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SEIDEL ELEMENTS AND MIRROR TRANSFORMATIONS FOR

TORIC STACKS

FENGLONG YOU

Abstract. We give a precise relation between the mirror transformation and
the Seidel elements for weak Fano toric Deligne-Mumford stacks. Our result
generalizes the corresponding result for toric varieties proved by González and
Iritani in [5].
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1. Introduction

In [5], González and Iritani gave a precise relation between the mirror map and
the Seidel elements for a smooth projective weak Fano toric variety X . The goal
of this paper is to generalize the main theorem of [5] to a smooth projective weak
Fano toric Deligne-Mumford stack X .

Let X be a smooth projective weak Fano toric Deligne-Mumford stack, the mirror
theorem can be stated as an equality between the I-function and the J-function via
a change of coordinates, called mirror map (or mirror transformation). We refer to
[3] and section 4.1 of [6] for further discussions.

Key words and phrases. Seidel elements, mirror transformations, Batyrev relations, Weak
Fano, toric Deligne-Mumford stacks.
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Let Y be a monotone symplectic manifold. For a loop λ in the group of
Hamiltonian symplectomorphisms on Y , Seidel [10] constructed an invertible el-
ement S(λ) in (small) quantum cohomology counting sections of the associated
Hamiltonian Y -bundle Eλ → P1. The Seidel element S(λ) defines an element in
Aut(QH(Y )) via quantum multiplication and the map λ 7→ S(λ) gives a represen-
tation of π1(Ham(Y )) on QH(Y ). The construction was extended to all symplectic
manifolds by McDuff and Tolman in [9]. Let D1, . . . , Dm be the classes in H2(X)
Poincaré dual to the toric divisors. When the loop λ is a circle action, McDuff and
Tolman [9] considered the Seidel element S̃j associated to an action λj that fixes
the toric divisor Dj . The definition of Seidel representation and Seidel element
were extended to symplectic orbifolds by Tseng-Wang in [11].

Given a circle action on X (resp. X ), the Seidel element in [5] (resp. [11]) is de-
fined using the small quantum cohomology ring. In this paper, we need to define it,
for smooth projective Deligne-Mumford stack, with deformed quantum cohomology
to include the bulk deformations. For weak Fano toric Deligne-Mumford stack, the

mirror theorem in [6] shows that the mirror map τ(y) ∈ H≤2
orb(X ), therefore, we will

only need bulk deformations with τ ∈ H≤2
orb(X ).

We consider the Seidel element S̃j associated to the toric divisor Dj as well as

the Seidel element S̃m+j corresponding to the box element sj . The Seidel element

in definition 2.2 shows that S = q0S̃ is a pull-back of a coefficient of the J-function
JEj

of the associated orbifiber bundle Ej , hence we can use the mirror theorem for

Ej to calculate S̃j when Ej is weak Fano.

We extend the definition of the Batyrev element D̃j to weak Fano toric Deligne-
Mumford stacks via partial derivatives of the mirror map τ(y). As analogues of the
Seidel elements in B-model, the Batyrev elements can be explicitly computed from
the I-function of X . The following theorem states that the Seidel elements and the
Batyrev elements only differ by a multiplication of a correction function.

Theorem 1.1. Let X be a smooth projective toric Deligne-Mumford stack with
ρS ∈ cl

(

CS(X )
)

.

(i) the Seidel element S̃j associated to the toric divisor Dj is given by

S̃j (τ(y)) = exp
(

−g
(j)
0 (y)

)

D̃j(y)

where τ(y) is the mirror map of X and the function g
(j)
0 is given explicitly

in (40);

(ii) the Seidel element S̃m+j corresponding to the box element sj is given by

S̃m+j (τ(y)) = exp
(

−g
(m+j)
0

)

y−D
S∨
m+j D̃m+j(y),

where τ(y) is the mirror map of X and the function g
(m+j)
0 is given ex-

plicitly in (52).

It appears that the correction coefficients in the above theorem coincide with
the instanton corrections in theorem 1.4 in [2]. This phenomenon also indicates the
deformed quantum cohomology of the toric Deligne-Mumford stack X is isomorphic
to the Batyrev ring given in [6].
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2. Seidel Elements and J-functions

2.1. Generalities. In this section, we will fix our notation and construct the Seidel
elements of smooth projective Deligne-Mumford stacks using τ -deformed quantum
cohomology.

Let X be a smooth projective Deligne-Mumford stack, equipped with a C×

action.

Definition 2.1. The associated orbifiber bundle of the C×-action is the X -bundle
over P1

E := X ×
(

C2 \ {0}
)

/C× → P1,

where C× acts on C2 \ {0} via the standard diagonal action.

Let φ1, . . . , φN be a basis for the orbifold cohomology ringH∗
orb(X ) := H∗(IX ;Q)

of X , where IX is the inertia stack of X . Let φ1, . . . , φN be the dual basis
of φ1, . . . , φN with respect to the orbifold Poincaré pairing. Furthermore, let

φ̂1, . . . , φ̂M denote a basis for the orbifold cohomology H∗
orb(E) := H∗(IE ;Q) of

E . Let φ̂1, . . . , φ̂M be the dual basis of φ̂1, . . . , φ̂M with respect to the orbifold
Poincaré pairing.

We will use X to denote the coarse moduli space of X and use E to denote the
coarse moduli space of E . Then the C× action on X descends to the C× action on X
with E being the associated bundle. Following [8] and [5], there is a (non-canonical)
splitting

H∗(E ;Q) ∼= H∗(E;Q) ∼= H∗(X ;Q)⊗H∗(P1;Q) ∼= H∗(X ;Q)⊗H∗(P1;Q).

According to [5], there is a unique C×-fixed component Fmax ⊂ XC
×

such that
the normal bundle of Fmax has only negative C×-weights. Let σ0 be the section
associated to a fixed point in Fmax. Following [5], there is a splitting defined by
this maximal section.
(1)
H2(E ;Z)/tors ∼= H2(E;Z)/tors ∼= Z[σ0]⊕(H2(X,Z)/tors) ∼= Z[σ0]⊕(H2(X ,Z)/tors).

Let NE(X) ⊂ H2(X ;R) denote the Mori cone, i.e. the cone generated by
effective curves and set

NE(X)Z := NE(X) ∩ (H2(X,Z)/tors).

Then, by lemma 2.2 of [5], we have

(2) NE(E)Z = Z≥0[σ0] +NE(X)Z.

Let Hsec
2 (E;Z) be the affine subspace of H2(E,Z)/tors which consists of the classes

that project to the positive generator of H2(P
1;Z), we set

NE(E)secZ := NE(E)Z ∩Hsec
2 (E;Z),

then we obtain

(3) NE(E)secZ = [σ0] +NE(X)Z.
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We choose a nef integral basis {p1, . . . , pr} of H2(X ;Q), then there are unique
lifts of p1, . . . , pr in H2(E ;Q) which vanish on [σ0]. By abuse of notation, we also
denote these lifts as p1, . . . , pr, these lifts are also nef. Let p0 be the pullback of
the positive generator of H2(P1;Z) in H2(E ;Q). Therefore, {p0, p1, . . . , pr} is an
integral basis of H2(E ;Q).

Let q0, q1, . . . , qr be the Novikov variables of E dual to p0, p1, . . . , pr and q1, . . . , qr
be the Novikov variables of X dual to p1, . . . , pr. We denote the Novikov ring of X
and the Novikov ring of E by

ΛX := Q[[q1, . . . , qr]] and ΛE := Q[[q0, q1, . . . , qr]],

respectively. For each d ∈ NE(X)Z, we write

qd := q
〈p1,d〉
1 · · · q〈pr,d〉r ∈ ΛX ;

and for each β ∈ NE(E)Z, we write

qβ := q
〈p0,β〉
0 q

〈p1,β〉
1 · · · q〈pr ,β〉r ∈ ΛE .

