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LOCAL LANGLANDS CORRESPONDENCE FOR GLn AND THE
EXTERIOR AND SYMMETRIC SQUARE ε–FACTORS

J.W. COGDELL, F. SHAHIDI, AND T-L. TSAI

To the memory of Joe Shalika

Abstract. Let F be a p–adic field, i.e., a finite extension of Qp for some prime p. The
local Langlands correspondence attaches to each continuous n–dimensional Φ-semisimple
representation ρ of W ′

F , the Weil–Deligne group for F/F , an irreducible admissible repre-
sentation π(ρ) of GLn(F ) such that, among other things, the local L- and ε-factors of pairs
are preserved. This correspondence should be robust and preserve various parallel opera-
tions on the arithmetic and analytic sides, such as taking the exterior square or symmetric
square. In this paper, we show that this is the case for the local arithmetic and analytic
symmetric square and exterior square ε–factors, that is, that ε(s,Λ2ρ, ψ) = ε(s, π(ρ),Λ2, ψ)
and ε(s, Sym2ρ, ψ) = ε(s, π(ρ), Sym2, ψ). The agreement of the L-functions also follows by
our methods, but this was already known by Henniart. The proof is a robust deformation
argument, combined with local/global techniques, which reduces the problem to the stability
of the analytic γ-factor γ(s, π,Λ2, ψ) under highly ramified twists when π is supercuspidal.
This last step is achieved by relating the γ-factor to a Mellin transform of a partial Bessel
function attached to the representation and then analyzing the asymptotics of the partial
Bessel function, inspired in part by the theory of Shalika germs for Bessel integrals. The
stability for every irreducible admissible representation π then follows from those of the
corresponding arithmetic γ–factors as a corollary.

1. Introduction

Artin L-functions were introduced by Artin [2, 3] to generalize Weber’s factorization of the
Dedekind zeta function of an abelian extension of a number field, and as part of his general
musings on a non-abelian class field theory. When he then compared this with the abelian
case it led him to formulate the Artin reciprocity law [2]. For an arbitrary finite dimensional
representation of the Galois group or Weil group they are expected to equal automorphic
L-functions. In fact, so far this equality has been the only general way to prove Artin’s
conjecture that the L-functions attached to non-trivial irreducible representations are entire.
Specifically this is the strategy proposed by Langlands in order to prove the Artin conjecture
with considerable success in the case of two dimensional representations [26, 43, 7, 41].

The Artin L-functions satisfy a functional equation. Artin’s attempts to understand this
functional equation led to his definition of the Artin conductor f(ρ) and the Artin root
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number W (ρ) which enter into the ε-factor that appears in the functional equation

ε(s, ρ) = W (ρ)[|dk/Q|
nNk/Q(f(ρ))]

−(s−
1
2
)

where ρ is an n-dimensional representation of Gal(k̄/k) . Note that the Artin conductor
f(ρ) factors as a product of local conductors f(ρv) where ρv is the restriction of ρ to the
decomposition group at v and f(ρv) depends on the further restriction of ρv to the higher
ramification groups [4].

The Artin root number W (ρ) withstood a local factorization until the work of Dwork
[13], Langlands [24, 25] and finally Deligne [11] gave a factorization of the ε-factor into local
factors

ε(s, ρ) =
∏

v

ε(s, ρv, ψv).

Consequently the factor ε(s, ρ) appearing in the functional equation was now related to
intrinsic local data attached to ρ rather than to the global factors coming from abelian
ε-factors through the factorization given by Brauer’s theorem [6], which is essentially how
Artin defined the root number W (ρ).

Deligne’s proof of the factorization, and in particular his definition of the local factors,
itself comes about indirectly as an existence and uniqueness result for his local factors. He
postulates a number of desired properties of these local factors and then show that factors
satisfying these conditions exist and are unique. It is of interest that his proof used both
local and global techniques and the global functional equation. Among Deligne’s axioms is
that of stability: if ρ1 and ρ2 are a pair of local Galois representations with det(ρ1) = det(ρ2)
then for every sufficiently ramified characters (one-dimensional representations of the Weil
group)

ε(s, ρ1 ⊗ χ, ψ) = ε(s, ρ2 ⊗ χ, ψ).

