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1 Introduction

Various aspects of supersymmetric gauge theories have been studied via branes, and rich

physics associated with branes has been revealed. Wide class of four-dimensional N =

2 supersymmetric gauge theories are given by D4-NS5 brane setup, whose asymptotic

distance of the NS5 branes gives 1-loop correction to the gauge coupling constant. The

condition that NS5 branes do not intersect gives the asymptotic free/conformal condition

of the gauge theory. Furthermore, the M-theory uplift of the corresponding brane setup

gives Seiberg-Witten (SW) curve [1].

Five-dimensional uplift of this derivation of SW curve from branes was studied in [2]

for the case with simple Lie groups like SU, SO, Sp, and extended to more general setup

by using (p, q) 5-brane web in [3]. The method with (p, q) 5-brane web gives a systematic

and simple procedure to derive the SW curve, using the dual graph of the 5-brane web

whose vertices correspond to the non-vanishing coefficients of the polynomial describing

the curve. In [3], it was discussed that five-dimensional Sp(1) (≃ SU(2)) gauge theories

could be studied up to four flavors by this (p, q) 5-brane web1. As five-dimensional theories

are given as natural uplift of four-dimensional gauge theories, studying the case with more

than four flavors via the (p, q) 5-branes seemed not so straightforward. As discussed, for

example, in [5], more flavors lead to the intersection of NS5-branes analogously to the

four-dimensional case, which makes it hard to interpret.

On the other hand, five-dimensional Sp(1) gauge theory with Nf flavors is expected to

have nontrivial UV fixed point up to 2 Nf ≤ 7 [6], where the global symmetry enhancement

1In this paper, we do not consider O-planes. If one introduces it, 5-brane web can describes up to six

flavors [4].
2UV fixed point of the five-dimensional Sp(1) theory with eight flavors is believed to be six-dimensional.

Although this case is also interesting, we do not study in this paper.
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to ENf+1 group is realized. Such class of isolated conformal field theories (CFT) has been

studied in various different methods. Recently, the global symmetry enhancement was

explicitly checked in [7] by computing the superconformal index (up to Nf = 5), and

confirmed later up to Nf = 6, 7 in [8]. It was also shown that the Nekrasov partition

function is invariant under the enhanced ENf+1 symmetry when one expands it in terms of

the properly redefined Coulomb moduli parameter [9], where fiber-base duality [3, 10–12]

plays an important role.

The SW curves for corresponding four-dimensional theory with E6,7,8 global symme-

tries were studied in [13, 14]. These curves were obtained from dimensional analysis and

symmetry argument without referring to specific field theory description at UV. Uplift of

the SW curves to five dimensions [15] and to six dimensions [16, 17] was performed via

the effective action of the E-string theory, which is obtained by compactification to the

corresponding local del Pezzo surface or half K3 manifold. When the geometry is toric,

the corresponding SW curve can be computed also from the toric diagram which can be

reinterpreted as the dual graph of the (p, q) 5-brane web [18]. It followed that the SW

curve for five-dimensional Sp(1) gauge theory with Nf ≤ 4 flavors was reproduced as mir-

ror curve of the corresponding Calabi-Yau geometry [19]. While it can be toric for Nf ≤ 5,

the corresponding local del Pezzo surfaces for Nf = 6, 7 are non-toric, and thus there have

been difficulties finding corresponding (p, q) 5-brane web diagrams.

Such obstacles seem avoidable in the brane setup introduced in [20] which thus opens

up a possibility to analyze the Sp(1) gauge theory with more than four flavors in the (p, q)

5-brane setup. It is [p, q] 7-branes at infinity that resolve the non-toric nature of dual

diagrams, each of which binds an arbitrary number of (p, q) 5-branes. Some of the bound

5-branes “jump over” other 5-branes in such a way not to break the s-rule. The brane setup

in [20] was originally introduced as a five-dimensional uplift of isolated CFTs discussed in

[21]. It includes five-dimensional CFT of E6, E7 and E8 global symmetries, which are

expected to be identified as the UV fixed point of the Sp(1) gauge theories with five, six

and seven flavors, respectively.

It was known that the five-dimensional Sp(1) gauge theory with Nf flavors can be

realized by adding Nf D7-branes inside the 5-brane loop of the pure Sp(1) brane setup,

and that the global symmetry enhancement to ENf+1 can be shown from the monodromy

properties of 7-branes [22, 23]. More intuitive and relevant explanation connecting D7-

branes inside the 5-brane loop to 7-branes at infinity leading to E6 symmetry was presented

in [24] for Nf = 5 where the brane setup with ENf+1 symmetry studied in [20] can be

derived by properly pulling out all the 7-branes outside by the Hanany-Witten effect.

With this brane setup, the SW curve for Sp(1) with five flavors was computed in

[20, 24] and is in agreement with the aforementioned result [15–17]. Moreover, by gener-

alizing the relation between toric (p, q) 5-brane web and toric diagram discussed in [18],

the superconformal index/Nekrasov partition function in [7, 8] were reproduced from the

computations of topological string partition function [24–26]. Throughout this paper, such

dual graph of the original (p, q) 5-brane web diagram, introduced in [20], we call “toric-like

diagram” as the counterpart of the toric diagram. In this paper, we develop a systematic

way of computing the SW curve for the five-dimensional theory with Nf = 6, 7 flavors
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based on the toric-like diagram.

The rest of this paper is organized as follows: In section 2, we review the derivation

of SW curve of five-dimensional Sp(1) gauge theory with Nf = 5 flavors [24], which is

identified as five-dimensional T3 theory. Throughout this review, we clarify generic pro-

cedure to compute SW curve from toric-like diagram. In section 3 and 4, we compute

the SW curve for the theory with Nf = 6 and Nf = 7 flavors, respectively. We present

the SW curves obtained based on three representative web diagrams which are related by

the Hanany-Witten transitions, and then show that each of these curves is obtained from

another one simply by taking a proper coordinate transformation, thus demonstrating that

the Hanany-Witten transition is realized in the SW curve as a coordinate transformation.

We also show that the obtained curves agree with the known results [15–17]. In section

5, we study mass decoupling limit to reproduce the SW curve for lower flavors from the

curve for higher flavors, especially from Nf = 7 to Nf = 6. In section 6, we consider

the SW curve obtained from the toric-like web diagram corresponding to higher rank En

theory given in [20] and shows that the rank-2 curve actually factorizes into the two copies

of the SW curve for the rank-1 En theory. We then conclude and discuss the observed

relation3 analogous to the special case of N = 2 dualities [21]. In Appendices, we give

various complimentary computation and results of the SW curves for Sp(1) theory with

Nf flavors.

2 5d Seiberg-Witten curve from toric-like diagram

In this section, after reviewing the SW curve of the 5d T3 theory which is identified as 5d

Sp(1) theory with five flavors, we propose a procedure to derive the SW curve from generic

toric-like diagram.

2.1 5d T3 theory

5d version of 4d TN theories was studied based on the web or dual toric diagrams [20] where

it describes M-theory compactified on a non-compact CY threefold. The dual toric diagram

is obtained by associating a vertex to each face of 5-brane junctions. For a single junction,

T1, it corresponds to C
3 and for multi-junctions, TN , it corresponds to C

3/(ZN × ZN ).

Upon compactification on S1, it gives rise to 4d TN constructed in [21].

We now briefly review 5d T3 theory in relation with its SW curve. A detail analysis

for T3 theory has been done in [24]. Rather than summarizing the result of [24], we here

point out salient features of the analysis and then use this T3 theory to give an intuitive

idea on how the SW curves for E7 and E8 can be derived.

As shown in [20], the 5d uplift of rank-1 4d TN theories well fits into the multi-junction

of the 5d (p, q) web. 4d Minahan-Nemenschansky’s isolated superconformal theories with

the exceptional En symmetry can be uplifted and studied in this framework. For instance,

in 5d, the Nf = 5 superconformal theory with E6 global symmetry at the UV fixed point

3Although this relation should be closely related to [27], we give slightly different interpretation. Our

observation is closer to the one in [24].
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corresponds to T3 theory; theNf = 6, 7 superconformal theory with E7, E8 global symmetry

corresponds to a Higgsed T4, T6 (to keep one Coulomb modulus) theory, respectively.

En symmetries realized in the framework is not manifest, only subgroup of En is

manifest. As an instructive example, we consider T3 theory. It has the following web

diagram or corresponding dual toric diagram:

Figure 1. A toric diagram for E6

As the diagram indicates, it has manifest SU(3)3 global symmetry which is a maximal

compact subgroup of E6

E6 ⊃ SU(3)× SU(3)× SU(3). (2.1)

Using the Hanany-Witten transition (as well as monodromy of 7-brane branch cut), we can

explain that this diagram is related to the diagram of five flavors (Nf = 5). In the (p, q)

5-brane web configuration, the matters are represented by semi-infinite (1, 0) 5-branes. We

introduce [p, q] 7-branes such that (p, q) 5-branes can end without breaking supersymmetry.

See Figure 2.

Figure 2. A brane configuration with five flavors leading to T3-diagram.

Let us imagine a web diagram with five (1, 0) 5-branes ending on 7-branes (denoted by ⊗).

For convenience, we put three on the left and two on the right. This is the leftmost web

diagram configuration in Figure 2. In order to avoid colliding of 7-branes, we bring down

the [0, 1] 7-brane filled in red. Recall that this [0, 1] 7-brane has a branch cut denoted by

the dashed line. When the [0, 1] 7-brane passes through a (p, q) 5-brane, the charge of the

5-brane changes as it experiences monodromy due to the [0, 1] 7-brane. For instance, as

depicted in the middle of Figure 2, (1, 0) 5-brane charge is altered to (1, 1) as the [0, 1]

7-brane passes through it. As it is brought to further down, the web configuration becomes

the web diagram of T3, which is the rightmost Figure 2.
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It is interesting to see what happens to the web diagram if one pushes up the [0, 1]

7-brane rather than bringing it down. See Figure 3.

Figure 3. A brane configuration with five flavors leading to a toric-like diagram.

As explained in [20], the [0, 1] 7-brane jumps over the (1, 1) 5-brane when crossing,

and another (0, 1) 5-brane is created to attach to the [0, 1] 7-brane (the Hanany-Witten

effect). The resultant dual toric-like diagram involves a new kind of dot (white dot) to

indicate this jumping phenomenon associated with binding multiple 5-branes attached to

a single 7-brane. In this way, the number of the Coulomb moduli remains unaltered. This

dual toric-like diagram was called a dot diagram in [20].

If the white dot above were a black dot, it would increase the number of both the

dimension of the Coulomb moduli and triangulation, hence it would be a toric diagram for

SU(3) gauge theory. Notice that in this specially tuned web diagram or toric-like diagram

in Figure 3, it appear to have six flavors coming from six (1, 0) 5-branes. This implies

that the manifest global symmetry is no longer SU(3)3 but it is S[U(3) × U(3)] × SU(2).

Turning a black dot into a white dot can be interpreted as a procedure of Higgsing. But

we call it a special tuning, as the it can be understood as a procedure keeping dimension of

the Coulomb moduli to be one. We then say that it provides a dual picture of the SU(2)

theory of E6 symmetry as a special tuning of SU(3) gauge theory with six flavors.

It is clear that the toric diagram for the T3 theory can be given in a different way

through the Hanany-Witten transition as explained. This means that as one writes the

SW curve based on a toric diagram, two SW curves obtained from two different toric

diagrams should be related by the Hanany-Witten effect. We emphasize that the way that

the Hanany-Witten effect is realized in the SW curve is a coordinate transformation. It is

also worth noting that as a toric diagram shows manifest global symmetry, one can find

different manifest symmetry by the Hanany-Witten transition. As we will show later, we

find that the Hanany-Witten transition on a given (tuned) TN theory gives rise to different

compact subgroups of En symmetry.

We now consider the construction of the SW curve. For this, we compactify the theory

on a circle, and T-dualize it to become IIA theory, and then we uplift it to M-theory. The

curve then describes M5 brane configuration embedded in R
2×T 2. Given a toric diagram,

say Figure. 1, the SW curve takes the form as
∑

ij

cij t
iwj = 0, (2.2)
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with the SW one-form

λSW = log t d(logw). (2.3)

Here, cij in (2.2) is the non-vanishing coefficient that corresponds to the (i, j) dot in the

toric diagram.

N1 N2 N3

M1

M2

M3

c00

c03

c30

w ≈ −L3t

w ≈ −L2t

w ≈ −L1t

t

w

U

Figure 4. The configuration for the SW curve of T3 toric diagram

For instance, consider the configuration for the T3 toric diagram given in Figure 4.

There are 10 coefficients cij which can be determined from the boundary conditions. Here,

we impose the following boundary condition

t = N1, N2, N3 as w → 0

w = M1,M2,M3 as t → 0

w = −L1t,−L2t,−L3t as |t| ∼ |w| → ∞, (2.4)

where the first, second and third lines in Figure 4 correspond to three NS5-branes, three

D5-branes and three (1,1) 5-branes, respectively, in the original type IIB picture. These

conditions yield the constraints to the coefficients:

3∑

i=0

ci0t
i = c30(t−N1)(t−N2)(t−N3),

3∑

j=0

c0jw
j = c03(w −M1)(w −M2)(w −M3),

3∑

j=0

ci,3−it
iw3−i = c03(w + L1t)(w + L2t)(w + L3t), (2.5)

which enables us to express the coefficients cij in terms of Li,Mi, and Ni. In order for

these conditions to be consistent, we find that the following compatibility conditions are

necessary

M1M2M3 = N1N2N3 · L1L2L3. (2.6)
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This means that one of the constraint equations in (2.5) is used not to determine the

coefficient but to determine this compatibility condition. Since the SW curve does not

change when we multiply an identical constant to all the coefficients, this degree of freedom

can be also used to determine one coefficient as we like. Including this, we can determine 9

coefficients out of 10 in (2.2). The undetermined coefficient c11 corresponds to the internal

dot in the toric diagram in Figure 4 and is not affected by the boundary condition. This

coefficient c11 is interpreted as the Coulomb moduli parameter and we denote it as U .

Using the degrees of freedom of rescaling t and w, we can further impose the conditions

on Ni and Mi. Together with the compatibility condition, it is convenient to impose

M1M2M3 = N1N2N3 = L1L2L3. (2.7)

It is then straightforward to find the curve corresponding to the toric diagram, Figure 4:

w3 −
∑

i

Miw
2 +

∑

i

Liw
2t+

∑

i

M−1
i w + Uwt

+
∑

i

L−1
i wt2 − 1 +

∑

i

N−1
i t−

∑

i

Ni t
2 + t3 = 0. (2.8)

The procedure to move from the diagram in Figure 4 to the one in Figure 3 by moving

the [0,1] 7-brane in Figure 4 at t = N3 upward by using Hanany-Witten effect can be

realized by the coordinate transformation

w = W (t−N3). (2.9)

With this transformation, the SW curve (2.8) can be expressed as

(t−N3)
2W 3 + (t−N3)

(
∑

i

Lit−
∑

i

Mi

)
W 2

+

(
∑

i

L−1
i t2 + Ut+

∑

i

M−1
i

)
W + (t−N1)(t−N2) = 0, (2.10)

where we have divided entire equation by the factor (t−N3). Although the corresponding

diagram in Figure 3 includes a white dot, every dots correspond to non-vanishing coeffi-

cients of the SW curve. However, compared to the SW curve corresponding to the usual

toric diagram, we find that the coefficients are tuned to be specific values. That is, some

extra conditions are imposed to this SW curve due to the white dot. Writing the left hand

side of (2.10) as
∑

i,j cijt
iW j, it is straightforward to see that this SW curve satisfies the
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c00

c01

c02

c03

c10

c11

c12

c13

c20

c21

c22

c23 ∝ (t−N3)
2

∝ (t−N3)

∝ (t−N1)(t−N2)

∝ (W − M1
N3

)(W − M2
N3

)(W − M3
N3

)

∝ (W − L1)(W − L2)(W − L3)

Figure 5. The boundary conditions toric-like diagram for E6.

following relation:

2∑

i=0

ci3t
i ∝ (t−N3)

2,

2∑

i=0

ci2t
i ∝ (t−N3),

2∑

i=0

ci0t
i ∝ (t−N1)(t−N2),

3∑

j=0

c2jW
j ∝ (W − L1)(W − L2)(W − L3),

3∑

j=0

c0jW
j ∝

(
W − M1

N3

)(
W − M2

N3

)(
W − M3

N3

)
, (2.11)

which we interpret as the constraints coming from the boundary conditions.

As depicted in Figure 5, the white dots in the toric-like diagram is associated with

the first line of (2.11). The first relation, which gives the leading behavior at W →
∞, is consistent with the two NS5-branes are coincident, bound by one [0,1] 7-brane.

Furthermore, as for the second relation, which gives the subleading contribution in the

region W → ∞, we would like to interpret that this is the consequence that one out of

two coincident NS5-branes jumps over the other 5-brane. The remaining three relations

from the third to the fifth are more straightforward to give the interpret. They correspond

to the boundary conditions for two NS5-branes at W → 0, three external D5-branes at

t → ∞, and three more external D5-branes at t → 0.

It is worth noting that these boundary conditions (2.11) together with our convention

(2.7) are enough to reproduce the SW curve (2.10). This example gives us an intuition

of what kind of boundary condition we should impose, if we have white dots in a generic

toric-like diagram. In the following, we discuss how the boundary conditions yields the SW

curve in more details.
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2.2 General procedure

Based on the computation of the SW curve for E6 theory, we propose a systematic proce-

dure of deriving the SW curve from any given toric-like diagram.

If all the vertices are black dots, it is a usual toric diagram and thus the SW curve is

given by
∑

(i,j)∈vertices

cijt
iwj = 0, (2.12)

where (i, j) are summed over all the vertices in the diagram. The coefficients cij corre-

sponding to the dots on the boundary edge of the toric diagram are determined by the

boundary condition for the external (p, q) 5-branes. These boundary conditions are given

in the form

wpt−q ∼ m̃(p,q)
n at |w|q ∼ |t|p → ∞, (2.13)

where this m̃
(p,q)
n corresponds to the “mass parameter”4. For example, the first line in (2.4)

is obtained by identifying p = 0, q = −1 and m̃
(−1,0)
n = Nn. These boundary conditions

give the constraints
∑

(ij)
ip+jq=Ni,j

ci,jt
iqj ∝

∏

n

(wp − m̃(p,q)
n tq), (2.14)

where Ni,j is the maximum of the value ip + jq among all the combination of (i, j) corre-

sponding to the vertex in the toric diagram. In other words, the (i, j) is summed over the

vertex on the boundary edge which is perpendicular to the considered (p, q) 5-brane. We

impose this boundary condition corresponding to all the external (p, q) 5-branes and solve

for ci,j . Note that in order for a solution to exist, there must be one constraint among all

the mass parameters.

