4 Characterization of optimal solutions with constant control

and corollaries

We first characterize optimal trajectories in the subset Z1.

Proposition 2 Assume that Hypotheses H0 and H1 are fulfilled. For any initial condition in Z1, the
optimal trajectory stays in Z1 and the constant control u = 1 is optimal control until reaching the target.

Proof. From any initial condition S0 ∈ D \ T that belongs to the graph of the function σ2(·), and any
control u(·), Lemma 1 shows that the trajectory stays in the set Smax, whose boundary is contained in the
boundary of Z1. So we conclude that the domain Z1 is invariant for any control u(·). Consequently, any
optimal trajectory in this domain reaches the target at a time tf such that S1(tf ) = S1 and S2(tf ) ≤ S2.

For initial conditions such that S2(0) < σ2(S1(0)), the target is reached at states such that S2(tf ) <
S2. Then, the transversality conditions (6) give λ2(tf ) = 0. This last equality implies with the dynamics
(4) that the variable λ2(t) is equal to 0 for any time t ∈ [0, tf ]. Then, the switching function is such

that φ̇ = −uf ′(S1)φ ≥ 0 with φ(tf ) = −1. So φ stays negative for any time and the optimal control is
constant equal to 1.

For initial conditions such that S2(0) = σ2(S1(0)), the optimal trajectory has to reach the target
with S2(tf ) = S2, and thus the constant control u = 1 is optimal. Otherwise, as for the previous case,
one should have λ2(t) = 0 and φ(t) < 0 for any t, that is the optimal control has to be constant equal to
1, that implies S2(tf ) = S2.

One can then formulate the following corollaries concerning the optimal trajectories that lie outside
the set Z1.

Corollary 1 From any initial condition in (D \ T ) \ Z1, an optimal trajectory reaches the target at a
time tf such that S2(tf ) = S2, and the constant control u = 1 cannot be optimal. Furthermore, the
variable λ2 is positive along such optimal trajectories, and λ0 > 0.

Proof. If an optimal trajectory reaches the target with S2(tf ) < S2 from an initial condition outside the
set Z1, it has to cross the graph of the function σ2(·) before reaching the target. According to Proposition
2, the optimal trajectory from this boundary of Z1 reaches the target at the corner state (S1, S2), that
is such that S2(tf ) = S2.

By uniqueness of the solution of the Cauchy problem with the constant control 1, a trajectory with
an initial condition outside the set Z1 cannot cross the graph of the function σ2(·) and consequently one
has S1(tf ) < S1 when it reaches the target. Then from the transversality condition gives φ(tf ) > 0 and
u = 1 cannot be optimal.
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From equation (4), one can see that λ2 is either identically equal to zero or has constant sign. If λ2
is equal to zero, one should have λ1(tf ) > 0 from conditions (6), and the optimal trajectory has to reach
the target with u = 1, that is not possible from the above argumentation.

Finally, the transversality condition (6) provides the positive sign of λ2. Having λ0 = 0 would imply,
from H = 0 along any optimal trajectory (where the Hamiltonian H is given in (3)), to have the equality

uφf(S1) = λ2µ(S2)(M − S1 − S2),

fulfilled at any time, that is to u > 0 and φ > 0 at any time. This is impossible for reaching the target.

Corollary 2 Consider an optimal trajectory and a time t0 such that (S1(t0), S2(t0)) /∈ T ∪ Z1. Then,
the following properties are fulfilled:

i. If φ(t0) ≥ 0 with S2(t0) < S⋆
2 , then we have φ(t) > 0 for any time t > t0 such that (S1(t), S2(t)) /∈

T ∪ Z1.

ii. If φ(t0) ≤ 0 with S2(t0) > S⋆
2 , then we have φ(t) < 0 for any time t > t0 such that (S1(t), S2(t)) /∈ T

and S2(t) ≥ S⋆
2 .

Proof. When the switching function φ is equal to zero, one has

φ̇ = λ2µ
′(S2)(M − S1 − S2).

As for any initial condition in (D \ T ) \ Z1, we know from Corollary 1 that λ2 stays positive, we deduce
the property that will be useful in the following:

φ = 0 ⇒

∣

∣

∣

∣

φ̇ > 0 when S2 < S⋆
2 ,

φ̇ < 0 when S2 > S⋆
2 ,

Let us prove i . Suppose that φ(t0) ≥ 0 with S2(t0) < S⋆
2 . If there exists a time t > t0 such that φ(t) = 0

and (S1(t), S2(t)) /∈ T ∪ Z1. We then have φ̇(t) ≤ 0 and u = 0 on [t0, t], therefore S2(t) < S⋆
2 , and

φ̇(t) > 0 (by the remark above). We then have a contradiction which proves i. The proof of ii follows in
the same way.

We now study optimal trajectories in the domain Z0. For this purpose, we consider the (possibly
empty) subset of Z0 defined as

C0 := {(S1, S2) ∈ Z0 | ϕ(S1, S2) = 1} , (9)

where the function ϕ(·) is defined as follows.

ϕ(S1, S2) =

∫ S2

S
2

µ′(s)µ(S2)(M − S1 − S2)

µ(s)2(M − S1 − s)
ds. (10)

When S⋆
2 < M we shall also consider the end singular state (S⋆

1 , S
⋆
2 ) where S

⋆
1 is defined as follows.

S⋆
1 =

∣

∣

∣

∣

∣

∣

S1 when S⋆
2 ≥ S2 and C0 = ∅,

inf{S1 > 0 |ϕ(S1, S
⋆
2) > 1} when ϕ(S1, S

⋆
2 ) ≥ 1,

inf{S1 > S1 |σ2(S1) < S⋆
2} when S⋆

2 < S2.
(11)

The different possible positions of S⋆
1 are illustrated in Section 7. Let us now give some properties of

the set C0.

