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1 Introduction

In recent years much interest has been devoted to investigating the relation between
paths in a topological space, and proofs of identity in Martin-Lof type theory. In
particular, Steve Awodey and Michael Warren have suggested in [I] that a suitable
structure to interpret the identity type rules is a weak factorization system, a structure
arising in homotopy theory as an abstraction from the notion of path lifting property
and which is part of the stronger notion of model category [15, [4]. Some coherence
issues have then been worked out by Benno van den Berg and Richard Garner in [3],
where they introduced the notion of path object category and proved that it provides a
weak factorization system with good enough features to obtain a sound interpretation
of identity types. Furthermore, Nicola Gambino and Richard Garner have proved in [6]
a somewhat inverse result, stating that the syntactic category (or category of contexts)
of a dependent type theory with identity types carries a weak factorization system
structure.

This highlights a deep connection between identity types and weak factorization
systems but, as already pointed out in [3], a gap still remains, namely that the syntactic
category (and in general the models build out from the syntax of Martin-Lof type theory)
does not fit into the kind of models described by Awodey, van den Berg, Garner and
Warren, thus keeping out any possibility of a completeness result for such models.

The goal of this paper is to abstract from the particular setting of the syntactic
category in order to generalize the result of Gambino and Garner and investigate how
it relates with the models presented in [3]. The obtained structure turns out to subsume
both the syntactic category and the homotopy-theoretic models of [3]. In particular, this
paper can be regarded as a development of the thesis [5] written under the supervision
of Nicola Gambino.

Our starting point is a particular category, introduced by André Joyal in [9], called
tribe. This is a category with a distinguished class of arrows A which, roughly speaking,
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can be thought of as abstract dependent projections. We shall then consider additional
structure on it, defining a tribe with weakly stable path objects, and prove that such
category admits a weak factorization system, thus giving rise to Joyal’s notion of h-tribe.

Independently of this work, Benno van den Berg has announced similar results in
a recent talk in Oxford [2], achieved by considering a structure, called identity tribe,
closely related to a tribe with path objects. The main difference between our two
notions lies in the condition of stability under pullbacks imposed on the factorization
of the diagonal arrow. Nevertheless, their similarities suggest that we can regard them
as leading to a natural enrichment of the tribe structure on a category.

We begin Section [ recalling some basic definitions and facts about weak factor-
ization systems. The notion of tribe with weakly stable path objects is then defined,
and its relation with the notions introduced by Joyal and van den Berg is discussed.
The existence of a weak factorization system (£, R) is proved in Theorem .14 and we
conclude the section characterizing R as the class of arrows having a form of transport
between fibres over the endpoints of a path. The existence of a weak factorisation
system from an analogous setup has been recently proved by Michael Shulman [16].

In Section B we briefly recall the definition of the syntactic category C(T) and prove
that, if the underlying type theory T has identity types, then C(T) is a tribe with weakly
stable path objects. We then show that, in this case, Theorem [2.14] yields exactly the
identity type weak factorization system of [6].

We conclude in Section [ recalling the definition of path object category along with
the underlying topological intuition, and show how to adapt the construction of a weak
factorization system in [3] to prove that every path object category is a tribe with
weakly stable path objects.

2 Weak factorization systems and weakly stable path
objects

In this section we begin recalling the definition of weak factorization system and
a couple of elementary results. We present then the definition of tribe and introduce
the richer structure of tribe with weakly stable path objects, also discussing its relation
with Joyal’s h-tribe and van den Berg’s identity tribe. Finally, we prove our main result,
stating that every tribe with weakly stable path objects can be endowed with a weak
factorization system.

Definition 2.1. Let C be a category. Given two arrows f: A - X and g: B —- Y, a
left lifting problem for f over g (or a right lifting problem for g over f) is a commutative



square

A—— B

A

X—Y
The arrow f has the left lifting property (I.l.p.) with respect to g, if every left lifting
problem for f over g has a diagonal filler, that is an arrow j: X — B such that the
diagram

A—— B

fl /lg

X—Y

commutes. Symmetrically, g has the right lifting property (r.l.p.) with respect to f, if
every right lifting problem for g over f has a diagonal filler. Of course, f has the 1.1.p.
with respect to g if and only if ¢ has the r.l.p. with respect to f, we write f 7 g to
denote this situation.