Generic toric-like diagram is obtained by converting some of black dots into white

dots in toric diagram. This procedure corresponds to the tuning of the coefficients cij .

Therefore, the SW curve is still the same form as (2.12) but more conditions are added to

the coefficients. Suppose that n-th (p, q) 7-brane binds kn external (p, q) 5-branes. In this

case, the boundary conditions are of the following sets of constraint
∑

(ij)
ip+jq=Ni,j

ci,jt
iqj ∝

∏

n

(wp − m̃(p,q)
n tq)kn ,

∑

(ij)
ip+jq=Ni,j−1

ci,jt
iqj ∝

∏

n

(wp − m̃(p,q)
n tq)max(kn−1,0),

· · ·∑

(ij)
ip+jq=Ni,j−ℓ

ci,jt
iqj ∝

∏

n

(wp − m̃(p,q)
n tq)max(kn−ℓ,0),

· · · (2.15)

4The “mass parameter” here is not physical mass of the gauge theory. It is typically the exponential of

some linear combination of masses and inverse gauge coupling with some shift.
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These sets of constraints are understood as natural generalization of the first two conditions

in (2.11).

2.3 Comment on general procedure

In the previous subsection, we proposed the procedure to derive SW curve from generic

toric-like diagram. In this subsection, we discuss that this procedure can be understood

as a natural 5d uplift of the SW curve for the following D4-NS5 brane setup with flavor

D6-branes [1].

To begin with, we review the related result in [1]. Suppose that we have n + 1 NS5-

branes labeled by α = 0, 1, · · · , n. Between α-th NS5-brane and (α − 1)-th NS5-brane,

kα color D4 branes are suspended (α = 1, · · · , n). Moreover, (iα − iα−1) D6-branes exist

between α-th NS5-brane and (α − 1)-th NS5-brane at the place v = ea with a = iα−1 +

1, · · · , iα, where we set i0 = 0. In this setup, no D4-branes are attached to any of the

D6-branes. The D6-branes are uplifted to the Taub-NUT space in the M-theory, which is

defined by

y

z
=

in∏

a=1

(v − ea) =

n∏

s=1

Js(v), (2.16)

embedded in C
3 with three complex coordinates5 y, z, and v, where we put

Js(v) =

is∏

a=is−1+1

(v − ea). (2.17)

It is known that the SW curve is given in the following form:

yn+1 + g1(v)y
n + g2(v)J1(v)y

n−1 + g3(v)J1(v)
2J2(v)y

n−2

+ · · · + gα(v)

α−1∏

s=1

Js(v)
α−s · yn+1−α + · · ·+ f

n∏

s=1

Js(v)
n+1−s = 0, (2.18)

where gα(v) are polynomials of degree kα. Or, if we change the coordinate from y to z by

using (2.16), it reads

n∏

s=1

Js
s · zn+1 + g1(v)

n∏

s=2

Js−1
s · zn + g2(v)

n∏

s=3

Js−2
s · zn−1

+ · · · + gα(v)

n∏

s=α+1

Js−α
s · zn+1−α + · · · + gn−1(v)Jn(v)z + f = 0. (2.19)

In order to connect this results to our proposal, we reinterpret this in a slightly different

way. Instead of placing the D6-branes between the NS5-branes without any D4 branes

attached, we can move these D6-branes horizontally to infinity using the Hanany-Witten

effect. Suppose that we move all the D6-branes to the direction of the outside of the 0-th

5Our z corresponds to z−1 in [1].
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Figure 6. Nf = 6 brane configuration (left) and a tuned T4 diagram after Hanany-Witten transi-

tions (right).

NS5-brane. Through this process, the (iα− iα−1) D6-branes originally placed between α-th

NS5-brane and (α− 1)-th NS5-brane pass through NS5-branes α times, and thus each D6

brane binds α D4-branes. The bound D4-branes jump over NS5-branes properly in such a

way to avoid breaking the s-rule. In this setup, since D6-branes are placed at infinity, the

space is not Taub NUT space anymore but just flat C2.

We reinterpret (2.19) as the M5-brane configuration for this situation, where the space

is now flat C2 spanned by the two coordinates v and z. All the D6-branes now exist at the

region z → ∞, and the first term in (2.19) is consistent with the situation that (is − is−1)

D6-branes bind s D4-branes each. The second term has also the factor Js but with one

power less. As we decrease the power of z, the power of Js also reduces one by one.

We claim that this is the counterpart of our proposal (2.15). What is generalized in our

proposal is that we consider not only for D7-branes but also for arbitrary [p, q] 7-branes.

This generalization appears only when we uplift to five dimensions.

We note that with this reinterpretation, we find that (2.16), which originally defines

the multi Taub NUT space, can be seen as the coordinate transformation to move the

external D4-branes from one side to the other side by the Hanany-Witten transition, which

is the analogue of (2.9). Then, the curve (2.18) is also consistent with this interpretation,

where the (iα − iα−1) D6-branes originally placed between α-th NS5-brane and (α− 1)-th

NS5-brane bind n+1−α D4-branes each. An analogous consistency check is also possible

for our examples dealt in this paper. That is, even after such coordinate transformation,

our proposal (2.15) is still satisfied.

3 E7 Seiberg-Witten curve

In this section, we compute the Seiberg-Witten curve for 5d Sp(1) theory Nf = 6 flavor

based on toric-like diagram. After constructing the corresponding toric-like diagram, we

compute the SW curve using the technique developed in the previous section. Then,

we check that it is consistent with the known expression written in E7 invariant manner

[16, 17]. We also study the 4d limit of the 5d SW curve and show that it reproduces the

expected curve [21].
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3.1 Construction of the toric-like diagram

Let us first start by adding one more flavor to the brane configuration for Nf = 5, for

instance, the first diagram of Figure 6. As shown for the Nf = 5 case leading to T3

diagram, it is then straightforward to obtain a tuned T4 diagram, via successive use of the

Hanany-Witten transition.

Figure 7. A toric-like diagram for the SU(2) theory with Nf = 6 flavors. It can be viewed as

a tuned T4 diagram. It has manifest SU(4)× SU(4)× SU(2) symmetry, but it is invariant under

which E7 symmetry

The corresponding toric-like diagram is given in Figure 7. This is a T4 diagram that is

specially tuned to have only one Coulomb modulus. It has manifest global symmetry

SU(4) × SU(4)× SU(2), which is a maximal compact subgroup of E7.

As discussed in section 2.1, the curve can be seen in various ways through the Hanany-

Witten transition. For instance, one can push a 7-brane upward instead of bringing it

downward. This gives a rectangular shape toric-like diagram, which has manifest S[U(4)×
U(4)] symmetry. See Figure 8. It follow from the figure that the SU(2) theory with

Nf = 6 flavors can be viewed as a a special case of toric diagram for SU(4) gauge theory

with Nf = 8 flavors.

Figure 8. Left: Another web diagram for the SU(2) theory with Nf = 7 flavors. We use ⊗
to denote the 7-brane that combine 5-branes. Right: Another toric-like diagram for E7. It has

manifest S[U(4)× U(4)] symmetry. This can be viewed as a tuned toric diagram for SU(4) gauge

theory with eight flavors.
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Figure 9. A toric-like diagram for the SU(2) theory with Nf = 6 flavors. It has manifest SU(8)

symmetry

We can further apply the Hanany-Witten to other 7-branes. For instance, let us move

all the [1, 0] 7-branes on the right hand sides of Figure 8 to the left. We then obtain the

toric-like diagram given in Figure 9. This toric-like diagram has manifest SU(8) symmetry,

which is again a maximal subgroup of E7.

3.2 Nf = 6 Seiberg-Witten curve from M-theory

We now have at least three toric-like diagrams describing the SU(2) theory with Nf = 6

flavors. Let us call the diagrams as the tuned T4 digram for Figure 7, the rectangular

diagram for Figure 8, and the long triangle diagram for Figure 9. In this subsection, we

compute the SW curve for each diagram following the procedure discussed in section 2.2.

We then explicitly show that the curves are related by a proper coordinate transformation

confirming that the Hanany-Witten transition is realized as a coordinate transformation

in the SW curve.

3.2.1 Seiberg-Witten curve from the tuned T4 diagram

Before computing the SW curve from Figure 7, we first briefly mention the curve for T4

theory, which corresponds to the diagram obtained by replacing all the white dots into

black dots in Figure 10. The SW curve is written in the form.

∑

p≥0,q≥0
p+q≤4

cpqt
pwq = 0. (3.1)

– 13 –



We then impose the following conditions. The polynomial at asymptotic region behaves

t ∼ w → ∞ :

4∑

p=0

cp,4−pt
pw4−p = c04

4∏

i=1

(w + Lit),

t → 0 :
4∑

q=0

c0qw
q = c04

4∏

i=1

(w −Mi),

w → 0 :

4∑

p=0

cp0t
p = c40

4∏

i=1

(t−Ni), (3.2)

from which we can obtain the T4 SW curve. The coefficients c11, c12, and c21 are not

determined from the above conditions and are treated as the Coulomb moduli parameters.

This T4 theory corresponds to the 5d uplift of sphere with three full punctures in 4d setup

[21].

c40c30

c31

c20

c21

c22

c10

c11

c12

c13

c00

c01

c02

c03

c04

N2 N1

M1

M2

M3

M4

L1

L2

L3

L4

Figure 10. Coefficients in the tuned T4 diagram

Now, we move on to the SW curve for the SU(2) theory with Nf = 6 flavors. In 4d,

E7 theory is obtained by replacing one of the full punctures with the degenerate one. In

5d, it is equivalent to replacing some of the black dots into the white dots in the toric-

like diagram as in Figure 10. Let us apply the generic procedure discussed in section 2.2.

Structurally, the SW curve is still of the form (3.1), but the conditions (3.2) are replaced

by the following ones:

t, w → ∞ :
4∑

p=0

cp,4−pt
pw4−p = c0,4

4∏

i=1

(w + Lit),

t → 0 :

4∑

q=0

c0,qw
q = c0,4

4∏

i=1

(w −Mi),

w → 0 :

4∑

p=0

cp,0t
p = c4,0

2∏

i=1

(t−Ni)
2,

4∑

p=0

cp,1t
p ∝

2∏

i=1

(t−Ni). (3.3)

This amounts not only to putN3 = N1, N4 = N2 but also gives rise to to one more condition

which is the last condition in (3.3) This extra condition enables us to determine c11 and
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c21 in terms of physical parameters. Recall that these coefficients are the Coulomb moduli

parameters in T4 case, and tuning the T4 keeping only one modulus, these coefficients are

no longer Coulomb moduli parameters. This is the effect of “degenerating puncture”.

The next thing we do is to determine the coefficients cij from the boundary conditions

(3.3). There are 15 dots in the toric-like diagram in Figure 10, which means that we have

15 non-zero coefficients in the SW curve (3.1). Naive counting says that the conditions

(3.3) give 14 relations between the coefficients cij and the parameters Li, Mi, Ni. However,

not all the relations are independent. For instance, three relations including c00, c04, c40
are given as

c40 = c04

4∏

i

Li, c00 = c04

4∏

i

Mi, c00 = c40

2∏

i

Ni
2, (3.4)

which lead to one compatibility condition on the parameters Li, Mi, Ni

4∏

i=1

Mi =
4∏

j=1

Lj ·
2∏

k=1

Nk
2. (3.5)

That is, one out of the 14 relations gives this compatibility condition rather than determin-

ing the coefficients. It means out of the 15 coefficients, one can determine 13 coefficients.

Two remaining undetermined coefficients can be identified as follows: one can be identified

as an overall constant and the other plays a role of the Coulomb modulus U of the theory

which is the black dot in the middle of the toric diagram, c11.

As shifting along the t- and w-axes is irrelevant, one can say that there are three

rescaling degrees of freedom one can freely choose (overall constant, shifts in t and w

coordinates). For an overall constant, we choose

c04 = 1. (3.6)

With the rescaling of t and w, we can choose, N1N2 = 1 and
∏4

i=1Mi = 1, respectively.

Together with the compatibility condition (3.5), we obtain

4∏

i=1

Li =

4∏

i=1

Mi =

2∏

i=1

Ni = 1. (3.7)

The resulting Seiberg-Witten curve is then written as

w4 + (χ1(L)t− χ1(M))w3 +
(
χ2(L)t

2 + c12t+ χ2(M)
)
w2

+(t−N1)(t−N2) (χ3(L)t− χ3(M))w + (t−N1)
2(t−N2)

2 = 0, (3.8)

where, χi(X) is the character of SU(4) defined as

χn(X) =
∑

1≤i1≤i2≤···≤in≤4

Xi1Xi2 · · ·Xin . (3.9)

As the SW curve is obtained from the tuned T4 diagram in Figure 10, manifest symmetry

is SU(4)×SU(4)×SU(2) and the curve is the curve is expressed in terms of the characters

of SU(4)× SU(4) × SU(2).
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c20

c21

c22

c23

c24

c10

c11

c12

c13

c14

c00

c01

c02

c03

c04

t2

t1

m̃5

m̃6

m̃7

m̃8

m̃1

m̃2

m̃3

m̃4

Figure 11. Coefficients in the rectangular diagram

3.2.2 Seiberg-Witten curve from the rectangular diagram

We now discuss the SW curve corresponding to the diagram in Figure 8. This rectangular

diagram is obtained by moving one of the [0, 1] 7-brane in Figure 7 to upward by Hanany-

Witten transition. As mentioned in section 2.2, such Hanany-Witten transition can be

realized by the coordinate transformation

w → w(t−N1), (3.10)

which moves [0, 1] 7-brane at t = N1 upward. By substituting (3.10) to (3.8) and by

multiplying the factor (t−N1)
−2, we obtain

(t−N1)
2w4 + (t−N1) (χ1(L)t− χ1(M))w3 +

(
χ2(L)t

2 + C12t+ χ2(M)
)
w2

+(t−N2) (χ3(L)t− χ3(M))w + (t−N2)
2 = 0. (3.11)

It is also possible to obtain the SW curve from the rectangular diagram in Figure 8 or

Figure 11 directly. The curve should take the form of the polynomial

2∑

i=0

4∑

j=0

cijt
iwj = 0, (3.12)

with the boundary conditions given as follows

t → 0 :

4∑

j=0

c0jw
j = c04

8∏

j=5

(w − m̃j),

t → ∞ :

4∑

j=0

c2jt
2wj = c24t

2
4∏

j=1

(w − m̃j),

w → 0 :
2∑

i=0

ci0t
i = c20(t− t2)

2;
2∑

i=0

ci1t
i ∝ (t− t2),

w → ∞ :
2∑

i=0

ci4t
iw4 = w4c24(t− t1)

2;
2∑

i=0

ci3t
i ∝ (t− t1). (3.13)
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By using the rescaling of t, we set t1 = 1. With the rescaling of w, we set the center of

mass position of mi’s to be unity

8∏

i=1

m̃i = 1. (3.14)

The compatibility condition corresponding to (3.5) is given as

t22
t21

=

∏8
i=5 m̃i∏4
j=1 m̃j

, (3.15)

which leads to t2 =
∏8

i=5 m̃i. With a little calculation, one finds that the SW curve is

given by

4∏

i=1

(w − m̃i) t
2 + k(w) t+

8∏

i=5

(w − m̃i) = 0, (3.16)

where

k(w) = −2w4 + χSU(8)
µ1

w3 + U w2 + χSU(8)
µ7

w − 2. (3.17)

Up to the rescaling of the coordinates

t → N−1
1 t, w → −N1

1
2w, (3.18)

we find that this curve is exactly the same as (3.11), where the parameters are related by

m̃i = N2
1
2Li, m̃i+4 = N1

1
2Mi, (i = 1, 2, 3, 4), U = c12. (3.19)

Therefore, we find that the SW curve computed from the tuned T4 diagram and the one

computed from the rectangular diagram is indeed related by a simple coordinate transfor-

mation (3.10).

3.2.3 Seiberg-Witten curve from the long triangle diagram

Finally, we move to the SW curve corresponding to Figure 9. Here we used the choice

(3.14) enabling us to express in terms of χµi , the characters of the fundamental weights µi

of SU(8),6

χSU(8)
µi

≡
8∑

k1<k2<···<ki

m̃k1m̃k2 · · · m̃ki . (3.20)

6Dynkin diagram for SU(8) is given by

◦
µ1

−− ◦
µ2

−− ◦
µ3

−− ◦
µ4

−− ◦
µ5

−− ◦
µ6

−− ◦
µ7

and µi are the fundamental weight corresponding to the Dynkin label.
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c00 c10 c20

c01 c11

c02 c12
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c07

c08

Figure 12. Coefficients in the long triangle diagram

By performing the coordinate transformation

t → T
∏4

i=1(w − m̃i)
, (3.21)

we can write the SW curve in an SU(8) manifest way as

T 2 + k(w)T +
8∏

i=1

(w − m̃i) = 0, (3.22)

or

T 2 + (−2w4 + χµ1 w
3 + U w2 + χµ7 w − 2)T

+ w8 − χµ1w
7 + χµ2w

6 − χµ3w
5 + χµ4w

4 − χµ5w
3 + χµ6w

2 − χµ7w + 1 = 0, (3.23)

where we have dropped the superscript of the characters, χµi ≡ χ
SU(8)
µi . The coordinate

transformation (3.21) is interpreted as the Hanany-Witten to obtain the diagram in Figure

9 from that in Figure 8.

Again, we can obtain (3.23) directly from the diagram in Figure 9 or Figure 12 by

considering the polynomial

∑

p≥0,q≥0
4p+q≤8.

cpqT
pwq = 0 (3.24)
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with the boundary conditions given as follows

T → 0 :

8∑

q=0

c0qw
q = c08

8∏

q=1

(w − m̃q),

w → 0 :

2∑

p=0

cp0t
p = c20(T − 1)2;

2∑

p=0

cp1t
p ∝ (T − 1),

w4 ∼ T → ∞ :
2∑

p=0

cp,8−4pT
pw8−4p = c20(T − w4)2;

1∑

p=0

cp,7−4pT
pw7−4p ∝ (T −w4). (3.25)

3.3 E7 invariance

In this subsection, we discuss E7 symmetry of the SW curve with six flavors. The curve

(3.23) that we obtained for the Nf = 6 case is manifestly SU(8) invariant, which is a

maximal compact subgroup of E7, and is expected to be E7 invariant. One way to check

the E7 invariance is to check whether the curve (3.23) is invariant under the Weyl invariance

of E7. This can be done, but in practice it is not so straightforward because it involves

mixing of coordinate transformations. Another way, which is more direct, is to compare

(3.23) to the curve which is written in a E7 manifest way [15–17] by examining the modular

function called j-invariant of the elliptic curve.

