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ON ANOTHER EDGE OF DEFOCUSING: HYPERBOLICITY OF

ASYMMETRIC LEMON BILLIARDS

LEONID BUNIMOVICH, HONG-KUN ZHANG, AND PENGFEI ZHANG

Abstract. Defocusing mechanism provides a way to construct chaotic (hyperbolic) billiards with
focusing components by separating all regular components of the boundary of a billiard table
sufficiently far away from each focusing component. If all focusing components of the boundary
of the billiard table are circular arcs, then the above separation requirement reduces to that all
circles obtained by completion of focusing components are contained in the billiard table. In the
present paper we demonstrate that a class of convex tables–asymmetric lemons, whose boundary

consists of two circular arcs, generate hyperbolic billiards. This result is quite surprising because
the focusing components of the asymmetric lemon table are extremely close to each other, and
because these tables are perturbations of the first convex ergodic billiard constructed more than
forty years ago.

1. Introduction

Billiards are dynamical systems generated by the motion of a point particle along the geodesics
on a compact Riemannian manifold Q with boundary. Upon hitting the boundary of Q, the particle
changes its velocity according to the law of elastic reflections. The studies of chaotic billiard systems
were pioneered by Sinǎı in his seminal paper [19] on dispersing billiards. A major feature of billiards
which makes them arguably the most visual dynamical systems is that all their dynamical and
statistical properties are completely determined by the shape of the billiard table Q and in fact by
the structure of the boundary ∂Q.

Studies of convex billiards which started much earlier demonstrated that the convex billiards
have regular dynamics and are even integrable. Such examples are billiards in circles or in squares,
which everybody studied (without knowing that they study billiards) in a middle or in a high school.
Jacobi proved integrability of billiards in ellipses by introducing elliptical coordinates in which the
equations of motion are separated. Birkhoff conjectured that ellipses are the only integrable two
dimensional smooth convex tables which generate completely integrable billiards. Later Lazutkin [12]
proved that all two-dimensional convex billiards with sufficiently smooth boundary admit caustics
and hence they can not be ergodic (see also [9]).

The first examples of hyperbolic and ergodic billiards with dispersing as well as with focusing
components were constructed in [1]. A closer analysis of these examples allowed one to realize
that there is another mechanism of chaos (hyperbolicity) than the mechanism of dispersing which
generates hyperbolicity in dispersing billiards. This makes it possible to construct hyperbolic and
ergodic billiards which do not have dispersing components on the boundary [2, 3]. Some billiards
on convex tables also belong to this catergory. The first one was a table with boundary component
consisting of a major arc and a chord connecting its two end points. Observe that this billiard is
essentially equivalent to the one enclosed by two circular arcs symmetric with respect to the cutting
chord. This billiard belongs to the class of (chaotic) flower-like billiards. The boundaries of these
tables have the smoothness of order C0. The stadium billiard (which became strangely much more
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popular than the others) appeared as one of many examples of convex ergodic billiards with smoother
(C1) boundary. Observe that in a flower-like billiard, all the circles generated by the corresponding
petals (circular arcs) completely lie within the billiard table (flower).

In the present paper we consider (not necessarily small) perturbations of the first class of chaotic
focusing billiards, i.e., with boundary made of a major arc and a chord. While keeping the major
arc, we replace the chord (a neutral or zero curvature component of the boundary) by a circular
arc with smaller curvature. This type of billiards were constructed in [5], with certain numerical
results. We prove rigourously that the corresponding billiard tables generate hyperbolic billiards
under the conditions that the chord is not too long, and the new circular arc has sufficiently small
curvature. More precisely, we assume that the length of the chord does not exceed the radius of the
circular component of the boundary, see Theorem 2. This condition is a purely technical one, and
we conjecture that the hyperbolicity holds without this restriction.

It is worthwhile to recall that defocusing mechanism of chaos was one of a few examples where
discoveries of new mechanisms/laws of nature were made in mathematics rather than in physics.
No wonder that physicists did not believe that, even though rigorous proofs were present, until
they check it numerically. After that, stadia and other focusing billiards were built in physics labs
over the world. However, intuitive “physical” understanding of this mechanism always was that
defocusing must occur after any reflection off the focusing part of the boundary. Indeed, there are
just a few very special classes of chaotic (hyperbolic) billiards where this condition was violated (see
e.g. [4]). However, these billiards were specially constructed to get hyperbolic billiards. To the
contrary, hyperbolicity of asymmetric lemons came as a complete surprise to everybody. This class
of chaotic billiards forces physicists as well as mathematicians to reconsider their understanding of
this fundamental mechanism of chaos.

Our billiards can also be viewed as far-reaching generalizations of classical lemon-type billiards.
The lemon billiards were introduced by Heller and Tomsovic [10] in 1993, by taking the intersection
of two unit disks, while varying the distance between their centers, say b. This family of billiards have
been extensively studied numerically in physics literature in relation with the problems of quantum
chaos (see [16, 18]). The coexistence of the elliptic islands and chaotic region has also been observed
numerically for all of the lemon tables as long as b 6= 1. Therefore, the lemon table with b = 1 is the
only possible billiard system with complete chaos in this family. See also [13, 14] for the studies of
classical and quantum chaos of lemon-type billiards with general quadric curves.

Q

r

R

b

A

B

Figure 1. Basic construction of an asymmetric lemon table Q(b, R).

The lemon tables were embedded into a 3-parameter family–the asymmetric lemon billiards in [5],
among which the ergodicity is no longer an exceptional phenomenon. More precisely, let Q(r, b, R)
be the billiard table obtained as the intersection of a disk Dr of radius r with another disk DR of



HYPERBOLICITY OF ASYMMETRIC LEMON BILLIARDS 3

radius R > r, where b > 0 measures the distance between the centers of these two disks (see Fig. 1).
Without loss of generality, we will assume r = 1 and denote the lemon table by Q(b, R) = Q(1, b, R).
Restrictions on b and R will be specified later on to ensure the hyperbolicity of the billiard systems
on these asymmetric lemon tables. On one hand, these billiard tables have extremely simple shape,
as the boundary of the billiard table Q(b, R) only consists of two circular arcs. Yet on the other
hand, these systems already exhibit rich dynamical behaviors, as it has been numerically observed
in [5] that there exists an infinite strip D ⊂ [1,∞)× [0,∞), such that for any (b, R) ∈ D, the billiard
system on Q(b, R) is ergodic.

In this paper we give a rigorous proof of the hyperbolicity on a class of asymmetric lemon billiards
Q(b, R). Our approach is based on the analysis of continued fractions generated by the billiard orbits,
which were introduced by Sinǎı [19], see also [1]. Continued fractions are intrinsic objects for billiard
systems, and therefore they often provide sharper results than those one gets by the abstract cone
method, which deals with hyperbolic systems of any nature and does not explore directly some
special features of billiards. In fact, already in the fundamental paper [19] invariant cones were
immediately derived from the structure of continued fractions generated by dispersing billiards. The
study of asymmetric lemon billiards demonstrates that defocusing mechanism can generate chaos in
much more general setting than it was thought before.

1.1. Main results. Let b > 0 and R > 1 be two positive numbers, Q = Q(b, R) be the asymmetric
lemon table obtained by intersecting the unit disc D1 with DR, where b > 0 measures the distance
between the two centers of D1 and DR. Let Γ = ∂Q be the boundary of Q, and Γ1 be the circular
boundary component of Q on the disk D1, and ΓR be the circular boundary component of Q on the
the disk DR. Let A and B be the points of intersection of Γ1 and ΓR, whom we will call the corner
points of Q. It is easy to see the following two extreme cases: Q(b, R) = D1 when b ≤ R − 1, and
Q(b, R) = ∅ when b ≥ 1 +R. So we will assume b ∈ (R − 1, R+ 1) for the rest of this paper.

We first review some properties of periodic points of the billiard system on Q(b, R). It is easy to
see that there is no fixed point, and exactly one period 2 orbit colliding with both arcs1, say O2,
which moves along the segment passing through both centers. The following result is well known,
see [20] for example.

Lemma 1. The orbit O2 is hyperbolic if 1 < b < R, is parabolic if b = 1 or b = R, and is elliptic if
b < 1 or b > R.