Lemma 2 Assume Hypothesis H1. The following cases occur depending on the relative position of S⋆
2

w.r.t. to M and S2.

i. If S⋆
2 ≥M , then C0 is the graph of a decreasing C1 function S1 7→ Sc

2(S1) defined on [0, S1].

ii. If S⋆
2 ∈ (S2,M) and ϕ(S1, S

⋆
2) < 1, then C0 is empty.
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iii. If S⋆
2 ∈ (S2,M) and ϕ(S1, S

⋆
2 ) ≥ 1, C0 is the graph of a decreasing function S1 7→ Sc

2(S1) defined
on [S⋆

1 , S1] that is C
1 on (S⋆

1 , S1]. Furthermore, one has Sc
2(S1) < S⋆

2 for any S1 ∈ (S⋆
1 , S1]. When

S⋆
1 > 0, one has Sc

2(S
⋆
1 ) = S⋆

2 . The graph of the function Sc
2(·) has a vertical slope at S⋆

1 when
S⋆
1 > 0 or S⋆

1 = 0 with Sc
2(0) = S⋆

2 .

iv. When S⋆
2 ≤ S2, then C0 is empty and one has necessarily Smin

1 ≤ S⋆
1 .

Proof. Consider the case S⋆
2 ≥M . For each S1 ∈ [0, S1], the map S2 7→ ϕ(S1, S2) is increasing and there

exists a number m > 0 such that µ′(S2)/µ(S2)
2 ≥ m for any S2 ∈ [S2,M − S1]. Then, one can write

ϕ(S1, S2) ≥ mµ(S2)(M − S1 − S2)

∫ S2

S
2

ds

M − S1 − s
= mµ(S2)(M − S1 − S2) ln

(

M − S1 − S2

M − S1 − S2

)

,

and deduce limS2→M−S1
ϕ(S1, S2) = +∞. Consequently, for each S1 ∈ [0, S1] there exists an unique

Sc
2 > S2 such that ϕ(S1, S

c
2) = 1. Furthermore, one has for any S2 > S2

∂ϕ

∂S1
(S1, S2) =

∫ S2

S
2

µ′(s)µ(S2)(S2 − S2)

µ(s)2(M − S1 − s)2
ds,

∂ϕ

∂S2
(S1, S2) =

µ′(S2)µ(S2)(M − S1 − S2)

µ(S2)2(M − S1 − S2)
, (12)

that are both positive, and by the Implicit Function Theorem we conclude that S1 7→ Sc
2(S1) is a C1

decreasing map defined over [0, S1]. This proves i.
Let us now prove ii. and iii. Consider the case S⋆

2 < M . When S⋆
2 ≤ S2, C0 is clearly empty. When

S⋆
2 > S2, let us take S1 ∈ [0, S1]. Clearly the map S2 7→ ϕ(S1, S2) is non increasing for S2 ≥ S⋆

2 . So S
c
2,

if it exists, has to be less or equal to S⋆
2 . One can observe the following facts:

- the map S2 7→ ϕ(S1, S2) is increasing on [S2, S
⋆
2 ] for any S1 ∈ [0, S1],

- the map S1 7→ ϕ(S1, S2) is increasing on [0, S1] for any S2 ∈ (S2, S
⋆
2 ] (see the derivative (12)),

and deduce that when ϕ(S1, S
⋆
2 ) < 1, then one has ϕ(S1, S2) < 1 for any (S1, S2) ∈ [0, S1] × (S2, S

⋆
2 ].

The set C0 is then empty in this case. Otherwise, for any S1 > S⋆
1 , there exists an unique Sc

2 ∈ (S2, S
⋆
2)

such that ϕ(S1, S
c
2) = 1. As previously, one can use the Implicit Function Theorem to write

Sc ′
2 (S1) = −

∂ϕ

∂S1
(S1, S

c
2(S1))

∂ϕ

∂S2
(S1, S

c
2(S1))

< 0, ∀S1 ∈ (S⋆
1 , S1]. (13)

and thus conclude that S1 7→ Sc
2(S1) is a decreasing map defined on [S⋆

1 , S1] and of class C1 over
(S⋆

1 , S1]. If S
⋆
1 > 0 then one has necessarily Sc

2(S
⋆
1 ) = S⋆

2 . Otherwise, one should have ϕ(S⋆
1 , S

⋆
2) > 1 and

by continuity of ϕ, there should exist a neighborhood of (S⋆
1 , S

⋆
2 ) with ϕ larger that 1, in contradiction

with the definition of S⋆
1 . Finally, from (13) and (12), one has:

lim
S1→S⋆

1
,S1>S⋆

1

Sc ′
2 (S1) = −∞

when Sc
2(S

⋆
1 ) = S⋆

2 .

We end the proof showing that Smin
1 ≤ S⋆

1 when S⋆
2 ≤ S2. If not, one has:

S1 ≤ S⋆
1 , S2 = S⋆

2 ⇒ Ṡ2 < 0,

for any solution (S1(·), S2(·)) of (2). Then the trajectory (S1(·), S2(·)) with the initial condition (S⋆
1 , S

⋆
2)

and the constant control u = 1 is such that S2(t) < S⋆
2 for any t > 0. But one has S⋆

2 = σ2(S
⋆
1 )

and this trajectory verifies also S2(t) = σ2(S1(t)) for any t > 0 such that S1(t) ∈ [S1, S
⋆
1 ), and thus

σ2(S1) < S⋆
2 ≤ S2, which is in contradiction with the definition of σ2(·). This proves iv.

We can first characterize the optimal trajectories on the subset

E0 := {(S1, S2) ∈ Z0 | (S1, s2) /∈ C0, ∀s2 < S2} .
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Proposition 3 Assume that Hypotheses H0 and H1 are fulfilled.

i. For any state in E0, the constant control u = 0 is optimal until reaching the target,

ii. The switching function φ is equal to zero at any state in C0.

