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A uniqueness of periodic maps on surfaces

Susumu Hirose∗, Yasushi Kasahara†

Abstract

Kulkarni showed that, if g is greater than 3, a periodic map on an ori-
ented surface Σg of genus g with order more than or equal to 4g is uniquely
determined by its order, up to conjugation and power. In this paper, we show
that, if g is greater than 30, the same phenomenon happens for periodic maps
on the surfaces with orders more than 8g/3 and, for any integer N , there is
g > N such that there are periodic maps of Σg of order 8g/3 which are not
conjugate up to power each other. Moreover, as a byproduct of our argument,
we provide a short proof of Wiman’s classical theorem: the maximal order of
periodic maps of Σg is 4g + 2.

1 Introduction

Let Σg be the oriented closed surface of genus g ≥ 2. By the Nielsen-Thurston theory

[10], orientation preserving homeomorphisms of Σg are classified into 3-types: (1)

periodic, (2) reducible, (3) pseudo-Anosov. For each type, there are important values

describing conjugacy classes, for example, the orders of periodic maps. Kulkarni [7]

showed that if the genus g is sufficiently large and the order is more than or equal to

4g then the order determines the conjugacy class of the periodic map up to power.

The first author [4] showed the same type of result when the order is more than or

equal to 3g. In this paper, we investigate on the minimum M satisfying the following

condition: if the genus g is sufficiently large and n > Mg (or n ≥ Mg) then the

order determines the conjugacy class of the periodic map up to power.

Theorem 1.1. Let g > 30, and n > 8g/3. If there is a periodic map of Σg of order

n, then this map is unique up to conjugacy and power. On the other hand, let N
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(No.24540096), Japan Society for the Promotion of Science.

†This research was partially supported by Grant-in-Aid for Scientific Research (C)
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be any positive integer. There is g > N such that there are periodic maps of Σg of

order 8g/3 which are not conjugate up to power each other.

We explain the outline of the proof of Theorem 1.1. By [6], the periodic map

which satisfies the condition of Theorem 1.1 is irreducible, that is, the orbit surface

of this periodic map is a 2-sphere with 3 branched points. Let n1 be the minimum

of the branching indices. In §3, it is shown that the order is included in one of

certain disjoint ranges which is determined solely by the value of n1 when the genus

is sufficiently large. By using this result, we observe that n1 should be at most 4

under the condition in Theorem 1.1. In §4, we discuss the uniqueness of periodic

map by the order up to conjugacy and power.

It seems that our argument in §3, especially Theorem 3.2, is also useful for several

known results on the distribution of periodic maps, in simplifying the subcases to be

considered in their proofs. As an example, in §5, we provide a short and complete

proof of Wiman’s classical theorem: the maximal order of periodic maps of Σg is

4g + 2.

After we finished to write this paper, we were informed from Professor G. Gro-

madzki about their preprint [2] and that Theorem 1.1 follows directly from their

result in [2].

2 Preliminaries

An orientation preserving homeomorphism f from a surface Σg to itself is said to be

a periodic map, if there is a positive integer n such that fn = idΣg
. The order of f is

the smallest positive integer which satisfies the above condition. Two periodic maps

f and f ′ on Σg are conjugate, if there is an orientation preserving homeomorphism

h from Σg to itself such that f ′ = h ◦ f ◦ h−1. In this section, we will review the

classification of conjugacy classes of periodic maps on surfaces by Nielsen [8]. We

follow a description by Smith [9] and Yokoyama [12].

Let f be a periodic map on Σg, whose order is n. A point p on Σg is a multiple

point of f , if there is a positive integer k less than n such that fk(p) = p. Let Mf be

the set of multiple points of f . The orbit space Σg/f of f is defined by identifying

2



x in Σg with f(x). Let πf : Σg → Σg/f be the quotient map. Then πf is an n-fold

branched covering ramified at πf(Mf ). The set πf (Mf ) is denoted by Bf , and each

element of Bf is called a branch point of f . We choose a point x in Σg/f − Bf ,

and a point x̃ in π−1
f (x). We define a homomorphism Ωf : π1(Σg/f − Bf) → Zn as

follows: Let l be a loop in Σg/f − Bf with the base point x, and [l] the element of

π1(Σg/f−Bf ) represented by l. Let l̃ be the lift of l on Σg which begins from x̃. There

is a positive integer r less than or equal to n such that the terminal point of l̃ is f r(x̃).