It has been observed in [5] that under the condition b < 1 or b > R, O2 is actually nonlinearly
stable (see also [17]). That is, the orbit O2 is surrounded by some islands. Therefore, the following
is a necessary condition such that the billiard system on Q(b, R) is hyperbolic.

(A0) The parameters (b, R) satisfy max{R− 1, 1} < b < R.

In this paper we prove that the billiard system on Q(b, R) is completely hyperbolic under the
assumption (A0) and some general assumptions (A1)–(A3). As these assumptions are rather
technical, we will state them in Section 4.1.

Theorem 1. Let Q(b, R) be an asymmetric lemon table satisfying the assumptions (A0)–(A3).
Then the billiard system on Q(b, R) is hyperbolic.

The proof of Theorem 1 is given in Section 4.2.

To provide more intuitions for these conditions, we consider a special class of asymmetric lemon
billiards. We first cut the unit disk D1 by a chord with end point A and B, and let Γ1 be the
major arc of the unit circle with end points A,B. Denoted by Q0 the larger part of the disk whose
boundary contains Γ1. By the classical defocusing mechanism, the billiard on Q0 is hyperbolic and

1There are some other period 2 orbits which only collide with Γ1. These orbits are parabolic.
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ergodic. Now replace the chord with a circular arc on the circle DR, for some large radius R. Note
that the distance between the two centers is given by b = (R2 − |AB|2/4)1/2 − (1 − |AB|2/4)1/2.
The resulting table Q(R) := Q(b, R) can be viewed as a perturbation of Q0. The following theorem
shows that the billiard system on Q0, while being nonuniformly hyperbolic, is robustly hyperbolic
under suitable perturbations.

Theorem 2. Let Γ1 be the major arc of the unit circle whose end points A,B satisfy |AB| < 1.
Then there exists R∗ > 1 such that for each R ≥ R∗, the billiard system on the table Q(R) with two
corners at A,B is hyperbolic.

The proof of Theorem 2 is given in Section 4.3.

Remark 1. The hyperbolicity of the billiard system guarantees that a typical (infinitesimal) wave
front in the phase space grows exponentially fast along the iterations of the billiard map. Therefore,
one can say that these billiards in Theorem 2 still demonstrate the defocusing mechanism. However,
the circle completing each of the boundary arcs of the table Q(b, R) contains the entire table.
Therefore, the defocusing mechanism can generate hyperbolicity even in the case when the separation
condition is strongly violated.

The assumption |AB| < 1 in Theorem 2 is a purely technical one, and it is used only once in
the proof of Theorem 2 to ensure n∗ ≥ 6 (see the definition of n∗ in §4.3). Clearly this assumption
|AB| < 1 is stronger than the assumption that Γ1 is a major arc. We conjecture that as long as Γ1

is a major arc, the billiard system on Q(R) is completely hyperbolic for any large enough R.

Conjecture 1. Fix two points A and B on ∂D1 such that Γ1 is a major arc. Then the billiard
system on Q(b, R) is hyperbolic if the center of the disc DR lies out side of the table.

To ease a task of reading we provide hereby a list of notations that we use in this paper.

The List of Notations

Q(r, b, R) = Dr ∩DR the asymmetric lemon table as the intersection of Dr with DR.
We usually set r = 1 and denote it by Q(b, R) = Q(b, 1, R). We
also denote Q(R) = Q(b, R) if b is determined by R.

Γ = ∂Q(b, R) the boundary of Q(b, R), which consists of two arcs: Γ1 and ΓR.

M = Γ× [−π/2, π/2] the phase space with coordinate x = (s, ϕ), which consists of M1

and MR.

F the billiard map on the phase space M of Q(b, R).

S1 the set of points in M at where F is not well defined or not
smooth.

B±(V ) the curvature of the orthogonal transversal of the beam of lines
generated by a tangent vector V ∈ TxM before and after the
reflection at x, respectively.

d(x) = ρ · cosϕ the half of the chord cut out by the trajectory of the billiard orbit
in the disk Dρ, where ρ ∈ {1, R} is given by x ∈ Mρ.

R(x) = − 2
d(x) the reflection parameter that measures the increment of the cur-

vature after reflection.

τ(x) the distance between the current position of x with the next re-
flection with Γ.

χ±(F , x) the Lyapunov exponents of F at the point x.
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η(x) the number of successive reflections of x on the arc Γσ, where σ
is given by x ∈ Mσ.

M̂1 = M1\FM1 the set of points that first enter M1. Similarly we define M̂R.

Mn = {x ∈ M̂1 : η(x) = n} the set of points in M̂1 having n reflections on Γ1 before hitting
ΓR.

F̂ (x) = F j0+j1+2x the first return map of F on the subset M̂1, where j0 is the num-
ber of reflections of x on Γ1, and j1 is the number of reflections
of x1 = F j0+1x on ΓR.

τ̂k = τk − jkd̂k − jk+1d̂k+1 a notation for short, where τk = τ(xk), dk = d(xk), d̂k = dk

jk+1 .

R̂k = − 2
d̂k

a notation for short.

M =
⋃

n≥0 F
⌈n/2⌉Mn a subset of M1. Compare with the set M̂1 =

⋃

n≥0 Mn.

F (x) = F i0+i1+i2+2x the first return map of F on M , where i0 is the number of reflec-
tions of x on Γ1, i1 is the number of reflections of x1 = F i0+1x
on ΓR, and i2 is the number of reflections of x2 = F i1+1x1 on Γ1

before entering M .

τ̄k = τk − ikd̂k − dk+1 a notation for short. Only τ̄1 is used in this paper.

2. Preliminaries for general convex billiards

Let Q ⊂ R
2 be a compact convex domain with piecewise smooth boundary, M be the space of

unit vectors based at the boundary Γ := ∂Q pointing inside of Q. The set M is endowed with
the topology induced from the tangent space TQ. A point x ∈ M represents the initial status of
a particle, which moves along the ray generated by x and then makes an elastic reflection after
hitting Γ. Denote by x1 ∈ M the new status of the particle right after this reflection. The billiard
map, denoted by F , maps each point x ∈ M to the point x1 ∈ M. Note that each point x ∈ M
has a natural coordinate x = (s, ϕ), where s ∈ [0, |Γ|) is the arc-length parameter of Γ (oriented
counterclockwise), and ϕ ∈ [−π/2, π/2] is the angle formed by the vector x with the inner normal
direction of Γ at the base point of x. In particular, the phase space M can be identified with a
cylinder Γ× [−π/2, π/2]. The billiard map preserves a smooth probability measure µ on M, where
dµ = (2|Γ|)−1 · cosϕds dϕ.

For our lemon table Q = Q(b, R), the boundary Γ = ∂Q consists of two parts Γ1 and ΓR. Collision
vector starting from a corner point at A or B has s-coordinate s = 0 or s = |Γ1|, respectively. Then
we can view M as the union of two closed rectangles:

M1 := {(s, ϕ) ∈ M : 0 ≤ s ≤ |Γ1|} and MR := {(s, ϕ) ∈ M : |Γ1| ≤ s ≤ |Γ|}.

For any point x = (s, ϕ) ∈ M, we define d(x) = cosϕ if x ∈ M1, and d(x) = R cosϕ if x ∈ MR.
Geometrically, the quantity 2d(x) is the length of the chord in the complete disk (D1 or DR) decided
by the trajectory of x.

Let S0 = {(s, ϕ) ∈ M : s = 0 or s = |Γ1|} be the set of post-reflection vectors x ∈ M that pass
through one of the corners A or B. We define S1 = S0 ∪ F−1S0 as the set of points on which F
is not well-defined. Note that F−1S0 consists of 4 monotone curves ϕ = ϕi(s) (1 ≤ i ≤ 4) in M.
Moreover, we define S−1 := S0∪FS0. The set S±1 is called the singular set of the billiard map F±1.

A way to understand chaotic billiards lies in the study of infinitesimal families of trajectories.
More precisely, let x ∈ M \ S1, V ∈ TxM, γ : (−ε0, ε0) → M, t 7→ γ(t) = (s(t), ϕ(t)) be a smooth
curve for some ε0 > 0, such that γ(0) = x and γ′(0) = V . Clearly the choice of such a smooth
curve is not unique. Each point in the phase space M ⊂ TQ is a unit vector on the billiard table
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Γ

x

γ(t)

σ

L(0)

s(0)

L(t)

Figure 2. A bundle of lines generated by γ, and the cross-section σ.