Proof. Consider an initial condition S0 in Z0 that is such that S0
1 ≤ S1. From equation (2) one has

Ṡ1 ≤ 0 whatever is the control u(·), and then S1(t) ≤ S1 for any positive time. Consequently any
trajectory stays in the set Z0 until reaching the target.

When S0
1 < S1, an optimal trajectory has to reach the target at a time tf > 0 such that S1(tf ) < S1.

From the transversality condition (6) one has λ2(tf ) = 1 and from the adjoint equation (4) one deduces
that λ2(t) > 0 at any time. The switching function is such that

φ̇ = λ2µ
′(S2)(M − S1 − S2) + min(0, f ′(S1)φ),

with φ(tf ) = 1, from the transversality condition (6).
Consider an optimal trajectory that reaches the target at time tf > 0. The following properties are

fulfilled for any time t < tf .

- if φ(t) < 0 then u = 1 is optimal on [0, tc) up to a commutation time tc < tf such that φ(tc) = 0
(otherwise the target cannot be be reached with φ(tf ) = 1).

- when φ(t) ≥ 0 with S2(t) < S⋆
2 , then S2(t

′) < S⋆ and φ(t′) > 0 for any t ∈ (t, tf ) i.e. u = 0 is
optimal on (t, tf ).

- when φ(t) ≥ 0 with S2(t) > S⋆
2 , S2 and φ are decreasing up to a time t′ such that S2(t

′) = S⋆
2 and

u = 0 is optimal on (t, t′).

The existence of a commutation time tc can be determined by the backward integration of equations
(2)-(4) with the constant control u = 0 up to a possible time for which the switching function φ is equal to
zero. Remind that the Hamiltonian (3) has to be identically equal to zero along the optimal trajectories.
Then, for each S1 ∈ [0, S1), H = 0 gives λ0 = µ(S2)(M −S1−S2) for the optimal trajectories that reach
the target at (S1, S2). As long as u = 0 is optimal, S1 is constant and one can also write from H = 0
with λ0 > 0 (the absence of abnormal extremal is given by Corollary 1):

λ2 =
λ0

µ(S2)(M − S1 − S2)
=
µ(S2)(M − S1 − S2)

µ(S2)(M − S1 − S2)
.

Then, (S2, φ) is solution of the Cauchy problem:










Ṡ2 = −µ(S2)(M − S1 − S2), S2(tf ) = S2,

φ̇ =
µ′(S2)µ(S2)(M − S1 − S2)

µ(S2)
, φ(tf ) = 1,

where S1 < S1 is fixed. As the solution S2(·) of this dynamics is strictly increasing, one can parameterize
the solution φ(·) by S2 ∈ [S2,M−S1) instead of the time, which amounts to write that S2 7→ φ is solution
of the Cauchy problem

dφ

dS2
= −

µ′(S2)µ(S2)(M − S1 − S2)

µ(S2)2(M − S1 − S2)
, (14)

with the boundary condition φ(S2) = 1. Then a necessary and sufficient condition for the existence of a
commutation time tc is the existence of Sc

2 ∈ (S2,M − S1) such that φ(Sc
2) = 0 or equivalently to have

ϕ(S1, S
c
2) = 1 (that is exactly the condition (S1, S

c
2) ∈ C0). Consequently, for any initial condition in E0

with S0
1 < S⋆

1 , the only possibility to reach the target with φ = 1 is to choose the constant control u = 0:

- when the initial condition is the interior of E0, φ(·) is always positive.

- for initial conditions in C0 or such that S0
1 = S⋆

1 (when S⋆
1 > 0), φ(·) is positive excepted at one

isolated time for which it is null (when the state leaves C0 or passes through the end singular state).
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We also deduce that φ = 0 at any state in C0 with S1 < S1.

Finally we consider initial conditions in E0 with S0
1 = S1. As any trajectory from such initial condition

is such that S1(t) ≤ S1, any optimal trajectory is also optimal for the problem with an augmented target
T ′ := {(S1, S2) ∈ [0, S′

1]×[0, S2]} such that S′
1 > S1. Then, the former argumentation allows to conclude

that the constant control u = 0 is also optimal for such initial condition, and thus one has φ(t) ≥ 0 at
any time t ∈ [0, tf ]. The transversality condition (6) for such trajectories that reach the target at the
corner state (S1, S2) gives φ(tf ) = 1− 2α (where α ∈ [0, 1]). So, one deduces that φ(tf ) is less than one
and that the backward integration of equations 2-(4) with the constant control u = 0 (which amounts
to solve the differential equation (14) with a boundary condition φ(S2) in [0, 1]) gives the existence of a
commutation time tc such that S2(tc) ≤ Sc

2(S1). We conclude that at state (S1, S
c
2(S1)) one should have

also φ = 0.

5 Optimal synthesis in the admissible case

We first give a global characterization of the optimal solutions when S⋆
2 ≥M .

Proposition 4 Assume that Hypotheses H0 and H1 are fulfilled with S⋆
2 ≥M . Then the feedback

u⋆[S1, S2] =

∣

∣

∣

∣

0 when (S1, S2) ∈ E0
1 otherwise

is optimal.

Proof. When the state is in E0 or in Z1, Propositions 2 and 3 give already the announced result.
If the constant control u = 1 is not optimal outside these two subsets, there should exists a time t

such that φ(t) ≥ 0 before reaching the target. According to Corollary 2, the optimal trajectory reaches
T or Z1 with the constant control u = 0 and φ > 0. This implies that

- either the trajectory crosses C0 which is, according to Proposition 3, a locus for which φ = 0, thus
a contradiction,

- either the trajectory reaches Z1 with φ > 0 and then switching to u = 1 at the boundary of Z1 is
not possible, thus a contradiction with Proposition 2.