These ε-factors play a crucial role in the local Langlands correspondence (LLC) for GLn
[15, 16]. In fact if ρ1 and ρ2 are two Frobenius semisimple representations of the Weil-Deligne
group W ′

F , for F a non-archimedean local field of characteristic zero, of dimension n1 and
n2 which correspond under the LLC to representations π(ρ1) and π(ρ2) of GLn1(F ) and
GLn2(F ) then

ε(s, ρ1 ⊗ ρ2, ψ) = ε(s, π(ρ1)× π(ρ2), ψ)

where the factors on the right are the local Rankin-Selberg ε-factors [20, 28].

While the LLC is uniquely determined by a number of conditions, including the equality
of twisted ε-factors as above, one expects that the correspondence is very robust with respect
to all Langlands ε-factors associated to representations R of GLn(C), i.e., we should have

ε(s, R · ρ, ψ) = ε(s, π(ρ), R, ψ)

whenever the factors on the right hand side can be defined. When R = Λ2 or R = Sym2

these factors were attached to irreducible admissible representations π of GLn in [31]. As
in Deligne, these factors are proved to satisfy a number of axioms that determine them
uniquely.
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The main result of this paper can be precisely stated as follows. Let F be a p–adic
field, by which we mean a non-archimedean local field of characteristic zero, i.e., a finite
extension of Qp for some prime p, with a fixed algebraic closure F . Fix a non-trivial additive
character ψ of F . Fix a positive integer n. Let ρ be a continuous n–dimensional Φ-semisimple
representation of W ′

F , the Weil–Deligne group for F/F . Let π = π(ρ) be the irreducible
admissible representation of GLn(F ) associated to ρ by the local Langlands correspondence.

Theorem 1.1. Let Λ2 and Sym2 denote the exterior and symmetric square representations
of GLn(C). Let ε(s, π,Λ2, ψ) and ε(s, π, Sym2, ψ) be the ε–factors attached to π, ψ and Λ2

and Sym2, as in [31]. Denote by ε(s,Λ2ρ, ψ) and γ(s, Sym2ρ, ψ) the corresponding Artin
factors as in [11]. Then

(1) ε(s,Λ2ρ, ψ) = ε(s, π(ρ),Λ2, ψ)
and

(2) ε(s, Sym2ρ, ψ) = ε(s, π(ρ), Sym2, ψ).

A similar identity holds for the L-functions.

Our proof is based on three basic techniques. The first is additivity of the local factors
(usually called multiplicativity in the analytic context). The next is the stability of the local
factors on both sides under highly ramified twists. Finally we embed the local situation into
a global context and use the global functional equation on both sides. More specifically, we
begin with three reductions. Using structure theory we can reduce to proving the equality
of local factors when ρ is an irreducible representation of the Weil group and thus the
corresponding representation π(ρ) is supercuspidal. We then use the LLC to reduce the
theorem to the statement about the exterior square ε-factors. Finally we replace the ε-
factors by the related γ-factors, since this is more convenient for our analytic ingredients.
After these reductions, we first prove a stable equality of the local factors under highly
ramified twists. The proof of this is inductive on the dimension of ρ. The first step is to
establish the equality at a base point, i.e., for one specific ρ0 and its twists. This is established
by our first globalization, the global functional equation and additivity. The second step is
a deformation argument applied to these factors; once we have equality at a base point we
can use stability of the individual local factors under highly ramified twists to obtain the
stable equality. Once we have this, we use our second globalization, along with the global
functional equation, additivity and now our stable equality, to prove the equality of local
factors for monomial representations. Then we obtain equality in general by using Brauer’s
theorem as in [16] and additivity once again. As a consequence of the equality of γ-factors,
we can recover the equality of L-functions, which was originally proved in [18] using a base
change argument

Embedded in the proof above is the use of the stability of both the arithmetic and analytic
local factors. The arithmetic stability is due to Deligne as mentioned above. However the
crucial analytic stability for the exterior square γ-factors is newly established in this paper.
Let us give a precise statement here.
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Analytic stability for supercuspidals (Proposition 3.4) Let π1 and π2 be two irreducible
supercuspidal representations of GLn(F ) with the same central characters. Then for all the
suitably highly ramified characters χ of F×, identified as characters of GLn(F ) through the
determinant, we have

γ(s, π1 ⊗ χ,Λ2, ψ) = γ(s, π2 ⊗ χ,Λ2, ψ).