Q. Let L(t) be the line that passes through the vector γ(t), see Fig. 2. Putting these lines together,
we get a beam of post-reflection lines, say W+, generated by the path γ. Let σ be the orthogonal
cross-section of this bundle passing through the point s(0) ∈ Γ. Then the post-reflection curvature of
the tangent vector V , denoted by B+(V ), is defined as the curvature of σ at the point s(0). Similarly
we define the pre-reflection curvature B−(V ) (using the beam of dashed lines in Fig. 2).

Note that B±(V ) depend only on V , and are independent of the choices of curves tangent to V .
These two quantities are related by the equation

B+(V )− B−(V ) = R(x), (2.1)

where R(x) := −2/d(x) is the reflection parameter introduced in [19], see also [6, §3.8]. In fact,
(2.1) is the well-known Mirror Equation in geometric optics. Note that R(x) > 0 on dispersing
components and R(x) < 0 on focusing components of the boundary ∂Q. Since we mainly use
B−(V ) in this paper, we drop the minus sign, simply denote it by B(V ) = B−(V ).

Let τ(x) be the distance from the current position of x to the next reflection with Γ. According
to (2.1), one gets the evolution equation for the curvatures of the pre-reflection wavefronts of V and
its image V1 = DF(V ) at Fx:

B1(V ) := B(V1) =
1

τ(x) +
1

R(x) + B(V )

. (2.2)

More generally, let x ∈ M \ S1 be a point with Fkx /∈ S1 for all 1 ≤ k ≤ n, V ∈ TxM be a nonzero
tangent vector, and Vn = DFnV be its forward iterations. Then by iterating the formula (2.2), we
get

B(Vn) =
1

τ(xn−1) +
1

R(xn−1) +
1

τ(xn−2) +
1

R(xn−2) +
1

. . . +
1

τ(x) +
1

R(x) + B(V )

(2.3)

with xk = Fkx. See also [6, §3.8] for Eq. (2.2) and (2.3).
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For convenience, we introduce the standard notations for continued fractions [11]. In the following,
we will denote [a] := 1

a . The reader should not be confused by the integral part of a, which is never

used in this paper2.

Definition 1. Let an, n ≥ 0 be a sequence of real numbers. The finite continued fraction
[a1, a2, · · · , an] is defined inductively by:

[a1] =
1

a1
, [a1, a2] =

1

a1 + [a2]
, · · · , [a1, a2, · · · , an] =

1

a1 + [a2, · · · , an]
.

Moreover, we denote [a0; a1, a2, · · · , an] = a0 + [a1, a2, · · · , an].

Using this notation, we see that the evolution (2.3) of the curvatures of Vn = DFn(V ) can be
re-written as

B(Vn) = [τ(xn−1),R(xn−1), τ(xn−2),R(xn−2), · · · , τ(x),R(x) + B(V )]. (2.4)

Note that Eq. (2.4) is a recursive formula and hence can be extended formally to an infinite continued
fraction.

We will need the following basic properties of continued fractions to perform some reductions. Let
x = [a1, · · · , an] be a finite continued fraction. Then we can combine two finite continued fractions
in the following ways:

[b1, · · · , bn + x] = [b1, · · · , bn, a1, · · · , an], (2.5)

[b1, · · · , bn, x] = [b1, · · · , bn + a1, a2, · · · , an], (2.6)

[b1, · · · , bn, 0, a1, · · · , an] = [b1, · · · , bn + a1, a2, · · · , an]. (2.7)

Proposition 1. Suppose a, b, c are real numbers such that B := a+ c+ abc 6= 0. Then the relation

[· · · , x, a, b, c, y, · · · ] = [· · · , x+A,B,C + y, · · · ] (2.8)

holds for any finite or infinite continued fractions, where A = bc
B and C = ab

B .

Let Q be a bounded domain with piecewise smooth boundary, F be the billiard map on the phase

space M over Q. Then the limit χ+(F , x) = lim
n→∞

1

n
log ‖DxF

n‖, whenever it exists, is said to be a

Lyapunov exponent of the billiard map F at the point x. Since F preserves the smooth measure µ,
the other Lyapunov exponent at x is given by χ−(F , x) = −χ+(F , x). Then the point x is said to
be hyperbolic, if χ+(F , x) > 0. Moreover, the billiard map F is said to be (completely) hyperbolic, if
µ-almost every point x ∈ M is a hyperbolic point. By Oseledets Multiplicative Ergodic Theorem, we
know that χ+(F , x) exists for µ-a.e. x ∈ M, and there exists a measurable splitting TxM = Eu

x⊕Es
x

over the set of hyperbolic points, see [6].

It is well known that the hyperbolicity of a billiard map is related to the convergence of the
continued fraction given in Eq. (2.4) as n → ∞. In particular, the following proposition reveals the
relations between them. See [1, 6, 19].

Proposition 2. Let x ∈ M be a hyperbolic point of the billiard map F . Then the curvature
Bu(x) := B(V u

x ) of a unit vector V u
x ∈ Eu

x is given by the following infinite continued fraction:

Bu(x) = [τ(x−1),R(x−1), τ(x−2),R(x−2), · · · , τ(x−n),R(x−n), · · · ].

Finally we recall an invariant property for consecutive reflections on focusing boundary compo-
nents by comparing the curvatures of the iterates of different tangent vectors. Given two distinct
points a and b on the unit circle S1, denote by (a, b) the interval from a to b counterclockwise. Given
three distinct points a, b, c on S

1, denote by a ≺ b ≺ c if b ∈ (a, c). Endow R ∪ {∞} ≃ S
1 with the

relative position notation ≺ on S
1.

2We use the ceiling function ⌈t⌉ = min{n ∈ Z : n ≥ t} in §3.2, and the floor function ⌊t⌋ = max{n ∈ Z : n ≤ t} in
§4.3.
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Proposition 3 ([8]). Let X,Y, Z ∈ TxM be three tangent vectors at x ∈ M satisfying B(X) ≺
B(Y ) ≺ B(Z). Then for each n ∈ Z, the iterates DFnX, DFnY and DFnZ satisfy

B(DFnX) ≺ B(DFnY ) ≺ B(DFnZ).

3. Continued fractions for asymmetric lemon billiards

In this section we construct two induced maps of the billiard system (M,F) on two different but
closely related subsets of the phase space M, and then study the evolutions of continued fractions of
the curvatures B(V ) under these induced maps. Let Q(b, R) be an asymmetric lemon table obtained
as the intersection of a disk of radius 1 with a disk of radius R > 1, Γ = ∂Q, M = Γ× [−π/2, π/2] be
the phase space of the billiard map on Q. Note that M consists of two parts: M1 := Γ1×[−π/2, π/2]
and MR = ΓR × [−π/2, π/2], the sets of points in M based on the arc Γ1 and ΓR, respectively.
Assume that Γ1 is a major arc.

For σ ∈ {1, R}, x ∈ Mσ \ S1, let η(x) be the number of successive reflections of x on the arc Γσ.
That is,

η(x) = sup{n ≥ 0 : Fkx ∈ Mσ for all k = 0, · · · , n}. (3.1)

For example, η(x) = 0 if Fx /∈ Mσ, and η(x) = ∞ if Fkx ∈ Mσ for all k ≥ 0. Let N = {x ∈
M1 : η(x) = ∞}. One can easily check that each point x ∈ N is either periodic or belongs to the
boundary {(s, ϕ) ∈ M1 : ϕ = ±π/2}. In particular, N is a null set with µ(N) = 0.

Let M̂1 := {x ∈ M1 : F−1x /∈ M1} be the set of points first entering M1. Similarly we define

M̂R. The restriction of η on M̂1 induces a measurable partition of M̂1, whose cells are given by
Mn := η−1{n} ∩ M̂1 for all n ≥ 0. Each cell Mn contains all first reflection vectors on the arc Γ1

that will experience exactly n reflections on Γ1 before hitting ΓR. Then it is easy to check that

M1 = N ∪
⋃

n≥0

⋃

0≤k≤n

FkMn. (3.2)

3.1. The first induced map of F on M1. Let x0 ∈ M̂1, and j0 = η(x0) be the numbers of
successive reflections of x0 on Γ1. Similarly, we denote x1 = F j0+1x0, and j1 = η(x1). Then the

first return map F̂ of F on M̂1 is given by

F̂ x := F j0+j1+2x.