To this end, we rewrite the SU(8) invariant curve (3.23) in a form that is easier to

extract the j-invariant

y2 =
(
−4U + χ2

µ1
− 4χµ2

)
w4 + (2Uχµ1 + 4χµ3 − 4χµ7)w

3 (3.26)

+
(
U2 + 2χµ1χµ7 − 4χµ4 + 8

)
w2 + (2Uχµ7 − 4χµ1 + 4χµ5)w − 4U − 4χµ6 + χ2

µ7

where

y = T − w4 +
1

2
χµ1 w

3 +
1

2
U w2 +

1

2
χµ7 w − 1. (3.27)

The E7 manifest curve [16, 17], that we want to compare, is of the following form

y2 = 4x3 + (−u2 + 4χE7
µ1

− 100)x2 +
(
(2χE7

µ2
− 12χE7

µ7

)
u+ 4χE7

µ3
− 4χE7

µ6
− 64χE7

µ1
+ 824

)
x

+ 4u4 + 4χE7
µ7

u3 + (4χE7
µ6

− 8χE7
µ1

+ 92)u2 + (4χE7
µ5

− 4χE7
µ1

χE7
µ7

− 20χE7
µ2

+ 116χE7
µ7

)u

+ 4χE7
µ4

− χE7
µ2

χE7
µ2

+ 4χE7
µ1

χE7
µ1

− 40χE7
µ3

+ 36χE7
µ6

+ 248χE7
µ1

− 2232,

(3.28)

where χE7
µi

is the character of the fundamental weight µi of E7 which is associated to the

node of the E7 Dynkin diagram as

◦
µ1

−− ◦
µ3

−−
◦µ2

|
◦
µ4

−− ◦
µ5

−− ◦
µ6

−−◦
µ7
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Expressed in the standard Weierstrass form, this E7 manifest curve is of degree three

polynomial in x. On the other hand, the our SU(8) manifest curve is quartic in w. In

order to compare both, we use the j-invariant of elliptic curve

j =
g32

g32 − 27g23
. (3.29)

For generic cubic and quartic polynomials, the forms of g2 and g3 are given in Appendix C

We first compare the massless case by taking all the mass parameters m̃i to unity

(m̃i = e−βmi → 1). This means that the character of the fundamental weights becomes

the dimension of the corresponding fundamental weights: For E7,

χE7
µ1

→ 133, χE7
µ2

→ 912, χE7
µ3

→ 8645,

χE7
µ4

→ 365750, χE7
µ5

→ 27664, χE7
µ6

→ 1539, χE7
µ7

→ 56. (3.30)

and the curve (3.28) is written as

y2 = 4x3 +
(
432 − u2

)
x2 + (1152u + 20736)x + 4u4 + 224u3 + 5184u2 + 69120u + 442368.

(3.31)

The corresponding j-invariants is given by

(u− 36)3

1728(u − 52)
. (3.32)

For SU(8), the characters again become the dimensions of the representations

χµ1 = χµ7 → 8, χµ2 = χµ6 → 28, χµ3 = χµ5 → 56, χµ4 → 70, (3.33)

and the curve (3.26) is written as

y2 = (U + 12)
[
− 4w4 + 16w3 + (U − 12)w2 + 16w − 4

]
. (3.34)

The corresponding j-invariants for this is given by

(U − 36)3

1728(U − 52)
, (3.35)

which coincide with that of E7 manifest curve. From this, we can identify the Coulomb

moduli parameter U with u used in [17].

With this identification of the Coulomb modulus and agreement of the j-invariant

for massless case, one can check a generic massive case. Although it is tedious, it is

straightforward to see that the j-invariant for the E7 manifest curve (3.28) exactly coincides

with the j-invariant for the SU(8) manifest curve (3.26) by implementing the decomposition

of the E7 fundamental weights into the SU(8) fundamental weights listed in Appendix

D.1. (We list the form of g2 and g3 for the SU(8) manifest curve (3.26) in Appendix D.)

Therefore, our expression (3.26) of the SW curve for Nf = 6 flavors describes the E7 curve,

although it is not manifestly E7 invariant.
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3.4 4d limit of 5d E7 Seiberg-Witten curve

From the 5d curve (3.16)

4∏

i=1

(w − m̃i) t
2 +

(
−2w4 + χSU(8)

µ1
w3 + U w2 + χSU(8)

µ7
w − 2

)
t+

8∏

i=5

(w − m̃i) = 0, (3.36)

whose corresponding toric-like diagram is of rectangular shape given in Figure 8, we discuss

4d limit of 5d theory which is to take zero radius limit of the compactified circle. We

associate the radius of the circle β and then the 5d coordinate w and mass parameters m̃i

are related to the 4d coordinate v and masses mi as

w = e−βv, and m̃i = e−βmi . (3.37)

To take zero size limit of the radius β, we expand the Coulomb moduli parameter U in five

dimensions as

U =
∞∑

k=0

ukβ
k. (3.38)

Expansion of the curve (3.36) leads to consistent conditions determining the expansion

coefficient of the 5d Coulomb moduli parameter U , and non-trivial relation occurs at order

β4 which gives rise to 4d SW curve

t2
4∏

i=1

(v −mi) + t
(
− 2v4 −D2 v

2 +D3 v + u
)
+

8∏

i=5

(v −mi) = 0, (3.39)

where Dn ≡∑8
i1<···<in

mi1 · · ·min are the symmetric product and the 4d Coulomb moduli

parameter u appears at order β4 in the expansion of U

U = −12 + 2D2 β
2 +

(
u+

1

6
(2D2 −D2)

)
β4 +O(β5). (3.40)

t = 0 t = 1

t = ∞

Figure 13. Sphere with three punctures which corresponds to E7 CFT.

In the following, we check that the 4d SW curve (3.39) is exactly the SW curve for

the 4d E7 CFT found in [20, 21], which is given by the quadruple cover of the sphere with
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three punctures with specific type. See Figure 13. For later convenience, we reparametrize

the mass parameters as

m =
1

4

4∑

i=1

mi = −1

4

8∑

i=5

mi,

m̂i = mi −m (i = 1, 2, 3, 4), m̂i = mi +m (i = 5, 6, 7, 8) (3.41)

By changing the coordinate as

v = xt+m
t+ 1

t− 1
, (3.42)

we can write the curve in the way

x4 +

4∑

n=2

φn(t)x
4−n = 0, (3.43)

with SW one-form λ = xdt. Here, φn(t) has poles at t = 0, 1,∞ where the three punctures

exist. The residues at each pole are given by

{m̂5, m̂6, m̂7, m̂8} at t = 0,

{−2m,−2m, 2m, 2m} at t = 1,

{m̂1, m̂2, m̂3, m̂4} at t = ∞, (3.44)

which we identify as mass parameters. This is consistent with the type of each puncture.

The type of each puncture can be further checked by looking at the order of the pole of φn

at each puncture when we turn off the mass parameters associated with the corresponding

puncture. The expected order of φn are given by “n−(height of the n-th boxes)”, where

we label the boxes in the Young diagram in such a way that the height of the box does not

decrease. See [21] for detail. Denoting the order of the pole of φn as pn, we can explicitly

check

(p2, p3, p4) = (1, 2, 3) at t = 0 when m̂5 = m̂6 = m̂7 = m̂8 = 0,

(p2, p3, p4) = (1, 1, 2) at t = 1 when m = 0,

(p2, p3, p4) = (1, 2, 3) at t = ∞ when m̂1 = m̂2 = m̂3 = m̂4 = 0. (3.45)

This is again consistent with the type of punctures. Thus, we have checked that our 4d

curve (3.39) agree with that of the 4d E7 CFT.

4 E8 Seiberg-Witten curve

In this section, we consider the SW curve for Sp(1) gauge theory with Nf = 7 flavors. The

construction of the toric-like diagram, the computation of the corresponding SW curve,

the comparison with the known curve, and the 4d limit can be studied analogously to the

previous section.
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Figure 14. Nf = 7 brane configuration (left) and tuned T6 diagram after Hanany-Witten transi-

tions (right)

4.1 Constructing toric-like diagram

We begin by adding one more flavor brane to theNf = 6 brane configuration. Via successive

applications of the Hanany-Witten transition, it is straightforward to see that it leads to a

tuned T6 diagram as in Figure 14. The corresponding toric-like diagram is given in Figure

15.

Figure 15. A toric-like diagram with E8 symmetry. It can be viewed as a tuned T6 diagram.

As this toric-like diagram is a tuned T6 diagram,7 it has manifest symmetry of SU(6) ×
SU(3) × SU(2) which is a maximal compact subgroup of E8. As explained earlier, by

performing the Hanany-Witten transition, the manifest symmetry structure is changed to

another subgroup of E8. For instance, if we perform the Hanany-Witten transition on one

of 7-branes combining three 5-branes on the bottom of the toric-like diagram, Figure 15, we

get the corresponding toric-like diagram of a rectangular shape, Figure 16. The diagram

shows manifest symmetry of S[U(6)× U(3)].

7We note that although this toric-like diagram is a tune T6, the number of white dots inside is different

from the tuned T6 in [20]. Depending on how one triangulates while keeping one Coulomb modulus, an

interior black dot near the boundary can be turned to a white dot.
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Figure 16. A rectangular toric like diagram for E8

We can further move all the [1, 0] 7-branes on the right hand sides to the left by

Hanany-Witten transition. Then, we obtain the toric-like diagram in Figure 17.

T

w

Figure 17. A toric-like diagram for E8 with manifest SU(9) symmetry

This toric-like diagram has manifest SU(9) symmetry, which is the maximal subgroup

of E8. Again, the SW curve can be computed from either of these three toric diagrams

shown above.

4.2 Nf = 7 Seiberg-Witten curve from M-theory

In the following, we compute the SW curve based on toric-like diagram of Nf = 7 . We

start from the diagram in Figure 15 and obtain the SW curve corresponding to the other

diagrams by coordinate transformation. Since the computation and the logic are quite

parallel to section 3.2, we summarize the computation briefly.

The SW curve is given by the special case of T6 curve

∑

p≥0,q≥0
p+q≤6

cpqt
pwq = 0. (4.1)
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We impose the following conditions

w, t → ∞ :

6∑

p=0

cp,6−pt
pw6−p = c06

3∏

i=1

(w + Lit)
2,

5∑

p=0

cp,5−pt
pw5−p ∝

3∏

i=1

(w + Lit), (4.2)

t → 0 :
6∑

q=0

wq = c06

6∏

i=1

(w −Mi), (4.3)

w → 0 :

6∑

p=0

cp0t
p = c60

2∏

i=1

(t−Ni)
3,

6∑

p=0

cp1t
p ∝

2∏

i=1

(t−Ni)
2,

6∑

p=0

cp2t
p ∝

2∏

i=1

(t−Ni). (4.4)

This leads to the SW curve as

0 = w6 − (S′
1t− 2T ′

1)w
5 +

(
S2t

2 − (S′
1T

′
1 + S′

5 +R1T
′
2)t+ (T ′

1
2 + 2T ′

2)
)
w4

−
(
S′
3t

3 − U ′t2 + (S′
1T

′
2 + S′

5T
′
1 + 3R1 +R1T

′
1T

′
2)t− (2T ′

1T
′
2 + 2)

)
w3

+ (t2 −R1t+ 1)
(
S′
4t

2 − (S′
1 + S′

5T
′
2 +R1T

′
1)t+ (T ′

2
2 + 2T ′

1)
)
w2

− (t2 −R1t+ 1)2(S′
5t− 2T ′

2)w + (t2 −R1t+ 1)3, (4.5)

where we defined the characters of SU(6), SU(3), and SU(2) as

S′
n =

∑

1≤i1≤i2≤···≤in

Mi1Mi2 · · ·Min , (n = 1, · · · , 5)

T ′
n =

∑

1≤i1≤i2≤···≤in

Li1Li2 · · ·Lin , (n = 1, · · · , 2)

R1 = N1 +N2, (4.6)

and we also have imposed

3∏

i=1

Li =

6∏

i=1

Mi =

2∏

i=1

Ni = 1, (4.7)

by using the rescaling of t and w together with the compatibility condition.

Let us consider the coordinate transformation

w → w(t−N1) (4.8)

which corresponds to the Hanany-Witten transition enabling us to obtain the toric-like

diagram in Figure 16. After further scalings8 of w and t, and introducing new parameter,

8t → N1
−1t and w → N1

−4/3w.
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we obtain

(t− S6)
3w6 − S1(t− S6)

2(t− 2T1S6S
−1
1 )w5

+ S2(t− S6)
(
t2 − S−1

2 (S1S6T1 + S5 + S6T2 + S2
6T2)t+ S−1

2 S2
6(T

2
1 + 2T2)

)
w4

+
(
− S3t

3 + Ut2 −
[
S1S

2
6T2 + S5S6T1 + 3S6 + 3S2

6 + S2
6T1T2 + S3

6T1T2

]
t+ 2S3

6T1T2 + 2S2
6

)
w3

+ S4(t− 1)
(
t2 − S−1

4 [S1S6 + S5S6T2 + S6T1 + S2
6T1]t+ S−1

4 S2
6(S6T

2
2 + 2T1)

)
w2

− S5(t− 1)2(t− 2S−1
5 S2

6T2)w + S6(t− 1)3 = 0, (4.9)

where we introduced

Sn = N1
n
3 S′

n, (n = 1, · · · , 5), S6 = N1
2,

Tn = N1
− 2n

3 T ′
n, (n = 1, 2), T3 = N1

−2. (4.10)

We note that this curve is invariant under S[U(6)×U(3)]. This curve is again also directly

obtained from the diagram in Figure 16. In terms of the fugacities associated with the

mass parameters, Sn and Tn can be written as follows:

S1 =
6∑

i=1

m̃i, S2 =
6∑

i,j=1, i<j

m̃im̃j, S3 =
6∑

i1,i2,i3

m̃i1m̃i2m̃i3 , · · · , S6 =
6∏

i=1

m̃i,

T1 =
9∑

i=7

m̃i, T2 =
9∑

i,j=7, i<j

m̃im̃j , T3 = m̃7m̃8m̃9, S6T3 = 1.

Introducing the characters of the fundamental weights of SU(9) 9

χn =

n∑

i=0

Sn−iTi (S0 = 1 = T0, Sn>6 = 0 = Tn>3, χ9 = S6T3 = 1), (4.11)

the curve (4.9) is expressed in a simple form as

[ 6∏

i=1

(w − m̃i)
]
t3 − S6

[
3w6 − 2χ1w

5 + (χ2 + χ8)w
4 + Uw3 + (χ1 + χ7)w

2 − 2χ8w + 3
]
t2

+ S2
6

[(
3w3 − χ1w

2 + χ8w − 3
) 9∏

j=7

(w − m̃j)
]
t− S3

6

9∏

i=7

(w − m̃i)
2 = 0.

(4.12)

We now take a further coordinate transformation

t → −S6

∏9
i=7(w − m̃i)

T
.

9Dynkin diagram for SU(9) is given by

◦
µ1

−− ◦
µ2

−− ◦
µ3

−− ◦
µ4

−− ◦
µ5

−− ◦
µ6

−− ◦
µ7

−−◦
µ8

and µi are the fundamental weight associated with the Dynkin label.
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This corresponds to the Hanany-Witten transition that enables us to obtain the toric-like

diagram in Figure 17. We then obtain an SU(9) manifest curve

T 3 +
(
3w3 − χ1w

2 + χ8w − 3
)
T 2

+
(
3w6 − 2χ1w

5 + (χ2 + χ8)w
4 + Uw3 + (χ1 + χ7)w

2 − 2χ8w + 3
)
T

+ w9 − χ1w
8 + χ2w

7 − χ3w
6 + χ4w

5 − χ5w
4 + χ6w

3 − χ7w
2 + χ8w − 1 = 0. (4.13)

Again, this diagram can be also obtained directly from Figure 17.

4.3 E8 invariance

We now compare the SU(9) manifest SW curve for the Nf = 7 case to the known E8

manifest curve [16, 17] to check E8 invariance of the curve (4.13). To this end, with

T̃ =
1

w

(
T − w3 +

1

3
χ1w

2 − 1

3
χ8w + 1

)
, (4.14)

we rewrite (4.13) as

T̃ 3 +

[(
− χ2

1

3
+ χ2 − χ8

)
w2 +

(
U +

2χ1χ8

3
+ 6
)
w − χ2

8

3
− χ1 + χ7

]
T̃

+
(
− U − 2

27
χ3
1 +

1

3
χ2χ1 −

1

3
χ8χ1 − χ3 − 3

)
w3

+
(U
3
χ1 +

2

9
χ8χ

2
1 + χ1 +

χ2
8

3
+ χ4 − χ7 −

χ2χ8

3

)
w2

+
(
− 1

3
Uχ8 −

1

3
χ2
1 −

2

9
χ2
8χ1 +

1

3
χ7χ1 + χ2 − χ5 − χ8

)
w

+ U +
2χ3

8

27
+

χ1χ8

3
− χ7χ8

3
+ χ6 + 3 = 0. (4.15)

Observe that this curve is of mutually degree 3 polynomials in T̃ and w. One can convert

this into the standard Weierstrass form which makes it easier to compare to the known E8

manifest curve (For an explicit coordinate transformation to the Weierstrass form, see, for

example, [28]).
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The E8 manifest curve [16, 17] is given by

y2 = 4x3 +
[
− u2 + 4χE8

µ1
− 100χE8

µ8
+ 9300

]
x2 +

[
(2χE8

µ2
− 12χE8

µ7
− 70χE8

µ1
+ 1840χE8

µ8
− 115010)u

+ 4χE8
µ3

− 4χE8
µ6

− 64χE8
µ1

χE8
µ8

+ 824(χE8
µ8

)2 − 112χE8
µ2

+ 680χE8
µ7

+ 8024χE8
µ1

− 205744χE8
µ8

+ 9606776
]
x

+ 4u5 +
(
4χE8

µ8
− 992

)
u4 +

(
4χE8

µ7
− 12χE8

µ1
− 680χE8

µ8
+ 93620

)
u3

+
(
4χE8

µ6
− 8χE8

µ1
χE8
µ8

+ 92(χE8
µ8

)2 − 28χE8
µ2

− 540χE8
µ7

+ 2320χE8
µ1

+ 30608χE8
µ8

− 3823912
)
u2

+
(
4χE8

µ5
− 4χE8

µ1
χE8
µ7

− 20χE8
µ2

χE8
µ8

+ 116χE8
µ7

χE8
µ8

+ 8(χE8
µ1

)2 − 52χE8
µ3

− 416χE8
µ6

+ 1436χE8
µ1

χE8
µ8

− 17776(χE8
µ8

)2 + 4180χE8
µ2

+ 16580χE8
µ7

− 182832χE8
µ1

+ 1103956χE8
µ8

+ 18130536
)
u

+ 4χE8
µ4

− (χE8
µ2
)2 + 4(χE8

µ1
)2χE8

µ8
− 40χE8

µ3
χE8
µ8

+ 36χE8
µ6

χE8
µ8

+ 248χE8
µ1

(χE8
µ8

)2 − 2232(χE8
µ8

)3

+ 2χE8
µ1

χE8
µ2

− 232χE8
µ5

+ 224χE8
µ1

χE8
µ7

+ 1124χE8
µ2

χE8
µ8

− 6580χE8
µ7

χE8
µ8

− 457(χE8
µ1

)2 + 4980χE8
µ3

+ 8708χE8
µ6

− 88136χE8
µ1

χE8
µ8

+ 1129964(χE8
µ8

)2 − 146282χE8
µ2

+ 66612χE8
µ7

+ 6123126χE8
µ1

− 104097420χE8
µ8

+ 2630318907,

(4.16)

where the characters of E8, χ
E8
i , are associated with the fundamental weights µi assigned

to the E8 Dynkin diagram as follows:

E8 ◦
µ1

−− ◦
µ3

−−
◦µ2

|
◦
µ4

−− ◦
µ5

−− ◦
µ6

−− ◦
µ7

−−◦
µ8

We first check the j-invariant for massless cases, where the character becomes the

dimension of the representation. For the E8 manifest curve, it reads

y2 = 4x3 −
(
u2 + 14968

)
x2 + 8(41644u + 1022767)x

+ 4u5 − 76392u3 + 9420308u2 − 777374372u + 12225915472. (4.17)

The j-invariant is then

u2

1728(u − 432)
. (4.18)

For the SU(9) manifest curve, the corresponding curve is expressed as

t3 + (U + 60)wt − (U + 60)w3 + 3(U + 60)w2 − 3(U + 60)w + (U + 60) = 0, (4.19)

and the corresponding j-invariant is

(U + 60)2

1728(U − 372)
. (4.20)

Note that two j-invariants, (4.18) and (4.20), look different, but a shift in the Coulomb

moduli parameter can make them coincide with each other. In fact, if one checks the j-

invariant for the case with generic masses, in order to compare two curves, one needs to
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shift the Coulomb moduli parameters by a constant 10

U → u− 60.