The required degree of ramification depends only on π1 and π2.

The proof of this result is rather lengthy and occupies the last two sections of this paper.
The inverse of the local coefficient Cψ(s, π), by means of which γ(s, π̃,Λ2, ψ−1) is defined
through equation (4.4), has an integral representation as a Mellin transform of a “partial”
Bessel function. This partial Bessel function can be expressed as a partial Bessel integral
BG
ϕ (g, f) on G = GLn(F ) defined by a matrix coefficient f ∈ C∞

c (G, ωπ) of π and a suitable
cutoff function ϕ, giving the “partial” nature of the integral, as dictated by the main result of
[33]. To prove the stability for supercuspidals one needs to determine the asymptotic behavior
of BG

ϕ (g, f), much as we did in [9, 10], and here is where the bulk of the paper lies. Inspired
by the germ expansion of Jacquet and Ye [22, 19] for certain orbital integrals, which are in
fact Bessel integrals when π is supercuspidal, we establish the asymptotics in Proposition
5.7. Our arguments for establishing the uniform smoothness of the asymptotics given in
Proposition 5.7 are modeled on those of [19]. Unfortunately, our integral representation for
γ(s, π̃,Λ2, ψ−1) involves not the full Bessel integrals as analyzed in [19] but rather partial
versions forced on us by [33]. We are not able to get a germ expansion for our BG

ϕ (g, f), and
as far as we can tell none exists, but we are able to retain sufficient uniform smoothness of
the expansion to establish the needed stability.

Attempts have been made to show that the factors defined in [31, 35] are stable with success
in a number of cases [10, 42]. In this paper we prove the analytic stability for supercuspidal
representations for the exterior square γ-factor “by hand”, but as a consequence of Theorem
1.1, we can then deduce the stability of ε(s, π, R, ψ) for R = Λ2 or Sym2 for arbitrary π from
the equality

ε(s, Rρ, ψ) = ε(s, π(ρ), R, ψ)

from Theorem 1.1 and the general arithmetic stability of Deligne [11]. We can similarly
deduce the general analytic stability of γ(s, π, R, ψ) for R = Λ2 or Sym2 and arbitrary π.

The fact that local Artin ε-factors appear as the local factors in the functional equations
satisfied by all the cusp forms on GLn [31] is quite significant, since most cusp forms are not
of Galois type, coming from an irreducible representation of the global Weil group, where
one can use Artin’s global functional equation.

We would like to note that our proof of Theorem 1.1 is a robust argument. It can be
applied to any local factor ε(s, π, R, ψ) as long as they satisfy the local and global conditions
of those defined in [31, 35, 36]. The problem is reduced to proving the stability of γ(s, π, R, ψ)
in the supercuspidal case which will then need to be treated separately, as we do here. As
for higher exterior powers for GLn, it may be possible to tackle the equality for the cases
R = Λ3 for n = 6, 7, 8, which are among the cases appearing in our method [23, 35]. In view
of our general approach here, one will mainly need to prove the stability for supercuspidals.
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This would require analysis on the simply connected exceptional groups En for n = 6, 7, 8,
along the lines explored in [12, 34].

Acknowledgements. This paper has been long in coming and we have several debts of
gratitude to acknowledge. We thank Guy Henniart for providing for us the globalization
arguments we needed in Lemma 3.1 and for offering both support and critical comments
on several preliminary versions of this paper. We owe a special debt to Hervé Jacquet.
In an earlier version of this paper we had believed that the supercuspidal stability would
follow directly from the results in [22] and we essentially commissioned the paper [19] as an
appendix to this paper. In the end we had to retool the arguments of [19] to work in the
context of our partial Bessel integrals, but we follow the method of [19] quite closely. We
thank Joachim Schwermer and the Erwin Schrödinger Institute of the University of Vienna
for providing us place to come together and a supportive atmosphere in which to work on
these results over the years. The ESI is a wonderful asset for mathematics and we hope it
has a long and prosperous future within the University. Finally, we dedicate this paper to
the memory of Joe Shalika, to whom we owe a great debt for his guidance, both formal and
informal; we hope this effort pays back a small bit of that debt.