Note that the similar induced systems appeared in many references about billiards with convex
boundary components, see [6, 7, 15]. In the systems considered in these references, the induced
systems were shown to be (uniformly) hyperbolic. However, for our billiard systems on Q(b, R), it
is rather difficult to prove the hyperbolicity for this type of the induced map. Thus we introduce a
new induced map in the next subsection. To make a comparison, we next investigate the properties
of the induced map (M̂1, F̂ ).

To simplify the notations, we denote by τ0 := τ(F j0x0) the length of the free path of F j0x0,

and by τ1 := τ(F j1x1) the length of the free path of F j1x1. Moreover, let dk = d(xk), d̂k = dk

jk+1 ,

R̂k = −2/d̂k, τ̂k = τk − jkd̂k − jk+1d̂k+1, for k = 0, 1. Note that d̂k = dk and R̂k = Rk if jk = 0,
and τ̂k = τk if jk = jk+1 = 0.

Using the relations in Proposition 1, we can reduce the long continuous fraction to a shorter one:

Lemma 2. Let x ∈ M̂1, V ∈ TxM and V̂1 = DF̂ (V ). Then B(V̂1) is given by the continued
fraction:

B(V̂1) = [τ1 − j1d̂1, R̂1, τ̂0, R̂0,−j0d̂0,B(V )]. (3.3)
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Remark 2. Note that in the case j0 = 0 and j1 = 0, F̂ x = F2x, and the relation (3.3) reduces to

the formula (2.4) with n = 2: B(V̂1) = [τ1,R1, τ0,R0 + B(V )].

Proof. Suppose a point x ∈ M have m consecutive reflections on a circular arc Γσ, where σ ∈ {1, R}.
That is, F ix ∈ Mσ, for i = 0, · · · ,m. In this case we always have

d(F ix) = d(x), R(F ix) = −2/d(x), 0 ≤ i ≤ m, and τ(F ix) = 2d(x), 0 ≤ i < m.

Then for any V ∈ TxMσ,

B(DFm+1V ) = [τ(Fmx),R(x), 2d(x),R(x), · · · , 2d(x)
︸ ︷︷ ︸

m times

,R(x) + B(V )]

= [τ(Fmx),R(x)/2,−2m · d(x),R(x)/2 + B(V )], (3.4)

see [6, §8.7]. Applying this reduction process for each of the two reflection series on Γ1 and ΓR

respectively, we see that

B(V̂1) = [τ1,R1/2,−2j1d1,R1/2, τ0,R0/2,−2j0d0,R0/2 + B(V )]. (3.5)

Now we rewrite the last segment in (3.5) as [· · · ,R0/2 + B(V )] = [· · · ,R0/2, 0,B(V )] by Eq. (2.7).
Then applying Eq. (2.8) to the segment (a, b, c) = (R0/2,−2j0d0,R0/2) in Eq. (3.5), we get

B0 := a+ c+ abc = R0 − (R0/2)
2 · 2j0d0 = −

2 + 2j0
d0

= −
2

d̂0
= R̂0,

A0 :=
bc

B0
= −2j0d0 · R0/2 · (−

d̂0
2
) = −j0 · d̂0,

C0 :=
ab

B0
= −2j0d0 · R0/2 · (−

d̂0
2
) = −j0 · d̂0.

Putting them together with (3.5), we have

B(V̂1) = [τ1,R1/2,−2j1d1,R1/2, τ0,R0/2,−2j0d0,R0/2, 0,B(V )]

= [τ1,R1/2,−2j1d1,R1/2, τ0 +A0, B0, 0 + C0,B(V )]

= [τ1,R1/2,−2j1d1,R1/2, τ0 − j0 · d̂0, R̂0,−j0 · d̂0,B(V )]. (3.6)

Similarly we can apply Eq. (2.8) to the segment (R1/2,−2j1d1,R1/2), and get B1 = R̂1, A1 =

C1 = −j1 · d̂1. Then we can continue the computation from (3.6) and get

B(V̂1) = [τ1,R1/2,−2j1d1,R1/2, τ0 − j0 · d̂0, R̂0,−j0 · d̂0,B(V )]

= [τ1 +A1, B1, τ0 + C1 − j0 · d̂0, R̂0,−j0 · d̂0,B(V )]

= [τ1 − j1d̂1, R̂1, τ̂0, R̂0,−j0d̂0,B(V )],

where d̂k = dk

jk+1 , R̂k = −2/d̂k for k = 0, 1, and τ̂0 = τ0− j0d̂0− j1d̂1. This completes the proof. �

It is clear that the formula in Eq. (3.3) is recursive. For example, let V̂2 = DF̂ 2(V ), τ2 = τ0(F̂ x)

and τ3 = τ1(F̂ x) be the lengths of the free paths for F̂ x. Then we have

B(V̂2) = [τ3 − j3d̂3, R̂3, τ̂2, R̂2, τ̂1, R̂1, τ̂0, R̂0,−j0d̂0,B(V )].

More generally, using the backward iterates x−n = F̂−nx of x, and the related notations (for
example, d−2n = d0(x−n), and d1−2n = d1(x−n)), we get a formal continued fraction

[τ0 − j0d̂0, R̂0, τ̂−1, R̂−1, τ̂−2, · · · , R̂1−2n, τ̂−2n, R̂−2n, τ̂−2n−1, · · · ] (3.7)

where d̂k = dk

jk+1 , R̂k = −2/d̂i, τ̂k = τk − jkd̂k − jk+1d̂k+1, for each k ≤ −1.
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Remark 3. In the dispersing billiard case, each entry of the continued fraction (2.4) is positive.
Then Seidel–Stern Theorem (see [11]) implies that the limit of (2.4) (as n → ∞) always exists,
since the total time τ0 + · · · + τn → ∞. For the reduced continued fraction (3.7), it is clear that

R̂−n < 0 for all n ≥ 0. Moreover, R̂−2n ≤ R(x−n) ≤ −2 for each n ≥ 1, since the radius of the

small disk is set to r = 1. Therefore,
∑

n R̂−n(x) always diverges. However, Seidel–Stern Theorem
is not applicable to determine the convergence of (3.7), since the terms τ̂k have no definite sign.

This is the reason that we need to introduce a new return map (M,F ) instead of using (M̂1, F̂ ) to
investigate the hyperbolicity.

3.2. New induced map and its analysis. Denote by ⌈t⌉ the smallest integer larger than or equal
to the real number t. We consider a new subset, which consists of “middle” sliding reflections on
Γ1. More precisely, let

M :=
⋃

n≥0

F⌈n/2⌉Mn = M0 ∪ FM1 ∪ FM2 ∪ · · · ∪ F⌈n/2⌉Mn ∪ · · · . (3.8)

Let F be the first return map of F with respect to M . Clearly the induced map F : M → M
is measurable and preserves the conditional measure µM of µ on M , which is given by µM (A) =
µ(A)/µ(M), for any Borel measurable set A ⊂ M .

For each x ∈ M , we introduce the following notations:

(1) let i0 = η(x) ≥ 0 be the number of forward reflections of x on Γ1, τ0 := τ(F i0x) be the
distance between the last reflection on Γ1 and the first reflection on ΓR. Let d0 := d(x) and
R0 := R(x), which stay the same along this series of reflections on Γ1;

(2) let i1 = η(x1) ≥ 0 be the number of reflections of x1 = F i0+1x on ΓR, τ1 := τ(F i1x1) be the
distance between the last reflection on ΓR and the next reflection on Γ1. Let d1 = d(x1),
and R1 = R(x1), which stay the same along this series of reflections on ΓR;

(3) let i2 = ⌈η(x2)/2⌉ ≥ 0 be the number3 of reflections of x2 = F i1+1x1 on Γ1 till the return to
M . Let d2 = d(x2), R2 = R(x2), which stay the same along this series of reflections on Γ1.

Then the first return map F on M is given explicitly by Fx = F i0+i1+i2+2x. Note that x2 = Fx
and d2 = d(Fx) (in above notations).