We give now a characterization of the optimal solutions of the problem when S⋆
2 < M , but under an

assumption of the admissibility of the singular arc up to the end singular state S⋆
1 defined in (11). We

recall that Smin
1 is the root of the function ν(·) defined in (8).

Proposition 5 Assume that Hypotheses H0 and H1 are fulfilled with S⋆
2 < M . When Smin

1 ≤ S⋆
1 , the

feedback

u⋆[S1, S2] =

∣

∣

∣

∣

∣

∣

1 when (S1, S2) /∈ E0 and S2 < S⋆
2 or (S1, S2) ∈ Z1

us(S1) when S1 > S⋆
1 and S2 = S⋆

2

0 otherwise

is optimal, where us(·) is given in (7).

Proof. When the state is in E0 or in Z1, Propositions 2 and 3 give already the optimality of the feedback.
We consider now initial states S0 outside these two sets. Let tf be the minimal time to reach the target.

If S0
2 > S⋆

2 , let us show that the constant control u = 0 is optimal until the state reaches S2 = S⋆
2

or Z1 (notice that from outside E0, it is not possible to reach E0 with the constant control u = 0, or
S2 = S⋆

2 is reached before E0 due to property iii. of Lemma 2). If not, there should exist a time t < tf
with φ(t) ≤ 0 and S2(t) > S⋆

2 . According to Corollary 2, the optimal trajectory reaches S2 = S⋆
2 or E0

with the constant control u = 1 and a negative value of φ. Note that the hypothesis Smin
1 ≤ S⋆

1 implies
that for any S1 ∈ (S⋆

1 ,M − S⋆
2), one has at S2 = S⋆

2 with the control u = 1

Ṡ2 = f(S1)− µ(S⋆
2 )(M − S1 − S⋆

2) ≥ f(S⋆
1 )− µ(S⋆

2 )(M − S⋆
1 − S⋆

2 ) ≥ 0.
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Consequently the subset S ⊂ ∆ defined by:

S := {(S1, S
⋆
2 ) |S1 ∈ [S⋆

1 ,M − S⋆
2 ]},

is not reachable from above with the control u = 1. On E0, φ has to be non-negative, as u = 0 is optimal
by Proposition 3, thus a contradiction.

Consider now an initial condition with S0
2 < S⋆

2 and let us show that u = 1 is optimal until reaching
S2 = S⋆

2 or the set E0 (notice that it is not possible to reach Z1 with the control u = 1). If not, there
should exist a time t < tf with φ(t) ≥ 0 and S2(t) < S⋆

2 . According to Corollary 2, the optimal trajectory
reaches T or Z1 with the constant control u = 0 and φ > 0. This implies that

- either the trajectory crosses C0 (when it is not empty) with φ > 0, thus a contradiction with
Proposition 3,

- either the trajectory reaches Z1 with φ > 0 and thus again a contradiction with the optimality of
u = 1 in Z1 given by Proposition 2.

Finally, we consider initial condition with S0
2 = S⋆

2 . If the trajectory leaves S2 = S⋆
2 before reaching

E0 or in Z1, there should exist a time t with one of the properties: S2(t) < S⋆
2 and u(t) = 0, or S2(t) > S⋆

2

and u(t) = 1. Corollary 2 implies then one of these properties have also to be fulfilled on a interval [t, t′)
contradicting the above optimality obtained on both side of S2 = S⋆

2 .

Optimal trajectories associated to the feedback control law provided by Proposition 5 are depicted
on Fig. 9 and 10 in Section 7.

6 Optimal Synthesis in the non admissible case

Our aim in this section is to study the optimal synthesis in the cases that are not covered by Propositions
4 and 5, that is when S⋆

2 ∈ (S2,M) and Smin
1 > S⋆

1 (recall from point iv. of Lemma 2 that when S⋆
2 ≤ S2

one has necessarily Smin
1 ≤ S⋆

1 and thus this case is already covered by Proposition 5). Throughout this
section, we suppose that Hypotheses H0 and H1 are satisfied.

As we already know the optimal synthesis in the extended target set E0 and in Z1, we only have to
determine the optimal feedback control in the set (D\T ) \ (E0 ∪Z1). Notice that the switching function
should vanish on the boundary of E0.

Recall now that the singular feedback control satisfies us(M −S⋆
2 ) = 0 and that the mapping S1 7−→

us(S1) is decreasing over (0,M − S⋆
2 ] with us(0

+) = +∞. Moreover, Smin
1 corresponds to the unique

point such that us(S
min
1 ) = 1. So, we now suppose that:

Smin
1 > S⋆

1 . (15)

Hence, we have us(S1) > 1 for any value of S1 such that S1 < Smin
1 and the singular arc is admissible (i.e.

0 ≤ us ≤ 1) only over the interval [Smin
1 ,M − S⋆

2 ]. When S1 < Smin
1 and S2 = S⋆

2 , we have a saturating
phenomena and singular trajectories no longer exist. The part of the singular arc where the inequality
us(S1) > 1 holds is usually called barrier. Hence, singular trajectories cannot reach the extended target
E0, and this will affect the optimal synthesis (unlike when Smin

1 ≤ S⋆
1 where singular trajectories can

reach E0, see Proposition 5).
This situation has been encountered in different settings (see e.g. [2, 22, 23, 12, 6] and references

herein). From a practical point of view, this means that the maximal admissible control does not
guarantee a trajectory to stay on the singular arc.