2. Reduction to exterior square γ-factors

While the ε-factors are the most arithmetically interesting factors, on the analytic side, the
factor that one can analyze directly is the γ-factor, since these arise in various local functional
equations. Key for us is the relation of the γ-factor with the theory of local coefficients as
in [31], which requires that π be generic. However, using the Langlands classification, the
definition of the local factors, the L–, γ–, and ε–factors, can be extended to all irreducible
admissible representations of GLn(F ) (see page 322 in [31]). For any representation R of
GLn(C), the L-group of GLn, the relation between the ε factors of Theorem 1.1 and the
local γ-factor is

ε(s, π, R, ψ) =
γ(s, π, R, ψ)L(s, π, R)

L(1− s, π̃, R)
.

On the arithmetic side, for ρ an n-dimensional representation ofW ′
F as above, we can simply

define a γ-factor by a

γ(s, Rρ, ψ) =
ε(s, Rρ, ψ)L(1− s, Rρ∨)

L(s, Rρ)
,

where we have adopted the convention that juxtaposition of maps indicates composition
Rρ = R ◦ ρ, so that we have the analogous relation on the arithmetic side

ε(s, Rρ, ψ) =
γ(s, Rρ, ψ)L(s, Rρ)

L(1− s, Rρ∨)
.

In the context of Theorem 1.1, so for R = Λ2 or R = Sym2, Theorem 1.1 would imply the
equality of γ-factors as well, i.e.,

γ(s, Rρ, ψ) = γ(s, π(ρ), R, ψ).
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However, as Henniart shows in Sections 3.4 and 3.5 of [18], if one has the equality of γ-factors,
even only up to a root of unity, then one can deduce the equality of L-factors

L(s, Rρ) = L(s, π(ρ), R)

and in fact he utilized this technique in establishing the equality of the exterior and symmetric
square L-factors in [18]. So if one has the exact equality of γ-factors then one can deduce
first the equality of the L-functions and then the equality of the ε-factors. Hence Theorem
1.1 is equivalent to the following theorem.

Theorem 2.1. Let Λ2 and Sym2 denote the exterior and symmetric square representation
of GLn(C), respectively. Let γ(s, π,Λ2, ψ) and γ(s, π, Sym2, ψ) be the γ–factors attached to
a π, ψ and Λ2 and Sym2, as in [31, 35]. Denote by γ(s,Λ2ρ, ψ) and γ(s, Sym2ρ, ψ) the
corresponding Artin factors. Then

(1) γ(s,Λ2ρ, ψ) = γ(s, π(ρ),Λ2, ψ)
and

(2) γ(s, Sym2ρ, ψ) = γ(s, π(ρ), Sym2, ψ).

In view of the equalities

γ(s, π × π, ψ) = γ(s, π,Λ2, ψ)γ(s, π, Sym2, ψ)

γ(s, ρ⊗ ρ, ψ) = γ(s,Λ2ρ, ψ)γ(s, Sym2ρ, ψ)

since the local Langlands correspondence as established in [15] and [16] preserves the L–
factors and ε–factors of pairs, we see that if we establish Theorem 2.1 for the exterior square
γ-factor, namely statement (1) of the theorem, then the result for the symmetric square,
namely statement (2), will follow.

Remark on the choice of an additive character: For a ∈ F× and ψ a non-trivial additive
character of F , we let ψa denote the character given by ψa(x) = ψ(ax). Through the
relation with the theory of local coefficients mentioned above, the work in [31] allows one to
investigate how the γ-factors γ(s, π, r, ψa) vary as a function of a, for those representations of
the L-group r that arise in this method. This variation was made quite explicit in the work
of Henniart [18], Section 2. On the other hand, the variation of the arithmetic γ(s, rρ, ψa)
in a can be derived from Delgine [11]. As was observed by Henniart [18], these variations
are compatible with local class field theory, in the sense that the arithmetic and analytic
γ-factors vary the same way under the substitution ψ 7→ ψa. Therefore it suffices to prove
Theorem 2.1 for any fixed ψ to conclude the statement for all ψ. In particular, if F is a
global field and v0 a place of F such that Fv0 ≃ F , then we may always assume that the local
additive character ψ of F is the local component at v0 of a global additive character Ψ of
F\AF. We will do this in what follows without further mention.