The following result is the analog of Lemma 2 on the reduction of continued fractions for the new
induced return map F :

Lemma 3. Let x ∈ M , V ∈ TxM and V1 = DF (V ). Then B(V1) is given by the continued fraction:

B(V1) = [d2,
2i2
d2

, τ̄1, R̂1, τ̂0, R̂0,−i0d̂0,B(V )], (3.9)

where d̂k = dk

jk+1 , R̂k = −2/d̂k, τ̂0 = τ0 − i0d̂0 − i1d̂1, and τ̄1 = τ1 − i1d̂1 − d2.

Note that (3.9) may not be as pretty as (3.3). It involves three types of quantities: the original

type (i0, i2 and d2), the first variation (R̂k, τ̂0 and d̂0), and the second variation τ̄1. The quantity d̂2
appears only in the intermediate steps of the proof, and does not appear in the final formula (3.9).

Remark 4. Note that in the case i2 = 0, (3.9) reduces to (3.3):

B(V1) = [d2, 0, τ̄1, R̂1, τ̂0, R̂0,−i0d̂0,B(V )] = [d2 + τ̄1, R̂1, τ̂0, R̂0,−i0d̂0,B(V )]

= [τ1 − i1d̂1, R̂1, τ̂0, R̂0,−i0d̂0,B(V )].

3 Our choice of i2 = ⌈η(x2)/2⌉ in Item (3), instead of using η(x2), is due to the fact that M is the union of the

sets F⌈n/2⌉Mn, n ≥ 0.
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Proof. We first consider an intermediate step. That is, let V̂1 = DF i0+i1+2(V ) and V1 = DF i2(V̂1).
Applying the reduction process (3.4) for each of the series of reflection of lengths (i0, i1) (as in the
proof of Lemma 2), we get that

B(V̂1) = [τ1 − i1d̂1, R̂1, τ̂0, R̂0,−i0d̂0,B(V )].

This completes the proof of (3.9) when i2 = 0 (see Remark 4). In the following we assume i2 ≥ 1.

In this case we have B(V1) = [2d2,R2, · · · , 2d2,R2
︸ ︷︷ ︸

i2 times

+B(V̂1)]. To apply the reduction (3.4), we need

to consider
1

B(V1) +R2
= [R2, 2d2, · · · ,R2, 2d2

︸ ︷︷ ︸

i2 times

,R2 + B(V̂1)]. (3.10)

Then we apply the reduction (3.4) to Eq. (3.10) and get
1

B(V1) +R2
= [R2/2,−i2d̂2,R2/2+B(V̂1)],

which is equivalent to

B(V1) = −R2/2 + [−i2d̂2,R2/2 + B(V̂1)] = [0,−R2/2,−i2d̂2,R2/2, 0,B(V̂1)]. (3.11)

Applying the relation (2.8) to the segment (a, b, c) = (−R2/2,−2i2d2,R2/2), we get

B := a+ c+ abc = 0 + (R2/2)
2 · 2i2d2 =

2i2
d2

,

A :=
bc

B
= −2i2d2 · R2/2 ·

d2
2i2

= d2,

C :=
ab

B
= 2i2d2 · R2/2 ·

d2
2i2

= −d2.

Putting them together with Eq. (3.11), we have

B(V1) = [d2,
2i2
d2

,−d2,B(V̂1)] = [d2,
2i2
d2

, τ̄1, R̂1, τ̂0, R̂0,−i0d̂0,B(V )],

where τ̄1 = τ1 − i1d̂1 − d2 follows from (2.6). This completes the proof of (3.9). �

4. Hyperbolicity of asymmetric lemon billiards

In this section we first list several general sufficient conditions that ensure the hyperbolicity of
the asymmetric lemon-type billiards (see the statement below and the proof of Theorem 1), then we
verify these conditions for a set of asymmetric lemon tables. Let Q(b, R) be an asymmetric lemon
table satisfying (A0), that is, max{R− 1, 1} < b < R. Let M be the subset introduced in §3.2. We
divide the set M into three disjoint regions Xk, k = 0, 1, 2, which are given by

(a) X0 = {x ∈ M : i1(x) ≥ 1};
(b) X1 = {x ∈ M : i1(x) = 0, and i2(x) ≥ 1};
(c) X2 = {x ∈ M : i1(x) = i2(x) = 0}.

We first make a simple observation:

Lemma 4. For each x with i1(x) = 0, one has τ0 + τ1 > d0 + d2.

Proof. Suppose i1(x) = 0, and p1 be the reflection point of x1 on ΓR. Then we take the union of
Q(b, R) with its mirror, say Q∗(b, R), along the tangent line L of ΓR at p1, and extend the pre-
collision path of x1 beyond the point p1, which will intersect ∂Q∗(b, R) at the mirror point of the
reflection point p2 of Fx1, say p∗2 (see Fig .3). Clearly the distance |p∗2 − p1| = |p2 − p1| = τ1. By
the assumption that b > R − 1, one can see that the tangent line L cuts out a major arc on ∂D1

(clearly larger than Γ1), and the point p∗2 lies outside of the unit disk D1. Therefore, τ0 + τ1 > 2d0.
Similarly, we have τ0 + τ1 > 2d2. Putting them together, we get τ0 + τ1 > d0 + d2. �
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p1

p2 p∗2

L

τ1

τ0

Figure 3. The case with i1(x) = 0: there is only one reflection on ΓR.

4.1. Main Assumptions and their analysis. In the following we list the assumptions on Xi’s.

(A1) For x ∈ X0: i0 ≥ 1, i2 ≥ 1 and

τ0 < (1−
1

2(1 + i0)
)d0 +

i1
1 + i1

d1, τ1 < (1 −
1

2i2
)d2 +

i1
1 + i1

d1; (4.1)

(A2) For x ∈ X1:
d0

1+i0
< d1 and τ0 + τ1 < (1 − 1

2(1+i0)
)d0 + d1 + (1− 1

2i2
)d2;

(A3) For x ∈ X2: τ0 ≤ d1/2.

To prove Theorem 1, it suffices to verify hyperbolicity of the first return map F : M → M ,
obtained by restricting F on M . For each x ∈ M , V ∈ TxM, we let B(V ) = B−(V ) be the pre-
reflection curvature of V . Note that B(V ) determines V uniquely up to a scalar. Let V d

x ∈ TxM be
the unit vector corresponding to the incoming beam with curvature B(V d

x ) = 1/d(x), and V p
x ∈ TxM

be the unit vector corresponding to the parallel incoming beam B(V p
x ) = 0, respectively.

Proposition 4. Let x ∈ M , ik, dk and d̂k, k = 0, 1, 2 be the corresponding quantities of x given in
§3.2, and Fx = F i0+i1+i2+2x be the first return map of F on M . Then we have

(I). 0 < B(DF (V d
x )) < 1/d2 if one of the following conditions holds:

(D1) τ1 − i1d̂1 − d2 + [− 2
d̂1
, τ0 − d0 − i1d̂1] > 0,

(F1) τ1 − i1d̂1 − d2 + [− 2
d̂1
, τ0 − d0 − i1d̂1] < − d2

2i2
.

(II). 0 < B(DF (V p
x )) < 1/d2 if one of the following conditions holds:

(D2) τ1 − i1d̂1 − d2 + [− 2
d̂1
, τ0 − (1− 1

2(1+i0)
)d0 − i1d̂1] > 0,

(F2) τ1 − i1d̂1 − d2 + [− 2
d̂1
, τ0 − (1− 1

2(1+i0)
)d0 − i1d̂1] < − d2

2i2
.

(III). 0 < B(DF (V p
x )) < B(DF (V d

x )) < 1/d2 if one of the following conditions holds:

(P1) One of the paired conditions4 (that is, (D1)-(D2) or (F1)-(F2)) holds and

[τ1 − i1d̂1 − d2,−
2

d̂1
, τ0 − (1 −

1

2(1 + i0)
)d0 − i1d̂1] > [τ1 − i1d̂1 − d2,−

2

d̂1
, τ0 − d0 − i1d̂1]. (4.2)

(P2) (D1)-(F2) hold.

4In the following we will use the term (D1)-(D2), which is short for “both conditions (D1) and (D2)”. Similarly,
we use the term (D1)-(D2)-(P1), which is short for “all three conditions (D1), (D2) and (P1)”
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The statements of Proposition 4 is rather technical, but the proof is quite straightforward. Geo-
metrically, it gives different criterions when the cone bounded by V p

x and V d
x is mapped under DF

to the cone bounded by V p
Fx and V d

Fx, see Proposition 5 for more details.