We define Ωf ([l]) = r mod n. Since Zn is an Abelian group, the homomorphism Ωf

induces a homomorphism ωf from the abelianization of π1(Σg/f − Bf ) to Zn. The

abelianization of π1(Σg/f −Bf ) is H1(Σg/f −Bf), therefore ωf is a homomorphism

from H1(Σg/f − Bf) to Zn. For each point of Bf = {Q1, . . . , Qb}, let Di be a disk

in Σg/f , which contains Qi in its interior and is sufficiently small so that no other

points of Bf are in Di. Let SQi
be the boundary of Di with clockwise orientation.

Theorem 2.1. [8, §11] Two periodic maps f and f ′ on Σg are conjugate to each

other if and only if the following three conditions are satisfied.

(1) The order of f is equal to the order of f ′.

(2) The number of elements in Bf is equal to that of Bf ′.

(3) After renumbering the elements of Bf ′, we have ωf(SQi
) = ωf ′(SQi

) for each i.

Let θi = ωf(SQi
) for each i. By the above Theorem, the data [g, n; θ1, . . . , θb]

determines a periodic map up to conjugacy. The following proposition shows a suffi-

cient and necessary condition for a data [g, n; θ1, . . . , θb] to correspond to a periodic

map.

Proposition 2.2. There is a periodic map with the data [g, n; θ1, . . . , θb] if and only

if the following conditions are satisfied.

(1) θ1 + · · ·+ θb ≡ 0 mod n.

(2) Let ni = n/ gcd{θi, n}, then there exists a non-negative integer g′ which satisfies

2g − 2 = n

(

2g′ − 2 +
∑

(

1−
1

ni

))

,

where i runs through the branch points.

(3) If g′ = 0, then gcd{θ1, . . . , θb} ≡ 1 mod n.
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The necessity of three conditions in the above Proposition are shown as follows.

(1) follows from the fact that ωf is a homomorphism and SQ1
+ · · · + SQb

is null-

homologous, (2) is the Riemann-Hurwitz formula, and (3) follows from the fact that

ωf is a surjection. The sufficiency of these conditions follows from the existence

theorem of a branched covering space by Hurwitz [5]. The number ni is called the

branching index of Qi.

In the following, we will use the expression (n, θ1/n + · · · + θb/n) in place of

[g, n; θ1, . . . , θb]. This data (n, θ1/n + · · · + θb/n) is called the total valency , which

is introduced by Ashikaga and Ishizaka [1]. In the above data, we call θi/n the

valency of Qi, and often rewrite this by an irreducible fraction. We remark that the

denominator of the reduced θi/n is equal to the branching index ni of Qi, and the

numerator of the reduced θi/n is well-defined modulo ni. If k is an integer prime to

n and f = (n,m1/n1 + · · ·+mb/nb), then fk = (n, (k∗ ·m1)/n1 + · · ·+ (k∗ ·mb)/nb)

where k∗ is an integer such that k · k∗ ≡ 1 mod n, and k∗ ·mi is the remainder of

k∗mi modulo ni.

3 A discussion on branching indices

Let f be an order n periodic map of Σg whose orbit space Σg/f = S
2(n1, n2, n3).

We assume that n1 ≤ n2 ≤ n3. By the Riemann-Hurwitz formula, we see

2(g − 1) = n

(

1−

(

1

n1
+

1

n2
+

1

n3

))

. (1)

The branching indices n1, n2, n3 satisfy the Harvey’s lcm condition [3], that is,

lcm{n1, n2} = lcm{n2, n3} = lcm{n3, n1} = n.

Lemma 3.1. Let k2 = n/n2, k3 = n/n3, then we see:

(i) n = n1

n1−1
(2g + (k2 + k3 − 2)),

(ii) k2 ≥ k3,

(iii) k2, k3 are divisors of n1,

(iv) gcd{k2, k3} = 1,

(v) k2 + k3 ≤ n1 + 1.
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Proof. (i) is valid by (1).