With this shift of the Coulomb moduli parameter, one can write (4.15) in the standard

Weierstrass form

y2 = 4x3 − g
SU(9)
2 x− g

SU(9)
3 , (4.21)

where

g
SU(9)
2 =

1

12
u4 − 2

3

(
2349 + χ1χ2 − 27χ3 + χ1χ5 − 27χ6 + χ2χ7 − 25χ1χ8

+ χ4χ8 + χ7χ8

)
u2 +O(u),

g
SU(9)
3 =

1

216
u6 − 4u5 − 1

18

(
− 15579 + χ1χ2 + 45χ3 + χ1χ5 + 45χ6 + χ2χ7

+ 47χ1χ8 + χ4χ8 + χ7χ8

)
u4 +O(u3). (4.22)

The complete expressions of g2 and g3 are complicated and long, so we list them in Appendix

E, from which one can compute the j-invariant. As the global symmetry for Nf = 7 flavors

is expected to be E8, this j-invariant should coincide with that from the E8 manifest curve

[17, 28]

y2 = 4x3 − gE8
2 x− gE8

3 , (4.23)

where

gE8
2 =

1

12
u4 −

(2
3
χE8
1 − 50

3
χE8
8 + 1550

)
u2 +O(u),

gE8
3 =

1

216
u6 − 4u5 −

( 1

18
χE8
1 +

47

18
χE8
8 − 5177

6

)
u4 +O(u3). (4.24)

For the explicit form of gE8
2 and gE8

3 , see Appendix B. As done in the Nf = 6 case, one can

decompose the fundamental weights of E8 into the fundamental weights of SU(9). Such

decomposition can be performed with help of computer programs, e.g. a Mathematica

10We can also compare (4.20) to the j-invariant of SO(16) manifest SW curve for E8 [15], which reads

in the massless case,

y
2 = x

3 + u
2
Nx

2
− 2u5

N .

The corresponding j-invariant is

u2
N

54uN − 729
.

We then find that the two curves are related by a constant shift in the Coulomb modulus

U → 4(8uN − 15).
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package like LieART [29] or a computer algebra package LiE [30]. We here used a Mathe-

matica package called ‘Susyno’ [31] 11 to decompose the E8 weights into the SU(9) weights.

The result of the decomposition is listed in Appendix E.1. Under this decomposition, the

g2 and g3 for (4.22) and (4.24) are in agreement with each other, thus confirming that E8

invariance of the SW curve (4.15) obtained from the toric-like diagram for Nf = 7 flavors.

4.4 4d limit of 5d E8 Seiberg-Witten curve

We start with our SW curve which is of a manifest S[U(3) × U(6)] invariant form (4.12).

By redefining − t
S6

by t, we get

[ 6∏

i=1

(w − m̃i)
]
t3 +

[
3w6 − 2χ1w

5 + (χ2 + χ8)w
4 + Uw3 + (χ1 + χ7)w

2 − 2χ8w + 3
]
t2

+
[(
3w3 − χ1w

2 + χ8w − 3
) 9∏

j=7

(w − m̃j)
]
t+

9∏

i=7

(w − m̃i)
2 = 0,

(4.25)

where w = e−βv and m̃i = e−βmi .

Upon reduction to 4d by expanding w and m̃i in β as well as the 5d Coulomb moduli

parameter U as a polynomial of β as (3.38), we obtain 4d SW curve at the order of β6,

expressed in terms of the symmetric product Dn ≡∑9
i1<···<in

mi1 · · ·min , as

t3
6∏

i=1

(v −mi) + t2
[
3v6 + 2D2v

4 − 2D3v
3 +D4 v

2 −D5v + u4d
]

+ t
(
3v3 +D2v −D3

) 9∏

j=7

(v −mj) +

9∏

j=7

(v −mj)
2 = 0, (4.26)

where

U = 12D2β
2 −D2

2β
4 +

(
u4d − 1

60

(
24D6 − 4D4D2 + 3D2

3 − 2D3
2

))
β6 (4.27)

t = 0 t = −1

t = ∞

Figure 18. Sphere with three punctures which corresponds to E8 CFT.

11The authors thank Renato Fonseca for email correspondence and also kindly sending us his Mathematica

file confirming our result for χ
E8

4 and χ
E8

5 , which we did not decompose but obtained indirectly in version

1.
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In the following, we check that the 4d SW curve (4.26) is exactly the SW curve for

the 4d E8 CFT found in [20, 21], which is given by the sextuple cover of the sphere with

three punctures of specific type. See Figure 18. For convenience, we reparametrize the

mass parameters as

m =
1

6

6∑

i=1

mi = −1

6

8∑

i=5

mi,

m̂i = mi −m (i = 1, 2, 3, 4, 5, 6), m̂i = mi + 2m (i = 7, 8, 9). (4.28)

By changing the coordinate as

v = xt−m
t− 2

t+ 1
, (4.29)

we can write the curve in the way

x6 +
6∑

n=2

φn(t)x
6−n = 0, (4.30)

with SW one-form λ = xdt. Here, φn(t) has poles at t = 0,−1,∞ where the three punctures

exist. The residues at each pole are given by

{m̂7, m̂7, m̂8, m̂8, m̂9, m̂9} at t = 0,

{−3m,−3m,−3m, 3m, 3m, 3m} at t = −1,

{m̂1, m̂2, m̂3, m̂4, m̂5, m̂6} at t = ∞, (4.31)

which we identify as mass parameters. This is consistent with the type of each puncture.

The type of each puncture can be further checked by looking at the order of the pole of φn

at each puncture when we turn off the mass parameters associated with the corresponding

puncture. Denoting the order of the pole of φn as pn, we can explicitly check

(p2, p3, p4, p5, p6) = (1, 2, 2, 3, 4) at t = 0 when m̂7 = m̂8 = m̂9 = 0,

(p2, p3, p4, p5, p6) = (1, 1, 2, 2, 3) at t = −1 when m = 0,

(p2, p3, p4, p5, p6) = (1, 2, 3, 4, 5) at t = ∞ when m̂1 = m̂2 = · · · = m̂6 = 0.(4.32)

This is again consistent with the type of punctures. Thus, we have checked that our 4d

curve (4.26) agree with that of the 4d E8 CFT.

5 Mass decoupling limit

In this section, we discuss “mass decoupling” limit of 5d theory with E8 (Nf = 7). Here

masses are positions of semi-infinite D7 branes in (p, q) web. As in 4d, one can take large

mass limit such that the flavor associated with large mass decouples which yields that rank

of global symmetry group is reduced to lower one. As toric-like diagrams of E7 theory

can be naturally embedded into toric-like diagrams of E8 theory, one expects that mass

decoupling limit of E8 toric-diagram leads to a E7 toric-like diagram.
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For mass decoupling limit from E8 to E7 SW curve, consider for the SU(9) manifest

curve for Nf = 7 flavors, Figure 17. We take the following scaling limit

m̃1 → L−1 m̃1, m̃9 → L , m̃i → m̃i (i = 2, · · · , 8), (5.1)

and

U → LU, w → w, t → t. (5.2)

This scaling leads that the fundamental weight of SU(9) scales like

χi ∼ Lχ
U(7)
i−1 (i = 2, · · · , 8), (5.3)

where χ
U(7)
0 ≡ 1 and χ

U(7)
i are the U(7) fundamental characters. For instance, χ

U(7)
1 =∑8

i=2 m̃i and χ
U(7)
7 =

∏8
i=2 m̃i. It follows from the SU(9) traceless condition that in this

scaling one obtains SU(8) traceless condition
∏8

i=1 m̃i = 1, and thus χ
U(7)
7 = m̃−1

1 .

By taking large L limit, we find that the SU(9) manifest SW curve (4.13) becomes

(
− w + χ

U(7)
7

)
T 2 +

(
− 2w4 + (χ

U(7)
1 + χ

U(7)
7 )w3 + Uw2 + (1 + χ

U(7)
6 )w − 2χ

U(7)
7

)
T

− w7 + χ
U(7)
1 w6 − χ

U(7)
2 w5 + χ

U(7)
3 w4 − χ

U(7)
4 w3 + χ

U(7)
5 w2 − χ

U(7)
6 w + χ

U(7)
7 = 0.

(5.4)

This has S[U(7)×U(1)] which can be also read off from the corresponding toric-like diagram

below.

w

T

Figure 19. E7 toric-like diagram of a manifest S[U(7)× U(1)] symmetry

We now take the Hanany-Witten transition to move the 7-brane on the right to the

left. It leads to the same SU(8) manifest toric-like diagram as Figure 9. As Hanany-Witten

– 32 –



effect is realized as a coordinate transformation, we have

T →
(
− w + χ

U(7)
7

)−1
t, (5.5)

which gives

t2 +
(
− 2w4 + (χ

U(7)
1 + χ

U(7)
7 )w3 + Uw2 + (1 + χ

U(7)
6 )w − 2χ

U(7)
7

)
t (5.6)

+
(
− w + χ

U(7)
7

)(
−w7 + χ

U(7)
1 w6 − χ

U(7)
2 w5 + χ

U(7)
3 w4 − χ

U(7)
4 w3 + χ

U(7)
5 w2 − χ

U(7)
6 w + χ

U(7)
7

)
= 0.

In order to compare to (3.23), we redefine the coordinate

t → m̃−1
1 T, w → m̃

− 1
4

1 w, (5.7)

which leads to the the SU(8) manifest curve for Nf = 6 (3.23) with the decomposition

between the fundamental characters of S[U(7)× U(1)] and SU(8)

χU(7)
n m̃

n
4
1 + χ

U(7)
n−1 m̃

n
4
1 = χSU(8)

n , (5.8)

where χ
U(7)
0 = 1, χ

U(7)
7 = m̃−1, and n = 1, . . . , 7.

We note that there exits another scaling of mass parameters which is equivalent up to

E8 Weyl transformation

m̃i → L
2
3 m̃i (i = 1, 2, 3), m̃j → L− 1

3 m̃j (j = 4, · · · , 9), (5.9)

as well as

U → LU, w → L− 1
3w, T → T. (5.10)

As the shows two distinct scaling behaviors, it leads to the following decomposition of

SU(9) characters into SU(3)× SU(6) characters:

χn → L
2n
3 χSU(3)

n (n = 1, 2, 3), χn → L
9−n
3 χ̃

SU(6)
9−n (n = 4, · · · , 8), (5.11)

satisfying χ
SU(3)
3 = 1 = χ̃

SU(6)
6 . Taking large L limit, the E8 SW curve (4.13) is expressed

as

T 3 +
(
− χ

SU(3)
1 w2 + χ̃

SU(6)
1 w − 3

)
T 2

+
(
χ
SU(3)
2 w4 + Uw3 + (χ

SU(3)
1 + χ̃

SU(6)
2 )w2 − 2χ̃

SU(6)
1 w + 3

)
T

− w6 + χ̃
SU(6)
5 w5 − χ̃

SU(6)
4 w4 + χ̃

SU(6)
3 w3 − χ̃

SU(6)
2 w2 + χ̃

SU(6)
1 w − 1 = 0, (5.12)

which is of manifest SU(6) × SU(3) symmetry, a maximal compact subgroup of E7. The

corresponding toric-like diagram is given by Figure 20.

– 33 –



Figure 20. Toric-like diagram of E7 theory with a manifest SU(6)× SU(3) symmetry

One can show that this diagram is equivalent to toric-like diagram for E7 global symmetry

by applying the Hanany-Witten transition several times.

The mass decoupling limit from E7 to E6 and to lower En can be done in a similar

fashion, as lower En toric (or toric-like) diagram is embedded into higher En diagram. For

example, E6 rectangular shape toric-like diagram in Figure 3 is embedded to E7 toric-like

diagram, Figure 8. For Nf ≤ 4, mass decoupling limit is straightforward and given in

Appendix A.

6 Rank-N En curve

Toric-like diagrams for higher rank En theories are proposed in [20] based on symmetry,

dimension of the Higgs branch as well as the Coulomb branch. As in the rank-1 case, they

are embedded in TN . More precisely, the rank-N E6, E7, and E8 theories are embedded in

T3N , T4N , and T6N , respectively, such that N 5-branes are bound together with the same

7-branes as in the rank-1 case, on each side of the multi-junction. This means that the

number of 7-branes does not change regardless of rank of the gauge group, Sp(N), and

hence global symmetry is still En.

In this section, we consider the SW curve for the higher rank En theories based on toric-

like diagram. Computing the curve for the corresponding toric-like diagram is straightfor-

ward, following the properties of the white dots in the previous sections, so here we do

not give details of computation, rather we sketch how the computation can be done. As

explained before, to find the SW curve, it is convenient to implement the Hanany-Witten

transition on the (tuned) TN diagram so that the resultant diagram is of a rectangular

shape.
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w

t

Figure 21. (Left) Rank-1 E7 toric-like diagram, (Right) Rank-2 E7 toric-like diagram

Consider toric-like diagram for rank-1 and rank-2 E7 curves above. The toric-like

diagram for rank-1 (on the left of Figure 21) is the same one as Figure 8. The black dot

in the middle of the rank-1 diagram corresponds to the Coulomb modulus. The toric-like

diagram for rank-2 (on the right of Figure 21) is obtained as follows: Given two dots

which are next to each other along the outer edges of the rank-1 diagram, one inserts

a white dot such that, from the point of view of (p, q)-web, the number of semi-infinite

5-branes is doubled while they are combined with the same 7-branes. The dots inside of

the rank-2 diagram are introduced such that it does not break the s-rule, and dimension

of the Coulomb moduli gets doubled to account for rank-2. This procedure of making

multi-junction is also applicable to rank-N diagrams with any Nf (≤ 7) flavors.

To compute the SW curve

4∑

i=0

8∑

j=0

cijt
iwj = 0, (6.1)

we write the boundary conditions

t → 0 :

8∑

j=0

c0jw
j = c08

4∏

j=1

(w − m̃j)
2;

8∑

j=0

c1jt w
j ∝ t

4∏

j=1

(w − m̃j), (6.2)

t → ∞ :
8∑

j=0

c4j t
4wj = c48 t

4
8∏

j=5

(w − m̃j)
2;

8∑

j=0

c3j t
3wj ∝ t3

8∏

j=5

(w − m̃j), (6.3)
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and

w → 0 :
4∑

i=0

ci0t
i = c40(t− t2)

4;
4∑

i=0

ci1t
iw ∝ c41w(t− t2)

3;

4∑

i=0

ci2t
iw2 ∝ c42w

2(t− t2)
2;

4∑

i=0

ci3t
iw3 ∝ c43w

3(t− t2), (6.4)

w → ∞ :
4∑

i=0

ci8t
iw8 = c48w

8(t− t1)
4;

4∑

i=0

ci7t
iw7 ∝ w7(t− t1)

3;

4∑

i=0

ci6t
iw6 ∝ w6(t− t1)

2;
4∑

i=0

ci1t
iw5 ∝ w5(t− t1). (6.5)

As explained in (3.5), not all parameters are independent but they are constrained by the

same compatibility condition as for the rank-1 case

t22
t21

=

∏8
i=5 m̃i∏4
j=1 m̃j

.

We note that unlike rank-1 case, it turns out that there is another set of coefficients which

is related each other again by this compatibility condition.

Let us count the number of the coefficients and the conditions from the boundaries.

There are 45 dots (or non-vanishing coefficients) in the rank-2 E7 toric-like diagram. For

the boundary conditions t → 0 and t → ∞, one finds (8 + 4) × 2 = 24 conditions; for the

boundary conditions w → 0 and w → ∞, one finds (4 + 3 + 2 + 1) × 2 = 20 conditions.

Recall that the compatibility condition indicates that not all boundary conditions are

independent. For rank-2, there are two sets of conditions, as mentioned above. The

compatibility condition for rank-2 tells us that the number of independent conditions is 42

instead of 44. Hence, one is left with 3 undetermined coefficients; One of them is an overall

constant (or rescaling) and the other two are two Coulomb moduli for the rank-2 theory.

c00 c40

c11 c31

c12 c22 c32

c24

c16 c26 c36

c17 c37

c08 c48

Figure 22. Rank-2 E7 toric-like diagram
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Let us give a bit more explanation for the compatibility condition. Along the four

boundary edges, there are 24 dots, and we have 24 conditions from the boundary conditions

above. These boundary conditions interrelate the 24 coefficients. It turns that these 24

conditions do not have solutions unless the compatibility condition is satisfied. Given

this compatibility condition, 23 out of 24 conditions are independent. The undetermined

coefficient is associated with choice of overall rescaling.

Now consider the dots c11, c21, c31 along the next-to-boundary edge on the bottom.

As there are three dots here and we have 3 conditions from the property of the white

dots, the coefficients c11, c21, c31 are all determined. The same logic applied to the dots

c17, c27, c37 along the next-to-boundary edge on the top. We then consider the vertical five

dots c12, · · · , c16, we know there are only 4 conditions from the boundary conditions (6.2).