The τ -deformed orbifold quantum product is defined as follows:

(4) α •τ β =
∑

d∈NE(X)Z

∑

l≥0

N
∑

k=1

1

l!
〈α, β, τ, . . . , τ, φk〉

X
0,l+3,dq

dφk,

the associated quantum cohomology ring is denoted by

QHτ (X ) := (H(X )⊗Q ΛX , •τ ).

Definition 2.2. The Seidel element of X is the class

(5) S(τ̂) :=
∑

α

∑

β∈NE(E)sec
Z

∑

l≥0

1

l!
〈1, τ̂tw, . . . , τ̂tw, ı∗φαψ〉

E
0,l+2,βφ

αe〈τ̂0,2,β〉,

in QHτ (X )⊗ΛX
ΛE . Here ı : X → E is the inclusion of a fiber, and

ı∗ : H∗(IX ;Q) → H∗+2(IE ;Q)

is the Gysin map. Moreover,

e〈τ̂0,2,β〉 = qβ = q
〈p0,β〉
0 · · · q〈pr,β〉r ,

where

τ̂0,2 =
r
∑

a=0

palogqa ∈ H2(E) and τ̂ = τ̂0,2 + τ̂tw ∈ H≤2
orb(E).

The Seidel element can be factorized as

(6) S(τ̂ ) = q0S̃(τ̂ ), with S̃(τ̂ ) ∈ QHτ (X ).

2.2. J-functions. We will explain the relation between the Seidel element and the
J-function of the associated bundle E .

Definition 2.3. The J-function of E is the cohomology valued function

(7)

JE(τ̂ , z) = eτ̂0,2/z



1 +
∑

α

∑

(β,l) 6=(0,0),β∈NE(E)Z

e〈τ̂0,2,β〉

l!
〈1, τ̂tw, . . . , τ̂tw,

φ̂α
z − ψ

〉E0,l+2,βφ̂
α



 ,

where φ̂α

z−ψ =
∑

n≥0

z−1−nφ̂αψ
n.
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Note that when n = 0, we will have

(i)
∑

α
〈1, τ̂tw, . . . , τ̂tw, φ̂α〉

E
0,l+2,βφ̂

α = 0, for (l, β) 6= (1, 0);

(ii)
∑

α
〈1, τ̂tw, . . . , τ̂tw, φ̂α〉

E
0,l+2,βφ̂

α = τ̂tw, for (l, β) = (1, 0).

The J-function can be expanded in terms of powers of z−1 as follows:

(8)

JE(τ̂ , z) = e

r∑

a=0

palogqa/z

(

1 + z−1τ̂tw + z−2
∞
∑

n=0

Fn(q1, . . . , qr; τ̂ )q
n
0 +O(z−3)

)

,

where

(9) Fn(q1, . . . , qr; τ̂) =

M
∑

α=1

∑

d∈NE(X)Z

∑

l≥0

1

l!
〈1, τ̂tw, . . . , τ̂tw, φ̂αψ〉

E
0,l+2,d+nσ0

qdφ̂α

Proposition 2.4. The Seidel element corresponding to the C× action on X is given
by

(10) S(τ̂ ) = ı∗ (F1(q1, . . . , qr; τ̂ )q0) .

Proof. The proof in here is identical to the proof given in proposition 2.5 of [5] for
smooth projective varieties:

Using the duality identity

M
∑

α=1

φ̂α ⊗ ı∗φ̂α =

N
∑

α=1

ı∗φα ⊗ φα,

we can see that

ı∗F1(q1, . . . , qr; τ̂) =

N
∑

α=1

∑

d∈NE(X)Z

∑

l≥0

1

l!
〈1, τ̂tw, . . . , τ̂tw, ı∗φαψ〉

E
0,l+2,d+σ0

qdφα.

Hence, the conclusion follows, i.e.

S(τ̂ ) = ı∗(F1(q1, . . . , qr; τ̂ )q0).

�

3. Seidel elements corresponding to toric divisors

3.1. A Review of Toric Deligne-Mumford stacks. In this section, we will
define toric Deligne-Mumford stacks following the construction of [1] and [6].

A toric Deligne-Mumford stack is defined by a stacky fan Σ = (N,Σ, β), where
N is a finitely generated abelian group, Σ ⊂ NQ = N⊗Z Q is a rational simplicial
fan, and β : Zm → N is a homomorphism. We assume β has finite cokernel and
the rank of N is n. The canonical map N → NQ generates the 1-skeleton of the
fan Σ. Let b̄i be the image of bi under this canonical map, where bi is the image
under β of the standard basis of Zm. Let L ⊂ Zm be the kernel of β. Then the fan
sequence is the following exact sequence

(11) 0 −→ L −→ Zm
β

−→ N.
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Let β∨ : (Z∗)m → L∨ be the Gale dual of β in [1], where L∨ := H1(Cone(β)∗) is
an extension of L∗ = Hom(L,Z) by a torsion subgroup. The divisor sequence is
the following exact sequence

(12) 0 −→ N∗ β∗

−→ (Z∗)m
β∨

−→ L∨.

By applying HomZ(−,C
×) to the dual map β∨, we have a homomorphism

α : G→ (C×)m, where G := HomZ(L
∨,C×),

and we let G act on Cm via this homomorphism.
The collection of anti-cones A is defined as follows:

A :=







I :
∑

i6∈I

R≥0b̄i ∈ Σ







.

Let U denote the open subset of Cm defined by A:

U := Cm \ ∪I 6∈AC
I ,

where

CI = {(z1, . . . , zm) : zi = 0 for i 6∈ I} .

Definition 3.1. Following [6], the toric Deligne-Mumford stack X is defined as the
quotient stack

X := [U/G].

Remark 3.2. The toric variety X associated to the fan Σ is the coarse moduli
space of X [1].

Definition 3.3 ([6]). Given a stacky fan Σ = (N,Σ, β), we define the set of box
elements Box(Σ) as follows

Box(Σ) =:







v ∈ N : v̄ =
∑

k 6∈I

ck b̄k for some 0 ≤ ck < 1, I ∈ A







We assume that Σ is complete, then the connected components of the inertia
stack IX are indexed by the elements of Box(Σ) (see [1]). Moreover, given v ∈
Box(Σ), the age of the corresponding connected component of IX is defined by
age(v) :=

∑

k 6∈I

ck.

The Picard group Pic(X ) of X can be identified with the character group
Hom(G,C×). Hence

(13) L∨ = Hom(G,C×) ∼= Pic(X ) ∼= H2(X ;Z).

We can also use the extended stacky fans introduced by Jiang [7] to define the
toric Deligne-Mumford stacks. Given a stacky fan Σ = (N,Σ, β) and a finite set

S = {s1, . . . , sl} ⊂ NΣ := {c ∈ N : c̄ ∈ |Σ|} .

The S-extended stacky fan is given by (N,Σ, βS), where βS : Zm+l → N is defined
by:

(14) βS(ei) =

{

bi 1 ≤ i ≤ m;
si−m m+ 1 ≤ i ≤ m+ l.
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Let LS be the kernel of βS : Zm+l → N. Then we have the following S-extended
fan sequence

(15) 0 −→ LS −→ Zm+l βS

−→ N.

By the Gale duality, we have the S-extended divisor sequence

(16) 0 −→ N∗ β∗

−→ (Z∗)m+l β
S∨

−→ LS∨,

where LS∨ := H1(Cone(βS)∗).