Proof. Note that B(V d
x ) = 1/d0(x) and B(V p

x ) = 0. So the curvatures of DF (V d
x ) and DF (V p

x ) are
given by

B(DF (V d
x )) = [d2,

2i2
d2

, τ̄1,−
2

d̂1
, τ̂0,−

2

d̂0
,−i0d̂0 + d0] = [d2,

2i2
d2

, τ̄1,−
2

d̂1
, τ̂0 − d̂0]

= [d2,
2i2
d2

, τ̄1,−
2

d̂1
, τ0 − d0 − i1d̂1];

B(DF (V p
x )) = [d2,

2i2
d2

, τ̄1,−
2

d̂1
, τ̂0,−

2

d̂0
] = [d2,

2i2
d2

, τ̄1,−
2

d̂1
, τ̂0 −

d̂0
2
]

= [d2,
2i2
d2

, τ̄1,−
2

d̂1
, τ0 − pd0 − i1d̂1], where p = 1−

1

2(1 + i0)
.

Here we use the facts that τ̂0 = τ0 − i0d̂0 − i1d̂1 and [· · · , a, b, 0] = [· · · , a] whenever b 6= 0. Then it
is easy to see that (I) 0 < B(DF (V d

x )) < 1/d2 is equivalent to

[
2i2
d2

, τ̄1,−
2

d̂1
, τ0 − d0 − i1d̂1] > 0. (4.3)

Moreover, (4.3) holds if and only if one of the following conditions holds:

• [τ̄1,−
2
d̂1
, τ0 − d0 − i1d̂1] > 0, which corresponds to (D1);

• 0 > [τ̄1,−
2

d̂1
, τ0 − d0 − i1d̂1] > − 2i2

d2
, which corresponds to (F1).

We can derive (D2) and (F2) from (II) in the same way.

Condition (III) 0 < B(DF (V p
x )) < B(DF (V d

x )) < 1/d2 is equivalent to

[
2i2
d2

, τ̄1,−
2

d̂1
, τ0 − pd0 − i1d̂1] > [

2i2
d2

, τ̄1,−
2

d̂1
, τ0 − d0 − i1d̂1] > 0. (4.4)

Then (4.4) holds if and only if one of the following conditions holds:

• 0 < [τ̄1,−
2
d̂1
, τ0 − pd0 − i1d̂1] < [τ̄1,−

2
d̂1
, τ0 − d0 − i1d̂1], which is (D1)-(D2)-(P1);

• [τ̄1,−
2
d̂1
, τ0 − pd0 − i1d̂1] < [τ̄1,−

2
d̂1
, τ0 − d0 − i1d̂1] < − d2

2i2
, which is (F1)-(F2)-(P1);

• [τ̄1,−
2
d̂1
, τ0 − d0 − i1d̂1] > 0 and [τ̄1,−

2
d̂1
, τ0 − pd0 − i1d̂1] < − d2

2i2
, which is (D1)-(F2), or

equivalently, (P2).

This completes the proof of the proposition. �

Remark 5. It is worth pointing out the following observations:

(1). The conditions (F1) and (F2) are empty when i2 = 0.

(2). The arguments in the proof of Proposition 4 apply to general billiards with several circular
boundary components. That is, for any consecutive circular components that a billiard orbit
passes, say Γk, k = 0, 1, 2, let ik be the number of reflections of the orbit on Γk. Then we
have the same characterizations for Fx = F i0+i1+i2+2x.

(3). In the case when all arcs Γk lie on the same circle, the left-hand sides of (D1) and (F1) are
zero, and (I) always fails. This is quite natural, since the circular billiard is well-known to
be not hyperbolic, but parabolic.
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The following is an application of Proposition 4 to asymmetric lemon tables satisfying Assump-
tions (A0)–(A3).

Proposition 5. Let Q(b, R) be an asymmetric lemon billiard satisfying the assumptions (A0)–
(A3). Then for a.e. x ∈ M ,

0 = B(V p
Fx) < B(DF (V p

x )) < B(DF (V d
x )) < B(V d

Fx) = 1/d(Fx). (4.5)

In comparing to Proposition 4, the statement of Proposition 5 is very clear, but the proof is
quite technical and a little bit tedious. From the proof, one can see that d0

1+i0
< d1 is a very subtle

assumption to guarantee d0 < pd0 +
d1

2 . One can check that (4.5) may fail if d0 > pd0 +
d1

2 . This is

why we need d0

1+i0
< d1 in the assumption (A2).

Proof. It suffices to show that for a.e. point x ∈ M , one of the following combinations holds:
(D1)-(D2)-(P1), or (F1)-(F2)-(P1), or (D1)-(F2).

Case 1. Let x ∈ X0. Then Eq. (4.1) implies that

τ0 − d0 − i1d̂1 < τ0 − (1−
1

2(1 + i0)
)d0 − i1d̂1 < 0, τ1 − i1d̂1 − d2 < −

d2
2i2

.

Therefore, (F1)-(F2)-(P1) hold.

Case 2. Let x ∈ X1. Note that i1 = 0 and d̂1 = d1. We denote p = 1 − 1
2(1+i0)

and q = 1 − 1
2i2

,

and rewrite the the corresponding conditions using i1 = 0:

(D1′). τ1 − d2 + [− 2
d1
, τ0 − d0] > 0, or equivalently, τ1 − d2 +

1

− 2
d1

+ 1
τ0−d0

> 0;

(F1′). τ1 − d2 + [− 2
d1
, τ0 − d0] < − d2

2i2
, or equivalently, τ1 − qd2 +

1

− 2
d1

+ 1
τ0−d0

< 0;

(D2′). τ1 − d2 + [− 2
d1
, τ0 − pd0] > 0, or equivalently, τ1 − d2 +

1

− 2
d1

+ 1
τ0−pd0

> 0;

(F2′). τ1 − d2 + [− 2
d1
, τ0 − pd0] < − d2

2i2
, or equivalently, τ1 − qd2 +

1

− 2
d1

+ 1
τ0−d0

< 0;

(P1′). [τ1 − d2,−
2
d1
, τ0 − pd0] < [τ1 − d2,−

2
d1
, τ0 − d0].

Note that 0 < τ0 < d0 + d1. There are several subcases when τ0 varies in (0, d0 + d1), see Fig. 4.

0 pd0 d0 pd0 +
d1

2 d0 +
d1

2 d0 + d1 τ0

(a) (b) (c) (d) (e)

Figure 4. Subcases of Case 2 according to the values of τ0. Note that d0 < pd0+
d1

2 ,

which follows from the assumption that d0

1+i0
< d1.

Subcase (a). Let τ0 < pd0. Hence τ1 > d2 and 0 < 1
τ1−d2

< 1
d0−τ0

< 1
pd0−τ0

. Then we claim that

(D1′)-(D2′)-(P1′) hold.

Proof of Claim. Note that τ0 + τ1 > d0 + d2, or equally τ1 − d2 > d0 − τ0 > 0. So 1
τ1−d2

< 1
d0−τ0

<
2
d1

+ 1
d0−τ0

which implies (D1′). Similarly, 1
τ1−d2

< 1
pd0−τ0

< 2
d1

+ 1
pd0−τ0

implies (D2′). If both

terms in (P1′) are positive, then (P1′) is equivalent to [− 2
d1
, τ0−pd0] > [− 2

d1
, τ0−d0]. Analogously,

if both terms in (P1′) are negative, then (P1′) is equivalent to [τ0−pd0] < [τ0−d0], or equivalently,
τ0 − pd0 > τ0 − d0, which holds trivially. This completes the proof of the claim.
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Subcase (b). Let pd0 ≤ τ0 < d0. The proof of (D1′) in the previous case is still valid. For (D2′),
we note that τ0 < d0 < pd0 +

d1

2 and hence − 2
d1

+ 1
τ0−pd0

> 0. So (D2′) follows. Since both terms

are positive, (P1′) follows from [− 2
d1
, τ0 − pd0] > 0 > [− 2

d1
, τ0 − d0].

Subcase (c). Let d0 ≤ τ0 < pd0 + d1/2. There are two subcases:

• τ1 > d2. The proof is similar to Case (b), and (D1′)-(D2′)-(P1′) follows.