3. Proof of the Theorem for the exterior square

3.1. Stable equality. We will begin by proving the following stable version of the Theorem
2.1 (1).
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Proposition 3.1 (Stable Equality). Let ρ be a n–dimensional continuous irreducible repre-
sentation of WF . Then for every suitably highly ramified character χ of F ∗

γ(s,Λ2(ρ⊗ χ), ψ) = γ(s, π(ρ)⊗ χ,Λ2, ψ).

We will prove Proposition 3.1 by induction on n. For n = 1 the statement is 1 = 1, since
the exterior square of a one dimensional representation is zero. For n = 2 we know that
Λ2ρ = det(ρ) and γ(s, π(ρ),Λ2, ψ) = γ(s, ωπ(ρ), ψ). Since det(ρ) and ωπ(ρ) correspond under
the local Langlands correspondence, and the local Langlands correspondence is compatible
with twists by characters, we see that Proposition 3.1 is true for n = 2 even without the
highly ramified assumption.

To proceed, we will make the following induction hypothesis:

Induction Hypothesis: For every p-adic local field F of characteristic zero and every
irreducible m-dimensional continuous representation ρ of WF with m < n, and for every
suitably highly ramified character χ of F×, with the necessary degree of ramification depending
on ρ, we have

γ(s,Λ2(ρ⊗ χ), ψ) = γ(s, π(ρ)⊗ χ,Λ2, ψ).

Under this induction hypothesis we will prove Proposition 3.1 for n–dimensional irreducible
continuous representations ρ of WF for any p-adic local field F .

Note that for ρ irreducible as in the proposition, π(ρ) will be supercuspidal and hence
generic, so we may use the full strength of the methods of [31, 35] including the functional
equation. We will prove this proposition in several steps. In the next section we will establish
such an equality for a fixed representation ρ0 and for any character χ. This will be a global-
to-local argument and will make crucial use of the Induction Hypothesis. We will then use
an argument based on the stability of the γ-factors on the two sides to deform the equality
at the base point to obtain the stable equality for all n-dimensional ρ.

3.2. Equality at a base point. To produce the equality between the analytic and arith-
metic exterior square γ-factors for a single representation, we will employ a global-to-local
argument. It is based on the following lemma whose proof was communicated to us by
Henniart.

Lemma 3.1. Let F be a p-adic field and ω0 a character of F×. There exist a number field
F and an irreducible continuous n–dimensional complex representation Σ of WF such that if
Σv = Σ|WFv

, then:

(1) There exists a place v0 of F such that Fv0 = F , det Σv0 = ω0, and Σv0 is irreducible.
(2) For every v <∞ with v 6= v0 , the local component Σv is reducible.
(3) Π = π(Σ) : = ⊗vπ(Σv) is a cuspidal automorphic representation of GLn(AF).
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Proof: Let E be the unramified extension of F of degree n, necessarily cyclic, contained in
F . There exists a character η of E× which restricts to ω0 on the units o×F of F , and which
is moreover regular with respect to the action of Gal(E/F ), in the sense that all its Galois
conjugates are distinct. Choosing the value of η correctly on a uniformizer of F , we can
assume that the determinant of the degree n representation ρ0 of WF induced from η is ω0.
By the regularity condition ρ0 is an irreducible representation of WF . So the corresponding
representation π0 = π(ρ0) of GLn(F ) is irreducible and supercuspidal.

Let us now globalize the situation. We can choose an extension E/F of number fields,
cyclic of degree n, giving E/F at some finite place v0 of F. We now look for a unitary
character α of the idele class group of E which restricts to η on the units of E = Ew0 , where
w0 is the unique place of E above v0, and is trivial on the units of Ew when w is a finite
place not above v0. Such a character α certainly exists. Indeed we start with a finite order
character of the product UE,f =

∏
w o

×
Ew

of the unit groups of Ew over finite places w of E;
as E× intersects UE,f trivially we can extend that character to a group homomomorphism of
E×UE,f into C1, complex numbers of modulus 1, by extending it trivially on E×. In this way
we get a finite order character of E×UE,f , where E

×UE,f has the idele topology. As E×UE,f is
closed in the idele group A×

E of E, we can extend further to a character of A×
E , which, being

trivial on E×, descends to the desired character α of the idele class group E×\A×
E .