(ii) is valid by n2 ≤ n3.

(iii) Let k1 = n/n1. Since k1n1 = k2n2 = n = lcm{n1, n2}, k1 and k2 are prime each

other. By the equation k1n1 = k2n2, we see that k2 is a divisor of n1. By the same

way, we see that k3 is a divisor of n1.

(iv) Since k2n2 = k3n3 = n = lcm{n2, n3}, k2 and k3 are prime each other.

(v) If n1 = 2, then we see k2, k3 ≤ 2 by (iii). Since k3 = 1 by (iv), we see k2 + k3 ≤

n1 + 1. We assume n1 ≥ 3. If k2 = n1 then k3 = 1 by (iii) (iv). Therefore

k2 + k3 = n1 + 1. If k2 6= n1 then k2 ≤ n1/2. Moreover k3 ≤ k2 by (ii), hence, we

see k2 + k3 ≤ 2k2 ≤ n1 < n1 + 1.

Theorem 3.2. The inequality
2n1

n1 − 1
g ≤ n ≤

2n1

n1 − 1
g + n1 is valid.

Proof. Since n2, n3 ≤ n,

2(g − 1) = n

(

1−

(

1

n1

+
1

n2

+
1

n3

))

≤ n

(

1−

(

1

n1

+
2

n

))

= n

(

n1 − 1

n1

)

− 2

by the equation (1), hence,

n ≥
2n1

n1 − 1
g.

On the other hand, by (i) (v) of the previous Lemma, we see

n =
n1

n1 − 1
(2g + (k2 + k3 − 2)) ≤

2n1

n1 − 1
g + n1.

Theorem 3.3. For an integer N ≥ 3, we assume g > (N − 1)N(N + 1)/2. Then

n1 = N ⇐⇒
2N

N − 1
g ≤ n <

2(N − 1)

N − 2
g.

Remark 3.4. 1. Because (N − 1)N(N + 1)/2 is increasing for N ≥ 3, we see that,

for any N ′ such that 3 ≤ N ′ ≤ N ,

n1 = N ′ ⇐⇒
2N ′

N ′ − 1
g ≤ n <

2(N ′ − 1)

N ′ − 2
g

under the assumption of the above Theorem.

2. In the case where g = (N−1)N(N+1)
2

, there is a periodic map of order 2N
N−1

g =

N2(N + 1) such that n1 = N + 1 and whose valency data is
(

N2(N + 1),
N

N + 1
+

N − 1

N2
+

1

N2(N + 1)

)

.
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Proof. We assume n1 = N . By Theorem 3.2, 2N
N−1

g ≤ n ≤ 2N
N−1

g + N . By the

assumption g > (N−1)N(N+1)/2 > (N−2)(N−1)N/2, we see 2N
N−1

g+N < 2(N−1)
N−2

g.

Therefore 2N
N−1

g ≤ n < 2(N−1)
N−2

g.

On the reverse order, we assume 2N
N−1

g ≤ n < 2(N−1)
N−2

g. By Theorem 3.2, we see

n ≥ 2n1

n1−1
g. If n1 ≤ N − 1 then 2n1

n1−1
≥ 2(N−1)

N−2
, hence n ≥ 2(N−1)

N−2
g, which contradicts

2N
N−1

g ≤ n < 2(N−1)
N−2

g. Therefore n1 ≥ N .

Here, we show the following Lemma.

Lemma 3.5. When N ≥ 2, if n ≥ 2N
N−1

g then n1 ≤ 3N − 1.

Proof. By the equation (1)

2g − 2

n
= 1−

(

1

n1
+

1

n2
+

1

n3

)

.

By the assumption that n1 ≤ n2 ≤ n3 and n ≥ 2N
N−1

g, we see

(2g − 2)(N − 1)

2Ng
≥ 1−

3

n1
.

By this inequality, we get an evaluation n1 ≤
3g

g+N−1
N < 3N . Therefore, we conclude

n1 ≤ 3N − 1.