Similarly, we have the vertical five dots c32, · · · , c36 and 4 conditions (6.3). We also have

three dots c32, c22, c12 and 2 conditions from (6.4). Likewise, three dots c36, c26, c16 and 2

conditions from (6.5). In total 12 dots with 12 conditions. However, here the coefficients

along this rectangular are in interrelated, just like how the compatibility condition (3.5)

was obtained. It thus gives another undetermined coefficient, which is related to the

Coulomb moduli for the rank-2 case. Recall that the dot in the middle of the diagram is

not determined, and this dot is another undetermined coefficient c24. Together, these two

unknown coefficients account for two Coulomb moduli of the rank-2 theory. With suitable

identification of these Coulomb moduli parameters, for instance, with U1 +U2 for the first

undermined coefficient and U1U2 for c24, one finds that the rank-2 SW curve is factorized

as the product of the rank-1 SW curves of different Coulomb moduli parameters

( 4∏

i=1

(w − m̃i) t
2 +

(
−2w4 + χSU(8)

µ1
w3 + U1w

2 + χSU(8)
µ7

w − 2
)
t+

8∏

i=5

(w − m̃i)

)
(6.6)

×
( 4∏

i=1

(w − m̃i) t
2 +

(
−2w4 + χSU(8)

µ1
w3 + U2 w

2 + χSU(8)
µ7

w − 2
)
t+

8∏

i=5

(w − m̃i)

)
= 0.

We note that even though rank-2 in this case means Sp(2) and the Sp(2) gauge theories

contain an additional antisymmetric hypermultiplet compare with Sp(1) theory, the rank-2

SW curve (6.6) does not describe a generic Sp(2) SW curve with antisymmetric hypermul-

tiplet, rather it describes the Sp(2) SW curve with the vanishing mass of antisymmetric

hypermultiplet.

Generalization to rank-N is straightforward. Toric-like diagram for rank-N is a gen-

eralization of the rank-2 diagram. The compatibility condition is the exactly the same as

that for rank-1. As in rank-2 case, N boundary conditions are redundant for rank-N case.

For instance, if the number of dots of the corresponding toric-like diagram for rank-N

is n, then there are n− 1 conditions from the boundary conditions but taking into account

the compatibility conditions, the number of independent conditions is n − 1 −N . Hence,

among n coefficients of the SW curve, n − 1 − N coefficients are fully specified by the

parameters of the theory, and the undermined N + 1 coefficients are one overall rescaling

and N Coulomb moduli parameters.
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The product of SW curve for rank-1 satisfies the boundary conditions for the toric-like

diagram of rank-N theory proposed by [20]. We thus claim that the SW curve for rank-N

theory is also factorized as the product form of the rank-1 SW curves

SWN (U1, U2, · · · , UN ) =

N∏

i=1

SWi(Ui), (6.7)

where we denoted SWn as the SW curve for rank-n with ENf+1 symmetry, and Ui as the

corresponding Coulomb moduli parameters. This describes the Sp(N) SW curve of ENf+1

symmetry with the vanishing masses of antisymmetric hypermultiplet.

7 Summary and discussion

In this paper, we have proposed a systematic procedure for computing the Seiberg-Witten

(SW) curve from generic toric-like diagram base on (p, q) 5-brane web diagram. Using this

method, we computed the SW curve for five-dimensional N = 1 Sp(1) gauge theories with

Nf = 6, 7 flavors, which are expected to have the UV fixed point with E7, E8 enhanced

global symmetry, respectively. Enhancement of the global symmetry has been seen from

various ways, for example, superconformal index [7, 8], topological vertex amplitudes [24,

25, 32], as well as fiber-base duality invariant Nekrasov partition functions [9]. In this

paper, the enhancement also appears in the SW curve. At first sight, En global symmetry

does not look manifest in our expression, rather only subgroup of En can be seen in

the SW curve, and the curves with different subgroups are related by simple coordinate

transformations which correspond to the Hanany-Witten transition. Our SW curves are

computed using a totally different way from the method that led to the previously known

En manifest results [16, 17], which are computed by using E-string effective action. By

comparing the both j-invariants, or by performing coordinate transformation to express

as the Weierstrass standard form, we find that our result agrees with the known results

[15–17]. Mass decoupling limits of the curve are discussed to connect the SW curve for the

theory of less flavor, and the 4d limit reproduces 4d SW curves [13, 14], as expected.

We have also computed the SW curve for five-dimensional Sp(2) gauge theory with six

fundamental flavors and one massless antisymmetric tensor, which is identified as rank-2

theory of E7 symmetry, and have shown that it reduces to just the two copies of SW curve

for Sp(1) gauge theory with six fundamental flavors. Our result strongly implies that the

SW curve for the five-dimensional Sp(N) gauge theory with Nf fundamental flavors and

one massless antisymmetric tensor, which is rank-N ENf+1 CFT, is also factorized into N

copies of the SW curve of the rank-1 ENf+1 CFT.

As our method of obtaining the SW curve is applicable to any toric-like diagram,

there will be more applications to various theories. One of interesting directions is to

consider the five-dimensional uplift of the class S theory. The toric diagram for the five-

dimensional uplift of the TN theory was given in [20], and the corresponding SW curve was

studied in [20, 24]. By replacing some of the full punctures of T4 and T6 with certain type

of degenerate punctures, the 5d theories of E7 and E8 global symmetries are obtained,

respectively. Degenerate punctures are nothing but white dots in toric-like diagram. It
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is straightforward to write down toric-like diagram corresponding to a sphere with three

punctures of arbitrary type, which is the counterpart of the “pants” in the context of pants

decomposition, and thus obtaining the corresponding SW curve is also straightforward. It

would be interesting to consider classification of the 5d uplifts of the pants. Moreover, it

would be natural to expect that 5d uplift of the class S theories can be obtained by gluing

such pants as in the 4d class S theories. The corresponding SW curve for 5d uplifts of class

S theories can also be computed based on the method developed in this paper.

The 5d uplift of the degenerate punctures are studied in various recent papers in the

context of, for example, the topological string partition function and the superconformal

index. Especially, the way of realizing the degenerate puncture by tuning the Kähler

moduli parameters of the Calabi-Yau geometry in the refined topological string is first

proposed for the E7 case in [25] and then generalized and/or applied to various cases in

[9, 26, 27, 33, 34]. When we consider the limit where the Ω-deformation parameters vanish,

their method is roughly translated into tuning the Coulomb moduli parameters and some

of the mass parameters to be same. This tuning then reduces the genus of the SW curve

as in this paper.12 Thus, we claim that the way of tuning in this paper is consistent with

the way developed in the other papers.

When we consider the 5d uplift of class S theory, an important issue is how to uplift

the “N = 2 dualities” [21], which is a generalization of the electromagnetic duality of the

SU(2) SW theory or Argyres-Seiberg duality for SU(3) theory with six flavors. Related

issue has been addressed in various papers including [24, 27, 33]. Especially, it was pointed

out in [24], that the SW curve of E6 CFT is obtained by tuning some of the parameters

of the SW curve for SU(3) gauge theory with six flavors with proper identification of the

mass parameters, which we expect to be related to Argyres-Seiberg duality [35]. Using the

result of this paper, we can find several more examples analogous to this.

Figure 23. Construction of E7 CFT. Start from SU(4) with eight flavors, take the strong coupling

limit, and Higgs one of the punctures.

As an example, 4d E7 CFT is constructed from SU(4) gauge theory with eight flavors

with N = 2 dualities and Higgsing procedure to reduce the order of a puncture. See Figure

12 The tuning of mass parameters mI = mJ is equivalent to a constraint coming from the white dot, for

example, the first equation in the first line of (2.11), which is straightforward to understand. The tuning

of the Coulomb moduli parameters ai = mJ corresponds to another constraint coming from the white dot

in the SW curve, for instance, the second equation in the first line of (2.11), which may not be obvious,

because the ai are obtained by performing A-cycle integral of the corresponding SW curve. However, by

taking into account that the mass parameter is obtained by picking up the residue of the singularity, we

can see that the integral over the sum of the cycle giving ai and the path giving −mI will vanish. This

implies that a certain non-trivial cycle vanishes and thus the genus of the corresponding SW curve reduces.
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23. Especially, it means that the SW curve for 4d E7 CFT is obtained from the SW curve

for 4d SU(4) gauge theory with eight flavors. This analogue can be seen in five dimensions.

From the toric-like diagram for Sp(1) theory of E7 symmetry in Figure 11, one would find

that it corresponds to the toric diagram for SU(4) gauge theory with eight flavors if all the

dots were black. Changing black dots to white dots corresponds to tuning the parameters

in a specific way that is discussed in this paper. Therefore, we observe that the SW curve

for 5d E7 CFT is obtained from the SW curve for 5d SU(4) gauge theory with eight flavors

by tuning parameters. Especially, this tuning turns out to include the strong coupling

limit in Figure 23. It is, therefore, natural to expect that our observation is related to the

construction of 4d E7 CFT, where the N = 2 dualities play an essential role.

Figure 24. Construction of E8 CFT. Start from SU(6)2 theory with 6+6 flavors, take the weak

coupling limit in the S-dual frame, and Higgs two of the punctures.

Another example is the construction of the E8 CFT from SU(6)×SU(6) gauge theory

with 6+6 flavors. There exists such construction in 4d level. See Figure 24. From the

toric-like diagram for 5d E8 theory in Figure 16, we observe that the SW curve for E8

CFT is obtained from that for the SU(6) × SU(6) gauge theory with 6+6 flavors in five

dimensions. This observation also implies that topological string amplitude for E8 theory

computed in [26] can be obtained as a limit of that for Nf = 6 SU(6) × Nf = 6 SU(6)

theory.

Although this observation is expected to be related to the N = 2 duality, it is not

clear how this observation is connected to what is discussed in [27]. We would like clarify

this point in the future.
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A Seiberg-Witten curves for Nf ≤ 4 flavors

In this appendix, derivation of the Seiberg-Witten curve from toric-diagram is presented.
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A.1 Nf = 0 with E1 or Ẽ1 flavor symmetry

A.1.1 E1 symmetry

c11 c21

c12

c01

c10

ℓ1ℓ3

ℓ4 ℓ2

Figure 25. Toric web diagram for Nf = 0 of E1 flavor symmetry

The SW curve for the pure case (Nf = 0) is of the form

c01 w + c10 t+ c11 tw + c12 tw
2 + c21 t

2w = 0. (A.1)

Though we have thus five unknowns from the beginning, including three rescalings, one is

left with only two parameters which are one Coulomb modulus and the dynamical scale Λ0.

We show how one can identify them below. We start with asymptotic boundary conditions:

|w| ∼ |t| large : c12tw
2 + c21t

2w = c12tw(w + ℓ1t)

|w−1| ∼ |t| large : c10t+ c21t
2w = c21t(ℓ2 + tw)

|w| ∼ |t−1| large : c12tw
2 + c01w = c12w(tw + ℓ3)

|w−1| ∼ |t−1| large : c01w + c10t = c01(w + ℓ4t). (A.2)

The compatibility condition is then

ℓ1 ℓ2 = ℓ3 ℓ4. (A.3)

As for three rescalings degrees of freedom, we take

c01 = c21 = 1, c10 = c12 = ℓ2 = ℓ−1
1 = ℓ4, c11 ∝ U, (A.4)

and the SW curve for Nf = 0 is expressed in terms of two parameters, the Coulomb

modulus U , and ℓ1:

w + ℓ−1
1 t
(
w2 + Uw + 1

)
+ t2w = 0. (A.5)

The ℓ1 is in fact related to the dynamical scale Λ0. We explain how to relate it to the

dynamical scale. By referring to the topological vertex results, the dynamical scale is

– 41 –



determined as the geometric mean of differences ∆t evaluated in asymptotic values of t for

given w. This is consistent with the dependence of the dynamical scale over energy scales
√(ℓ3w−1

1

ℓ−1
1 w1

)(ℓ2w−1
2

ℓ−1
4 w2

)
=
(ℓ1ℓ3
ℓ2ℓ4

) 1
2
w2w

−1
1

∣∣∣∣
w1=w2=w0

=
(
2πRΛ0

)2Nc−Nf . (A.6)

We then find

ℓ1 =
(
2πRΛ0

)2
, (A.7)

and thus the SW curve for Nf = 0 is written as

w +
t

(2πRΛ0)2

(
w2 + Uw + 1

)
+ t2w = 0. (A.8)

This has E1 flavor symmetry.

A.1.2 Ẽ1 symmetry

c11

c22
c12

c01

c10

t1ℓ3

ℓ4 ℓ′2

Figure 26. Toric web diagram for Nf = 0 of Ẽ1 flavor symmetry

There exits an inequivalent toric diagram which has different asymptotic boundary con-

ditions compared with the above E1 case. It is known as Ẽ1 theory. The asymptotic

boundary conditions are given by

|w−1| ∼ |t2| large : c10t+ c22t
2w2 = c22t(tw

2 + ℓ′2) ⇒ c10 = ℓ′2c22,

|w| large : c12tw
2 + c22t

2w2 = c22tw
2(−t1 + t) ⇒ c12 = −t1c22,

|w| ∼ |t−1| large : c12tw
2 + c01w = c12w(tw + ℓ3) ⇒ c01 = ℓ3c12,

|w−1| ∼ |t−1| large : c01w + c10t = c01(w + ℓ4t) ⇒ c10 = ℓ4c01, (A.9)

subject to the compatibility condition

ℓ′2 = − t1 ℓ3 ℓ4. (A.10)

We choose the three rescaling degrees of freedom to be

c12 = c10, c22 = 1 = c01, (A.11)
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The dynamical scale Λ̃0 is

ℓ4 = (2πRΛ̃0)
−2. (A.12)

One then obtains the SW curve for Ẽ1 as

w +
t

(2πRΛ̃0)2
(w2 + Ũw + 1) + t2w2 = 0. (A.13)

We note that the 4d limit of E1 and Ẽ1 gives the same SW curve at O(β0),

1 + t2 +
t(u+ v2)

Λ0
= 0. (A.14)

A.1.3 E0 Seiberg-Witten curve

It is interesting to take a limit that leads to the E0 SW curve from the Ẽ1 curve. For this,

we decouple the coefficient c12 or the tw2-term. Instead of (A.13), we start a generic form

of the Ẽ1 curve

c01

(
w + ℓ4 t+ U tw +

1

ℓ3
tw2 +

ℓ4
ℓ′2
t2w2

)
= 0. (A.15)

We then take ℓ3 → ∞, t1 → 0 while −t1ℓ3 fixed, which gives

w + ℓ4 t+ U tw +
ℓ4
ℓ′2
t2w2 = 0. (A.16)

Using the remaining rescaling degrees of freedom associated with t and w, we can fix

ℓ4 = 1, ℓ′2 = 1, yielding the E0 SW curve

w + t+ U tw + t2w2 = 0. (A.17)

A.2 Nf = 1

c11 c21

c12

c01

c10

c22

m̃1

t1ℓ3

ℓ4 ℓ2

Figure 27. Toric web diagram for Nf = 1 of E2 flavor symmetry

For Nf = 1, we start with

c01 w + c10 t+ c11 tw + c12 tw
2 + c21 t

2w + c22t
2w2 = 0. (A.18)

– 43 –



The boundary conditions are

|w−1| ∼ |t| large : c10t+ c21t
2w = c21t(ℓ2 + tw) ⇒ c10 = ℓ2c21,

|w| ∼ |t−1| large : c12tw
2 + c01w = c12w(tw + ℓ3) ⇒ c01 = ℓ3c12,

|w−1| ∼ |t−1| large : c01w + c10t = c01(w + ℓ4t) ⇒ c10 = ℓ4c01. (A.19)

In addition to this, there is an extra contribution from a flavor:

c21 t
2 w + c22 t

2 w2 = c22 t
2 w (−m̃1 + w) ⇒ c21 = −m̃1 c22,

c12 t w
2 + c22 t

2 w2 = c22 t w
2 (−t1 + t) ⇒ c12 = −t1 c22. (A.20)

The compatibility condition is

m̃1

t1
ℓ2 = ℓ3 ℓ4. (A.21)

As in the Nf = 0 case, for three rescaling degrees of freedom, we take

c01 = c21 = 1 and c10 = c12, (A.22)

or equivalently,

t1
ℓ2

= m̃1, t1ℓ3 = m̃1 (or ℓ2 = ℓ4). (A.23)

With dynamical scale is given by

t21 m̃
− 3

2
1 =

(
2πRBΛ1

)−3
, (A.24)

the SW curve take the following form

w + t1 m̃
−1
1 t

(
w2 + U w + 1

)
+ t2w − m̃−1

1 t2w2 = 0. (A.25)

A.2.1 E1 limit

m̃1

t1ℓ3

ℓ4 ℓ2

ℓ1ℓ3

ℓ4 ℓ2

Figure 28. One obtains E1 curve from the E2 curve by taking m̃1 → ∞ and t1 → ∞, while

m̃1t
−1

1
= ℓ1 fixed.

It is clear from Figure 28 that by taking the mass decoupling limit

m̃1 → ∞ (while t−1
1 m̃1 = ℓ1 fixed), (A.26)

one reproduces the Nf = 0, E1 curve, (A.5). It follows that the condition (A.23) becomes

the condition for Nf = 0, (A.4). The dynamical scale for Nf = 1 and Nf = 0 are related

by

m̃
1
2
1 (2πRΛ1)

3 = (2πRΛ0)
4, (A.27)

which relates (A.24) to (A.7).

– 44 –



A.2.2 Ẽ1 limit

m̃1

t1ℓ3

ℓ4 ℓ2

t1ℓ3

ℓ4 ℓ′2

Figure 29. One obtains Ẽ1 curve from the E2 curve by taking m̃1 → 0 and ℓ2 → ∞, while

−m̃1ℓ2 = ℓ′
2
fixed.

We can take a distinct mass decoupling limit such that m̃1 → 0, keeping −m̃1ℓ2 (= ℓ′2)

fixed. In this case, the relation (A.21) is expressed as

−t1ℓ3ℓ4 = −m̃1ℓ2 (≡ ℓ′2). (A.28)

In this limit, the t2w-term drops out and the SW curve (A.25) becomes

w − t1 ℓ
′−1
2 ℓ4 t

(
w2 + Ũ w − t−1

1 ℓ′2

)
− ℓ′−1

2 ℓ4 t
2 w2 = 0. (A.29)

With the choice −t−1
1 ℓ′2 = 1 and ℓ′−1

2 ℓ4 = 1, or equivalently c12 = c10 and c01 = c22, the

SW curve is written in term of two parameters, ℓ4, Ũ ,

w + ℓ4 t
(
1 + Ũ w + w2

)
+ t2w2 = 0, (A.30)

which is nothing but the SW curve for Ẽ1, (A.13).