Assumption 3.4. In the rest of the paper, we will assume the set

{v ∈ Box(Σ); age(v) ≤ 1} ∪ {b1 . . . , bm}

generates N over Z. And we choose the set

S = {s1, . . . , sl} ⊂ Box(Σ)

such that the set {b1, . . . , bm, s1, . . . , sl} generates N over Z and age(sj) ≤ 1 for
1 ≤ j ≤ l.

Let DS
i be the image of the standard basis of (Z∗)m+l under the map βS∨, then

there is a canonical isomorphism

(17) LS∨ ⊗Q ∼= (L∨ ⊗Q)

m+l
⊕

i=m+1

QDS
i ,

which can be constructed as follows ([6]):
Since Σ is complete, for m < j ≤ m + l, the box element sj−m is contained in

some cone in Σ. Namely,

sj−m =
∑

i6∈IS
j

cjibi in N⊗Q, cji ≥ 0, ∃ISj ∈ AS ,

where ISj is the ”anticone” of the cone containing sj−m.
By the S-extended fan sequence 15 tensored with Q, we have the following short

exact sequence

0 −→ LS ⊗Q −→ Qm+l βS

−→ N⊗Q −→ 0.

Hence, there exists a unique DS∨
j ∈ LS ⊗Q such that

(18) 〈DS
i , D

S∨
j 〉 =







1 i = j;
−cji i 6∈ ISj ;
0 i ∈ ISj \ {j}.

These vectors DS∨
j define a decomposition

LS∨ ⊗Q = Ker
((

DS∨
m+1, . . . , D

S∨
m+l

)

: LS∨ ⊗Q → Ql
)

⊕

m+l
⊕

j=m+1

QDS
j .

We identify the first factor Ker(DS∨
m+1, . . . , D

S∨
m+l) with L∨ ⊗Q. Via this decompo-

sition, we can regard H2(X ,Q) ∼= L∨ ⊗Q as a subspace of LS∨ ⊗Q.
Let Di be the image of DS

i in L∨ ⊗Q under this decomposition. Then

Di = 0, for m+ 1 ≤ i ≤ m+ l.
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Let AS be the collection of S-extended anti-cones, i.e.

AS :=







IS :
∑

i6∈IS

R≥0βS(ei) ∈ Σ







.

Note that

{s1, . . . , sl} ⊂ IS , ∀IS ∈ AS .

By applying HomZ(−,C
×) to the S-extended dual map β∨, we have a homo-

morphism

αS : GS → (C×)m+l, where GS := HomZ(L
S∨,C×).

We define U to be the open subset of Cm+l defined by AS :

US := Cm+l \ ∪IS 6∈ASCI
S

= U × (C×)l,

where

CI
S

=
{

(z1, . . . , zm+l) : zi = 0 for i 6∈ IS
}

.

Let GS act on US via αS . Then we obtain the quotient stack [US/GS ]. Jiang [7]
showed that

[US/GS ] ∼= [U/G] = X .

3.2. Mirror theorem for toric stacks. In [3], Coates-Corti-Iritani-Tseng defined
the S-extended I-function of a smooth toric Deligne-Mumford stack X with pro-
jective coarse moduli space and proved that this I-function is a point of Givental’s
Lagrangian cone L for the Gromov-Witten theory of X . In this paper, we will only
need this theorem for the weak Fano case. In this case, the mirror theorem will
take a particularly simple form which can be stated as an equality of I-function
and J-function via a change of variables, called mirror map.

To state the mirror theorem for weak Fano toric Deligne-Mumford stack, we
need the following definitions.

We define the S-extended Kähler cone CSX as

CSX := ∩IS∈ASΣi∈ISR>0D
S
i

and the Kähler cone CX as

CX := ∩I∈AΣi∈IR>0Di.

Let pS1 , . . . , p
S
r+l be an integral basis of LS∨, where r = m − n, such that pSi is in

the closure cl(CSX ) of the S-extended Kähler cone CSX for all 1 ≤ i ≤ r + l and

pSr+1, . . . , p
S
r+l are in

m+l
∑

i=m+1

R≥0D
S
i . We denote the image of pSi in L∨ ⊗ R by pi,

therefore p1, . . . , pr are nef and pr+1, . . . , pr+l are zero. We define a matrix (mia)
by

DS
i =

r+l
∑

a=1

miap
S
a , mia ∈ Z.

Then the class Di of toric divisor is given by

Di =
r
∑

a=1

miapa.
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Definition 3.5 ([6], Section 3.1.4). A toric Deligne-Mumford stack X is called
weak Fano if the first Chern class ρ satisfies

ρ = c1(TX ) =

m
∑

i=1

Di ∈ cl(CX ),

where CX is the Kähler cone of X .

We will need a slightly stronger condition:

ρS := DS
1 + . . .+DS

m+l ∈ cl(CSX ),

where CSX is the S-extended Kähler cone. By lemma 3.3 of [6], we can see that
ρS ∈ cl(CSX ) implies ρ ∈ cl(CX ). Moreover, under assumption 3.4, we will have

ρS ∈ cl(CSX ) if and only if ρ ∈ cl(CX ).

For a real number r, let ⌈r⌉, ⌊r⌋ and {r} be the ceiling, floor and fractional part
of r respectively.

Definition 3.6. We define two subsets K and Keff of LS ⊗Q as follows:

K :=
{

d ∈ LS ⊗Q; {i ∈ {1, . . . ,m+ l}; 〈DS
i , d〉 ∈ Z} ∈ AS

}

,

Keff :=
{

d ∈ LS ⊗Q; {i ∈ {1, . . . ,m+ l}; 〈DS
i , d〉 ∈ Z≥0} ∈ AS

}

.

Remark 3.7. We will use KEj
and Keff,Ej

to denote the corresponding sets for the
associated bundle Ej , and use KX and Keff,X to denote the corresponding sets for
X .

Definition 3.8 ([6], Section 3.1.3). The reduction function v is defined as follows:

v : K −→ Box(Σ)

d 7−→

m
∑

i=1

⌈〈DS
i , d〉⌉bi +

l
∑

j=1

⌈〈DS
m+j, d〉⌉sj

By the S-extended fan exact sequence, we have

m
∑

i=1

〈DS
i , d〉bi +

l
∑

j=1

〈DS
m+j , d〉sj = 0 ∈ N⊗Q.

Moreover, by the definition of K, we have

〈DS
m+j , d〉 ∈ Z, for all d ∈ K and 1 ≤ j ≤ l.

Hence,

v(d) =
m
∑

i=1

{−〈DS
i , d〉}bi +

l
∑

j=1

{−〈DS
m+j, d〉}sj =

m
∑

i=1

{−〈DS
i , d〉}bi.

By abuse of notation, we use Di to denote the divisor {zi = 0} ⊂ X and the
cohomology class in H2(X ;Z) ∼= L∨, for 1 ≤ i ≤ m.

We consider the C×-action fixing a toric divisor Dj , 1 ≤ j ≤ m, the action of
C× on Cm is given by

(z1, . . . , zm) 7→ (z1, . . . , t
−1zj, . . . , zm), t ∈ C×.

We can extend this to the diagonal C×-action on U × (C2 \ {0}) by

(z1, . . . , zm, u, v) 7→ (z1, . . . , t
−1zj, . . . , zm, tu, tv), t ∈ C×.
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The associated bundle Ej of the C×-action on X is given by

Ej = U × (C2 \ {0})/G× C×.

We can also use the S-extended stacky fan of X to define Ej :

Ej = US × (C2 \ {0})/GS × C×.

Therefore Ej is also a toric Deligne-Mumford stack. We can identify H2(Ej ;Z) with
the lattice of the characters of G× C×:

(19) H2(Ej ;Z) ∼= L∨ ⊕ Z ∼= H2(X ;Z) ⊕ Z.