If A is a class of arrows, we write AY for the class of all the arrows that have the
r.l.p. with respect to every arrow in A, and YA for the class of all the arrows that have
the 1.1.p. with respect to every arrow in A. We shall also write f @A instead of f € BA.

Definition 2.2. A weak factorization system (w.f.s.) on C consists of a pair of classes
of arrows (£, R) such that:

(a) every arrow f in C admits a factorization f = pi, where i € £ and p € R,
(b) LZ =R and PR = L.

These properties are called Factorization Axiom and Weak Orthogonality Axiom, re-
spectively.

Lemma 2.3. Let C be a category and A C Ar(C) a class of arrows in C. Define £ = 9A
and R = LP. Thus L =PR.

Proof. Let f € L. Since every arrow in R has the r.1.p. with respect to all the arrows in
L, in particular every g € R has the r.l.p. with respect to f. Hence, from the symmetry
of lifting properties, f has the 1.1.p with respect to any g € R. Thus, f € PR.

If we apply the same argument to an arrow in A, we obtain A C R. Thus we have
the opposite inclusion 2R C YA = L. O

Lemma 2.4. Let C be a category and A C Ar(C) a class of arrows in C. If C has
pullbacks and A is closed under base change, then f A A if and only if a diagonal filler
exists for every lifting problem of the fm"m



Proof. 1If fI@A, then obviously a diagonal filler exists. To prove the opposite implication
notice that, given a left lifting problem for f over an arrow in A, taking the pullback
of the bottom and the right-hand arrow yields a left lifting problem with the identity
arrow as the bottom arrow, as illustrated by the following diagram

A P
I
X X
where the right-hand square is a pullback, (f,h) is the arrow given by its universal
property and the outer square is the original lifting problem. Since g € A and A is
closed under base change, the left-hand square has a diagonal filler. Composing it with

the base change of k along ¢ yields, in turn, a diagonal filler for the original lifting
problem. O

(fil) B

Q

—Y

Definition 2.5. Let C be a category and A C Ar(C) a class of arrows in C. The pair
(C,A) is a tribe if C has a terminal object 1 and the following hold:

(a) for every pair of arrows in C with the same codomain, we have a choice of a
pullback square if at least one of them is in A,

(b) A is closed under composition and base change,
(¢) all the iso and terminal arrows are in A.

Given two arrows p € A and f with the same codomain, we write as usual f to
denote the (chosen) base change arrow of p along f and similarly for p*f. Notice that
point of Definition 2.5]implies f*p € A. The arrow defined by the universal property
of a pullback is denoted by (f, g). Furthermore, we call products those pullback squares
involving a single arrow p € A or two terminal arrows, projections the base change
arrows and denote them by

Ex,E———FE X XY ———Y
pry 1

lprg p lpro l

E——Y X—1

respectively. We shall also denote by f x g = (fpr,, gpr;) the product arrow between
products. Notice that points and of Definition imply that both the projec-
tions are in A. We shall drop superscripts from the projections whenever they are clear
from the context.



Definition 2.6. We say that a tribe (C, A) has path objects if, for every arrow p: £ — Y
in A, we have a choice of a factorization of the diagonal A, = (idg,idg): £ — E X, E,
denoted by

E—" s Path(p) —2  E x, E,
such that
(CI/) 8117 S ‘Av
(b) every base change of r, along an arrow in A is in ©A.

If p: E — 1 is a terminal arrow, we write Path(£), rg and Jg, instead of Path(p), 1,
and 0,, respectively.

Definition 2.7. We say that a tribe (C,.A) with path objects has weakly stable path
objects if, for every arrow p: E — Y in A and every arrow f: X — Y, there exists an
arrow

i: f*Path(p) — Path(f"p)
such that the diagram

(f*p,rp.p"f) (f*(p-0p), 0p-(p-09)*f)

1E f*Path(p) B %y fE
i (1)
Tf*p Ap*p
r'E Path(/) FE Xpy ['E

commutes.

Joyal defines a h-tribe as a tribe (C, A) in which every arrow can be factored through
an arrow in “A followed by an arrow in A, and such that the class YA is closed under
base change. Since it is possible to prove that in a tribe with weakly stable path objects
the class YA is closed under base change, the proof of Theorem 214 implies that every
tribe with weakly stable path objects is a h-tribe.