We will see that a singular trajectory starting at some point (S1, S
⋆
2 ) with S1 ∈ (Smin

1 ,M −S⋆
2) leaves

the singular arc with the maximal control u = 1 before reaching the point (Smin
1 , S⋆

2 ). This phenomenon
is known as prior saturation [6, 22]. This means that for initial conditions (S1, S2) on the singular arc
(such that M − S1 − S2 is sufficiently small), optimal trajectories are singular only until the point of
prior saturation. The optimal control then switches to u = 1 until reaching the extended target.

For sake of completeness, we provide a proof of this result adapted to our context and that will be
useful to provide the optimal synthesis. Recall that a singular trajectory satisfies S2(t) = S⋆

2 and Ṡ1 < 0
(provided that it is admissible, i.e. S1 ∈ [Smin

1 ,M − S⋆
2 )).
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6.1 Optimality result when S⋆

1
> 0

For technical reasons we suppose in addition that S⋆
1 satisfies:

S⋆
1 > 0. (16)

The optimal synthesis when this assumption is not satisfied is discussed in Section 6.2.

Proposition 6 There exists a unique point S1 ∈ (Smin
1 ,M−S⋆

2 ) such that any singular trajectory defined
over the set [S1, S

′
1]× {S⋆

2} with Smin
1 ≤ S1 < S′

1 ≤ S1 is not optimal.

Proof. Consider a singular trajectory starting at an initial point S0
1 > Smin

1 . If the trajectory reaches
the point (Smin

1 , S⋆
2 ) at time t0, then it satisfies φ(t0) = φ̇(t0) = 0. Now, there exists ε > 0 small enough

such that for t ∈ (t0, t0 + ε], the trajectory satisfies S2(t) < S⋆
2 . Using that φ̇ = λ2µ

′(S2)(M − S1 − S2),
one obtains that φ̇ > 0 in (t0, t0 + ε] (recall that λ2 > 0), and therefore we have u = 0 in [t0, t0 + ε].
Hence, the trajectory cannot switch to u = 1 at any time t ≥ t0 + ε as we would have φ̇(t) ≤ 0 in

contradiction with φ̇(t) = µ′(S2(t))
µ(S2(t))

> 0 and φ(t) = 0. It follows that for any t ≥ t0 + ε, we have u = 0.

Then, either the trajectory does not reach the target (if Smin
1 > S1) or the trajectory cannot satisfy

φ = 0 on C0 (if S⋆
1 < Smin

1 ≤ S1). We have thus proved that a singular trajectory connecting a point
(S1, S

⋆
2 ) with S1 ∈ (Smin

1 ,M − S⋆
2 ) to the point (Smin

1 , S⋆
2 ) is not optimal.

By a similar reasoning, we obtain that an optimal trajectory which is singular over a time interval
will not leave the singular arc at some point S1 > Smin

1 with u = 0. Hence, there exists a point S1 ∈
(Smin

1 ,M −S⋆
2 ] such that any singular extremal trajectory starting from (S1, S

⋆
2) with S1 ∈ (S1,M −S⋆

2)
will switch to u = 1 at the point (S1, S

⋆
2).

Now using (16), one can consider the solution of (2) backward in time with u = 1 from (S⋆
1 , S

⋆
2). As

we have Ṡ1 > 0, we can parameterize this curve (S1(·), S2(·)) as the graph of a C1-mapping S1 7−→ ξ⋆(S1)
defined for S1 ≥ S⋆

1 . Hence, ξ
⋆ is the unique solution of the Cauchy problem:

ds2
ds1

= −1 +
µ(s2)(M − s1 − s2)

f(s1)
, s2(S

⋆
1 ) = S⋆

2 . (17)

From the definition of Smin
1 , this trajectory cannot intersect the singular arc at some point S1 ∈

(S⋆
1 , S

min
1 ). Moreover, the trajectory cannot leave D through the set {(S1, S2) ∈ R+×R+ ; S1+S2 =M}

that is invariant by (2). Hence, it will cross the singular arc at some point S̃1 ∈ (Smin
1 ,M − S⋆

2 ).
Fix a point Ŝ1 ∈ (S̃1,M−S⋆

2). For S1 ∈ [Smin
1 , Ŝ1], let us denote by γS1

a singular extremal trajectory
connecting (Ŝ1, S

⋆
2) to the point (S1, S

⋆
2 ), and define a set S by:

F := {S1 ∈ [Smin
1 ,M − S⋆

2 ] ; γS1
is optimal over [S1, Ŝ1]}.

Let us show that F is non-empty. Consider a singular trajectory starting at (S1, S
⋆
2) with Ŝ1 ≤ S1 <

M − S⋆
2 . We know that it is not optimal for the singular trajectory to leave the singular arc with

u = 0. Moreover, if the singular trajectory leaves the singular arc with u = 1 before reaching S̃1, then
the trajectory cannot switch on the extended target E0, and we have a contradiction. In fact, such a
trajectory necessarily reaches E0 at a point S2 > S⋆

2 by definition of ξ⋆. At this point, the switching
function is such that φ < 0 which is not possible (φ has to be zero on the boundary of E0).

We have thus proved that for any S1 such that Ŝ1 ≤ S1 < M − S⋆
2 , a singular trajectory starting at

(S1, S
⋆
2 ) is optimal at least until reaching the point (Smin

1 , S⋆
2), so S 6= ∅. Now, the set F is clearly an

interval and we take for S1 the infimum of F . This proves the result as we know that S1 > Smin
1 .

Notice that (16) is crucial for defining the point (S1, S
⋆
2 ) of prior saturation. The next proposition

characterizes the number of switching times for trajectories starting above the singular arc with S1 ∈
(S⋆

1 , S
min
1 ) and it will allow us to define the switching curve emanating from (S1, S

⋆
2).

Proposition 7 Consider a point S0 = (S0
1 , S

0
2) such that S0

1 ∈ (S⋆
1 , S1) and S0

2 > ξ⋆(S0
1). Then, any

optimal trajectory γ steering S0 to the extended target E0 has a unique switching time t0 such that
S2(t0) > S⋆

2 and we have u(t) = 0 for t ∈ [0, t0] and u(t) = 1 for t > t0.