From α we obtain, by induction, a degree n representation Σ′ of the Weil group WF of
F, which at the place v0 gives ρ0 up to an unramified twist. By automorphic induction [1]
we also obtain a cuspidal automorphic representation Π′ of GLn(AF). At each place v of
F, Π′

v corresponds to Σ′
v under the Langlands correspondence, because the local Langlands

correspondence is compatible with (cyclic) automorphic induction (or base change) [15, 17].
So Π′ = π(Σ′) = ⊗vπ(Σ

′
v). At a finite place w of E other than w0, the local character of E×

w

obtained by restriction of α is trivial on the local units, so at a finite place v of F other than
v0, the local representation Σ′

v is reducible.

Finally, to get ρ0 and π0 with the proper determinant and central character from Σ′
v0

and
Π′
v0
, we only have to twist Σ′, and hence Π′, by a suitable power of the absolute value to obtain

Σ and Π. Since the resulting automorphic representation Π = π(Σ) is the supercuspidal ρ0
at the place v0, it is itself cuspidal. �

If we combine this lemma with our induction hypothesis, we can obtain the equality of
local factors at a base point.

Proposition 3.2 (Equality at a Base Point). Let F be a p-adic field and ω0 a character
of F×. Then there exists an irreducible n-dimensional representation ρ0 of WF with det ρ0
corresponding to ω0 by local class field theory, such that for all characters χ of F× we have

γ(s,Λ2(ρ0 ⊗ χ), ψ) = γ(s, π(ρ0)⊗ χ,Λ2, ψ).

Proof: Let F and ω0 be as in the statement of Lemma 3.1 and fix a character χ of F×. By
Lemma 3.1 we can find a global field F and a representation Σ of WF such that Fv0 = F for
some place v0 of F and ρ0 = Σv0 = Σ|WFv0

is irreducible, but Σv = Σ|WFv
is reducible for all

v < ∞, v 6= v0. Moreover, again by Lemma 3.1, we may take ρ0 so that det ρ0 corresponds
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to ω0 by local class field theory. Then Π = π(Σ) = ⊗vπ(Σv) is a cuspidal automorphic
representation of GLn(AF), and so all of its local components Πv = π(Σv) are generic. Let
Ψ = ⊗Ψv be a non-trivial additive character of F\AF such that Ψv0 = ψ.

Let S be a finite set of places of F containing v0 such that for v /∈ S we have that v is non-
archimedean and Σv and Ψv are unramified. Then Πv = π(Σv) will also be unramified. Let
S∞ be the archimedean places of F and let T = S \ (S∞∪{v0}). At the places v ∈ T we have
that Σv is reducible. Let Σ

ss
v denote its semi-simplification and write Σssv = Σv,1⊕· · ·⊕Σv,rv .

Then for each such place Πv = π(Σv) will be a constituteent of Ξv = Ind(Πv,1 ⊗ · · · ⊗ Πv,rv)
with Πv,j = π(Σv,j). For each place v ∈ T choose a sufficiently highly ramified character χv
so that our induction hypothesis holds for each pair (Σv,j , π(Σv,j)) and the character χv.

Now take η = ⊗ηv to be an idele class character of F such that ηv0 = χ and for each
v ∈ T , ηv = χv. Since the local Langlands correspondence is compatible with twisting by
characters, we know that for each place v of F we have π(Σv ⊗ ηv) = π(Σv)⊗ ηv = Πv ⊗ ηv.
Hence globally Π⊗ η = π(Σ⊗ η).

We now employ the global functional equations for the exterior square L-functions, as
given in [11] and [31, 35],

L(s,Λ2(Σ⊗ η)) = ε(s,Λ2(Σ⊗ η))L(1− s,Λ2(Σ∨ ⊗ η−1))

L(s,Π⊗ η,Λ2) = ε(s,Π⊗ η,Λ2)L(1− s, Π̃⊗ η−1,Λ2).