The identity tribe proposed by van den Berg’s seems to be instead a tighter notion,
as it is defined as a tribe with path objects in which the factorization of the diagonal
arrow is required to be stable under pullback along any arrow. It would appear that
this is equivalent, in our formulation, to requiring the arrow ¢ to be an iso.

According to this remark, every identity tribe is a tribe with weakly stable path
objects, and both of them are h-tribes.

We now introduce a couple of useful definitions.



Definition 2.8. Let f: V — Y be an arrow in C, and let p: Y — X be an arrow in A.
The pullback of f along 82 will be denoted by

Map,(f) ——— Path(p)

pm?
, 0
meg ! \ap

V 7 Y

and the object Map,(f) will be called mapping path object of f along p. As already
said for products, we shall usually drop superscripts from the base change arrows.
We say that f has a transport arrow over p if the following square

Ve———7s=V

(idV I'p f>J/ ‘/‘f

has a diagonal filler j: Map,(f) — V.
If p: Y — 1 is a terminal arrow, we write Map(f) instead of Map,(f), and simply
say “mapping path object of f” and “transport arrow for f”.

Remark 2.9. Notice that the mapping path object Map(f) for an arrow f: V — Y
always exists. If moreover f has a transport arrow j: Map(f) — V, given two arrows
e: W — V and u: W — Path(Y) such that f.e = 9%.u, we can define the arrow
(e,u): W — Map(f) and compose it with the transport arrow j, thus obtaining an
arrow € : W — V such that f.¢/ = 0i.u, i.e. an arrow which we can think of as a
transport of e along the path w.

Lemma 2.10. Let (C,A) be a tribe with path objects and E — Y 25 X be two
arrows in A. Then the arrow (idg, 1,.q): £ — Map,(q) is in “A.

Proof. Let us consider the following commutative diagram

(idg,1p-q)
‘/q J/Pml ‘/q

Y —  Path(p) —— Y
Irp 82

where the right-hand square defines the mapping path object of ¢ along 82. Since the
composites of the horizontal arrows are identities, the left-hand square is a pullback.
Point @ of Definition .5l thus implies pm; € A and, in turn, point @ of Definition
implies (idg,r,.¢) @ A. O



An immediate consequence of this Lemma is that every arrow in A has a transport
arrow.

Corollary 2.11. In the hypothesis of the previous Lemma, the square

E P —————————— E
<7‘dE7 qu>J/ ‘q
Map,(q) W Y

has a diagonal filler j: Map,(q) — E.
The following Lemma gives a characterization of the arrows in the class “A.

Proposition 2.12. Let (C, A) be a tribe with path objects and f: V — Y an arrow in
C. Then f @A if and only if there exist two arrows r:Y — V and ¢: Y — Path(Y')
such that

(Z) T.f = idv,
(ZZ) ang = <f.’/’, idy),
(iii) o.f =ry.f.

Proof. If f ¥ A then the two arrows are obtained as diagonal fillers of the following
commutative squares:

1% -V vV — L path(y)
Y ) 2
fl T l fl v lay
/ P s
Yy — 1 Y — Y xY

(f.r,idy)

Vice versa, suppose we are given a lifting problem

Vv—2 FE
Y ——— VY

where q € A. Since 8%.0 = f.r = q.g.r, we can define the arrow (g.r, ¢): Y — Map(q).
A diagonal filler is then given by j{g.r,¢): Y — FE, where j: Map(q) — E is the
transport arrow for ¢ given by Corollary 2.I1l The general statement follows from
Lemma 2.4 O



We can use this characterization to prove a generalization of Lemma [2.10L
Lemma 2.13. Let (C,A) be a tribe with weakly stable path objects and V -5V 25 X
be two arrows in C. If p € A then (idy,1,.f): V — Map,(f) is in “A.

Proof. To simplify notation let us define M := Map,(f). Thanks to Proposition 2.12]
and the fact that pm,(idy, r,.f) = idy, it is enough to provide an arrow ¢: M —
Path(M) such that

Oum-p = ((idy, 1,.f).pm,, idas) and . (idy,1p. f) = rar.(idy, 1. f). (2)

First of all, let us observe that there is an arrow v: Path(pm,) — Path(M) obtained
as diagonal filler in

M o Path(M)

7
rpmoJ/ _ /U/ - J/aM (3)

Path(pm)) —— M x M

Furthermore, since pm, = f*0,, Definition 2.7 implies the existence of an arrow
i f*Path(8)) — Path(pm,).