Proof. First, recall that an extremal trajectory cannot switch from u = 1 to u = 0 at a time t0 such
that S2(t0) > S⋆

2 . Hence, the number of switching times of γ before reaching the singular arc is either 0
or 1. Now, take S0

1 ∈ (S⋆
1 , S1). By using a similar reasoning as in the previous proof, we know that if we

12



have u = 0 until reaching the singular arc, then γ is not optimal. Notice that S1 ≤ S̃1 as the trajectory
starting from (S̃1, S

⋆
2 ) with u = 1 until E0 is not optimal. It follows that if the control switches to u = 1

at a point (S1, S2) with S2 > ξ⋆(S1), then the trajectory will reach the set E0 at a point S2 > S⋆
2 (using

that S0
2 > ξ⋆(S0

1)), and we have a contradiction with φ = 0 at the boundary of E0. Hence, there exists a
unique switching time t0 from u = 0 to u = 1 and S2(t0) > S⋆

2 .

For S1 ∈ (S⋆
1 , S1), we denote by S2 := ζ(S1) ≥ S⋆

2 the unique switching point from u = 0 to u = 1
from an optimal trajectory starting at some point (S1, ξ

⋆(S1)), and let C1 be the switching curve defined
by:

C1 = {(S1, ζ(S1)) ; S1 ∈ (S⋆
1 , S1)}.

From the classification of frame points and frame curves [7], the point of prior saturation (S1, S
⋆
2 ) is a

frame point of type (CS)2 at the intersection between the singular set and a switching curve. In fact,
singular trajectories stop to be optimal at this point and leave the singular set with the maximal control
u = 1. Therefore, we can extend ζ at the point S1 setting ζ(S1) = S⋆

2 .

Remark 2 (i) We can show by the arguments above that the switching curve passes through the point
(S⋆

1 , S
⋆
2 ) i.e. limS1→S⋆

1
ζ(S1) = S⋆

2 .
(ii) We believe that the C1 is continuous. Unfortunately, this question seems difficult to address as we
cannot easily obtain an implicit equation for C1 (such as for the C0). The difficulty comes from the fact
that the initial system with u = 1 leads to a non-autonomous differential equation for S2 as a function
of S1. Nevertheless, this property is not crucial in order to obtain the optimal synthesis.

Proposition 8 For any S0
1 ∈ [S1,M − S⋆

2 ) and S0
2 ≥ S⋆

2 , any optimal trajectory starting at (S0
1 , S

0
2)

satisfies u = 0 until reaching the singular arc.

Proof. Suppose by contradiction that an optimal trajectory starting at some point (S0
1 , S

0
2) with

S0
1 ∈ [S1,M − S⋆

2 ] and S
0
2 ≥ S⋆

2 satisfies u = 1 over a time interval [0, τ ], for some τ > 0. Recall that
ζ(Smin

1 ) = S⋆
2 . As S1 > Smin

1 , there exists τ ′ > 0 such that we have u = 1 over the time interval [0, τ ′]
and such that S2(τ

′) > ζ(S1(τ
′)) (in particular, this trajectory cannot intersect the singular arc at some

point (S1, S
⋆
2 ) with S1 ≥ S1). Thus we obtain a contradiction with Proposition 7. In fact, we know that

for S ∈ D such that S1 < S1 and S2 > ζ(S1), one has necessarily u = 0.

It remains to study the case where initial conditions are taken below the singular arc.

Proposition 9 For any initial conditions S0 = (S0
1 , S

0
2) ∈ D\E0 and such that S0

2 < S⋆
2 , we have u = 1.

Proof. We know that any optimal trajectory cannot switch from u = 0 to u = 1 at a point S0 =
(S0

1 , S
0
2) ∈ D\E0 and such that S0

2 < S⋆
2 . Suppose now that an optimal trajectory starting at some point

S0 = (S0
1 , S

0
2) ∈ D\E0 with S0

2 < S⋆
2 satisfies u = 0 over a time interval [0, τ ]. If S0 > S1, then the

trajectory does not reach the target and we have a contradiction. Finally, if S0 ≤ S1 (this case can
be empty if C0 does not exist), then one should have u = 0 until reaching C0, and we would have a
contradiction with the fact that φ = 0 on C0.

The next theorem summarizes the results of Propositions 7, 8 and 9 and provides an optimal feedback
control of the problem whenever (15)-(16) are satisfied.

Theorem 1 Assume that Hypotheses H0 and H1 are fulfilled. In addition, suppose that (15)-(16) are
satisfied. Then, an optimal feedback control steering the system in minimal time to the target is given by

u⋆[S1, S2] :=

∣

∣

∣

∣

∣

∣

0 if (S1, S2) ∈ E0 or S2 ≥ max(ζ(S1), S
⋆
2 ),

us(S1) if S1 ∈ [S1,M − S⋆
2 ) and S2 = S⋆

2 ,
1 if (S1, S2) /∈ E0 and S2 < S⋆

2 .
(18)

Optimal trajectories corresponding to the feedback u⋆ are depicted on Fig. 2 when C0 = ∅ and on Fig.
3, 4, and 5 when C0 6= ∅.

Remark 3 The construction of C1 is explained in Section 7. We observe numerically that the switching
curve C1 can be non-smooth, see Fig. 5. We believe that this is a consequence of the non-smoothness of
the target set E0 at (S1, S2).
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6.2 Discussion when S⋆

1
= 0

When (16) is not satisfied, i.e.:

S⋆
1 = 0, (19)

then, the existence of the switching curve C1 is not straightforward using the previous arguments. Indeed,
the construction of this curve cannot be initiated from (S⋆

1 , S
⋆
2 ) as we do in the previous case with S1 7−→

ξ⋆(S1) (recall (17)), because {0} × [0,M ] is invariant by the system. Therefore, extremal trajectories
starting above the singular arc with u = 1 can be optimal until reaching the extended target E0. We
obtain the following statement.