• τ1 ≤ d2. Note that 0 < 1
τ0−pd0

− 2
d2

< 1
τ0−d0

− 2
d2

< 1
d2−τ1

, from which (D1′)-(D2′)-(P1′)

follows.

Subcase (d). Let pd0+d1/2 ≤ τ0 < d0+d1/2, which is equivalent to 1
τ0−pd0

− 2
d1

< 0 < 1
τ0−d0

− 2
d1
.

Using Assumption (A2) that τ0+ τ1 > d0+d2, we see that (D1′) always holds (as in Subcase 2(c)).

Using the condition τ0 + τ1 < pd0 + d1 + qd2, we see that τ1 − qd2 < d1

2 . There are two subcases:

• τ1 − qd2 < 0. Then (F2′) holds trivially.

• τ1 − qd2 > 0. Then 1
τ1−qd2

> 2
d1

implies (F2′).

Subcase (e). Let τ0 ≥ d0 + d1/2. There are also two subcases:

• τ1 − qd2 < 0. Then 1
τ1−qd2

< 0 < 2
d1

− 1
τ0−d0

< 2
d1

− 1
τ0−pd0

, and (F1′)-(F2′)-(P1′) hold.

• τ1 − qd2 > 0. Then 1
τ1−qd2

> 2
d1

implies (F1′)-(F2′)-(P1′).

Case 3. Let x ∈ X2. Then τ0 < d1/2 by assumption. The proof of Case 2 (a)-(c) also works this
case, and (D1′)-(D2′)-(P1′) hold. �

4.2. Proof of Theorem 1. Let S∞ =
⋃

n∈Z
F−nS1. Note that µ(S∞) = 0. Let x ∈ M\S∞. The

push-forward V p
n (x) = DFn(V p

F−nx) and V d
n (x) = DFn(V d

F−nx) are well defined for all n ≥ 1, and
together generate two sequences of tangent vectors in TxM. By Proposition 3 and Lemma 5, we get
the following relation inductively:

0 = B(V p
x ) < · · · < B(V p

n (x)) < B(V p
n+1(x))

< B(V d
n+1(x)) < B(V d

n (x)) < B(V d
x ) = 1/d(x).

Therefore Bu(x) := lim
n→∞

B(V d
n (x)) exists, and 0 < Bu(x) < 1/d(x). Let Eu

x = 〈V u
x 〉 be the corre-

sponding subspace in TxM for all x ∈ M\S∞.

Let Φ : M → M, (s, ϕ) 7→ (s,−ϕ) be the time reversal map onM. Then we have F◦Φ = Φ◦F−1,
and F ◦ Φ = Φ ◦ F−1. In particular, V s

x = DΦ(V u
Φx) satisfies −1/d(Φx) < B(V s

x ) = −B(V u
Φx) < 0,

which corresponds to a stable vector for each x ∈ M\S∞. Therefore, TxM = Eu
x ⊕ Es

x for every
point x ∈ M\S∞, and such a point x is a hyperbolic point of the induced billiard map F .

Next we show that the original billiard map F is hyperbolic. It suffices to show that the Lyapunov
exponent χ+(F , x) > 0 for a.e. x ∈ M , since (M,F , µ) is a (discrete) suspension over (M,F, µM )
with respect to the first return time function, say ξM , which is given by ξM (x) = i0+ i1+ i2+2 (see

§ 3.2). Note that
∫

M
ξMdµM = 1

µ(M) . So the averaging return time ξ(x) = limk→∞
ξk(x)

k exists for

a.e. x ∈ M , where ξk(x) = ξM (x) + · · ·+ ξM (F k−1x) be the k-th return time of x to M . Moreover,
1 ≤ ξ(x) < ∞ for a.e. x ∈ M . Then for a.e. x ∈ M , we have

χ+(F , x) = lim
n→∞

1

n
log ‖DxF

n‖ = lim
k→∞

k

ξk(x)
·
1

k
log ‖DxF

k‖ =
1

ξ(x)
· χ+(F, x) > 0.

This completes the proof. �

4.3. Proof of Theorem 2. Let Γ1 be a major arc of the unit circle with endpoints A,B satisfying
|AB| < 1. For R > 1, it is easy to see that b = (R2 − |AB|2/4)1/2 − (1 − |AB|2/4)1/2 > R − 1.
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Moreover, b > 1 as long as R > 2. In the following, we will assume R > 2. Therefore, (A0)
holds. Then it suffices to show that the assumptions (A1)–(A3) hold for the tables Q(R) = Q(b, R)
considered in Theorem 2.

y1

y2

O

A

B

Figure 5. First restriction on R. The thickened pieces on Γ1 are related to U .

Let y1 =
−−→
AB and y2 =

−−→
BA be the two points in the phase space M moving along the chord AB,

see Fig. 5. Note that yi ∈ S0. Since |AB| < 1, we have ∠AOB < π
3 , or equally, n

∗ :=
⌊

2π
∠AOB

⌋
≥ 6,

where ⌊t⌋ is the largest integer smaller than or equal to t. Then for each i = 1, 2, there is a small
neighborhood Ui ⊂ M of yi, such that for any point x ∈ Ui ∩M1\F

−1M1, one has

• Fx enters MR and stays on MR for another i1 iterates, where i1 = η(Fx),
• F i1+2x ∈ Mn for some n ≥ n∗ − 1 = 5.

See Section 3 for the definitions of η(·) and Mn. Let U = (U1 ∪ U2) ∩ M1\F−1M1. See Fig. 5,
where the bold pieces on Γ1 indicate the bases of U . Note that the directions of vectors in U are
close to the vertical direction and are pointing to some points on ΓR.

Before moving on to the verification of the assumptions (A1)–(A3), we need the following lemma.
Note that for each x ∈ M , F i0x is the last reflection of x ∈ M on Γ1 before hitting ΓR. That is,
F i0x = F−1x1. See Fig. 6 and 7 for two illustrations.

Lemma 5. For any ǫ > 0, there exists R0 = R(ǫ) > 2 such that for any R ≥ R0, the following
hold for the induced map F : M → M of the billiard table Q(R). That is, for any point x ∈ M with
d1 ≤ 4,

(1) F i0x ∈ U and F i0+i1+2x ∈
⋃

n≥5 Mn;

(2) the reflection points of F i0x and of F i0+i1+2x, both on Γ1, are ǫ-close to the corners {A,B};
(3) the total length of the trajectory from F i0x to F i0+i1+2x is bounded from above by |AB|+ ǫ.

Note that the number 4 in ‘d1 ≤ 4’ is chosen to simplify the presentation of the proof of Theorem 2.
The above lemma holds for any number larger than 2|AB|. In the following we will use d(x) = ρ·sin θ,
where θ = π

2 − ϕ is the angle from the direction of x to the tangent line of Γρ at x.

Proof of Lemma 5. Let p1 be the reflection point of x1 on ΓR, and let θ1 be the angle between the
direction of x1 with the tangent line L of ΓR at p1. Then sin θ1 ≤ 4

R , since d(x1) = d1 ≤ 4. Consider
the vertical line that passes through p1. Clearly the length of the chord on ΓR cut out by this
vertical line is less than |AB|, and hence less than 1. Therefore, the angle θ2 between the vertical
direction with the tangent direction of ΓR at p1 satisfies sin θ2 < 1

2R .
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(1). Note that the angle θ between F i0x and the vertical direction is θ1 ± θ2, which satisfies
| sin θ| ≤ sin θ1 + sin θ2 < 5

R . Then F i0x ∈ U if R is large enough. Moreover, F i0+i1+2x =

F i1+1x1 ∈
⋃

n≥5 Mn by our choice of U .

(2). Let P be a point on Γ1, and θ(A) be the angle between the vertical direction with the line
PA. Similarly we define θ(B). Let θ∗ be the minimal angle of θ(A) and θ(B) among all possible
choices of P on Γ1 that is not ǫ-close to either A or B. Then the angle between the vertical direction
with the line connecting P to any point on ΓR is bounded from below by θ∗. Let x1 ∈ MR. The
angle θ(x1) between the direction of x1 with the tangent direction of ΓR at the base point of x1

satisfies θ(x1) ≥ θ∗ − arcsin 1
2R . Then d1 = R · sin θ(x1) ≥ R sin θ∗ − 1

2 . So it suffices to assume

R0 = 5
sin θ∗

.