We can thus exploit the universal property of pullback to define an arrow M —
f*Path(d) and compose it with ¢ and v to get the arrow ¢.
Let t: Path(p) — Path(d)) be a diagonal filler of the square

r 0.Ip
%

Path(89)

Path(p) ————— Path(p) x g Path(p)

<rp 887 1d>

and consider the following diagram

M ——L2 , Path(p) W
pmol \




where the two squares are pullbacks. Commutativity of (d) implies 82.8g2.w.pm1 =
f.pmy, therefore there exists the arrow (pmy,t.pm;): M — f*Path(d)) and we can

define ¢ = v.i.(pmy, 1.pm,).
Commutativity of (Il) and () imply

Oy v = <f*(020gg), 832.(82032)7) and 0.4.(PMg, Tag Py ) = Ty

Therefore the equations in ([2) follow from commutativity of () and (&) as follows:
(f(0p-050): Dag-(3,-050)"f)-(pmg, 1.pmy ) = (pmyg, Opg-4).pmy )

= (pmy, (rp.f.pmyg, pmy))

((pmy, Tp. f.pmy), (Pmy, pmy))

= ((idy, rp. f) pmy, idar)

and
(pmy, ¥.pmy ) (idy, 1. f) = (idv, 1a9.1p.f)
= <pm0,rag.pm1>.(idv, Ip-f)
O

We are now in a position to prove the existence of a weak factorization system.

Theorem 2.14. FEvery tribe with weakly stable path objects (C, A) admits a weak fac-
torization system (L, R) defined by L :=BA and R = LP.
Proof. The factorization of an arrow f: V — Y is given by

f = (0y.pmy).(idv, 1y f),
where (idy,ry f) is the arrow defined by the universal property of the mapping path
object of f:
Vv ry . f

O

Map(f) —— Path(Y) (6)

idx

V—>f Y

Lemma implies (idy,ry.f) € £. In order to show that d{-.pm; is in R observe that,
for the stability property of pullbacks, the following square is a pullback

Map(f) —5z— Path(Y)

‘/(pmo7 03 .pmy) ‘/BY (7)

VXY—>YXY
ledY



In particular, point ()] of Definition implies (pmg, di-.pm;) € A and, in turn,
Oy.pm; € ACR.
Finally, the Weak Orthogonality Axiom follows immediately from Lemma 2.3 O

We now give a characterization of the arrows in the right class R as we already did
for the left class in Proposition 212

Proposition 2.15. Let (C,A) be a tribe with weakly stable path objects and f: V —Y
an arrow in C. Then f € R = (BA)? if and only if it has a transport arrow, that is, a
diagonal filler for the following square.

Vi

v
(idv,ry.f{ lf (8)
Y

Map(f) ErT—
y Py

Proof. 1f f € R, then the existence of a diagonal filler for (§)) is ensured by Lemma 213
which implies (idy, ry.f) &2 f.
Vice versa, consider the following lifting problem

| LN v
gl lf (9)
Y ——Y

where g € Y“A. Because of the characterization given by Proposition 212, we know that
there are r: Y — W and ¢: Y — Path(Y) such that

r.g = idy, Oy .o = (g.r,idy) and p.g =Ty.g.

This allows us to define the arrow (h.r,¢): Y — Map(f). A diagonal filler for (@) is
then given by j.(hr,@): Y — V, where j: Map(f) — V is a transport arrow for f. O

Notice also that, if f has a transport arrow j: Map(f) — V/, then it has a trans-
port arrow over every arrow p: ¥ — X in A. This is a consequence of the previous
Proposition and of Lemma [2ZT3] which together imply (idy,r,.f) & f.

3 The syntactic category of Martin-Lof type theory

We consider a version of Martin-Lof type theory [I1), [12], which we denote by Ty,
equipped the usual structural rules and with the only identity type as type former,
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whose rules are given in Table[Il For more details about the syntax of Martin-Lof type
theory see [13]. We write [«]B ([2)b) to denote the type B (term b) with the variable
bound and B[%,] (b[*.]) to denote the type (term) obtained by substituting the term
a for all the free occurrences of the variable z in B (in b).

As usual, we assume that derivations given by all the rules we present can be made
also relative to chains of assumptions, called contexts. Recall that a context ® of length
n > 0 is a list of declarations of the form

(I):(IlflZAl,ZL’QIAl,...,InIAn)

such that all the variables zi,...,z, are different and the following judgments are
derivable.