Here we assume that n1 ≥ N+1. By Theorem 3.2 and the assumption n ≥ 2N
N−1

g,

we see
2N

N − 1
g ≤

2n1

n1 − 1
g + n1.

By the above inequality and the inequality 2N
N−1

> 2n1

n1−1
obtained from the assump-

tion n1 ≥ N + 1, we see

g ≤
(N − 1)n1(n1 − 1)

2(n1 −N)
. (2)

By the above Lemma, n1 ≤ 3N − 1. When N ≥ 3, by the inequality 3N − 1 ≤ N2

and the assumption n1 ≥ N + 1, we see N + 1 ≤ n1 ≤ N2. From this inequality,

(n1 − (N + 1))(n1 −N2) ≤ 0, that is, n2
1 − (N2 +N + 1)n1 +N2(N + 1) ≤ 0, hence

n2
1 − n1 ≤ N(N + 1)(n1 − N). By dividing the last inequality by n1 − N > 0, we

obtain
n1(n1 − 1)

n1 −N
≤ N(N + 1).
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By this inequality and the inequality (2), we see

g ≤
(N − 1)N(N + 1)

2
,

which contradicts the assumption. Therefore n1 ≤ N .

We get a conclusion n1 = N .

4 The uniqueness by the order

Theorem 1.1. Let g > 30 and n > 8g/3. If there is a periodic map whose order is

n, then this periodic map is unique up to conjugacy and power.

Remark 4.1. In the sentence, if the genus g is sufficiently large and n > Mg (or

n ≥ Mg) then the order determines the conjugacy class of the periodic map up to

power, the condition of the order n > 8g/3 is best possible. In fact, when the genus

g = 3(2k + 1), there are two periodic map of order n = 8g/3 whose total valencies

are
1

4
+

1

16k + 8
+

12k + 5

16k + 8
,

3

4
+

1

16k + 8
+

4k + 1

16k + 8

and any power of the first one is not conjugate to the second one.

Proof. By [6], the periodic map f satisfying the condition in this Theorem is irre-

ducible, that is Σg/f = S
2(n1, n2, n3). As in §3, we assume that n1 ≤ n2 ≤ n3. Since

we already discussed the case where n ≥ 3g in [7] and [4], we assume that n < 3g.

Since g > 30 = 4·(42−1)
2

, 2·(4−1)
4−2

g = 3g > n > 8
3
g = 2·4

4−1
g, n1 = 4 by Theorem 3.3. Let

k2 = n/n2 and k3 = n/n3. By Lemma 3.1, there are 3 cases (k2, k3) = (4, 1), (2, 1),

(1, 1).

(1) (k2, k3) = (4, 1) : By (i) of Lemma 3.1, the order n = 8
3
g+4 > 8

3
g. Since n is an

integer, g should be a multiple of 3. Let g = 3l, then n = 8l+4, n2 = n/k2 = 2l+1,

and n3 = n/k3 = 8l + 4. We determine the numerators a, b, c of the valency data

a

4
+

b

2l + 1
+

c

8l + 4
.

Since the branch point corresponding to c/8l + 4 is the image of a fixed point of f

by πf , we fix c = 1 by taking a proper power of the periodic map f . Since a/4 is an

irreducible fraction, a = 1 or 3. If a = 3, then 2b = l. If a = 1, then 2b = 3l + 1.
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When l is even, we put l = 2m. If a = 3, then b = m. If a = 1, then 2b = 6m+1.

Therefore, a = 3 and the total valency should be

3

4
+

m

4m+ 1
+

1

16m+ 4
.

When l is odd, we put l = 2m + 1. If a = 3, then 2b = 2m + 1. If a = 1, then

b = 3m+ 2. Therefore, a = 1 and the total valency should be

1

4
+

3m+ 2

4m+ 3
+

1

16m+ 12
.

(2) (k2, k3) = (2, 1) : By (i) of Lemma 3.1, the order n = 4(2g+1)
3

> 8
3
g. Since n is

an integer, 2g+1 should be a multiple of 3. Therefore g ≡ 1 mod 3. Let g = 3l+1,

then n = 8l + 4, n2 = 4l + 2, and n3 = 8l + 4. We determine the numerators a, b, c

of the valency data
a

4
+

b

4l + 2
+

c

8l + 4
.