A.3 Nf = 2

c11 c21

c12

c01

c10

c22

c20

m̃1

t1ℓ3

ℓ4

m̃2

t2

Figure 30. Toric and web diagrams for Nf = 2 of E3 flavor symmetry

For Nf = 2, we start with

c01 w + c10 t+ c11 tw + c12 tw
2 + c21 t

2w + c22 t
2w2 + c20 t

2 = 0. (A.31)

– 45 –



The boundary conditions are given by

|w| large : c12tw
2 + c22t

2w2 = c22tw
2(−t1 + t)

|w| small : c10t+ c20t
2 = c20t(−t2 + t)

|w| ∼ |t−1| large : c12tw
2 + c01w = c12w(tw + ℓ3)

|w−1| ∼ |t−1| large : c01w + c10t = c01(w + ℓ4t), (A.32)

and the following extra boundary condition: When |t| is very large,

c20t
2 + c21t

2w + c22t
2w2 = c22t

2(w − m̃1)(w − m̃2). (A.33)

The compatibility condition is

m̃1 t
−1
1 m̃2 t2 = ℓ3 ℓ4. (A.34)

For three rescaling degrees of freedom, we choose

c01 = c21 = 1, c10 = c12, (A.35)

or equivalently

t1
t2

= m̃1m̃2, t1ℓ3 = m̃1 + m̃2. (A.36)

The dynamical scale is given by

( t1t2ℓ4
ℓ3

) 1
2
=
(
2πRBΛ2

)−2
, (A.37)

or equivalently,

t21 m̃
− 1

2
1 m̃

− 1
2

2 (m̃1 + m̃2)
−1 =

(
2πRBΛ2

)−2
. (A.38)

The SW curve for Nf = 2 is then

w + t
t1

m̃1 + m̃2

(
w2 + Uw + 1

)
− t2

1

m̃1 + m̃2

(
w − m̃1

)(
w − m̃2

)
= 0. (A.39)

In the mass decoupling limit m2 → ∞, correspondingly m̃2 → 0, while keeping m̃2t2 = ℓ2
fixed, it is straightforward to see that the SW curve for Nf = 2, (A.39), becomes that for

Nf = 1, (A.25). The condition that we used, (A.36) becomes the condition for Nf = 1,

(A.23), and the dynamical scales for Nf = 2 and Nf = 1 are related in this decoupling

limit as

m̃
− 1

2
2 (2πRΛ2)

2 = (2πRΛ1)
3 (A.40)

which relates (A.38) to (A.24).
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A.4 Nf = 3

c11 c21

c12

c01

c10

c22

c20

c02

m̃1

t1

m̃3

t3

ℓ4

m̃2

t2

Figure 31. Toric web diagram for Nf = 3 of E4 flavor symmetry

For Nf = 3, we start with

c01 w + c10 t+ c11 tw + c12 tw
2 + c21 t

2w + c22 t
2w2 + c20 t

2 + c02w
2 = 0. (A.41)

The boundary conditions are given by

|w| small : c10t+ c20t
2 = c20t(−t2 + t),

|w−1| ∼ |t−1| large : c01w + c10t = c01(w + ℓ4t),

|t| large : c20t
2 + c21t

2w + c22t
2w2 = c22t

2(w − m̃1)(w − m̃2),(A.42)

and when |w| large, the boundary condition is given by

c02w
2 + c12tw

2 + c22t
2w2 = c22w

2(t− t1)(t− t3), (A.43)

and the boundary condition for |t| small (|w| not small) is given by

c01w + c02w
2 = c02w(w − m̃3). (A.44)

The compatibility is given by

m̃1 t
−1
1 m̃2 t2 = m̃3 t3 ℓ4. (A.45)

For three rescaling degrees of freedom, we choose

c01 = c21 = 1, c10 = c12, (A.46)

or equivalently

t1 + t3
t2

= m̃1m̃2, t1t3 =
m̃1 + m̃2

m̃3
. (A.47)

The dynamical scale is given by

( t1t2ℓ4
t3

) 1
2
=
(
2πRBΛ3

)−1
, (A.48)
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or

t1 =
(m̃1 + m̃2

m̃3

) 1
2

(
(m̃1m̃2m̃3)

1
2

2πRΛ3
− 1

) 1
2

. (A.49)

The SW curve for Nf = 3 is then

w + t
( t1
m̃1 + m̃2

+
1

t1m̃3

)(
w2 + Uw + 1

)
− t2

1

m̃1 + m̃2

(
w − m̃1

)(
w − m̃2

)
− 1

m̃3
w2 = 0.

(A.50)

In the mass decoupling limit m̃3 → ∞ and t3 → 0, while m̃3 t3 = ℓ3 fixed, the SW

curve for Nf = 3, (A.57), becomes that for Nf = 2, (A.50), and the condition that we used,

(A.47) becomes the condition for Nf = 3, (A.36), and the dynamical scales for Nf = 3 and

Nf = 2 are related in this decoupling limit as

m̃
1
2
3 (2πRΛ3) = (2πRΛ2)

2 (A.51)

which relates (A.49) to (A.38).

A.5 Nf = 4

c11 c21

c12

c01

c10

c22

c20

c02

c00

m̃1

t1

m̃3

t3

t2

m̃2m̃4

t4

Figure 32. Toric web diagram for Nf = 4 of E5 flavor symmetry

For Nf = 4, we start with

c01 w + c10 t+ c11 tw + c12 tw
2 + c21 t

2w + c22 t
2w2 + c20 t

2 + c02w
2 + c00 = 0. (A.52)

The boundary conditions are

|w| large : c02w
2 + c12tw

2 + c22t
2w2 = c22w

2(t− t1)(t− t3),

|w| small : c20t
2 + c10t+ c00 = c20(t− t2)(t− t4),

|t| large : c20t
2 + c21t

2w + c22t
2w2 = c22t

2(w − m̃1)(w − m̃2),

|t| small : c02w
2 + c01w + c00 = c02(w − m̃3)(w − m̃4). (A.53)
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The compatibility condition is given by

m̃1 t
−1
1 m̃2 t2 = m̃3 t3 m̃4 t

−1
4 . (A.54)

For three rescaling degrees of freedom, we choose

c01 = c21 = 1, c10 = c12, (A.55)

or equivalently,

t1 + t3
t2 + t4

= m̃1m̃2, t1t3 =
m̃1 + m̃2

m̃3 + m̃4
. (A.56)

The SW curve for Nf = 4 is then

− 1

m̃3 + m̃4

(
w − m̃3

)(
w − m̃4

)
+ t

( t1
m̃1 + m̃2

+
1

t1(m̃3 + m̃4)

)(
w2 + Uw + 1

)

− t2
1

m̃1 + m̃2

(
w − m̃1

)(
w − m̃2

)
= 0. (A.57)

In this case, there is no dynamical scale but one can define the gauge coupling as geometric

average of ti

(t1t2
t3t4

) 1
2
= q−1. (A.58)

It follows from (A.54), (A.56), and (A.58) that t1 are expressed in terms of masses and the

gauge coupling as

t1 =
(m̃1 + m̃2

m̃3 + m̃4

) 1
2 ·
(q−1S

1
2 − 1

1− qS
1
2

) 1
2
, S ≡ m̃1m̃2m̃3m̃4. (A.59)

The SW curve is also written in a symmetric way as

t2
(
w − m̃1

)(
w − m̃2

)
− t (t1 + t3)

(
w2 + Uw + 1

)
+ t1t3

(
w − m̃3

)(
w − m̃4

)
= 0, (A.60)

with

t1 + t3 =
(m̃1 + m̃2

m̃3 + m̃4

) 1
2
q−

1
2S

1
4

(
S

1
2 − qS

S
1
2 − q

) 1
2
(
1 + q

S
1
2 − q

1− qS
1
2

)
. (A.61)

In the mass decoupling limit where m̃4 → 0 and t4 → 0, while m̃4 t
−1
4 = ℓ4 fixed, the

SW curve for Nf = 4, (A.57), becomes naturally the SW curve for Nf = 3, (A.50), and

the condition that we used, (A.56), becomes the condition for Nf = 3, (A.47). We note

that in this mass decoupling limit, dynamical scales for Nf = 4 and Nf = 3 are related as

q−1m̃
1
2
4 = (2πRΛ3)

−1, (A.62)

which is consistent with that (A.59) for Nf = 4 turns into that of Nf = 3, (A.49). We

note that all the parameters including dynamical scales except for q are not physical. This
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is due to our choice of three rescaling degrees of freedom. The choice, c01 = c21 = 1 and

c10 = c12, we have chosen, makes mass decoupling limit easier. We comment that the SW

curve with unphysical parameters can be related to the SW curve with physical ones by

coordinate transformation below.

SW curve with physical masses

Different choices for three rescaling degrees of freedom lead to a differently looking curve

which is related by coordinate transformation. We consider a choice that the position of

the exponential of masses m̃i is measured from the center of the Coulomb branch. With

c22 = 1 = t4 in Figure 32, the SW curve is given by

t
2
(
w − m̃′

1

)(
w − m̃′

2

)
− t

(
m̃′

1m̃
′
2(1 + qS′− 1

2 )w2 + U ′
w+ (1 + qS′ 1

2 )m̃′
1m̃

′
2

)

+ qS′− 1
2 m̃′

1
2m̃′

2
2
(
w− m̃′

3

)(
w− m̃′

4

)
= 0, (A.63)

where S′ ≡ m̃′
1m̃

′
2m̃

′
3m̃

′
4. In the 4d limit, by expanding w ≡ e−βv and m̃′

i ≡ e−βmi with

respect to β while keeping t and q as they are, one finds [12, 36]

t
2(v −m1)(v −m2) + t

(
− (1 + q)v2 + q v

4∑

i=1

mi + u
)
+ q(v−m3)(v −m4) = 0, (A.64)

where the masses mi are physical masses. The coordinate transformation that connects

(A.63) to (A.60) is as follows:

w → Tw, m̃′
i → Tm̃i, T =

(
q − S

1
2

qS − S
1
2

) 1
2

,

t →
√

qS− 1
2T 2m̃2

1m̃
2
2

(m̃3 + m̃4

m̃1 + m̃2

)
t, (A.65)

where S is the product of masses given in (A.59).

A.6 Higher rank curve

The toric-like diagram for higher rank-N with Nf flavors can be obtained in the same way

as explained section 6. The corresponding SW curve is again factorized as the product

of that of rank-1. As an example, we show the toric-like diagram for rank-2 E1 theory

(Nf = 0) and the corresponding (p, q) web in Figure 33.
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Figure 33. Toric-like diagram for rank-2 E1 theory and corresponding web diagram.

B The Seiberg-Witten curves from E8 to E0

We here list the result of decomposition of the characters of En into En−1×U(1) and then

factoring out the U(1) part, introduced in [17]:

(i) Rescale the all variables

(u, x, y) → (Lu,L2x,L3y), (B.1)

(χµ1 , χµ2 , χµ3 , χµ4 , χµ5 , χµ6 , χµ7 , χµ8) → (L2χµ1 , L
3χµ2 , L

4χµ3 , L
6χµ4 , L

5χµ5 , L
4χµ6 , L

3χµ7 , L
2χµ8),

where the power of L in the character is the marks of E8.

(ii) Set χµ8 to 1 when reducing from E8 to E7, and take L → ∞ limit, and

(iii) When reducing from E7 to E6, likewise the corresponding character to be unity while

keeping the scaling.

The En manifest curve is of the standard Weierstrass form [15, 17, 28]

y2 = 4x3 − gEn
2 x− gEn

3 , (B.2)

where g2 and g3 are given according to En as follows.
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For E8:

gE8

2
=

1

12
u4 −

(2
3
χE8

1
− 50

3
χE8

8
+ 1550

)
u2 −

(
− 70χE8

1
+ 2χE8

2
− 12χE8

7
+ 1840χE8

8
− 115010

)
u

+
4

3
χE8

1
χE8

1
− 8

3
χE8

1
χE8

8
− 1824χE8

1
+ 112χE8

2
− 4χE8

3
+ 4χE8

6

− 680χE8

7
+

28

3
χE8

8
χE8

8
+ 50744χE8

8
− 2399276,

gE8

3
=

1

216
u6 − 4u5 −

( 1

18
χE8

1
+

47

18
χE8

8
− 5177

6

)
u4

−
(
− 107

6
χE8

1
+

1

6
χE8

2
+ 3χE8

7
− 1580

3
χE8

8
+

504215

6

)
u3

−
(
− 2

9
χE8

1
χE8

1
− 20

9
χE8

1
χE8

8
+

5866

3
χE8

1
− 112

3
χE8

2
+

1

3
χE8

3

+
11

3
χE8

6
− 1450

3
χE8

7
+

196

9
χE8

8
χE8

8
+ 39296χE8

8
− 12673792

3

)
u2

−
(94
3
χE8

1
χE8

1
− 2

3
χE8

1
χE8

2
+

718

3
χE8

1
χE8

8
− 270736

3
χE8

1
− 10

3
χE8

2
χE8

8
+ 2630χE8

2
− 52χE8

3
+ 4χE8

5

− 416χE8

6
+ 16χE8

7
χE8

8
+ 25880χE8

7
− 7328

3
χE8

8
χE8

8
− 3841382

3
χE8

8
+ 107263286

)
u

− 8

27
χE8

1
χE8

1
χE8

1
− 28

9
χE8

1
χE8

1
χE8

8
+ 1065χE8

1
χE8

1
− 118

3
χE8

1
χE8

2
+

4

3
χE8

1
χE8

3
− 4

3
χE8

1
χE8

6

+
8

3
χE8

1
χE8

7
+

40

9
χE8

1
χE8

8
χE8

8
+

19264

3
χE8

1
χE8

8
− 4521802

3
χE8

1
+ χE8

2
χE8

2
− 572

3
χE8

2
χE8

8

+ 59482χE8

2
+

20

3
χE8

3
χE8

8
− 1880χE8

3
− 4χE8

4
+ 232χE8

5
− 8

3
χE8

6
χE8

8
− 11808χE8

6
+

2740

3
χE8

7
χE8

8

+ 460388χE8

7
− 136

27
χE8

8
χE8

8
χE8

8
− 205492

3
χE8

8
χE8

8
− 45856940

3
χE8

8
+ 1091057493.

(B.3)

For E7:

gE7

2
=

1

12
u4 −

(2
3
χE7

1
− 50

3

)
u2 −

(
2χE7

2
− 12χE7

7

)
u+

4

3
χE7

1
χE7

1
− 8

3
χE7

1
− 4χE7

3
+ 4χE7

6
+

28

3
,

gE7

3
=

1

216
u6 −

( 1

18
χE7

1
+

47

18

)
u4 −

(1
6
χE7

2
+ 3χE7

7

)
u3 +

(2
9
χE7

1
χE7

1
+

20

9
χE7

1
− 1

3
χE7

3
− 11

3
χE7

6
− 196

9

)
u2

+
(2
3
χE7

1
χE7

2
+

10

3
χE7

2
− 4χE7

5
− 16χE7

7

)
u− 8

27
χE7

1
χE7

1
χE7

1
− 28

9
χE7

1
χE7

1
+

4

3
χE7

1
χE7

3

− 4

3
χE7

1
χE7

6
+

40

9
χE7

1
+ χE7

2
χE7

2
+

20

3
χE7

3
− 4χE7

4
− 8

3
χE7

6
− 136

27
.

(B.4)

For E6:

gE6

2
=

1

12
u4 − 2

3
χE6

1
u2 −

(
2χE6

2
− 12

)
u+

4

3
χE6

1
χE6

1
− 4χE6

3
+ 4χE6

6
,

gE6

3
=

1

216
u6 − 1

18
χE6

1
u4 −

(1
6
χE6

2
+ 3
)
u3 +

(2
9
χE6

1
χE6

1
− 1

3
χE6

3
− 11

3
χE6

6

)
u2 +

(2
3
χE6

1
χE6

2
− 4χE6

5

)
u

− 8

27
χE6

1
χE6

1
χE6

1
+

4

3
χE6

1
χE6

3
− 4

3
χE6

1
χE6

6
+ χE6

2
χE6

2
− 4χE6

4
. (B.5)
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For E5 = SO(10):

gE5

2
=

1

12
u4 − 2

3
χE5

1
u2 − 2χE5

2
u+

4

3
χE5

1
χE5

1
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3
+ 4,

gE5
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=

1

216
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1
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(2
9
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χE5
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3
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3
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1
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− 4χE5

5

)
u
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27
χE5
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χE5
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χE5
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+

4

3
χE5

1
χE5
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χE5

1
+ χE5

2
χE5

2
− 4χE5

4
. (B.6)

For E4 = SU(5):

gE4

2
=

1

12
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3
χE4

1
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2
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χE4
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9
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χE4

2
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4
. (B.7)

For E3 = SU(3)× SU(2):

gE3

2
=

1

12
u4 − 2

3
χE3

1
u2 − 2χE3

2
u+

4

3
χE3

1
χE3
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gE3
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=
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216
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u4 − 1

6
χE3

2
u3 +
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9
χE3

1
χE3
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χE3
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2

3
χE3
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χE3
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27
χE3
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χE3

1
χE3
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+

4

3
χE3
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+ χE3

2
χE3

2
− 4. (B.8)

For E2 = SU(2)× U(1):

gE2

2
=

1

12
u4 − 2

3
χE2

1
u2 − 2χE2

2
u+

4

3
χE2

1
χE2

1
− 4, (B.9)
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27
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For Ẽ1 = U(1):
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2
=

1

12
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gẼ1

3
=

1

216
u6 − 1

18
u4 − 1

6
χẼ1

2
u3 +

2

9
u2 +

2

3
χẼ1

2
u− 8

27
+ χẼ1

2
χẼ1

2
. (B.10)

For E1 = SU(2):

gE1

2
=

1

12
u4 − 2

3
χE1

1
u2 +

4

3
χE1

1
χE1

1
− 4, (B.11)

gE1

3
=

1

216
u6 − 1

18
χE1

1
u4 +

(2
9
χE1

1
χE1

1
− 1

3

)
u2 − 8

27
χE1

1
χE1

1
χE1

1
+

4

3
χE1

1
.

Here we note that the E1 curve is obtained only by setting χ2 → 0 from the E2 curve,

which does not involve the scaling.

For E0: (from Ẽ1)

gE0

2
=

1

12
u4 − 2u, gE0

3
=

1

216
u6 − 1

6
u3 + 1. (B.12)
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In summary, one stars from E8 curve and obtains lower En curves:

E8 → E7 → E6 → E5 → E4 → E3 → E2 → Ẽ1 → E0

→ E1. (B.13)

All the holomorphic SW one form is of the standard form:

ωSW =
dx

y
. (B.14)

C The j-invariant

The Weierstrass form for elliptic curve is given

y2 = 4z3 − g2z − g3, (C.1)

then the j-invariant which is SL(2,Z) invariant is define by

j(τ) =
g32

g32 − 27g23
, (C.2)

where the denominator is proportional to the discriminant of the Weierstrass form. For

(C.1), ∆ = 16(g32 − 27g23), and thus the denominator of the j-invariant is ∆
16 .