Ay Type,
(w1 Ay) Ay Type,

: (10)
(ZL’l . Al, ey Tp_1 - An—l) An Type

When n = 0 we have the empty context (). We write ® Cxt to mean that & is a context,
that is, as a shorthand for the judgments in (I0). If the first judgment A; Type (and
then all the others) depends on a context I', we write (I') & Cxt and say that ® is a
dependent context. Notice that, given a dependent context (I') ® Cxt, we then obtain
(T', @) Cxt by concatenating the judgments they stands for.

Since we are working in a theory with the only identity type, we assume an elimi-
nation rule, called parametric, which is stronger than that one presented in [13], for it
allows the presence of a parametric context © within the derivation. This parametric
elimination can be deduced from the usual one in presence of II types [§].

In addition to the rules in Table[I], there are also rules expressing the congruence of
definitional equality with respect to the constants Id, refl and J, which we leave implicit.
Instead, we explicitly state in Table [2] the rules for substituting terms for variables in
such constants. As usual, stating these rules, we assume that no occurrence of free
variables in a becomes bound when substituting a in another term, just renaming
variables if needed. To increase readability, we have omitted from the premises of the
last rule of Table 2] the judgment

(LU : Avyl : Buy2 : Bau : IdB(y17y2)7Z : ®> C Type

Using the structural rules of Martin-Lof type theory it is possible to define a category,
called syntactic category, whose construction we briefly recall. For details see [14].
Given two contexts ® and ¥ = (y; : By,...,Ym : Bn), a context morphism from @

11



Table 1: Derivation rules for identity types

Formation
A Type a:A b: A
Ida(a,b) Type
Introduction
A Type a:A
refls(a) : Ida(a, a)
Elimination

(x: A y: A u:lda(z,y), z:©) C Type
p:IdA(a,b) (I/IA, Z/ [m 2 refl(x /xyu]) d:C[m’m srefl(z’), /myuz]
(w: @[“’b’p/xvy,u]) J(a,b,p,2,2d, 2) : C[“’b’p’w/w,w]

Computation
(x: A y: A u:Ida(z,y), z:0) C Type
a: A (l’/ZA, SO [mmroﬂ /xyu])dzc[gcgcroﬂ(gc /:cyuz]
(w: @[“’a’mﬂ(a)/m’y,u]) J(a,a,refl(a), o 2d, w) = d[*/ /] : C[warei(@) e nz)

to ¥ in an m-tuple (by, ..., b,,) such that all the following judgments are derivable.
((I)) : By,
(®) b2 = Bo["/yu],

We write (®) (by,...,by) : ¥ to mean that (by,...,b,) is a context morphism from @
to W.

An important class of context morphisms, called dependent projections, are those
which drop some variables of a context, that is, context morphisms of the form

(P, 0) (21,...,2,) : P

12



Table 2: Substitution rules for identity types

Id-substitution

(x: A) B Type (x:A) b : B (x:A)by: B a:A
IdB(bh b2)[a/x] = IdB[a/gc](bl [a/x]a b2 [a/x]) Type

refl-substitution

(x: A) B Type (x:A)b: B a:A
reflp(0)[*z] = veflpjas) (b)) : Tdpjas) (B[], 0/])

J-substitution

(x:A) BType (x:A)by:B (x:A)by:B (x:A)p:Idg(b,bs)
a: A (z:Ay: B2 OPL ) s CEREOE ]
(w: O 28y Wl [*fe]) I(br, b, p, 21, 2) [ 2] =
= JO1 %], ba[), el w1 (A[%e]) s w0) = O P g )]

where W is a context depending on ®, and (z1, ..., x,) are the variables in ®.

We can then define an equivalence relation on contexts and context morphisms,
which extends definitional equality, identifying two contexts (contexts morphisms) if
they coincide up to variable renaming.

Definition 3.1. Objects and arrows of the syntactic category C(T) of a type theory T
are equivalence classes of contexts and context morphisms respectively. Identity arrows
are defined in the obvious way, whilst the composition of two arrows a: ® — © and
b: ©® — WV is defined by means of substitution within representatives of equivalence
classes: if (®) (ay,...,ax) : © and (©) (by,...,by) : U are such representatives and
21, ...,z are the free variables in the context O, the composite arrow is the equivalence
class of the context morphism given by the judgments

fori=1,...,m, where ¥ = (y; : B1,..., Ym : Bn).