Moreover, we have the divisor sequence

0 → N∗ ⊕ Z → (Z∗)m+2 → L∨ ⊕ Z.

And the S-extended divisor sequence

0 → N∗ ⊕ Z → (Z∗)m+l+2 → LS∨ ⊕ Z.

Let D̂S
i be the image of the standard basis of (Z∗)m+l+2 in LS∨ ⊕ Z. Then

(20) D̂S
i = (DS

i , 0), for i 6= j; D̂S
j = (DS

j ,−1); D̂S
m+l+1 = D̂S

m+l+2 = (0, 1).

And,

(21) D̂i = (Di, 0), for i 6= j; D̂j = (Dj ,−1); D̂m+1 = D̂m+2 = (0, 1).

The fan Σj of Ej is a rational simplicial fan contained in NQ ⊕ Q. The 1-skeleton
is given by

(22) b̂i = (bi, 0), for 1 ≤ i ≤ m; b̂m+1 = (0, 1); b̂m+2 = (bj ,−1).

We set

p0 := (0, 1) = D̂m+1 = D̂m+2 ∈ H2(Ej ;Q),

then a nef integral basis {p1, . . . , pr} of H2(X ;Q) can be lifted to a nef integral
basis {p0, p1, . . . , pr} of H2(Ej ;Q), under the splitting (19). Let pS1 , . . . , p

S
r+l be an

integral basis of LS∨, such that pi is the image of pSi in L∨⊗R. Let pS0 , p
S
1 , . . . , p

S
r+l

be an integral basis of LS∨ ⊕ Z and p0 is the image of

pS0 = D̂S
m+l+1 = D̂S

m+l+2

in (L∨ ⊕ Z) ⊗ R. Note that pr+1, . . . , pr+l are zero. We have

CSEj
= CSX + R>0p

S
0 , ρSEj

= ρSX + pS0 .

The following result is straightforward.

Lemma 3.9. If ρSX ∈ cl(CSX ), then ρSEj
∈ cl(CSEj

), for 1 ≤ j ≤ m.

Definition 3.10. The I-function of X is the H∗
orb(X )-valued function:

(23)

IX (y, z) = e

r∑

i=1

pilogyi/z ∑

d∈Keff,X

m+l
∏

i=1

(∏∞
k=⌈〈DS

i
,d〉⌉

(

Di +
(

〈DS
i , d〉 − k

)

z
)

∏∞
k=0

(

Di +
(

〈DS
i , d〉 − k

)

z
)

)

yd1v(d),
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where yd = y
〈pS1 ,d〉
1 · · · y

〈pSr+l,d〉

r+l . Similarly, The I-function of E is the H∗
orb(E)-valued

function:
(24)

IEj
(y, z) = e

r∑

i=0

pilogyi/z ∑

β∈Keff,Ej

m+l+2
∏

i=1





∏∞
k=⌈〈D̂S

i
,β〉⌉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏∞
k=0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)



 yβ1v(β),

where yβ = y
〈pS0 ,β,〉
0 y

〈pS1 ,β〉
1 · · · y

〈pSr+l,β〉

r+l .

Following section 4.1 of [6], The I-functions of X and Ej can be rewritten in the
form:

(25)

IX (y, z) = e

r∑

i=1

pilogyi/z ∑

d∈KX

m+l
∏

i=1

(∏∞
k=⌈〈DS

i
,d〉⌉

(

Di +
(

〈DS
i , d〉 − k

)

z
)

∏∞
k=0

(

Di +
(

〈DS
i , d〉 − k

)

z
)

)

yd1v(d),

and
(26)

IEj
(y, z) = e

r∑

i=0

pilogyi/z ∑

β∈KEj

m+l+2
∏

i=1





∏∞
k=⌈〈D̂S

i
,β〉⌉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏∞
k=0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)



 yβ1v(β),

respectively, because the summand with d ∈ K \ Keff vanishes. We refer to [6] for
more details.

Theorem 3.11 ([6], Conjecture 4.3). Assume that ρS ∈ cl(CSX ). Then the I-
function and the J-function satisfy the following relation:

(27) IX (y, z) = JX (τ(y), z)

where

(28) τ(y) = τ0,2(y) + τtw(y) =
r
∑

i=1

(logyi)pi +
m+l
∑

j=m+1

yD
S∨
j Dj + h.o.t. ∈ H≤2

orb(X ),

with

τ0,2(y) ∈ H2(X ), τtw(y) ∈ H≤2
orb(X ) \H2(X ),

Dj =
∏

i6∈Ij

D
⌊cji⌋
i 1v(DS∨

j
) ∈ H∗

orb(X ).

and h.o.t. stands for higher order terms in z−1. Furthermore, τ(y) is called the

mirror map and takes values in H≤2
orb(X ).

For τ0,2(y) =
r
∑

a=1
palogqa ∈ H2(X ), we have

logqi = logyi + gi(y1, . . . , yr+l), for i = 1, . . . , r,

where gi is a (fractional) power series in y1, . . . , yr+l which is homogeneous of degree
zero with respect to the degree degyd = 2〈ρSX , d〉.

By lemma 3.9, under the assumption of theorem 3.11, we can also apply the
mirror theorem to the associated bundle Ej, hence we have

IEj
(y, z) = JEj

(τ (j)(y), z),
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where

τ (j)(y) = τ
(j)
0,2 + τ

(j)
tw (y) ∈ H2(Ej)⊕

(

H≤2
orb(Ej) \H

2(Ej)
)

Since τ
(j)
0,2 (y) =

r
∑

a=0
palogqa ∈ H2(Ej), therefore

logqi = logyi + g
(j)
i (y0, . . . , yr+l), for i = 0, . . . , r,

where g
(j)
i is a (fractional) power series in y0, y1, . . . , yr+l which is homogeneous of

degree zero with respect to the degree degyβ = 2〈ρSEj
, β〉.

3.3. Seidel elements and mirror maps.

Proposition 3.12. The function g
(j)
i does not depend on y0 and we have

g
(j)
i (y0, . . . , yr+l) = gi(y1, . . . , yr+l), for i = 1, . . . , r.

Proof. The functions gi is the coefficients of z−1pi in the expansion of IX :

IX (y, z) = e

r∑

i=1

pilogyi/z

(

1 + z−1

(

r
∑

i=1

gi(y)pi + τtw

)

+O(z−2)

)

.

The functions g
(j)
i is the coefficients of z−1pi in the expansion of IEj

:

IEj
(y, z) = e

r∑

i=0

pilogyi/z

(

1 + z−1

(

r
∑

i=0

g
(j)
i (y)pi + τ

(j)
tw

)

+O(z−2)

)

.

Following the proof of lemma 3.5 of [5], we obtain the conclusion of this proposition.
�

We will prove τ
(j)
tw is also independent from y0. To begin with, the following

lemma implies that τ
(j)
tw (y) is an (integer) power series in y0.

Lemma 3.13. For any β ∈ KEj
, we have 〈pS0 , β〉 ∈ Z. Furthermore, for any

β ∈ Keff,Ej
, we have 〈pS0 , β〉 ∈ Z≥0.

Proof. Any cone σ ∈ Σj containing both b̂m+1 and b̂m+2 should also contain b̂j, this

is impossible since the fan Σj is simplicial and b̂m+1, b̂m+2 and b̂j lie in the same

plane. Hence, by the definition of KEj
(resp. Keff,Ej

), at least one of 〈D̂S
m+1, β〉 and

〈D̂S
m+2, β〉 has to be integer (resp. non-negative integer), for any β ∈ KEj

(resp.
β ∈ Keff,Ej

). On the other hand, we have,

〈pS0 , β〉 = 〈D̂S
m+1, β〉 = 〈D̂S

m+2, β〉.