For an elliptic curve given by

y2 = Ax3 +Bx2 + Cx+D, (C.3)

let us find how the j-invariant is given. It is straightforward to rewrite (C.3) into the

standard Weierstrass form

ỹ2 = 4x̃3 − 4

3A2

(
B2 − 3AC

)
x̃− 4

27A3

(
9ABC − 2B3 − 27A2D

)
, (C.4)

where ỹ = y√
A/2

, x̃ = x+ B
3A , yielding

g2 =
4

3A2

(
B2 − 3AC

)
, g3 =

4

27A3

(
9ABC − 2B3 − 27A2D

)
. (C.5)

As the discriminant ∆ for a cubic equation Ax3 +Bx2 + Cx+D = 0 is given by

∆ = B2C2 − 4AC3 − 4B3D − 27A2D2 + 18ABCD, (C.6)

one finds that

g32 − 27g23 =
16

A4
∆. (C.7)

An elliptic curve may also be expressed as a quartic polynomial

y2 = ax4 + bx3 + cx2 + dx+ e. (C.8)

The forms of g2 and g3 for the curve are given by

g2 =
4

a3
(c2 − 3bd+ 12ae), g32 − 27g23 =

16

a6
∆, (C.9)

where the discriminant for the quartic equation is given by

∆ =256a3e3 − 192a2bde2 − 128a2c2e2 + 144a2cd2e− 27a2d4 + 144ab2ce2 − 6ab2d2e− 80abc2de

+ 18abcd3 + 16ac4e− 4ac3d2 − 27b4e2 + 18b3cde − 4b3d3 − 4b2c3e+ b2c2d2.
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D The Weierstrass from for SU(8) manifest curve of E7 theory

Following [28], we rewrite (3.26) into the standard Weierstrass form

y2 = 4x3 − g2x− g3, (D.1)

where

g2 =− 4

3

(
− 64− 48χ1χ3 + 64χ4 − 16χ2

4 + 48χ3χ5 + 48χ2
1χ6 − 192χ2χ6 + 16χ1χ7

+ 16χ1χ4χ7 − 48χ5χ7 − 16χ2
1χ

2
7 + 48χ2χ

2
7 + 24χ2

1u− 192χ2u+ 24χ1χ5u

− 192χ6u+ 24χ3χ7u+ 24χ2
7u− 208u2 + 8χ4u

2 + 8χ1χ7u
2 − u4

)
, (D.2)

and

g3 =
8

27

(
− 512 − 216χ4

1 + 864χ2
1χ2 − 576χ1χ3 + 768χ4 + 288χ1χ3χ4 − 384χ2

4 (D.3)

+ 64χ3
4 + 432χ3

1χ5 − 1728χ1χ2χ5 + 576χ3χ5 − 288χ3χ4χ5 − 216χ2
1χ

2
5 + 864χ2χ

2
5

− 1152χ2
1χ6 + 4608χ2χ6 + 864χ2

3χ6 + 576χ2
1χ4χ6 − 2304χ2χ4χ6 + 192χ1χ7

− 144χ2
1χ3χ7 + 96χ1χ4χ7 − 96χ1χ

2
4χ7 − 576χ5χ7 + 144χ1χ3χ5χ7 + 288χ4χ5χ7

− 288χ3
1χ6χ7 + 1152χ1χ2χ6χ7 − 1728χ3χ6χ7 + 336χ2

1χ
2
7 − 1152χ2χ

2
7 − 216χ2

3χ
2
7

− 96χ2
1χ4χ

2
7 + 576χ2χ4χ

2
7 − 144χ1χ5χ

2
7 + 864χ6χ

2
7 + 64χ3

1χ
3
7 − 288χ1χ2χ

3
7

+ 432χ3χ
3
7 − 216χ4

7 − 576χ2
1u+ 4608χ2u+ 864χ2

3u+ 720χ2
1χ4u− 2304χ2χ4u

− 1440χ1χ5u− 144χ1χ4χ5u+ 864χ2
5u+ 4608χ6u+ 864χ1χ3χ6u− 2304χ4χ6u

− 144χ3
1χ7u+ 288χ1χ2χ7u− 1440χ3χ7u− 144χ3χ4χ7u− 144χ2

1χ5χ7u

+ 864χ2χ5χ7u+ 288χ1χ6χ7u− 576χ2
7u− 144χ1χ3χ

2
7u+ 720χ4χ

2
7u− 144χ1χ

3
7u

+ 4416u2 + 792χ1χ3u
2 − 2112χ4u

2 − 48χ2
4u

2 + 72χ3χ5u
2 + 72χ2

1χ6u
2 + 576χ2χ6u

2

− 456χ1χ7u
2 − 24χ1χ4χ7u

2 + 792χ5χ7u
2 − 48χ2

1χ
2
7u

2 + 72χ2χ
2
7u

2 + 36χ2
1u

3

+ 576χ2u
3 + 36χ1χ5u

3 + 576χ6u
3 + 36χ3χ7u

3 + 36χ2
7u

3 + 552u4 + 12χ4u
4 + 12χ1χ7u

4 − u6
)
.

D.1 Decomposition of the E7 characters into SU(8)

We list decomposition of the characters χE7
i ≡ χE7

µi
of E7 fundamental weights into the

characters χi of SU(8) fundamental weights

E7 Dynkin diagram ◦
µ1

−− ◦
µ3

−−
◦µ2

|
◦
µ4

−− ◦
µ5

−− ◦
µ6

−− ◦
µ7
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χE7

1
= − 1 + χ1χ7 + χ4

χE7

2
= χ2

1 + χ2

7 + χ3χ7 + χ1χ5 − 2χ2 − 2χ6

χE7

3
= 1− 2χ4 + χ3χ5 + χ2

1
χ6 − 3χ2χ6 − χ1χ7 + χ1χ4χ7 + χ2χ

2

7

χE7

4
= − 2 + χ2

2 − χ1χ3 + 2χ4 − χ2

4 + χ3

1χ5 − 3χ1χ2χ5 + 2χ3χ5 + χ2χ
2

5 − χ2

1χ6

+ 3χ2χ6 + χ2

3
χ6 + χ2

1
χ4χ6 − 4χ2χ4χ6 − χ1χ5χ6 + χ2

6
+ 2χ1χ7 − χ2χ3χ7

− χ5χ7 + χ1χ3χ5χ7 − 3χ3χ6χ7 − χ2χ
2

7 + χ2χ4χ
2

7 + χ3χ
3

7

χE7

5
= χ2

3
+ χ2

1
χ4 − 3χ2χ4 − χ1χ5 + χ2

5
+ χ1χ3χ6 − 3χ4χ6 − χ3χ7 + χ2χ5χ7 + χ4χ

2

7

χE7

6
= − 1 + χ1χ3 − 2χ4 + χ2χ6 + χ5χ7

χE7

7
= χ2 + χ6. (D.4)

E The Weierstrass from for SU(9) manifest curve of E8 theory

Following [28], we rewrite (4.15) with U → u− 60 into the standard Weierstrass form

y2 = 4x3 − g2x− g3, (E.1)

where

g2 =
1

972

(

16(χ2
1 − 3χ2 + 3χ8)

2(3χ1 − 3χ7 + χ
2
8)

2

+ 16(3χ1 − 3χ7 + χ
2
8)
[

2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8) + 3χ1(−57 + u)

]2

− 8(χ2
1 − 3χ2 + 3χ8)(3χ1 − 3χ7 + χ

2
8)
(

2χ1χ8 + 3(−54 + u)
)2

+ (−162 + 2χ1χ8 + 3u)4

− 16(χ2
1 − 3χ2 + 3χ8)

[

2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8) + 3χ1(−57 + u)

]

× (−1539 + 27χ6 + 9χ1χ8 − 9χ7χ8 + 2χ3
8 + 27u)

− 8
[

2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8) + 3χ1(−57 + u))(2χ1χ8 + 3(−54 + u)

]

× (3χ2
1 − 9χ2 + 9χ5 − 3χ1χ7 − 171χ8 + 2χ1χ

2
8 + 3χ8u)

+ 16(χ2
1 − 3χ2 + 3χ8)(3χ

2
1 − 9χ2 + 9χ5 − 3χ1χ7 − 171χ8 + 2χ1χ

2
8 + 3χ8u)

2

+ 8
(

2χ1χ8 + 3(−54 + u)
)[

− 1539 + 27χ6 + 9χ1χ8 − 9χ7χ8 + 2χ3
8 + 27u)

× (2χ3
1 − 9χ1(χ2 − χ8) + 27(−57 + χ3 + u)

]

− 16(3χ1 − 3χ7 + χ
2
8)(3χ

2
1 − 9χ2 + 9χ5

− 3χ1χ7 − 171χ8 + 2χ1χ
2
8 + 3χ8u)

[

2χ3
1 − 9χ1(χ2 − χ8) + 27(−57 + χ3 + u)

]

)

, (E.2)
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and

g3 =
1

157464

(

− 64(χ2
1 − 3χ2 + 3χ8)

3(3χ1 − 3χ7 + χ
2
8)

3 + 192(χ2
1 − 3χ2 + 3χ8) (E.3)

× (3χ1 − 3χ7 + χ
2
8)

2
[

2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8) + 3χ1(−57 + u)

]2

+ 48(χ2
1 − 3χ2 + 3χ8)

2(3χ1 − 3χ7 + χ
2
8)

2(2χ1χ8 + 3(−54 + u))2

+ 24(3χ1 − 3χ7 + χ
2
8)
[

2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8) + 3χ1(−57 + u)

]2

× (2χ1χ8 + 3(−54 + u))2 − 12(χ2
1 − 3χ2 + 3χ8)(3χ1 − 3χ7 + χ

2
8)(−162 + 2χ1χ8 + 3u)4

+ (−162 + 2χ1χ8 + 3u)6 − 96(χ2
1 − 3χ2 + 3χ8)

2

× (3χ1 − 3χ7 + χ
2
8)
[

2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8) + 3χ1(−57 + u)

]

× (−1539 + 27χ6 + 9χ1χ8 − 9χ7χ8 + 2χ3
8 + 27u)

− 32
[

2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8) + 3χ1(−57 + u)

]3

× (−1539 + 27χ6 + 9χ1χ8 − 9χ7χ8 + 2χ3
8 + 27u) + 72(χ2

1 − 3χ2 + 3χ8)

×

[

2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8) + 3χ1(−57 + u)

]

(2χ1χ8 + 3(−54 + u))2

× (−1539 + 27χ6 + 9χ1χ8 − 9χ7χ8 + 2χ3
8 + 27u) + 32(χ2

1 − 3χ2 + 3χ8)
3

× (−1539 + 27χ6 + 9χ1χ8 − 9χ7χ8 + 2χ3
8 + 27u)2 − 240(χ2

1 − 3χ2 + 3χ8)(3χ1 − 3χ7 + χ
2
8)×

×

[

2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8) + 3χ1(−57 + u)

]

× (2χ1χ8 + 3(−54 + u))(3χ2
1 − 9χ2 + 9χ5 − 3χ1χ7 − 171χ8 + 2χ1χ

2
8 + 3χ8u)

− 12
[

2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8) + 3χ1(−57 + u)

]

(2χ1χ8 + 3(−54 + u))3

× (3χ2
1 − 9χ2 + 9χ5 − 3χ1χ7 − 171χ8 + 2χ1χ

2
8 + 3χ8u) − 96(χ2

1 − 3χ2 + 3χ8)
2

× (2χ1χ8 + 3(−54 + u))(−1539 + 27χ6 + 9χ1χ8 − 9χ7χ8 + 2χ3
8 + 27u)

× (3χ2
1 − 9χ2 + 9χ5 − 3χ1χ7 − 171χ8 + 2χ1χ

2
8 + 3χ8u) + 192(χ2

1 − 3χ2 + 3χ8)
2(3χ1 − 3χ7 + χ

2
8)

× (3χ2
1 − 9χ2 + 9χ5 − 3χ1χ7 − 171χ8 + 2χ1χ

2
8 + 3χ8u)

2 + 24(2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8)

+ 3χ1(−57 + u))2(3χ2
1 − 9χ2 + 9χ5 − 3χ1χ7 − 171χ8 + 2χ1χ

2
8 + 3χ8u)

2 + 24(χ2
1 − 3χ2 + 3χ8)

× (2χ1χ8 + 3(−54 + u))2(3χ2
1 − 9χ2 + 9χ5 − 3χ1χ7 − 171χ8 + 2χ1χ

2
8 + 3χ8u)

2

− 96(3χ1 − 3χ7 + χ
2
8)

2
[

2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8) + 3χ1(−57 + u)

]

(2χ1χ8 + 3(−54 + u))

× (2χ3
1 − 9χ1(χ2 − χ8) + 27(−57 + χ3 + u)) + 48(χ2

1 − 3χ2 + 3χ8)(3χ1 − 3χ7 + χ
2
8)

× (2χ1χ8 + 3(−54 + u))(−1539 + 27χ6 + 9χ1χ8 − 9χ7χ8 + 2χ3
8 + 27u)

×

[

2χ3
1 − 9χ1(χ2 − χ8) + 27(−57 + χ3 + u)

]

− 20(2χ1χ8 + 3(−54 + u))3

× (−1539 + 27χ6 + 9χ1χ8 − 9χ7χ8 + 2χ3
8 + 27u)

[

2χ3
1 − 9χ1(χ2 − χ8) + 27(−57 + χ3 + u)

]

− 96(χ2
1 − 3χ2 + 3χ8)(3χ1 − 3χ7 + χ

2
8)

2(3χ2
1 − 9χ2 + 9χ5 − 3χ1χ7 − 171χ8 + 2χ1χ

2
8 + 3χ8u)

× (2χ3
1 − 9χ1(χ2 − χ8) + 27(−57 + χ3 + u)) + 72(3χ1 − 3χ7 + χ

2
8)(2χ1χ8 + 3(−54 + u))2

× (3χ2
1 − 9χ2 + 9χ5 − 3χ1χ7 − 171χ8 + 2χ1χ

2
8 + 3χ8u)(2χ

3
1 − 9χ1(χ2 − χ8) + 27(−57 + χ3 + u))

+ 48
[

2χ2
1χ8 + 3(3χ4 − 3χ7 − χ2χ8 + χ

2
8) + 3χ1(−57 + u)

]

(−1539 + 27χ6 + 9χ1χ8 − 9χ7χ8 + 2χ3
8 + 27u)

× (3χ2
1 − 9χ2 + 9χ5 − 3χ1χ7 − 171χ8 + 2χ1χ

2
8 + 3χ8u)

[

2χ3
1 − 9χ1(χ2 − χ8) + 27(−57 + χ3 + u)

]

− 32(3χ2
1 − 9χ2 + 9χ5 − 3χ1χ7 − 171χ8 + 2χ1χ

2
8 + 3χ8u)

3
[

2χ3
1 − 9χ1(χ2 − χ8) + 27(−57 + χ3 + u)

]

+ 32(3χ1 − 3χ7 + χ
2
8)

3(2χ3
1 − 9χ1(χ2 − χ8) + 27(−57 + χ3 + u))2

− 8(−1539 + 27χ6 + 9χ1χ8 − 9χ7χ8 + 2χ3
8 + 27u)2

[

2χ3
1 − 9χ1(χ2 − χ8) + 27(−57 + χ3 + u)

]2
)

.
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E.1 Decomposition of the E8 characters into SU(9)

We list decomposition of the characters χE8
i ≡ χE8

µi
of E8 fundamental weights into the

characters χi of SU(9) fundamental weights. As mentioned in section 4.3, χ4 and χ5 are

determined such that (E.4) agrees with (B.3).

E8 Dynkin diagram ◦
µ1

−− ◦
µ3

−−
◦µ2

|
◦
µ4

−− ◦
µ5

−− ◦
µ6

−− ◦
µ7

−−◦
µ8

χ
E8

1 = − 1 + χ1χ2 − 2χ3 + χ1χ5 − 2χ6 + χ2χ7 + χ4χ8 + χ7χ8 (E.4)

χ
E8

2 = χ1
3 + χ1

2
χ4 − 4(χ1χ2 − χ3) + χ1χ2χ6 − 2(χ2χ7 − χ1χ8) + χ1χ2

− χ1χ3χ8 + χ1χ4χ7 − 4(χ1χ5 − χ6) + 3χ1χ5 − χ1χ6χ8 + χ1(χ7)
2

+ χ1χ8 − 4(χ1χ8 − 1) + χ2
2
χ8 − 2χ2χ4 + χ2χ5χ8 + 2χ2χ7

− 4(χ4χ8 − χ3)− 3χ3χ6 + χ3χ7χ8 − 5χ3 + χ4χ5 + χ4χ8 + χ5(χ8)
2

− 4(χ7χ8 − χ6)− 5χ6 + χ7χ8 + χ8
3
− 3 + χ2χ4 − χ1χ5 − χ5χ7 + χ4χ8 (E.5)

χ
E8

3 = χ2
3 + χ1

3
χ3 − 5χ1χ2χ3 + 5χ3

2
− χ2χ4 + χ1χ5 + χ1

2
χ2χ5 − χ2

2
χ5

− χ1χ3χ5 − χ4χ5 + χ2χ5
2
− 2χ1χ2χ6 + 5χ3χ6 + χ1

2
χ4χ6 − 2χ2χ4χ6

− 3χ1χ5χ6 + 5χ6
2 + χ2χ7 + χ1χ2

2
χ7 − χ1

2
χ3χ7 − χ2χ3χ7 + χ1χ4χ7

+ χ4
2
χ7 − χ5χ7 + χ1χ2χ5χ7 − 2χ3χ5χ7 − χ2χ6χ7 − χ1χ7

2 + χ1χ3χ7
2

− χ4χ7
2 + χ7

3
− χ2

2
χ8 + χ1χ3χ8 + χ4χ8 + χ1χ2χ4χ8 − 3χ3χ4χ8

− (χ1)
2
χ5χ8 + χ2χ5χ8 + χ1χ4χ5χ8 + χ1χ6χ8 + (χ2)

2
χ6χ8

− 2χ1χ3χ6χ8 − χ4χ6χ8 − 2χ3χ7χ8 + χ2χ4χ7χ8 + χ1χ5χ7χ8 − 5χ6χ7χ8

+ χ2(χ7)
2
χ8 − χ1χ4(χ8)

2 + χ3χ5(χ8)
2
− χ2χ6(χ8)

2 + χ4χ7(χ8)
2 + χ6(χ8)

3 (E.6)