In what follows, we will not use equivalence classes but just identify two contexts
(context morphisms) up to variable renaming. Also, since we will only work with

13



contexts, and not with types, we denote the former with capital letters of Latin alphabet,
instead of Greek one.

Gambino and Garner have proved in [6] that, exploiting the rules for the identity
type, it is possible to endow the syntactic category C(Ty) associated to the type theory
Ty with a weak factorization system, called identity type weak factorization system.

Theorem 3.2 (Gambino and Garner). Let D denotes the set of all the dependent pro-
jections in C(Ty). The pair (£, R), where L =2D and R = L?, is a weak factorization
system on C(Ty).

The Weak Orthogonality Axiom follows from Lemma [2.3] whereas, given two con-
texts X and Y, the factorization of a context morphism (z : X) f:Y is

(z, f,refl(f)) (ZL’ : X, Y Y, u: Idy(f, y)) L}Y (11)

X
where Idy (f,y) is the so-called identity context, which can be defined from the rules
for identity types as shown in [7]. The right-hand arrow is obviously a dependent
projection, the hard part of the proof is in proving that the left-hand one is in £.

We now prove that the pair (C(Ty), D) is a tribe with weakly stable path objects,
and that the weak factorization system given by Theorem [2.T4]is the identity type weak
factorization system.

Proposition 3.3. The pair (C(Ty), D) is a tribe with weakly stable path objects. In
particular, the choice of path objects is given by identity contexts.

Proof. First of all, the empty context () Cxt is a terminal object in C(Ty), terminal
arrows are dependent projections dropping all the variables of a context, whilst identity
arrows are dependent projections which do not drop any variable.

Given a dependent projection (z : X,y : F) — (2 : X) and a context morphism
t: X' = X, the following square is a pullback

(@ X,y BlL) —s (a0 X,y E)

T

(' X') i (z: X)

where the two vertical arrows are dependent projections. Indeed, if f: Z — X’ and
(90,01): Z — (X, E) are context morphisms such that go = t.f, the universal arrow is
the context morphism (f,¢1): Z — (X, E['/]).

Finally, the composite of two dependent projections is obviously a dependent pro-
jection. Therefore, (C(Ty), D) is a tribe.

14



We now show how to associate a path object to every dependent projection. Let
pi(a: X,y B) = (2 X),
be a dependent projection. The diagonal A, is the context morphism
(@, y,9): (z: X,y E) = (x: X,y : B,y 0 B).
Define
Path(p) :=(x: X, y1 : E, yo : E, uw: Idg(y1,42)),

r, = (z,y,y,refl(y)) and 0p = (x,y1, Y2),
where Idg(y1,y2) is the (dependent) identity context of the context F, for which one
can derive rules analogous to those given in Table[I] as proved in [7]. These definitions
yield of course a factorization of the diagonal, and 9, € D follows from definition.
Let us prove that every left lifting problem for a pullback of r, over D has a solution
in C(Ty). Let (v : Path(p), z : B) — Path(p) be a dependent projection (where we use
v : Path(p) as a shorthand for (z,y;, ys,u) : Path(p)) and

(x:X,y: B, 2 BFvwrelw)) )y % .y Path(p), z : B)

| |

(x:X,y:E) ” Path(p)

a pullback, where k = (1), 2') = (z,y, y, refl(y), /).
Let us then consider the following lifting problem

(z:X,y:E, 2 Byt y 94 4 (y: Path(p), z: B, w: C)

1{ T

(v : Path(p), z : B) (v : Path(p), z : B)

where the right arrow is the dependent projection dropping the variable w. Commuta-
tivity of (I3]) implies
d= (ZIZ’, Y.y, reﬂ(y), Z/a dC)>

for some context morphism d¢ such that the judgment
(x:X,y:E, 2 : B[£vei®/n de C[I’y’y’reﬂ(y)’zl/v,z].
holds. Applying the elimination for identity contexts to it, we obtain
I(y1,y2,u, w1de, 2) : C

15



for (z,y1,y2,u) : Path(p) and z : B, and the computation rule yields
Iy, y,vefl(y), w=1de, 7)) = de : C[2vvred®)=) ],
forz: X, y: E, 2 : B[®vv*l®)/] Thus the context morphism
(v : Path(p), z : B) (x,y1, Y2, u, 2, J(Y1, Y2, U, ly,21dc, 2)) = (v : Path(p), z: B, w: C)

is a diagonal filler for the lifting problem (I3)): commutativity of the lower triangle is
obvious whereas commutativity of the upper one follows from the computation rule.
Therefore, the tribe (C(Ty), D) has path objects.