Therefore, we must have 〈pS0 , β〉 ∈ Z (resp. 〈pS0 , β〉 ∈ Z≥0). �

As a direct consequence of the above lemma, τ
(j)
tw (y) can only contain non-

negative integer power of y0.

Proposition 3.14. Let τ
(j)
tw (y) =

∞
∑

n=0
H

(j)
n (y)yn0 , where H

(j)
n (y) is a (fractional)

power series in y1, . . . , yn. Then

H(j)
n (y) = 0 for n ≥ 1,

i.e. τ
(j)
tw (y) is independent from y0. Moreover, we have

τ
(j)
tw (y) = τtw(y).
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Proof. Recall τ
(j)
tw (y) is the coefficient of z−1 in

(29)

e
−

r∑

i=0

pilogyi/z
IEj

(y, z) =
∑

β∈Keff,Ej

m+l+2
∏

i=1





∏∞
k=⌈〈D̂S

i ,β〉⌉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏∞
k=0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)



 yβ1v(β),

valued in H≤2
orb(Ej) \H

2(Ej). Hence, we only need to consider terms with v(β) 6= 0,
or, equivalently, v(d) 6= 0, where d is the natural projection of β on to Keff,X .

Therefore, it remains to examine the product factor:

m+l+2
∏

i=1





∏∞
k=⌈〈D̂S

i
,β〉⌉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏∞
k=0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)





=

∏

i:〈D̂S
i
,β〉<0

∏

〈D̂S
i
,β〉≤k<0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏

i:〈D̂S
i
,β〉>0

∏

0≤k<〈D̂S
i
,β〉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

=Cβz
−(

∑m+l+2

i=1
⌈〈D̂S

i ,β〉⌉+#{i:〈D̂S
i ,β〉∈Z<0})

∏

i:〈D̂S
i ,β〉∈Z<0

D̂i + h.o.t.,(30)

where
(31)

Cβ =
∏

i:〈D̂S
i
,β〉<0

∏

〈D̂S
i
,β〉<k<0

(

〈D̂S
i , β〉 − k

)

∏

i:〈D̂S
i
,β〉>0

∏

0≤k<〈D̂S
i
,β〉

(

〈D̂S
i , β〉 − k

)−1

.

By assumption, we need to have

m+l+2
∑

i=1

⌈〈D̂S
i , β〉⌉ ≥

m+l+2
∑

i=1

〈D̂S
i , β〉 ≥ 0.

The equality holds if and only if

〈D̂S
i , β〉 ∈ Z, for all 1 ≤ i ≤ m+ l + 2; and

m+l+2
∑

i=1

〈D̂S
i , β〉 = 0.

However, this would imply v(β) = 0, hence we cannot have
∑m+l+2

i=1 ⌈〈D̂S
i , β〉⌉ = 0.

Therefore, the expansion (30) would contribute to H
(j)
n only when

m+l+2
∑

i=1

⌈〈D̂S
i , β〉⌉ = 1 and #{i : 〈D̂S

i , β〉 ∈ Z<0} = 0.

In this case, if 〈pS0 , β〉 ≥ 1, then

m+l+2
∑

i=1

⌈〈D̂S
i , β〉⌉ ≥

m+l
∑

i=1

⌈〈DS
i , d〉⌉+ 1,

therefore, we have

0 ≥

m+l
∑

i=1

⌈〈DS
i , d〉⌉ ≥

m+l
∑

i=1

〈DS
i , d〉 = 0.

This implies, when 〈pS0 , β〉 ≥ 1, we must have

〈DS
i , d〉 ∈ Z, for 1 ≤ i ≤ m+ l.
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It is a contradiction, since τ̂tw ∈ H≤2
orb(Ej) \H

2(Ej) implies v(d) 6= 0. Hence

H(j)
n = 0 for all n > 0

and τ
(j)
tw (y) is independent from y0. Moreover, by the expression of I-functions and

the identity

ı∗IEj

∣

∣

y0=0
= IX ,

we have τ
(j)
tw (y) = τtw(y).

�

As a direct consequence of the above lemma, we can use the following notation
for the Seidel element

(32) S̃j(τ(y)) := S̃j(τ
(j)(y)),

since S̃j(τ
(j)(y)) does not depend on y0 or q0.

3.4. Seidel Elements in terms of I-functions. We can rewrite the I-function
of the associated bundle Ej as follows:
(33)

e

r∑

i=0

pilogyi/z

(

1 + z−1

(

r
∑

i=0

g
(j)
i (y)pi + τ

(j)
tw (y)

)

+ z−2

(

2
∑

n=0

G(j)
n (y)yn0

)

+O(z−3)

)

.

Then, logqi = logyi + g
(j)
i (y) implies

(34) IEj
(y, z) = e

r∑

i=0

pilogqi/z

(

1 + z−1τ
(j)
tw (y) + z−2

(

2
∑

n=0

G(j)
n (y)yn0

)

+O(z−3)

)

,

where G
(j)
n (y) is a (fractional) power series in y1, . . . , yr+l taking values in H∗

orb(Ej).

By proposition (2.4), the Seidel element S̃j(τ
(j)(y)) is the coefficient of q0/z

2 in

exp

(

−
r
∑

i=0

pilogqi/z

)

JEj
(τ (j)(y), z),

hence JEj
(τ (j)(y), z) = IEj

(y, z) and logq0 = logy0 + g
(j)
0 (y) imply the following

result:

Theorem 3.15. The Seidel element Sj associated to the toric divisor Dj is given
by

(35) Sj(τ
(j)(y)) = ı∗(G

(j)
1 (y)y0).

Furthermore, we have

(36) S̃j(τ(y)) = S̃j(τ
(j)(y)) = exp(−gj0(y))ı

∗(G
(j)
1 (y)).
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3.5. Computation of g
(j)
0 . The computation is essentially the same as the proof

of lemma 3.16 of [5]. Consider the product factors in IEj
:

m+l+2
∏

i=1





∏∞
k=⌈〈D̂S

i
,β〉⌉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏∞
k=0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)



 yβ1v(β),

these factors contribute to g
(j)
i if

v(β) =

m+l+2
∑

i=1

{−〈D̂S
i , β〉}b̂i = 0,

then, by the definition of Keff, we must have

〈D̂S
i , β〉 ∈ Z, for all 1 ≤ i ≤ m+ l+ 2.

In this case, the product factors can be rewritten as

m+l+2
∏

i=1





∏∞
k=⌈〈D̂S

i
,β〉⌉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏∞
k=0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)



 yβ1v(β)

=
m+l+2
∏

i=1

∏0
k=−∞

(

D̂i + kz
)

∏〈D̂S
i
,β〉

k=−∞

(

D̂i + kz
)yβ

=



Cβz
−

∑m+l+2

i=1
〈D̂S

i ,β〉−#{i:〈D̂S
i ,β〉<0}

∏

i:〈D̂S
i
,β〉<0

D̂i + h.o.t.



 yβ ,(37)

where h.o.t. stands for higher order terms in z−1 and

(38) Cβ =
∏

i:〈D̂S
i
,β〉<0

(−1)−〈D̂S
i ,β〉−1

(

−〈D̂S
i , β〉 − 1

)

!
∏

i:〈D̂S
i
,β〉≥0

(

〈D̂S
i , β〉!

)−1

.

They contribute to the z−1 term if

m+l+2
∑

i=1

〈D̂S
i , β〉+#{i : 〈D̂S

i , β〉 < 0} ≤ 1.