Theorem 2 Assume that Hypotheses H0 and H1 are fulfilled. In addition, suppose that (15)-(19) are
satisfied. Then, an optimal control u steering the system in minimal time from (S0

1 , S
0
2) to the target

satisfies the following:

i. If the initial condition (S0
1 , S

0
2) is such that S0

2 > S⋆
2 , then there exists t0 ≥ 0 such that u = 0 on

[0, t0], and then we have u = 1 until reaching the set E0.

ii. If the initial condition (S0
1 , S

0
2) is such that S0

2 = S⋆
2 , then :

- If S0
1 ≤ Smin

1 , then we have u = 1 until reaching the set E0.

- If S0
1 > Smin

1 , then either we have u = 1 until reaching the set E0, or we have u = us on some
time interval [0, t0] with t0 ≥ 0, and then u = 1 until reaching E0.

iii. If S0
2 < S⋆

2 , then an optimal control is given by Theorem 1.

Proof. The proof of i. and ii. is a consequence of Propositions 7 and 8 except that we cannot exclude
trajectories with a constant control u = 1 to be optimal until the set E0. Therefore, t0 can be zero. The
proof of iii. is the same as in Theorem 1.

Optimal trajectories are depicted on Fig. 6, 7, and 8 in Section 7. We see numerically that there
exists a switching curve C1 that satisfies similar properties as in the case S⋆

1 > 0:

- The curve C1 is above the singular locus S.

- The curve C1 connects the point of prior saturation to a point (0, S′
2) with S

′
2 ∈ (S∗

2 ,M).

7 Numerical simulations and discussion

We have chosen for f the linear functions f(S1) := S1, and for the specific growth rate µ(·), we have
considered the Haldane function:

µ(S2) :=
µ̄S2

Ks + S2 + S2
2/Ki

.

One can straightforwardly check that Hypotheses H0 and H1 are satisfied with

S⋆
2 =

√

KsKi.

One can notice that the Haldane function can be seen as a generalization of the Monod function µm

(which is monotonic and often used in microbial growth) defined by:

µm(S2) :=
µmaxS2

Ks + S2
,

on a the interval [0,M ], taking large values of the parameter Ki.
We now explain how the curve C1 is computed numerically (Theorem 1 and Theorem 2). The switching

curve C1 is guaranteed by Theorem 1 (whenever Smin
1 > S⋆

1 > 0). Recall that the function φ vanishes
both on C1 and on C0. In order to plot C1, we integrate backward in time the system with the maximal
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case µ̄ K Ki 1 M S1 S2 Optimal Synthesis
I 1 2 0.23 0.1 1.3 0.15 0.05 Theorem 1

II a 1 5 0.23 0.03 1.3 0.29 0.05 Theorem 1
II b 1 3.5 0.23 0.04 1.3 0.14 0.02 Theorem 1
II c 1 3.5 0.23 0.015 1.3 0.14 0.02 Theorem 1
III a 30 4 0.7 5 2.4 0.2 0.02 Theorem 2
III b 30 4 0.7 5 2.4 0.09 0.02 Theorem 2
III c 30 4 0.7 5 2.4 0.05 0.02 Theorem 2
IV a 1 2 0.23 0.1 1.3 0.15 0.8 Proposition 5
IV a 1 2 0.23 1 1.3 0.15 0.8 Proposition 5

Table 1: List of cases

control u = 1 from C0 (C0 is known explicitly). More precisely, the construction goes as follows. Consider
the dynamics:



















dσ2
dσ1

= −1 +
µ(σ2)(M − σ1 − σ2)

f(σ1)
,

dψ

dσ1
= −

µ′(σ2)

µ(σ2)f(σ1)
− ψ

(

f ′(σ1)

f(σ1)
+
µ′(σ2)

µ(σ2)

)

,

(20)

with initial conditions

(σ2(σ10), ψ(σ10)) = (σ20, 0), (σ10, σ20) ∈ S0. (21)

We shall denote (σ
(σ10,σ20)
2 (·), ψ(σ10,σ20)(·)) its solutions. The previous system describes the evolution

of S2 and φ backward in time from S0. Now, define a mapping θ : S0 → R associating to any initial
condition on C0 the value of σ1 for which the solution of (20)-(21) is such that

ψ(σ10,σ20)(σ1)) = 0.

From Theorem 1, we know that there exists a non-empty subset E ⊂ S0 such that C1 is the image of E
by θ. In order to compute numerically C1, we integrate the previous system and we stop the integration
whenever ψ vanishes, which corresponds to a switching point. If ψ does not vanish, then we repeat this
procedure by changing the initial condition on S0. The curve C1 is depicted on Fig. 2 to 8:

• Case I (see Fig. 2) corresponds to the case where (15) and (16) are satisfied (optimal synthesis
given by Theorem 1). Moreover, in this case, C0 = ∅, but C1 6= ∅.

• Cases IIa, IIb and IIc (see Fig. 3, 4, and 5) correspond to the case where (15) and (16) are satisfied
(optimal synthesis given by Theorem 1). Moreover, we see in Fig. 3 and 4 that Smin

1 and S⋆
1 can be

less or greater than S̄1. Fig. 5 depicts a case where the switching curve C1 seems to be non-smooth
(due to the non-smoothness of the target set at the corner point).