For an unramified place v /∈ S, we know that the unramified Σv is a direct sum of unrami-
fied characters and the corresponding Πv is full induced from the corresponding unramified
characters. So if we write Σv = ν1,v⊕· · ·⊕ νi,m then Πv = Ind(ν1,v⊗· · ·⊗ νm,v) and we have

L(s,Λ2(Σv ⊗ ηv)) =
∏

i<j

L(s, νi,vνj,vη
2
v) = L(s,Πv ⊗ ηv,Λ

2)

L(1− s,Λ2(Σ∨
v ⊗ η−1

v )) =
∏

i<j

L(1− s, ν−1
i,v ν

−1
j,v η

−2
v ) = L(1 − s, Π̃v ⊗ η−1

v ,Λ2)

ε(s,Λ2(Σv ⊗ ηv),Ψv) =
∏

i<j

ε(s, νi,vνj,vη
2
v ,Ψv) = ε(s,Πv ⊗ ηv,Λ

2,Ψv) ≡ 1

so that
LS(s,Λ2(Σ⊗ η)) = LS(s,Π⊗ η,Λ2)

LS(1− s,Λ2(Σ∨ ⊗ η−1)) = LS(1− s, Π̃⊗ η−1)

εS(s,Λ2(Σ⊗ η),Ψ) = εS(s,Π⊗ η,Λ2,Ψ).

Thus, from the global functional equations we have
∏

v∈S

γ(s,Λ2(Σv ⊗ ηv),Ψv) =
∏

v∈S

γ(s,Πv ⊗ ηv,Λ
2,Ψv).

For v ∈ S∞, the set of archimedean places of F, we know that

γ(s,Λ2(Σv ⊗ ηv),Ψv) = γ(s,Πv ⊗ ηv,Λ
2,Ψv)
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by the results of [29], since we know that the arithmetic factors and the analytic factors
defined by the Langlands-Shahidi method always agree at archimedean places.

Consider now a place v ∈ T . Then Σv is reducible as above and we have

γ(s,Λ2(Σv ⊗ ηv),Ψv) = γ(s,Λ2(Σssv ⊗ ηv),Ψv)

= γ(s,Λ2((Σv,1 ⊕ · · · ⊕ Σv,rv)⊗ ηv),Ψv).

Similarly, for Πv = π(Σv) we have

γ(s,Πv ⊗ ηv,Λ
2,Ψv) = γ(s,Ξv ⊗ ηv,Λ

2,Ψv)

= γ(s, Ind((Πv,1 ⊗ · · · ⊗ Πv,rv)⊗ ηv),Λ
2,Ψv).

Now by induction on the number of factors one shows that

γ(s,Λ2((Σv,1 ⊕ · · · ⊕ Σv,rv)⊗ ηv),Ψv) = γ(s, Ind((Πv,1 ⊗ · · · ⊗ Πv,rv)⊗ ηv),Λ
2,Ψv)

with the base case being rv = 2, in which case we have

γ(s,Λ2((Σv,1 ⊕ Σv,2)⊗ ηv),Ψv)

= γ(s,Λ2(Σ1,v ⊗ ηv),Ψv)γ(s,Λ
2(σv,2 ⊗ ηv),Ψv)γ(s, (σv,1 ⊗ ηv)⊗ (Σv,2 ⊗ ηv),Ψv)

= γ(s,Π1,v ⊗ ηv,Λ
2,Ψv)γ(s,Πv,2 ⊗ ηv,Λ

2,Ψv)γ(s, (Πv,1 ⊗ ηv)⊗ (Πv,2 ⊗ ηv),Ψv)

= γ(s, Ind(Π1v,1 ⊗ Πv,2)⊗ ηv,Ψv)

where the first equality follows from the additivity of the arithmetic γ-factor [11], the second
equality is a consequence of the induction hypothesis and the fact that the local Langands
correspondence preserves local factors of pairs [15, 16], and the final equality is the multi-
plicativity of the analytic γ-factor [30, 35].

Thus we are left with

γ(s,Λ2(Σv0 ⊗ ηv0),Ψv0) = γ(s,Πv0 ⊗ ηv0 ,Λ
2,Ψv0)

which by our construction is precisely

γ(s,Λ2(ρ0 ⊗ χ), ψ) = γ(s, π0 ⊗ χ,Λ2, ψ)

as desired. �

3.3. Deformations: stability of γ-factors. To pass from the equality of γ-factors at a
base point for all characters to equality of γ for all representations, but only for suitably
highly ramified characters, we must be able to stably deform both sides of our equality.