Since the branch point corresponding to c/8l + 4 is the image of a fixed point of f

by πf , we fix c = 1 by taking a proper power of the periodic map f . Since a/4 is

an irreducible fraction, a = 1 or 3. If a = 1, then b = 3l + 1. If a = 3, then b = l.

Since b
4l+2

is also an irreducible fraction, b should be an odd integer. If l is an even

integer, b = 3l + 1 and a = 1. Hence, the total valency should be

1

4
+

3l + 1

4l + 2
+

1

8l + 4
.

If l is an odd integer, b = l and a = 3. Hence, the total valency should be

3

4
+

l

4l + 2
+

1

8l + 4
.

(3) (k2, k3) = (1, 1) : By (i) of Lemma 3.1, the order n = 8
3
g, which contradicts

the condition n > 8
3
g.

By the proof of the above Theorem, [7] and [4] we see:

Corollary 4.2. Let g > 30 and n > 8g/3. If there is a periodic map f of Σg whose

order is n, then f is conjugate to a power of one of periodic maps listed on Table 1.
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Table 1:

genus g total valency

arbitrary

(

4g + 2,
1

2
+

g

2g + 1
+

1

4g + 2

)

arbitrary

(

4g,
1

2
+

2g − 1

4g
+

1

4g

)

3k

(

3g + 3,
2

3
+

k

g + 1
+

1

3g + 3

)

3k + 1

(

3g + 3,
1

3
+

2k + 1

g + 1
+

1

3g + 3

)

3k or 3k + 1

(

3g,
1

3
+

2g − 1

3g
+

1

3g

)

3k + 2

(

3g,
2

3
+

g − 1

3g
+

1

3g

)

6m

(

8

3
g + 4,

3

4
+

m

4m+ 1
+

1

16m+ 4

)

6m+ 3

(

8

3
g + 4,

1

4
+

3m+ 2

4m+ 3
+

1

16m+ 12

)

6m+ 1

(

4(2g + 1)

3
,
1

4
+

6m+ 1

8m+ 2
+

1

16m+ 4

)

6m+ 4

(

4(2g + 1)

3
,
3

4
+

2m+ 1

8m+ 6
+

1

16m+ 12

)

5 A proof of Wiman’s Theorem [11]

We provide a short proof of Wiman’s Theorem [11] using the argument in §3.

Theorem 5.1. When g ≥ 2, the order of any periodic map of Σg is at most 4g+2.

In the following, it is the subcase III)-iii) which is simplified by the argument

mentioned above and seems to have been most involved. While the treatment of the

other subcases is standard, we include them for completeness.

Proof. Let n be the order of a periodic map f of Σg, and Σg/f = Σg′(n1, . . . , nj),

where n1 ≤ n2 ≤ · · · ≤ nj . By the Riemann-Hurwitz formula,

2(g − 1)

n
= 2(g′ − 1) + j −

(

1

n1
+ · · ·+

1

nj

)

. (3)

9



I) When g′ ≥ 2, the RHS of (3) ≥ 2(g′ − 1) ≥ 2. Therefore 2(g − 1)/n ≥ 2, that is,

g − 1 ≥ n, then we see n ≤ 4g + 2.

II) We discuss the case where g′ = 1. If j = 0, then g = 1, which contradicts the

assumption g ≥ 2. Hence, j ≥ 1. Since each ni ≥ 2, we see 1/n1+ · · ·+1/nj ≤ j/2.

Therefore, the RHS of (3) ≥ j − j/2 = j/2, hence 2(g − 1)/n ≥ j/2, and we see

n ≤ 4(g − 1)/j. This shows that n ≤ 4g + 2 in this case.

III) We discuss the case where g′ = 0. We first note that Proposition 2.2 implies

j ≥ 3.

i) j ≥ 5 : in this case, the RHS of (3) ≥ −2 + j/2 ≥ 1/2, hence n ≤ 4(g − 1).