• Case IIIa, IIIb and IIIc (see Fig. 6, 7, and 8) correspond to the case where (15) and (19) are
satisfied (optimal synthesis given by Theorem 2). Moreover, we see in Fig. 6 that C1 is defined
only from points of C0 whereas in Fig. 7, the curve C1 is defined both from points of C0 and from
{S̄2} × [0, S̄1]. In Fig. 8, we observe that C1 is non-smooth (same property as in case IIc).

• Case IVa and IVb depict optimal trajectories as in Proposition 5 when Smin
1 > S̄1 and Smin

1 < S̄1.

Table 1 presents the values of the parameters for the different cases that have been simulated.

To summarize the optimal synthesis of the problem, we have proceeded as follows. First, we have
defined a switching curve C0 as a set of points where the control u = 0 is optimal until reaching the
target. This allows us to define an extended target set E0. Whenever the singular arc is admissible until
E0 the optimal strategy is a most rapid approach to the singular arc [3]. In presence of the saturating
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Figure 2: Case I. Picture left: Partition of the state space. Picture right: Optimal synthesis provided by
Theorem 1).
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Figure 3: Case IIa. Picture left: Partition of the state space. Picture right: Optimal synthesis provided
by Theorem 1).
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Figure 4: Case IIb. Picture left: Partition of the state space. Picture right: Optimal synthesis provided
by Theorem 1).
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Figure 5: Case IIc. Picture left: Partition of the state space. Picture right: Optimal synthesis provided
by Theorem 1).
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Figure 6: Case IIIa. Picture left: Partition of the state space. Picture right: Optimal synthesis provided
by Theorem 2).
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Figure 7: Case IIIb. Picture left: Partition of the state space. Picture right: Optimal synthesis provided
by Theorem 2).
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Figure 8: Case IIIc. Picture left: Partition of the state space. Picture right: Optimal synthesis provided
by Theorem 2).
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Figure 9: Case IVa. Picture left: Partition of the state space. Picture right: Optimal synthesis provided
by Proposition 5.
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Figure 10: Case IVb. Picture left: Partition of the state space. Picture right: Optimal synthesis provided
by Proposition 5.

phenomena, i.e. when the singular arc has a barrier in D\E0, then optimal trajectories can have an
additional switching point on a curve C1 that can be constructed backward in time from C0. We have
pointed out that the difficulty of showing the existence of the switching curve C1 whenever the extended
target set E0 does not intersect the singular arc. The study of this point is out of the scope of the paper
and could deserve further investigations.

The structure of an optimal control is as follows. We denote by B± an arc Bang u = 0 or u = 1 and
by S a singular arc on a time interval [t1, t2]. We see that when the singular arc is always admissible
(see Proposition 5), then the optimal synthesis is of type B±SB± or B±B∓, see Fig. 9 and 10. Hence,
optimal trajectories have at most two switching points depending on the initial condition. In presence
of the saturating phenomena, then the optimal synthesis is of type B±B∓, B±SB±, or B±SB±B∓. In
this case, the optimal synthesis is more intricate and optimal trajectories can have three switching points
depending on the initial condition.

Extremal trajectories corresponding to the feedback control law provided by Proposition 5 are unique.
In fact, the uniqueness is clear in the set Z1 ∪ E0, and we can conclude by Green’s Theorem (see [7]) in
D\(Z1 ∪E0). We believe that this property still holds (by exclusion of extremal trajectories that are not
optimal) in the case of the feedback law (18). Finally, we can prove that the value function is continuous
[1] (Proposition 1.6 p.230).

8 Conclusion

In this work, we have provided a complete analysis of the optimal synthesis of a model of landfill
controlled by the re-circulation flow. Although the proposed model is simple, the geometry of the
optimal trajectories, depending on the position of the initial condition with respect to sub-domains that
we have characterized, can be intricate. This analysis can provide useful information in decision making
for the practitioners in different situations, depending on the characteristics of the landfill (bacterial
growth rate and maximum re-circulation flow).

• When the landfill operation can be performed in its early stage, one may expect to have initial
concentration of unsolubilized substrate high and solubilized one low. Then, the determination of
the subset Z1 appears to be crucial. If it is large, it is likely to contain the initial condition and
the optimal strategy is straightforward: recirculate at the maximal speed until the unsolubilized
substrate reaches the desired concentration. No measurement of the solubilized and no switch on
the control are necessary, as the state is expected to stay Z1.

• When the state of the landfill is out of the set Z1, this means that the concentration of solubilized
substrate has to take large values, and that practitioners would have to stop the re-circulation at
a certain stage and wait for the solubilized to decrease due to the microbial activity.

• The determination of the best time to stop the re-circulation is not necessarily the one when the
unsolubilized substrate has reached the desired threshold. It can be more efficient to carry on the
re-circulation until reaching the switching curve C0.
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• As the concentration of solubilized substrate can significantly increase during the transient, its
bacterial degradation could suffer from an inhibition of the micro-organisms, that is typically
modeled by a non-monotonic growth rate function, that reaches it maximum for some S⋆

2 value.
Then, a singular arc could be part of the optimal synthesis, which consists in controlling the re-
circulation flow to regulate the level of the concentration of the solubilized substrate at S⋆

2 , when
its has reached this value, until the state reaches the set Z1 or the switching curve C0.

• In certain circumstances, the maximal re-circulation flow does not allow to maintain the concen-
tration of the solubilized substrate at S⋆

2 while reaching the switching curve C0. Then, the optimal
decision is to anticipate this lack of controllability, and to use the maximal re-circulation flow when
the state is reaching another switching curve C1.

• In any case when the state does not reach the set Z1, the final stage is to stop the re-circulation
and to measure the concentration of solubilized substrate until it reaches the desired threshold.

Further investigations could concern optimal criteria that take into consideration the energy spent for the
re-circulation and the valorization of the bio-gas produced by the bacterial activity. The consideration
of spatial inhomogeneity in the model and its impact on the optimal strategy could be also the matter
of a future research.
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