Since we assume ρSX ∈ cl(CSX ), hence ρSEj
∈ cl(CSEj

). So it has to be the following

three cases:

•

{
∑m+l+2

i=1 〈D̂S
i , β〉 = 0

#{i : 〈D̂S
i , β〉 ∈ Z<0} = 0

•

{
∑m+l+2

i=1 〈D̂S
i , β〉 = 1

#{i : 〈D̂S
i , β〉 ∈ Z<0} = 0

•

{
∑m+l+2

i=1 〈D̂S
i , β〉⌉ = 0

#{i : 〈D̂S
i , β〉 ∈ Z<0} = 1

.

In the first case, we have 〈D̂S
i , β〉 = 0 for all i, hence β = 0; the second case can not

happen, since β has to satisfy 〈D̂S
i , β〉 = 0 except for one i and this implies β = 0.
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Therefore, the coefficient of z−1 is from the third case, where

(39)

m+l+2
∑

i=1

〈D̂S
i , β〉 = 0 and #{i : 〈D̂S

i , β〉 < 0} = 1.

By the assumption ρSX ∈ cl(CSX ), we must have
m+l
∑

i=1

〈DS
i , d〉 = 0 and 〈pS0 , β〉 = 0.

Moreover, 〈DS
i , d〉 < 0 for exactly one i in {1, . . . ,m}. (Note that 〈DS

i , d〉 ≥ 0 for
i ∈ {m+ 1, . . . ,m+ l}.)

Now g
(j)
0 is the coefficient corresponding to p0 and D̂j = 〈Dj ,−1〉 = Dj − p0 is

the only one, among D̂1, . . . , D̂m, which contains p0. By expression (37), we must
have 〈DS

j , d〉 < 0 and 〈DS
i , d〉 ≥ 0 for i 6= j. Hence we have

Lemma 3.16. The coefficient g
(j)
0 is given by

(40) gj0(y1, . . . , yr+l) =
∑

〈DS
i ,d〉∈Z,1≤i≤m+l

〈ρSX ,d〉=0

〈DS
j ,d〉<0

〈DS
i ,d〉≥0,∀i6=j

(−1)−〈DS
j ,d〉

(

−〈DS
j , d〉 − 1

)

!
∏

i6=j〈D
S
i , d〉!

yd.

4. Batyrev Elements

In this section, we will extend the definition of the Batyrev elements in [5] to toric
Deligne-Mumford stacks and explore their relationships with the Seidel elements.

4.1. Batyrev Elements. Following [6], consider the mirror coordinates y1, . . . , yr+l
of the toric Deligne-Mumford stacks X with ρSX ∈ cl(CSX ). Set C[y±] = C[y±1 , . . . , y

±
r+l].

Definition 4.1. The Batyrev ring B(X ) of X is a C[y±]-algebra generated by the
variables λ1, . . . , λr+l with the following two relations:

(multiplicative): yd
∏

i:〈DS
i
,d〉<0

ω
−〈DS

i ,d〉
i =

∏

i:〈DS
i
,d〉>0

ω
〈DS

i ,d〉
i , d ∈ LS;

(linear): ωi =

r+l
∑

a=1

maiλa,

(41)

where ωi is invertible in B(X ).

Definition 4.2. We define the element p̃Si ∈ H≤2
orb(X )⊗Q[[y1, . . . , yr+l]] as

p̃Si =
∂τ(y)

∂logyi
, i = 1, . . . , r + l.

Recall that

DS
j =

r+l
∑

i=1

mijp
S
i , for 1 ≤ j ≤ m+ l,

Then, the Batyrev element associated to DS
j is defined by

D̃S
j =

r+l
∑

i=1

mij p̃
S
i , for 1 ≤ j ≤ m+ l.
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Proposition 4.3. The Batyrev elements D̃S
1 , . . . , D̃

S
m+l satisfy the multiplicative

and linear Batyrev relations for ωj = D̃S
j .

Proof. We consider the differential operator Pd ∈ C[z, y±, zy(∂/∂y)] for d ∈ LS ,
introduced by Iritani in [6], section 4.2:

(42) Pd := yd
∏

i:〈DS
i
,d〉<0

−〈DS
i ,d〉−1
∏

k=0

(Di − kz)−
∏

i:〈DS
i
,d〉>0

〈DS
i ,d〉−1
∏

k=0

(Di − kz),

where Di :=
r+l
∑

j=1

mijzyj∂/∂yj.

By [6] lemma 4.6, we have

PdI(y, z) = 0, d ∈ LS .

Hence

0 = Pd(z, y, zy∂/∂y)I(y, z) = Pd(z, y, zy∂/∂y)J(τ(y), z).

This implies that

Pd(z, y, zτ
∗∇)1 = 0,

where τ∗∇i := ∇τ∗(yi(∂/∂yi)). Since

τ(y) =

r
∑

i=1

pilogyi + τtw(y) and ∇τ∗(yi(∂/∂yi)) = τ∗(yi(∂/∂yi)) +
1

z
yi
∂τ(y)

∂yi
◦τ ,

by setting z = 0, we proved that the Batyrev elements satisfy the multiplicative
relation.

It is straightforward from the definition that the Batyrev elements satisfy the
linear relation. �

Consider the I-function for the bundle Ej associated to the toric divisor DS
j , for

1 ≤ j ≤ m.

IEj
(y, z) = e

r∑

i=0

pilogyi/z ∑

β∈KEj

m+l+2
∏

i=1





∏∞
k=⌈〈D̂S

i
,β〉⌉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏∞
k=0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)



 yβ1v(β),

where yβ = y
〈pS0 ,β,〉
0 y

〈pS1 ,β〉
1 · · · y

〈pSr+l,β〉

r+l . The following lemma is a generalization of
lemma 3.11 in [5].

Lemma 4.4. The I-function IEj
of the bundle Ej, associated to the toric divisor

DS
j , satisfies the following partial differential equation:

(43) z
∂

∂y0

(

y0
∂

∂y0

)

IEj
=

(

r+l
∑

i=1

mij

(

yi
∂

∂yi

)

− y0
∂

∂y0

)

IEj

Proof. Consider the left hand side of the equation (43),

z
∂

∂y0

(

y0
∂

∂y0

)

IEj

= e

r∑

i=0

pilogyi/z ∑

β∈KEj

m+l+2
∏

i=1





∏∞
k=⌈〈D̂S

i
,β〉⌉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏∞
k=0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)





(

2p0〈p
S
0 , β〉+ 〈pS0 , β〉

2z
) (

yβ/y0
)

1v(β),
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and the right hand side of the equation (43)

(

r+l
∑

i=1

mij

(

yi
∂

∂yi

)

− y0
∂

∂y0

)

IEj

= e

r∑

i=0

pilogyi/z ∑

β∈KEj

m+l+2
∏

i=1





∏∞
k=⌈〈D̂S

i
,β〉⌉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏∞
k=0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)





(

D̂j/z + 〈D̂S
j , β〉

)

yβ1v(β).

It is suffice to prove the coefficients of yβ1v(β) in them are the same, for all β ∈ KEj
.

Note that, we can rewrite the product factor

∏∞
k=⌈〈D̂S

i
,β〉⌉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏∞
k=0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
) =

∏

k≤0,{k}={〈D̂S
i
,β〉}

(

D̂i + kz
)

∏

k≤〈D̂S
i ,β〉,{k}={〈D̂S

i ,β〉}

(

D̂i + kz
) .

Let β
′

= β + [σ0], hence we have

〈D̂S
j , β

′

〉 = 〈D̂S
j , β〉 − 1; 〈D̂S

i , β
′

〉 = 〈D̂S
i , β〉 for 1 ≤ i ≤ m+ l and i 6= j;

〈D̂S
m+l+1, β

′

〉 = 〈D̂S
m+l+1, β〉+ 1; 〈D̂S

m+l+2, β
′

〉 = 〈D̂S
m+l+2, β〉+ 1.

Note that β ∈ KEj
if and only if β

′

∈ KEj
. Moreover,

(

yβ
′

/y0

)

1v(β′ ) = yβ1v(β).

