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THERE EXIST NO MINIMALLY KNOTTED PLANAR SPATIAL GRAPHS ON THE TORUS

SENJA BARTHEL

AsTrACT. We show that all nontrivial embeddings of planar graphs on the torus contain a nontrivial knot or a nonsplit
link. This is equivalent to showing that no minimally knotted planar spatial graphs on the torus exist that contain neither
a nontrivial knot nor a nonsplit link all of whose components are unknots.

1. INTRODUCTION

All considered graphs are undirected finite graphs and we will work in the piecewise linear category. A graph

embedding is an embedding f : G — S of a graph G in S up to ambient isotopy and the corresponding spatial
graph G is the image of this embedding. A graph G is planar if there exists an embedding f : G — S?. An
embedding f : G — S3 is trivial if G is contained in a 2-sphere embedded in S3. Its image G is a trivial spatial
graph. A spatial graph G is minimally knotted if G is nontrivial but G —e is trivial for every edge e. Some authors
call minimally knotted spatial graphs almost trivial, almost unknotted or Brunnian. In this paper, a nontrivial
link is a nonsplit link with at least two components.
Previous research on minimally knotted spatial graphs has been undertaken: The first example of a minimally
knotted spatial graph was an embedding of a handcuff graph given by Suzuki [1]]. Kawauchi [2]], Wu [3] and Inaba
and Soma [4]] showed that every planar graph has a minimally knotted embedding. Ozawa and Tsutsumi [S]] proved
that minimally knotted embeddings of planar graphs are totally knotted. Especially minimally knotted 8,-graphs
have generated some interest. Kinoshita [6]] gave the first example of a minimally knotted #s-graph (see Fig. 1)
which Suzuki [7] generalised to give examples of minimally knotted 6,-graphs for all n > 3. Closely related are
ravels which are nontrivial embeddings of 6,-graphs that contain no nontrivially knotted subgraph; this definition
is equivalent to the one given by Farkas, Flapan and Sullivan [8]]. The concept of ravels has been introduced by
Castle, Evans and Hyde [9] as local entanglements that are not caused by knots or links and may lead to new
topological structures in coordination polymers. A ravel in a molecule has been synthesized by Lindoy et al [10].
Castle, Evans and Hyde [[11]] conjectured the following:

Conjecture (Castle, Evans, Hyde [11]]). All nontrivial embeddings of planar graphs on the torus include a non-
trivial knot or a nonsplit link.

With Theorem [T] we prove that their conjecture is true. With torus we refer to an embedded torus in the
3-sphere S* which may be nonstandardly embedded. A standardly embedded torus is a torus that bounds two
solid tori in § 3. A nonstandardly embedded torus still bounds a solid torus in S by the Solid Torus Theorem [12].

Theorem 1 (Knots and links existence). Let G be a planar graph and f : G — §3 be an embedding of G with
image G. If G is contained in the torus T* and contains neither a nontrivial knot nor a nonsplit link,
then f is trivial.

Since 6,-graphs are planar, it follows from Theorem [I] that on the torus there exist no minimally knotted em-
beddings of 8,-graphs with n > 2. This gives us the following:

Corollary 1 (Ravels do not embed on the torus). Every nontrivial embedding of 8,-graphs on the torus contains a
nontrivial knot.

We conclude by showing that all assumptions of Theorem [I| are necessary. Explicit ambient isotopies that
transform spatial graphs that fulfil the assumptions of Theorem [1|into the plane R?, are given in [13]. Another
consequence of Theorem |1| that is stated in the remark has been shown in [[11]] together with [14]: Nontrivial
3-connected and simple planar spatial graphs that are embedded on a torus are chiral. A graph is simple if it
contains no loops and no multi-edges. It is 3-connected if at least three vertices and their incident edges have to
be deleted to decompose the graph or to reduce it to a single vertex. A spatial graph is chiral if it is not ambient
isotopic to its mirror image.
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2. ProoF oF THEOREM[]]

2.1. Outline of the proof. The proof uses two theorems of Scharlemann, Thompson [15] and Ozawa, Tsut-
sumi [5]. We assume that the spatial graph G we consider is given by an embedding f : G — T2 of a planar
graph G and furthermore that G contains no nontrivially knotted or linked subgraph. We conclude that G must be
trivial. During the proof, we need the following two definitions:

Definition 1. An embedding f : G — S> of a graph G is primitive, if for each component G; of G and any spanning
tree T; of Gy, the bouquet graph f(G;)/ f(T;) obtained from f(G;) by contracting all edges of f(T;) in S3 is trivial.