To see that this choice is weakly stable in the sense of Definition 2.7, let f: X — Y
be a context morphism. According to the choice for the pullback square in (I2]), we
have

FE=(x:X, 2 EBU)), fp=(x), and pf=(f7),
while the pullback object of Path(p) along f is
f*Path(p) = (z: X, 2, : E[})], (o : E, v : IdE(Zl,ZQ))[ﬁZi/y,Zl])
= (z:X, 2 : E[f/y]> 2y : E[f/y]> u': (Idg (21, 22))[f’2l17zé/y,Z1,22])

and the two associated base change arrows are

fp0)=(x) and  (p.O)f = (f. 2}, 25, u).

Therefore, from the construction in the syntactic category of the universal arrow of a
pullback, we have

(o, 1p0'f) = ((2), (f, 7,2, (eflp(2)[77),]))
= (2,7, 7, (reflp(2))["f.2])

and

(f(p-0y), 0p-(p-0y)f) = ((2), (f, 21, 25))

= (2,2, 2))
On the other hand, the factorization of Ay, is given by
Path(f'p) = (v : X, 21+ B[], 25+ BIA), o'+ Tdpgpsy,) (21, 22))
e = (2,2, z’,reﬂE[f/y}(z')) and Opwy = (m, 2, 25)

and the substitution rules for identity types ensure

(Ldp (21, 22)) [P, 2, 0] = Ly, (21, 22)

and

(reflp(2))["*),] = reflpysy, (7).
Therefore f*Path(p) = Path(f*) and it suffices to take the identity context morphism
as the arrow 7 in order to make diagram () commute. O
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The third substitution rule for identity types, which we did not use here, is needed
in the case a choice of diagonal filler is assumed in the definition of tribe with path
objects and such choice required to be stable under pullback in the definition of tribe
with weakly stable path objects. We did so in [5], also assuming a stronger notion
of stability under pullback of the structure given by path objects. This assumption
amounts, in the current formulation, to requiring the arrow ¢ of Definition 2.7] to be in
isomorphism.

Let us conclude this section by showing that the weak factorization system given
by Theorem 214 is precisely the identity type weak factorization system. The two
classes of arrows £ and R are obviously the same. Consider then a context morphism
f: X — Y. The factorization in Theorem [2.14] is obtained through the mapping path
object of f over the terminal arrow Y — ():

where the mapping path object is the context

Map(f) = (z: X,y : Y,u: 1dy(f,y))

because of the choice of pullback and the first substitution rule for identity types.
The arrow d{-pm, is the dependent projection

(y): (x: X,y You:ldy(f,y) =Y
and the universal arrow (idx,ry.f): X — Map,(f) is

<(I), <f7 f7 I'eﬂy(f)>> = (SL’, f7 I'eﬂy(f))-
We have then obtained exactly the factorization of f described in (III). Thus, the weak
factorization system on (C(Ty), D) given by Theorem 2.I4] is the identity type weak
factorization system.

4 Path object categories

A path object category is a notion introduced by Benno van den Berg and Richard
Garner in [3]. In that paper they first prove that every path object category is a model
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of Martin-Lof type theory with identity types, and prove then that the categories of
groupoids, of chain complexes over a ring, of topological spaces and of simplicial sets are
path objects categories. As they say, such structure has been defined in order to have
an abstract characterization of a number of common features shared by those categories,
features which are instrumental in showing that they provide models of Martin-Lof type
theory with identity types.

Definition 4.1. A path object category is a finitely complete category C equipped with
the following structure:

(a) An endofunctor M: C — C which preserves pullbacks, and natural transforma-
tions

r: Id = M, s,t: M = 1Id, m: (M,M) =M and T:M=M

such that, for every object X of C, the diagram

SX
X =M — 2 MX  x MX

tx

is an internal category, and the arrow 7x: MX — MJX is an involution which
defines an internal identity-on-objects isomorphism between M X and its opposite
category.