Hence the coefficient of yβ1v(β) in z
∂
∂y0

(y0
∂
∂y0

)IEj
is

e

r∑

i=0

pilogyi/z
m+l+2
∏

i=1





∏∞
k=⌈〈D̂S

i
,β〉⌉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏∞
k=0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)





D̂j + 〈D̂S
j , β〉z

(

p0 + (〈pS0 , β〉+ 1)z
)2 •

• (2p0(〈p
S
0 , β〉+ 1) + (〈pS0 , β〉+ 1)2z)

=e

r∑

i=0

pilogyi/z
m+l+2
∏

i=1





∏∞
k=⌈〈D̂S

i
,β〉⌉

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)

∏∞
k=0

(

D̂i +
(

〈D̂S
i , β〉 − k

)

z
)





D̂j + 〈D̂S
j , β〉z

z
(since p20 = 0).

This is exactly the coefficient of yβ1v(β) in

(

r+l
∑

i=1

mij

(

yi
∂
∂yi

)

− y0
∂
∂y0

)

IEj
,

Hence the I-function of Ej satisfies the differential equation

z
∂

∂y0

(

y0
∂

∂y0

)

IEj
=

(

r+l
∑

i=1

mij

(

yi
∂

∂yi

)

− y0
∂

∂y0

)

IEj
.

�

Using the expansion of IEj
, we have

IEj
(y, z) = e

r∑

i=0

pilogyi/z
(

1 + z−1

(

r
∑

i=0

g
(j)
i (y)pi + τ

(j)
tw

)

+ z−2

(

2
∑

n=0

G(j)
n (y)yn0

)

+O(z−3)

)

,
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where G
(j)
n is a (fractional) power series in y1, . . . , yr+l taking values in H∗

orb(Ej).
Therefore, we obtain

y0
∂

∂y0
IEj

=
p0
z
e

r∑

i=0

pilogyi/z

(

1 + z−1

(

r
∑

i=0

g
(j)
i (y)pi + τ

(j)
tw

)

+ z−2

(

2
∑

n=0

G(j)
n (y)yn0

)

+O(z−3)

)

+ e

r∑

i=0

pilogyi/z

(

z−2

(

2
∑

n=1

G(j)
n (y)nyn0

)

+O(z−3)

)

.

Therefore, the left hand side of equation (43) is

z
∂

∂y0

(

y0
∂

∂y0

)

IEj

=
∂

∂y0

(

p0e

r∑

i=0

pilogyi/z

(

1 + z−1

(

r
∑

i=0

g
(j)
i (y)pi + τ

(j)
tw

)

+ z−2

(

2
∑

n=0

G(j)
n (y)yn0

)

+O(z−3)

))

+
∂

∂y0

(

e

r∑

i=0

pilogyi/z

(

z−1

(

2
∑

n=1

G(j)
n (y)nyn0

)

+O(z−2)

))

=p0e

r∑

i=0

pilogyi/z (
O(z−2)

)

+
p0
y0z

e

r∑

i=0

pilogyi/z

(

z−1

(

2
∑

n=1

G(j)
n (y)nyn0

)

+O(z−2)

)

+ e

r∑

i=0

pilogyi/z

(

z−1

(

2
∑

n=1

G(j)
n n2yn−1

0 +O(z−2)

))

=e

r∑

i=0

pilogyi/z

(

z−1

(

2
∑

n=1

G(j)
n n2yn−1

0

)

+O(z−2)

)

.

On the other hand, the pull-back of the right hand side of equation (43) by ı∗ is

ı∗

(

r+l
∑

i=1

mij

(

yi
∂

∂yi

)

− y0
∂

∂y0

)

IEj

=

(

r+l
∑

i=1

mij

(

yi
∂

∂yi

)

− y0
∂

∂y0

)

ı∗IEj

=

(

r+l
∑

i=1

mij

(

yi
∂

∂yi

)

)

(IX +O(y0))

=z−1

(

r+l
∑

i=1

mij

(

yi
∂

∂yi

)

τ(y)

)

+O(z−2) +O(y0).

Hence we conclude the following lemma.

Lemma 4.5. The Batyrev element D̃j(y) is given by

(44) D̃j(y) = ı∗G
(j)
1 (y), for 1 ≤ j ≤ m+ l.

Hence, the following theorem is a direct consequence of the above lemma and
theorem 3.15.
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Theorem 4.6. The Seidel element S̃j corresponding to the toric divisor Dj is given
by

(45) S̃j(τ(y)) = exp(−gj0(y))D̃j(y).

4.2. The computation of D̃j. Using the expansion
(

r+l
∑

i=1

mij

(

yi
∂

∂yi

)

)

IX = e
∑r

i=1
pilogyi/z

(

z−1D̃j +O(z−2)
)

,

we see that D̃j is the coefficient of z−1 in the expansion of

e−
∑r

i=1
pilogyi/z

(

r+l
∑

i=1

mij

(

yi
∂

∂yi

)

)

IX .

And, by direct computation
(

r+l
∑

i=1

mij

(

yi
∂

∂yi

)

)

IX =

e

r∑

i=1

pilogyi/z ∑

d∈Keff,X

m+l
∏

i=1

(∏∞
k=⌈〈DS

i
,d〉⌉

(

Di +
(

〈DS
i , d〉 − k

)

z
)

∏∞
k=0

(

Di +
(

〈DS
i , d〉 − k

)

z
)

)

(

Dj

z
+ 〈DS

j , d〉

)

yd1v(d).

Hence, to compute the Batyrev element D̃j , it remains to examine the expansion
of the product factor
∏∞
k=⌈〈DS

i
,d〉⌉

(

Di +
(

〈DS
i , d〉 − k

)

z
)

∏∞
k=0

(

Di +
(

〈DS
i , d〉 − k

)

z
) = Cdz

−(
∑m+l

i=1
⌈〈DS

i ,d〉⌉+#{i:〈DS
i ,d〉∈Z<0})

∏

i:〈DS
i
,d〉∈Z<0

Di+h.o.t.,

where
(46)

Cd =
∏

i:〈DS
i
,d〉<0

∏

〈DS
i
,d〉<k<0

(

〈DS
i , d〉 − k

)

∏

i:〈DS
i
,d〉>0

∏

0≤k<〈DS
i
,d〉

(

〈DS
i , d〉 − k

)−1

The summand indexed by d ∈ Keff,X contributes to the coefficient of z−1 if and
only if

m+l
∑

i=1

⌈〈DS
i , d〉⌉+#{i : 〈DS

i , d〉 ∈ Z<0} ≤ 1.

It happens only in the following three cases:

•
∑m+l

i=1 ⌈〈DS
i , d〉⌉+#{i : 〈DS

i , d〉 ∈ Z<0} = 0

•

{
∑m+l

i=1 ⌈〈DS
i , d〉⌉ = 0

#{i : 〈DS
i , d〉 ∈ Z<0} = 1

•

{
∑m+l

i=1 ⌈〈DS
i , d〉⌉ = 1

#{i : 〈DS
i , d〉 ∈ Z<0} = 0

.

The first case happens if and only if d = 0. If the second case happens, then

m+l
∑

i=1

⌈〈DS
i , d〉⌉ =

m+l
∑

i=1

〈DS
i , d〉 = 〈ρSX , d〉 = 0.
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In particular,

〈DS
i , d〉 ∈ Z, 1 ≤ i ≤ m+ l.