(3). By enlarging R0 if necessary, the conclusion follows from (2), since the two reflections are
close to the corners and the arc ΓR is almost flat. �

τ1

τ0

L

p1

A

B

Figure 6. The case that
there are multiple reflections
on ΓR.

τ1

τ0

L

p1

A

B

Figure 7. The case that
there is a single reflection on
ΓR.

Now we continue the proof of Theorem 2.

(1). To verify (A1), we assume x ∈ X0, which means i1 ≥ 1 (see Fig. 6 for an illustration).
Then we have d1 < |AB| < 1, which implies i0 ≥ 2 and i2 ≥ 3. Then we have 1− 1

2(1+i0)
≥ 5

6 , and

1− 1
2i2

≥ 5
6 . Therefore, a sufficient condition for (A1) is

τ0 <
5

6
d0 +

1

2
d1, τ1 <

5

6
d2 +

1

2
d1. (4.6)

Since τ0, τ1 < 2d1, we only need to show that 3
4τ0 < 5

6d0 and 3
4τ1 < 5

6d2, or equivalently, τ0 < 10
9 d0

and τ1 < 10
9 d2. To this end, we first set R1 = 100: then for each R ≥ R1, the angle θ of the

vertical direction (assume that AB is vertical) and the tangent line of any point on ΓR satisfies
sin θ < 1

2R ≤ 1
200 . Then the angle θ0 between the vertical direction and the free path corresponding

to τ0 satisfy sin θ0 ≤ sin θ + d1

R ≤ 1
100 (since 2d1 < 1). This implies 2d0 ≥ (1 − 0.05) · |AB|. On the

other hand, by making R1 even larger if necessary, we can assume τ0 + τ1 +2i1d1 ≤ (1+0.05) · |AB|
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for x ∈ X0 (see Lemma 5). Then we have

τ0 <
τ0 + 2d1

2
<

1.05

2
· |AB| ≤

1.05

2
·
2d0
0.95

<
10

9
d0.

Similarly, we have τ1 < 10
9 d2.

(2). To verify (A2), we assume x ∈ X1, which means i1 = 0 and i2 ≥ 1 (see Fig. 7). Both
relations in (A2) are trivial if d1 ≥ 4. In the case d1 < 4, one must have i0 ≥ 2, i2 ≥ 3 (by the
assumption R > R0). Note that |AB| < τ0 + τ1 < 4d1. Pick R2 large enough, such that for any
R ≥ R2, for any point x1 ∈ MR with d1 < 4, the angle θ of the direction corresponding to x1 with
the vertical direction is bounded by 0.05 (recall that AB is vertical). Then we have5 2d0 ≤ 4

3 · |AB|.
This implies

d0
1 + i0

≤
1

3
d0 ≤

2

9
· |AB| <

8

9
d1 < d1.

For the second inequality in (A2), by making R2 even larger if necessary (see Lemma 5), we can
assume that τ0+ τ1 ≤ 1.04 · |AB|, 2d0, 2d2 ≥ 0.95 · |AB|. Combining with the fact that d1 > |AB|/4,
we have

5

6
d0 + d1 +

5

6
d2 >

5

6
·
0.95

2
· |AB|+

1

4
· |AB|+

5

6
·
0.95

2
· |AB| > 1.04 · |AB|.

Therefore, τ0 + τ1 < 5
6d0 + d1 +

5
6d2, and (A2) follows.

(3). The condition (A3) on X2 holds trivially, since i2 = 0 implies that d1 ≥ 4 > 2τ0.

Then we set R∗ = max{Ri : i = 0, 1, 2}. This completes the proof of Theorem 2. �

Appendix A. A Detailed condition

Now we give an equivalent version of Proposition 4, whose formulation is longer but easier to check
when proving the hyperbolicity of billiard systems. The statement of the proposition is technical,
but the proof is straightforward.

Proposition 6. Denote G0 = τ0 − d0 −
i1

1+i1
d1, G1 = τ1 −

i1
1+i1

d1 − d2. Then

(I) 0 < B(DF (V d
x )) < 1 if one of the following holds:

(D1a) G1 > 0 and 1
G0

> 2 1+i1
d1

;

(D1b) G1 > 0 and 1
G0

+ 1
G1

< 2 1+i1
d1

;

(D1c) G1 < 0 and 1
G0

+ 1
G1

< 2 1+i1
d1

< 1
G0

;

(F1a) G1 +
d2

2i2
< 0 and 1

G0
< 2 1+i1

d1
;

(F1b) G1 +
d2

2i2
< 0 and 1

G0
+ 1

G1+
d2
2i2

> 2 1+i1
d1

;

(F1c) G1 +
d2

2i2
> 0 and 1

G0
+ 1

G1+
d2
2i2

> 2 1+i1
d1

> 1
G0

;

(II) 0 < B(DF (V p
x )) < 1 if one of the following holds:

(D2a) G1 > 0 and 1

G0+
d0

2(1+i0)

> 2 1+i1
d1

;

(D2b) G1 > 0 and 1

G0+
d0

2(1+i0)

+ 1
G1

< 2 1+i1
d1

;

(D2c) G1 < 0 and 1

G0+
d0

2(1+i0)

+ 1
G1

< 2 1+i1
d1

< 1

G0+
d0

2(1+i0)
)
;

(F2a) G1 +
d2

2i2
< 0 and 1

G0+
d0

2(1+i0)

< 2 1+i1
d1

;

(F2b) G1 +
d2

2i2
< 0 and 1

G0+
d0

2(1+i0)

+ 1

G1+
d2
2i2

> 2 1+i1
d1

;

5This is a very rough estimate, but is sufficient for our need.
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(F2c) G1 +
d2

2i2
> 0 and 1

G0+
d0

2(1+i0)

+ 1

G1+
d2
2i2

> 2 1+i1
d1

> 1

G0+
d0

2(1+i0)

;

(III) Eq. (4.2) holds if and only if one of the following holds:

(P1a) τ0 < (1− 1
2(1+i0)

)d0 + (1− 1
2(1+i1)

)d1;

(P1b) τ0 > d0 + (1− 1
2(1+i1)

)d1.

Proof. (1). To show (D1), we let Y = 1

τ0−d0−
i1

1+i1
d1

− 2 1+i1
d1

. Then (D1) can be rewritten as

G1 +
1
Y > 0, which holds if and only if one of the following holds:

(1.1) G1 > 0 and Y > 0;
(1.2) if G1 > 0 and Y < 0, then 1

G1
< −Y ;

(1.3) if G1 < 0 and Y > 0, then Y < − 1
G1

.

The three conditions (D1a)–(D1c) are evidently equivalent to three items (1.1)–(1.3), respectively.
The verifications of (D2) and (F1)-(F2) are reduced to the similar calculations and hence are
omitted here.

(2). Let X = 1
G1

− 2 1+i1
d1

and

Y =
1

τ0 − (1 − 1
2(1+i0)

)d0 −
i1

1+i1
d1

− 2
1 + i1
d1

. (A.1)

Then Eq. (4.2) can be rewritten as 1
X < 1

Y , which is true if and only if one of the following holds:

(2.1) if X < 0 and Y < 0, then X > Y ;
(2.2) if X > 0 and Y > 0, then X > Y ;
(2.3) X < 0 and Y > 0.

Then plugging in the formulas X = 1
G1

− 2 1+i1
d1

and Eq. (A.1) for Y , we get that

(2.1.1) τ0 < (1− 1
2(1+i0)

)d0 +
i1

1+i1
d1;

(2.1.2) τ0 > d0 + (1− 1
2(1+i1)

)d1;

(2.2′) d0 +
i1

1+i1
d1 < τ0 < (1− 1

2(1+i0)
)d0 + (1 − 1

2(1+i1)
)d1;

(2.3′) (1− 1
2(1+i0)

)d0 +
i1

1+i1
d1 < τ0 < min{d0 +

i1
1+i1

d1, (1 −
1

2(1+i0)
)d0 + (1− 1

2(1+i1)
)d1}.

Note that Condition (2.2′) is nonempty if and only if d0

1+i0
< d1

1+i1
. However, we can always combine

(2.1.1)-(2.2′)-(2.3′) into one condition:

τ0 < (1−
1

2(1 + i0)
)d0 + (1 −

1

2(1 + i1)
)d1.

Therefore we get (P1a)-(P1b). �
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