Definition 2. An embedding f : G — S> of a graph G is free, if the fundamental group of S* — f(G) is free.

The argument of the proof is as follows: We start showing that the statement is true for nonstandardly embedded
tori in Lemma |l With Lemma [2| we argue that it is sufficient to consider connected graphs. Then we show in
Lemma [3| that a bouquet graph on T2 either contains a nontrivial knot or is trivial. Since any connected spatial
graph G on T2 contracts to a bouquet graph on T2, it follows that G is primitive if it contains no nontrivial knot.
By Theorem[2]we know that the restriction f|g is free for all connected subgraphs G’ of G. Applying Lemmal[2|to
the subgraphs G” of G that are not connected, we see that f|g, is free for all subgraphs G, of G. Using Theorem 3]
we conclude that G is trivial.

2.2. Preparations for the proof.

Lemma 1 (Nonstandardly embedded torus). Let T be a torus that is not standardly embedded. Any spatial
graph G that is embedded in T2 and that contains no nontrivial knot is trivial.

Proof. If the spatial graph G contains a cycle that follows a longitude of the torus T2, this cycle is knotted since T>
itself is knotted. Therefore, no such subgraph of G can exist and we find a meridian m of I that has no intersection
with G. This shows that G in embedded in the twice punctured sphere ¥> — m ~ S? — {py, p»}. Therefore, G is
trivial. O

It follows from Lemma |1| that the statement of Theorem |1|is true for nonstandardly embedded tori. Therefore,
we only consider the standardly embedded torus 72 from now on which saves us from considering different cases.

Lemma 2 (Connectivity Lemma). The image G of an embedding f : G — T? c S? of a graph G with n > 1
connected components on the standard torus 72 contains either a nonsplit link, or contains no nonsplit link and
decomposes into n disjoint components of which at least n — 1 components are trivial.

Proof. Take any connected component f(G;) of the embedding f(G) on the torus 72. The complement of f(G;)
in the torus (without considering the rest of the spatial graph f(G — G;)) is a collection of pieces that can be the
punctured torus, discs, and essential annuli without boundaries. (An essential annulus contains a simple closed
curve that does not bound a disc in the torus.)

In the case that the complement of f(G;) in T2 includes the punctured torus, f(G;) is trivial and splits from the
other components.

If the complement of f(G;) in T2 is only a collection of discs, then all other components of f(G) lie in one of
those discs and therefore are trivial and the graph is split. (f(G;) might or might not contain a nonsplit link.)

In the case that the complement of £(G;) in T? includes an essential annulus A, it is possible that other compo-
nents of G are embedded in this annulus. A component G; might be embedded in the annulus in two ways: Either
the complement of f(G;) in A includes a punctured annulus and therefore f(G;) is trivial and splits from the rest
of the spatial graph f(G — G;). Or A — f(G;) contains two annuli. The annulus A has one type of an essential
curve ¢ running inside it; ¢ is parallel to the boundary curves of A. In the case that A — f(G;) contains two annuli,
a subgraph of f(G;) must be deformable to be parallel to c. If ¢ is a meridian or a prefered longitude of 72, both
components f(G;) and f(G;) are split and trivial since the torus is a standard torus. If ¢ is neither a meridian nor a
longitude of T2, f(G;) and f(G ;) are nonsplittably linked. O

Lemma 3 (Bouquet Lemma). The image B of an embedding f : B — T2 c S of a connected bouquet graph B
on the torus T either contains a nontrivial knot or is trivial.
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Proof. A bouquet graph 8B on T2 that contains no nontrivial knot contains only cycles which all are the unknot by
assumption. The unknot on the torus can take the following forms:

(1) T(0,0) loop that bound a disc in T2 (trivial elements in 7;(72)),

(2) T(0,1) meridional loop,

(3) T(1,0) longitudinal loop,

(4) T(1,n) loop or alternatively T'(n, 1) loop, n > 1
Loops of type (1) do not contribute to the nontriviality of B.
If B has loops of the types (1), (2) and (3) only, it is trivial.
If B has loops of type (4), there are — beside the loops T(0,0) — only three types of loops simultaneously em-
beddable on the torus without self-intersections: 7(0, 1), T(1,n) and T(1,n + 1) (respectively T(1,0), T (n, 1) and
T(n + 1,1)). This can easily be confirmed by applying the formula of Rolfsen’s exercise 2.7 [16]: If two torus
knots T'(p,q) and T(p’, ¢') intersect in one point transversally, then pg’ — gp” = +1. Such a bouquet is trivial. O

Theorem 2 (Ozawa and Tsutsumi’s freeness criterion [S]). An embedding f : G — S of a graph G is primitive if
and only if the restriction f|q is free for all connected subgraphs G’ of G.

Theorem 3 (Scharlemann and Thompson’s planarity criterion [15]). An embedding f : G — S> of a graph G is
trivial if and only if

(a) G is planar and

(b) for every subgraph G, C G, the restriction flg, is free.

2.3. The proof. We are now ready to prove Theorem I]and Corollary [T}

Proof. (of Theorem [I)). It follows from Lemma [I] that the statement of Theorem [I] is true for nonstandardly
embedded tori. Therefore, we assume that G is embedded in the standard torus 72. Since G contains no nonsplit
link by assumption, we can assume by Lemma 2] that G is connected. Any connected spatial graph contracts to a
spatial bouquet graph B if a spanning tree T is contracted in S3. If the spatial graph is embedded in a surface, edge
contractions can be realised in the surface. It follows that contracting a spanning tree of a connected spatial graph
that is embedded in T? results in a bouquet graph that is embedded in T2 itself. Since G contains no nontrivial
knot by assumption, B also contains no nontrivial knot. We know from Lemma [3| that a bouquet graph that is
embedded in the torus 7 and that contains no nontrivial knot is trivial. Therefore it follows that, for any chosen
spanning tree T of G, the bouquet graph B = f(G)/f(T) which is obtained from f(G) by contracting all edges of
f(T)in S3 is trivial. Consequently f is primitive by definition. By Theorem the restriction flg is free for all
connected subgraphs G’ of G. Let G” be a subgraph of G that is not connected. Since G” is a subgraph of G, it
does neither contain nontrivial links nor nontrivial knots by assumption. Applying Lemma 2|to G”” shows that the
connected components of f|g~ are split and at most one connected component flgy of fg~ is not trivial. Therefore,
the restriction flg~ is free if and only if flg; is free. Since G is a connected subgraph of G, we know already
that flg» is free. Therefore, the restriction flg, is free for all subgraphs G of G. As G is planar by assumption, it
follows from Theorem 3]that f is trivial. O

Proof. (of Corollary[T). As there exists no pair of disjoint cycles in a 6,-graph, such a graph does not contain a
nontrivial link. Since 6,-graphs are planar, the statement of the corollary follows directly from Theorem T} O

It has been shown in [[11] together with [[14] that every nontrivial embedding of a simple 3-connected spatial
graph on the torus that contains a nontrivial knot or a nonsplit link is chiral. The following remark is therefore a
consequence of Theorem T}

Remark (Chirality). Nontrivial embeddings of simple 3-connected planar graphs in the torus are chiral.

2.4. All assumptions that have been made are necessary.
This can be seen by considering the following examples:
e There exist nontrivial embeddedings on T2 that contain neither a nontrivial knot nor a nonsplit link.
These are embeddings of nonplanar graphs.
Examples: K33 and K5 embedded as shown left in Fig. 1.
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o There exist nontrivial embeddings of planar graphs that contain neither a nontrivial knot nor a nonsplit
link.
These embeddings are not embedded on the torus.
Examples: Kinoshita-theta curve (middle in Fig. 1) and every ravel.

e There exist nontrivial embeddings of planar graphs on 72.
Examples: Spatial graphs that are subdivisions of nontrivial torus knots with n > 0 vertices and n edges
(right in Fig. 1).

S OGO

Subdivision
K3 Ks Kinoshita’s §-curve of the trefoil

Ficure 1. All assumptions are necessary.
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