Hence we obtain the following lemma:

Lemma 4.7. For 1 ≤ j ≤ m+ l, the Batyrev element D̃j is given by
(47)

D̃j = Dj +

m
∑

i=1

Di

∑

〈ρSX ,d〉=0

〈DS
i ,d〉∈Z<0

〈DS
k ,d〉∈Z≥0,∀k 6=i

Cd〈D
S
j , d〉y

d +
∑

∑m+l
i=1

⌈〈DS
i ,d〉⌉=1

〈DS
i ,d〉6∈Z<0,∀i

Cd〈D
S
j , d〉y

d
1v(d),

where Cd is given by equation (46).

5. Seidel elements corresponding to Box elements

Consider the box element sj ∈ Box(Σ), such that

s̄j =

m
∑

i=1

cji b̄i ∈ NQ, for some 0 ≤ cji < 1.

Let nj be the least common denominator of {cji}
m
i=1, we define a C×-action on

US × (C2 \ {0}) by

(z1, . . . , zm+l, u, v) 7→ (t−cj1njz1, . . . , t
−cjmnj zm, zm+1, . . . , zm+l, t

nju, tnjv), t ∈ C×.

Hence we have an associated bundle

Em+j = US × (C2 \ {0})/GS × C×

over CP1×Bµnj
with X being the fiber. Furthermore, Em+j can also be considered

as a bundle over CP1, since there is a natural projection

CP
1 ×Bµnj

→ CP
1.

We can identify H2(Em+j;Z) with H
2(X ;Z)⊕ Z, where the second summand

Z ∼= Pic(CP1 ×Bµnj
),

and we have the following short exact sequence from remark 5.5 of [4]:

(48) 0 −→ Pic(CP1) −→ Pic(CP1 ×Bµnj
) −→ Z/njZ −→ 0

We identify an element of Pic(CP1) with its image in Pic(CP1 ×Bµnj
) under the

above map. Then the weights of GS × C× defining Em+j are given by

D̂S
i = (DS

i ,−cjinj), for 1 ≤ i ≤ m; D̂S
m+j = (DS

m+j , 0) for 1 ≤ j ≤ l;

D̂S
m+l+1 = D̂S

m+l+2 = (0, nj).

The fan of Em+j is contained in NQ ⊕Q. The 1-skeleton is given by

(49) b̂i = (bi, 0), for 1 ≤ i ≤ m; b̂m+1 = (0, 1); b̂m+2 = (sj ,−1).

Let Em+j be the coarse moduli space of Em+j . Then Em+j is an X-bundle over

CP1. The Seidel element is defined as in equation (5).
We set

p0 := (0, 1) ∈ H2(Em+j) ∼= H2(X)⊕ Pic(CP1),
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a nef integral basis {p1, . . . , pr} of H2(X ;Q) can be lifted to a nef integral basis
{p0, p1, . . . , pr} of H2(Em+j ;Q) such that the lift of pi vanishes on the section class
[σ0]. There is an isomorphism between H2(Em+j ;Q) and H2(Em+j ;Q), by abuse
of notation, we identify pi with its image in H2(Em+j ;Q), for 0 ≤ i ≤ r. Let
pS1 , . . . , p

S
r+l be an integral basis of LS∨, such that pi is the image of pSi in L∨ ⊗Q,

under the canonical splitting of (17). Let pS0 , p
S
1 , . . . , p

S
r+l be an integral basis of

LS∨ ⊕ Z and p0 be the image of

pS0 = D̂S
m+l+1 = D̂S

m+l+2

in (L∨ ⊕ Z) ⊗ R. Therefore pr+1, . . . , pr+l are zero.
As in the toric divisor case, we have the following expansion of the I-function:

IEm+j
(y, z) =

(50)

e

r∑

i=0

pilogyi/z

(

1 + z−1

(

r
∑

i=0

g
(m+j)
i (y)pi + τ

(m+j)
tw (y)

)

+ z−2

(

2
∑

n=0

G(m+j)
n (y)yn0

)

+O(z−3)

)

,

and use the same argument as in lemma 3.12 and lemma 3.14, we can show that

g
(m+j)
i (y) and τ

(m+j)
tw (y) are independent from y0, for 1 ≤ i ≤ r and 1 ≤ j ≤ l .

Moreover, for each j ∈ {1, . . . , l}, we have

g
(m+j)
i (y0, . . . , yr+l) = gi(y1, . . . , yr+l) for i = 1, . . . , r.

And

τ
(m+j)
tw (y) = τtw(y).

We will also obtain the following theorem.

Theorem 5.1. The Seidel element S̃m+j associated to the box element sj is given
by

(51) S̃m+j(τ(y)) := S̃m+j(τ
(m+j)(y)) = exp

(

−g
(m+j)
0 (y)

)

ı∗(G
(m+j)
1 (y)).

Using the same computation as in the toric divisor case, we can compute the

correction coefficient g
(m+j)
0 :

Lemma 5.2. The function g
(m+j)
0 is given by

(52)

g
(m+j)
0 (y1, . . . , yr+l) =

∑

1≤k≤m,k 6∈IS
j
.

∑

〈DS
i ,d〉∈Z,1≤i≤m+l

〈ρSX ,d〉=0

〈DS
k ,d〉<0

〈DS
i ,d〉≥0,∀i6=k

cjk
(−1)−〈DS

k ,d〉
(

−〈DS
k , d〉 − 1

)

!
∏

i6=k〈D
S
i , d〉!

yd,

where ISj is the ”anticone” of the cone containing sj.

Proof. The argument is almost the same as the argument in section 3.5. The only
change we need to make is the paragraph above lemma 3.16:

In this case, g
(m+j)
0 is the coefficient corresponding to p0 and elements in {D̂1, . . . , D̂m}

that contain p0 are precisely these elements:

D̂k = 〈Dk,−cjknj〉 = Dk − cjkp0, for 1 ≤ k ≤ m and k 6∈ ISj .
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Therefore, by expression (37) and (39), we must have 〈DS
k , d〉 < 0 for exactly one

k in {k ∈ Z|1 ≤ k ≤ m and k 6∈ ISj }. �

Moreover, by mimicking the computation in lemma 4.4, we have

Lemma 5.3. the I-function of Em+j satisfies the following differential equation:

(53) z
∂

∂y0

(

y0
∂

∂y0

)

IEj
= y−D

S∨
m+j

(

r+l
∑

i=1

mij

(

yi
∂

∂yi

)

− y0
∂

∂y0

)

IEj
,

where DS∨
m+j ∈ LS ⊗Q is defined by (18).

Proof. The proof is almost identical to the proof of lemma 4.4, except, this time,
we will need to choose β

′

= β + [σ0]−DS∨
m+j . Then everything else follows. �

Using this lemma, following the argument in the toric divisor case, we conclude

Theorem 5.4. The Seidel element S̃m+j corresponding to the box element sj, with

s̄j =

m
∑

i=1

cjib̄i, for some 0 ≤ cji < 1,

is given by

(54) S̃m+j(τ
(m+j)(y)) = exp

(

−g
(m+j)
0

)

y−D
S∨
m+j D̃m+j(y),

where D̃m+j(y) is the corresponding Batyrev element. Moreover,
(55)

D̃m+j =

m
∑

i=1

Di

∑

〈ρSX ,d〉=0

〈DS
i ,d〉∈Z<0

〈DS
k ,d〉∈Z≥0,∀k 6=i

Cd〈D
S
m+j , d〉y

d+
∑

∑m+l
i=1

⌈〈DS
i ,d〉⌉=1

〈DS
i ,d〉6∈Z<0,∀i

Cd〈D
S
m+j , d〉y

d
1v(d),

and
(56)

Cd =
∏

i:〈DS
i
,d〉<0

∏

〈DS
i
,d〉<k<0

(

〈DS
i , d〉 − k

)

∏

i:〈DS
i
,d〉>0

∏

0≤k<〈DS
i
,d〉

(

〈DS
i , d〉 − k

)−1
.
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