Therefore, n ≤ 4g + 2.

ii) j = 4 : We multiply n on both sides of (3) and change n/ni into ki for i 6= 1,

then we see,

n =
n1

2n1 − 1
(2g − 2 + k2 + k3 + k4)

=
n1

2n1 − 1
(2g − 2) +

1

2n1 − 1
(n1k2 + n1k3 + n1k4)

≤
n1

2n1 − 1
(2g − 2) +

3n

2n1 − 1
.

In the last inequality, we use n1ki ≤ niki = n. Since

n−
3n

2n1 − 1
= n

(

1−
3

2n1 − 1

)

= n
2(n1 − 2)

2n1 − 1
,

in the case where n1 ≥ 3, we obtain

n ≤
n1

n1 − 2
(g − 1).

Because n1/(n1 − 2) ≤ 3, we have n ≤ 3(g − 1) < 4g + 2. In the case where n1 = 2,

we assume that n ≥ 4g + 2 ≥ 4 · 2 + 2 = 10. By Harvey’s lcm condition [3], we

remark

n = lcm{n1, n2, n3} = lcm{n1, n2, n4} = lcm{n1, n3, n4} = lcm{n2, n3, n4}. (4)

If all ni are 2 or 3, then n ≤ 6 by (4) which contradicts the assumption n ≥ 10.

Therefore, there are some ni’s such that ni ≥ 4. By (4), there are at least 2 ni’s

such that ni ≥ 4, hence n3, n4 ≥ 4. We see n1k3 = n1

n3

n3k3 = n1

n3

n ≤ n
2
, and in the
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same way, we see n1k4 ≤
n
2
. Therefore,

n =
n1

2n1 − 1
(2g − 2) +

1

2n1 − 1
(n1k2 + n1k3 + n1k4)

≤
n1

2n1 − 1
(2g − 2) +

1

2n1 − 1
(n +

n

2
+

n

2
) =

4g − 4

3
+

2

3
n.

Hence we have n ≤ 4g − 4 contradicting the assumption n ≥ 4g + 2. We conclude

n < 4g + 2.

iii) j = 3 : At first, we show the following Lemma:

Lemma 5.2. If the orbit space of a periodic map f of Σg is a 2-sphere with 3 branch

points, and let n1 be the minimal branching index, then n1 ≤ 2g + 1.

Proof. By (3), we see

2(g − 1) = n

(

1−

(

1

n1

+
1

n2

+
1

n3

))

= n− (k1 + k2 + k3).

From the above equation, we have

n = 2g + (k1 + k2 + k3)− 2 ≥ 2g + 1. (5)

On the other hand, by the assumption n1 ≤ n2 ≤ n3, we see 1/n3 ≤ 1/n2 ≤ 1/n1.

It follows that 1− (1/n1 + 1/n2 + 1/n3) ≥ 1− 3/n1, and by the equation (3),

2(g − 1) = n

(

1−

(

1

n1
+

1

n2
+

1

n3

))

≥ n

(

1−
3

n1

)

.

If

(

1−
3

n1

)

≤ 0, then n1 ≤ 3. Since g ≥ 2, we see 2g + 1 ≥ n1. If

(

1−
3

n1

)

> 0,

by the equation (5), we have

2(g − 1) ≥ n

(

1−
3

n1

)

≥ (2g + 1)

(

1−
3

n1

)

.

Therefore 2g + 1 ≥ n1.

By Theorem 3.2, we have

n ≤
2n1

n1 − 1
g + n1.

11



By this inequality, we see

(4g + 2)− n ≥ (4g + 2)−

(

2n1

n1 − 1
g + n1

)

=

(

4−
2n1

n1 − 1

)

g + (2− n1)

=
2n1 − 4

n1 − 1
g + (2− n1) = (n1 − 2)

(

2

n1 − 1
g − 1

)

,

Since the branching index is at least 2, n1−2 ≥ 0. By Lemma 5.2 we have n1 ≤ 2g+1,

that is, 2
n1−1

g − 1 ≥ 0. By the above inequality, we conclude that 4g + 2 ≥ n.
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