χ
E8

5 = 3 + 2χ2χ4 + χ
3
4 + χ

4
1χ5 + χ

2
2χ5 − 2χ4χ5 + χ2χ

2
5 + χ

3
5 − 3χ6 + χ

3
2χ6 − 3χ2χ4χ6

+ χ
2
2χ5χ6 − 4χ4χ5χ6 − 4χ2χ7 − 2χ2

2χ4χ7 + χ
2
4χ7 + 2χ5χ7 + χ2χ4χ5χ7

+ 2χ2χ6χ7 + χ
2
2χ

2
7 + χ4χ

2
7 − 2χ2χ5χ

2
7 + χ

3
1(−1 + (−1 + χ3)χ6 + χ

2
6 − χ5χ7)− χ

2
2χ8

− χ2χ
2
4χ8 − 2χ2χ5χ8 − χ

2
5χ8 − 2χ2

2χ6χ8 + 6χ4χ6χ8 + 2χ7χ8 + 2χ2χ4χ7χ8

+ χ4χ5χ7χ8 − χ2χ
2
7χ8 + 2χ2χ

2
8 + χ

2
2χ4χ

2
8 − χ

2
4χ

2
8 + χ2χ6χ

2
8 − 4χ4χ7χ

2
8

+ χ2χ5χ7χ
2
8 − χ

3
8 − χ2χ4χ

3
8 + χ4χ

4
8 + χ

2
3(8χ6 − 4χ7χ8 + χ

3
8) + χ

2
1(−χ

2
5 + χ4χ6 + 2χ7

+ χ3χ7 + χ3χ6χ7 + χ
2
4χ8 − χ4χ7χ8 − χ3χ

2
8 − χ6χ

2
8 + χ2(−4χ5 + χ4χ7 + χ8)

+ χ5(χ
2
7 − (−2 + 2χ3 + χ6)χ8)) + χ3(−3 + 8χ2

6 + 2χ2χ7 − 3χ5χ7 + χ
3
7 + χ

2
5χ8 + 4χ7χ8 + χ5χ

2
8

− χ
3
8 + χ4(−4χ5 + χ

2
7 + 3χ8 − 2χ6χ8) + χ6(−3− 2χ2χ7 − 6χ7χ8 + χ2χ

2
8 + χ

3
8))

+ χ1(6χ3χ5 + χ
2
4(−1 + χ6) + 3χ5χ6 − 2χ3χ5χ6 − χ

2
5χ7 − χ

2
7 − 2χ3χ

2
7 − 3χ8 + χ3χ8 + χ6χ8

+ χ3χ6χ8 − 2χ5χ7χ8 + χ3χ5χ7χ8 + χ
2
5χ

2
8 + χ7χ

2
8 + χ

2
2(−χ7 + χ5χ8)

+ χ4(−2χ7 + χ
2
7χ8 − χ8(χ5 + (−2 + χ3 + 2χ6)χ8)) + χ2(2− 4χ2

6 + 2χ5χ7 − χ7χ8

+ χ3χ7χ8 − χ5χ
2
8 + χ4(χ5 + (−2 + χ6)χ8) + χ6(4− 6χ3 + χ7χ8))) (E.7)

χ
E8

6 = − 1 + 3χ3 − χ2χ4 + χ1χ
2
4 + χ1χ5 + χ

2
2χ5 − 2χ1χ3χ5 − 2χ4χ5 + 3χ6 + χ

3
1χ6 − 4χ1χ2χ6

+ 6χ3χ6 + χ2χ4χ6 − χ1χ5χ6 + χ
2
1χ3χ7 − 2χ2χ3χ7 − χ5χ7 + χ3χ5χ7 + χ

2
1χ6χ7 − 2χ2χ6χ7

+ χ4χ
2
7 + 2χ1χ8 − 2χ1χ3χ8 + χ4χ8 + χ1χ2χ4χ8 − χ3χ4χ8 − χ

2
1χ5χ8 + χ

2
5χ8 − 2χ1χ6χ8

+ χ1χ3χ6χ8 − 2χ4χ6χ8 + χ1χ2χ7χ8 − 4χ3χ7χ8 + χ1χ5χ7χ8 − χ
2
1χ

2
8 + χ2χ3χ

2
8

− χ1χ4χ
2
8 + χ2χ6χ

2
8 + χ3χ

3
8 (E.8)
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χ
E8

7 = χ1
2
χ7 + χ1χ3χ8 − 2χ1χ5 + χ1χ6χ8 + 2χ1χ8 − 4(χ1χ8 − 1) + 2χ2χ4

− 2χ2χ7 + χ2χ8
2 + χ3χ6 − χ3 − χ6 − 2− χ2χ4 + χ1χ5 + χ5χ7 − χ4χ8 (E.9)

χ
E8

8 = − 1 + χ3 + χ6 + χ1χ8 (E.10)

χ
E8

4 = − 3 + 6χ3 − χ
3
3 + χ

5
1χ4 + χ

3
4 + 5χ4χ5 − 3χ3χ4χ5 + χ

3
5 + χ3χ

3
5 + 6χ6 + 9χ3χ6 − 7χ2

3χ6

+ χ
3
4χ6 − 3χ4χ5χ6 − 6χ3χ4χ5χ6 − 7χ3χ

2
6 + 9χ2

3χ
2
6 − χ

3
6 + χ

4
2χ7 + χ3χ

2
4χ7

+ χ5χ7 + 2χ3χ5χ7 − 2χ2
3χ5χ7 − 2χ2

4χ6χ7 − 4χ5χ6χ7 + 4χ3χ5χ6χ7 + 3χ3χ4χ
2
7

+ 2χ4χ6χ
2
7 − χ

3
7 − χ3χ

3
7 + χ

2
3χ

3
7 − 4χ4χ8 − χ3χ4χ8 + 2χ2

3χ4χ8 − χ
2
4χ5χ8

− 3χ2
5χ8 + χ3χ

2
5χ8 − 7χ4χ6χ8 + 5χ3χ4χ6χ8 + 4χ4χ

2
6χ8 − 3χ7χ8 − 6χ3χ7χ8

+ χ
2
3χ7χ8 − χ4χ5χ7χ8 + χ3χ4χ5χ7χ8 + χ6χ7χ8 + 6χ3χ6χ7χ8 − 6χ2

3χ6χ7χ8

+ 5χ5χ
2
7χ8 − 2χ3χ5χ

2
7χ8 + χ

2
4χ

2
8 − χ3χ

2
4χ

2
8 + 2χ5χ

2
8 − χ3χ5χ

2
8 + χ

2
3χ5χ

2
8

+ χ
2
4χ6χ

2
8 + 5χ5χ6χ

2
8 − 2χ3χ5χ6χ

2
8 + 4χ4χ7χ

2
8 − 3χ3χ4χ7χ

2
8 − 4χ4χ6χ7χ

2
8

+ χ
2
7χ

2
8 + χ

3
8 + χ3χ

3
8 + χ

2
3χ

3
8 − 2χ6χ

3
8 − χ3χ6χ

3
8 + χ

2
3χ6χ

3
8 − 5χ5χ7χ

3
8 + χ3χ5χ7χ

3
8

− χ4χ
4
8 + χ4χ6χ

4
8 + χ5χ

5
8 + χ

4
1((−1 + χ3)χ5 + χ

2
7 − (1 + χ6)χ8) + χ

2
2(3χ5χ6 − 3χ4χ7

+ χ
2
5χ7 − 2χ4χ6χ7 + 3χ2

7 + χ6χ
2
7 + 2χ8 − χ4χ5χ8 + χ6χ8 − 2χ2

6χ8 + χ4χ6χ
2
8 − 4χ7χ

2
8

+ χ
4
8 + χ3(2χ5 + χ

2
7 + χ8 − 2χ6χ8)) + χ

3
2(−1− χ6 + χ

2
6 + χ5(−2χ7 + χ

2
8)) + χ

3
1(1 + χ6 + χ

2
6

+ χ
2
4χ7 − χ5χ7 − χ4χ8 − χ

2
5χ8 − χ7χ8 + χ5χ

2
8 + χ3(−2− χ6 + χ

2
6 − 2χ5χ7 + χ7χ8)

+ χ2(χ4(−5 + χ6)− χ6χ7 + χ8(χ5 + χ8))) + χ
2
1(χ

2
5 + χ3χ

2
5 − χ

2
5χ6 + 2χ3χ7 + 2χ2

3χ7

+ 3χ3χ6χ7 + χ3χ5χ
2
7 + 2χ5χ8 + 3χ3χ5χ8 + χ

2
4(−2 + χ6)χ8 + 4χ5χ6χ8 − 2χ3χ5χ6χ8

− χ
2
7χ8 − χ3χ

2
7χ8 − χ

2
8 − 2χ3χ

2
8 − 2χ6χ

2
8 − χ5χ7χ

2
8 + χ7χ

3
8 + χ

2
2(1 + χ5χ7 − χ7χ8)

+ χ4(2 + χ
2
6 − 2χ5χ7 + χ

3
7 − 2χ7χ8 + χ5χ

2
8 + χ

3
8 − χ3(−5 + 2χ6 + χ7χ8)− χ6(1 + 2χ7χ8))

+ χ2(−4χ2
7 + χ8 + 3χ3χ8 + 5χ6χ8 − 2χ3χ6χ8 + χ7χ

2
8 + χ5(4− 4χ3 − 3χ6 + χ4χ8 − χ7χ8)

+ χ4((2 + χ6)χ7 − χ
2
8))) + χ2(χ

2
5χ6 + 4χ2

3χ7 − 6χ6χ7 + 4χ2
6χ7 − 3χ5χ

2
7 + χ

4
7 − χ5χ8

− 3χ5χ6χ8 − 2χ2
5χ7χ8 + χ

2
7χ8 − 4χ6χ

2
7χ8 + 2χ6χ

2
8 + 2χ2

6χ
2
8 + 2χ5χ7χ

2
8 + χ

2
5χ

3
8

+ χ
2
4(χ

2
7 + χ8 − 2χ6χ8) + χ4(1− 2χ2

6 + 3χ5χ7 − 2χ3
7 + χ

2
5χ8 + 4χ7χ8 − 2χ5χ

2
8 + χ

2
7χ

2
8

− χ
3
8 + χ3(−4 + 4χ6 − 2χ7χ8) + χ6(2 + 4χ7χ8 − 2χ3

8)) + χ3(−2χ2
5 + 2χ2

7χ8 + 3χ6χ
2
8

+ χ5(−2χ2
7 + 3χ8 + χ7χ

2
8)− χ7(6 + 5χ6 + χ

3
8))) + χ1(−4χ5 − 7χ3χ5 + 4χ2

3χ5 − χ5χ6 + 5χ3χ5χ6

+ 2χ5χ
2
6 + χ

2
5χ7 − 2χ3χ

2
5χ7 + 2χ2

7 + χ3χ
2
7 − 2χ2

3χ
2
7 + χ6χ

2
7 − 2χ3χ6χ

2
7 + 4χ8

− 2χ3χ8 − 5χ2
3χ8 + χ

3
2(−1 + χ6)χ8 − 2χ6χ8 − 10χ3χ6χ8 + 4χ2

3χ6χ8 − 5χ2
6χ8

+ 4χ3χ
2
6χ8 + χ5χ7χ8 − χ

3
7χ8 + χ3χ

3
7χ8 − 2χ2

5χ
2
8 + χ3χ

2
5χ

2
8 + χ7χ

2
8 + 5χ3χ7χ

2
8

+ 3χ6χ7χ
2
8 − 2χ3χ6χ7χ

2
8 − χ5χ

3
8 − χ

4
8 − χ3χ

4
8 + χ

2
4(−3 + χ6 + χ5χ7 + χ7χ8 − χ

3
8)

+ χ
2
2((1− 4χ3 + 2χ6)χ7 − χ8(5χ5 − χ5χ6 + χ8 + χ6χ8) + χ4(5− 2χ6 + χ7χ8))− χ4(χ

2
5 − (−5 + χ3)χ

2
7χ8

+ (−2 + 2χ3(−2 + χ6)− 3χ6)χ
2
8 + χ5(χ

2
7 + 2(−2 + χ3 + χ6)χ8 − χ7χ

2
8) + χ7(1 + 3χ3 − 3χ6 − χ

3
8))

+ χ2(−3− 6χ6 + χ
2
6 − 2χ2

4χ7 + 4χ5χ7 − 2χ5χ6χ7 + χ
2
5χ8 + 4χ7χ8 + χ6χ7χ8 + χ5χ

2
7χ8

− 2χ5χ
2
8 − χ5χ6χ

2
8 − χ

2
7χ

2
8 − χ

3
8 + χ6χ

3
8 + χ3(1− 6χ2

6 + 4χ5χ7 + χ7χ8 − 2χ5χ
2
8

+ χ6(6 + χ7χ8)) + χ4(χ8 − χ7χ
2
8 + χ5(−1 + χ6 + χ7χ8)))). (E.11)

F Relation among the parameters for E7 SW curve

In this section, we clarify the the relation among various parameters appearing in the E7

SW curve. They are basically related by change of the basis of the simple roots. First,
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we would like to write E7 parameters in terms of 6 masses m′
i, (i = 1, · · · 6) and 1 gauge

couplingm′
0 = 1/(2g2). Here we put prime so that we distinguish them with the parameters

mi related to SU(8). Since the mass parameters are related to SO(12) subgroup of E7,

we should decompose E7 into SO(12)× SU(2). In this case, it is convenient to choose the

simple roots as

α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4,

α4 = e4 − e5, α5 = e5 + e6, α6 = e5 − e6,

α7 = −1

2

(
e1 + e2 + e3 + e4 + e5 − e6 +

√
2e7

)
,

α−γ =
√
2e7. (F.1)

where ei are the orthonormal basis of the root lattice. The root α−γ corresponds to the

extra node of the extended Dynkin diagram. The SO(12) × SU(2) subgroup is given by

removing the root α7. In this convention, the weights of the fundamental representation

of SO(12) are given by ±ei (i = 1, · · · , 6). When we compute the character, it is possible

to parametrize the element of the Cartan subalgebra in such a way that the state with the

weight ±ei has the eigenvalue ±m′
i. In this sense, we can identify the vector ei with the

mass parameter m′
i (i = 1, · · · , 6). Analogously, we identify the vector e7 with the gauge

coupling m′
0.

On the other hand, when we decompose E7 into its subgroup SU(8), it is natural to

choose the simple roots as

α1 = e′1 − e′2, α2 = e′2 − e′3, α3 = e′3 − e′4, α4 = e′4 − e′5,

α5 = −1

2

(
e′1 + e′2 + e′3 + e′4 − e′5 − e′6 − e′7 − e′8

)
,

α6 = e′5 − e′6, α7 = e′6 − e′7, α−γ = e′7 − e′8. (F.2)

where we used the different orthonormal basis e′i. The SU(8) subgroup is obtained by

removing the root α5. We identify the vector e′i with the parameters mi.

Still another choice is the case when we decompose E7 into its subgroup SU(4) ×
SU(4) × SU(2);

α1 = e′′1 − e′′2, α2 = e′′2 − e′′3, α3 = e′′3 − e′′4 ,

α4 = −1

4

(
e′′1 + e′′2 + e′′3 − 3e′′4 + 2e′′5 − 2e′′6 + 3e′′7 − e′′8 − e′′9 − e′′10

)

α5 = e′′5 − e′′6, α6 = e′′7 − e′′8, α7 = e′′8 − e′′9, α−γ = e′9 − e′10. (F.3)

where we used the still different orthonormal basis e′′i . We find the correspondence between

the orthonormal basis e′′i and the parameters Li, Mj and Nk as

Li : e′′i , Ni : e′′i+4, Mi : e′′i+6. (F.4)

The relation between these parameters is obtained by equating the parameters corre-

sponding to the corresponding simple roots. For example, α1 corresponds to m′
1 −m′

2 in

the SO(12) × SU(2) parameters and m1 −m2 in the SU(8) parameters, respectively, and
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thus we equate these two. In this way, we find 7 independent equations in total and the

relation between them are obtained by solving them.

The parameters used in the Seiberg-Witten curve is actually the exponentiated values.

Therefore, we define m̃i = exp(−βmi), q = exp(−βm′
0) and so on, where β is the circum-

ference of the compactified circle. Then, the relation between SU(8) parameters m̃i and

the SO(12) × SU(2) parameters m̃′
i, q are

m̃i =
m̃′

i∏6
i=1 m̃

′
i

1
4

(i = 1, · · · 6)

m̃7 = q
1
2

6∏

i=1

m̃′
i

1
4 , m̃8 = q−

1
2

6∏

i=1

m̃′
i

1
4 . (F.5)

The relation between SU(8) parameters m̃i and the SU(4) × SU(4) × SU(2) parameters

Li, Mi, Ni are

m̃i = N2
1
2Li, m̃i+4 = N1

1
2Mi (i = 1, 2, 3, 4). (F.6)

This is exactly what we have already obtained in (3.19).

G Maximal Compact Subgroups via Hanany-Witten transitions

Here we discuss various toric like diagrams for 5 ≤ Nf ≤ 7 flavors showing maximal

compact subgroups for ENf+1 via the Hanany-Witten transition which we mentioned in

the main text13. Since we use (p, q) 5-brane web diagram, maximal compact subgroups of

ENf+1 are restricted to those of type AN . As there are many ways of getting to diagram

showing the subgroup symmetry, we simply list a representative toric-like diagram of type

AN below.

G.1 Nf = 5 or E6 case

The Nf = 5 case has two maximal compact subgroups of type AN , which are

E6 ⊃SU(3)× SU(3) × SU(3), (G.1)

E6 ⊃SU(6)× SU(2). (G.2)

As already discussed, the first one is dictated from the T3 diagram as in Figure 1. A

toric-like diagram for the second maximal subgroup is given in Figure 34.

G.2 Nf = 6 or E7 case

The Nf = 6 case has three maximal compact subgroups of type AN , which are

E7 ⊃SU(4)× SU(4) × SU(2), (G.3)

E7 ⊃SU(8), (G.4)

E7 ⊃SU(6)× SU(3), (G.5)

whose toric-like diagrams are given in Figure 7, in Figure 9 and in Figure 20, respectively.

13The authors thank Amihay Hanany suggesting to explore all possible subgroups.
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Figure 34. A toric-like diagram for the SU(2) theory with Nf = 5 flavors of SU(6)×SU(2) ⊂ E6

symmetry

G.3 Nf = 7 or E8 case

The Nf = 8 case has four maximal compact subgroups of type AN , which are

E8 ⊃SU(6)× SU(3) × SU(2), (G.6)

E8 ⊃SU(9), (G.7)

E8 ⊃SU(8)× SU(2), (G.8)

E8 ⊃SU(5)× SU(5). (G.9)

The first two are given in Figure 15 and in Figure 17, respectively. The toric-like diagram

for (G.8) is given in Figure 35:

Figure 35. A toric-like diagram of SU(2) theory with Nf = 7 flavors of SU(8) × SU(2) ⊂ E8

symmetry

The toric-like diagram for (G.9) is given in Figure 36:
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Figure 36. A toric-like diagram of SU(2) theory with Nf = 7 flavors of SU(5) × SU(5) ⊂ E8

symmetry

.
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