(b) A strength for the endofunctor M [10]
axy: MX xY — M(X xY)
with respect to which r,s,t,m and 7 are strong natural transformation.

(¢) A strong natural transformation n: M = MM such that

SMx-Nx = 1dX7

tMX~77X = rx.tx,
Msx.nx = idx,

Mtx.nx = a1, x.(M!, tx),

NxIx =TIumx.Ix.

The motivating example that van den Berg and Garner have in mind is the category
of topological spaces where the endofunctor M is intended to provide a choice of path
space for every space X. However, the obvious choice MX = XU fails to satisfy the
category axioms they require in point @ For this reason, they take instead MX to be
the Moore path space, i.e. the set of paths with arbitrary lengths

{(Ly) e Ry x XPe | (vt > Do(t) = (D) },
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where R, denotes the set of non-negative real numbers, equipped with the topology
induced by the euclidean topology on R and the compact-open topology on X®+. The
category structure is then given as follows. The identity rx(z) is the constant path
at + € X of length 0. Source sy and target tx of a path (I,¢) are ¢(0) and ¢(l),
respectively. The composition mx of two paths (I, ¢) and (m, ) such that p(1) = 1(0)
is the path x of length [ + m defined by

e, ift <1,
x(t) = {w(t—l), if t > 1.

Finally, the involution 7y is the operation which revert paths, that is, takes a path (I, )
to the path ¢° of same length defined by

() = {go(l 0, i<t
©(0), ift > 1.

The notion of strength ayy: MX xY — M(X xY') captures the idea of a constant
path of arbitrary length. Indeed, such a strength is determined, up to natural isomor-
phism, by the components of the form aq x. Now, in the topological example, M1 is
homeomorphic to R, therefore we can think of oy y as taking a length [ € R, and a
point € X to the path of length [ constant at . The component axy then takes a
pair ((1,p),y) to the path (I,7) in X x Y defined by ¥(t) == (¢(t),y).

This strength is needed to encode the last piece of structure, that is, a way to
contract a path onto its endpoint. This is done by requiring the existence of the natural
transformation 7 in point . In the topological example, such a contraction is given
by a path of paths nx(¢) of the following form

Msx .nx (¢)
To— 21

@l 77%) lrx (z1)

Ty
Mtx .nx (@)

with syx.nx (@) = ¢ and tyx.nx(¢) = rx(z1). To make such diagram commute, one
might try to take Msx.nx(¢) = ¢ and Mtx.nx(¢) = rx(x1). The problem arises from
the fact that Msy and Mty preserve path lengths, but the length [ of ¢ is in general
not equal to 0. The solution is then given, in the topological case, by the path of length
[ constant at x; and, in the abstract case, by the strength aq x (see the fourth equation
in point .

We now show that a path object category is, in particular, a tribe with weakly stable
path objects, thus providing the latter with a number of example.

The argument is essentially the same as that one in Section 6.2 of [3].
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Theorem 4.2. A path object category is a tribe with weakly stable path objects, whose
class A is formed by all the arrows which have a transport arrow.

Proof. Let Cbe a path object category. In order to show that it is a tribe we first observe
that, since it is finitely complete, it has a terminal object and arbitrary pullbacks, and
define A to be the class of arrows which have a transport arrow. It is easy to see that a
transport arrow for fp: f*E — X is (tx.pmy, j(p*f.pmy, Mf.pm,)): Map(f*p) — f*E,
where j is a transport arrow for p, whereas transport arrows for a terminal X — 1
and for an iso f: X — Y are pmy: X x M1 — X and tx.Mf~!'.pm;: Map(f) = X,
respectively.
Let p: E— Y be an arrow in A and define Path(p) as the pullback object in

r, as the universal arrow in (I4)) and 0, = (Sg.vp, tp.v,): Path(p) - E x, E. This
yields a factorization of the diagonal A,, and the proof that 9, € A and r, @ A is the
content of Proposition 6.2.2 of [3].

The fact that every base change of r, along an arrow in A is in @A follows from the
fact that this choice of factorization is Frobenius, i.e. ¥A is closed under base change
along arrows in A, which is proved in Proposition 6.3.1.

Finally, the weak stability follows from Proposition 6.2.5, where van den Berg and
Garner prove that there is a natural isomorphism between f*Path(p) and Path(f"p)
which is compatible with 1, and 0+, as required. O
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