In the arithmetic context, it was one of the basic ingredients of Deligne’s proof of the
existence of the local ε–factors that if V is any finite dimensional complex representation
of WF then for every sufficiently highly ramified character χ of F×, where the degree of
ramification depends on ρ, there is a y = y(χ, ψ) ∈ F , depending on χ and ψ, such that

ε(s, V ⊗ χ, ψ) = det(V )−1(y)ε(s, χ, ψ)dim(V ),

that is, for sufficiently ramified characters χ, the arithmetic ε–factor only depends on the
determinant det(V ) and the dimension dim(V ) of V . (See Lemma 4.16 of [11] or the intro-
duction to [12].) If we apply this to V = Λ2ρ for ρ an irreducible representation of WF , and
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use the fact that for sufficiently ramified χ we always have L(s, V ⊗ χ) = 1 then we arrive
at the following proposition.

Proposition 3.3 (Arithmetic Stability). Let ρ1 and ρ2 be two continuous n-dimensional
representations of WF with det(ρ1) = det(ρ2). Then for all the suitably highly ramified
characters χ of F× we have

γ(s,Λ2(ρ1 ⊗ χ), ψ) = γ(s,Λ2(ρ2 ⊗ χ), ψ).

The required degree of ramification depends only on ρ1 and ρ2.

The analogous result on the analytic side is the following.

Proposition 3.4 (Analytic Stability for Supercuspidals). Let π1 and π2 be two irreducible
supercuspidal representations of GLn(F ) with the same central characters. Then for all the
suitably highly ramified characters χ of F×, identified as characters of GLn(F ) through the
determinant, we have

γ(s, π1 ⊗ χ,Λ2, ψ) = γ(s, π2 ⊗ χ,Λ2, ψ).

The required degree of ramification depends only on π1 and π2

The proof of this is completely local. It uses the relation between the local γ–factor and the
local coefficient as in [31], combined with the integral representation for the local coefficient
in [33], and the Jacquet-Ye germ expansion for GLn [22] as used in [42]. It will be given
below in the lengthy Section 4.

3.4. Proof of stable equality and some corollaries. We are now in a position to com-
plete the proof of Proposition 3.1, the stable version of the equality of the arithmetic and
analytic exterior square γ–factors. Let ρ be an irreducible n-dimensional representation of
WF and let π = π(ρ) be the corresponding supercuspidal representation of GLn(F ). Taking
ω0 = ωπ in Proposition 3.2 we have an irreducible n-dimensional representation of WF and
corresponding supercuspidal representation π0 = π(ρ0) of GLn(F ) such that

(1) ωπ = ω0 = ωπ0
(2) det(ρ) = det(ρ0)
(3) γ(s,Λ2(ρ0 ⊗ χ), ψ) = γ(s, π0 ⊗ χ,Λ2, ψ) for all characters χ of F×.

Now take χ sufficiently ramified so that both Proposition 3.3 holds for the pair (ρ, ρ0) and
Proposition 3.4 holds for the pair (π, π0). Then for such suitably ramified χ we have

γ(s,Λ2(ρ⊗ χ), ψ) = γ(s,Λ2(ρ0 ⊗ χ), ψ) = γ(s, π0 ⊗ χ,Λ2, ψ) = γ(s, π ⊗ χ,Λ2ψ).

This completes the induction step and the proof of Proposition 3.1. �

Note that the degree of ramification necessary depends not just on the representations ρ
and π, but also on the choice of the pair (ρ0, π0) from Proposition 3.2. So one must fix such
a pair for every character ω0, but can easily reduce to a character ω0 in each inertial class
since deformations by unramified characters can be absorbed into the complex parameter of
the γ–factors.
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Before we continue with the proof of Theorem 2.1 (1), let us give two corollaries of our
stable version of the theorem.

Corollary 1 (Extension to the Weil-Deligne Group). Let ρ be a continuous n–dimensional
Φ-semisimple complex representation of the Weil-Deligne group W ′

F . Then for all suitably
highly ramified characters χ of F×

γ(s,Λ2(ρ⊗ χ), ψ) = γ(s, π(ρ)⊗ χ,Λ2, ψ)

Proof: This follows from Proposition 3.1 and the following facts:

(1) the compatibility of the construction of Φ-semisimple representations of W ′
F from

irreducible representations of WF and the Zelevinsky construction of irreducible rep-
resentations of GLn(F ) from supercuspidals [45],

(2) for a representation of the Weil-Deligne group, the ε-factor ε(s, ρ, ψ) = ε(s, ρss, ψ)
depends only on the simplification of ρ as a representation of WF [11],

(3) the local Langlands correspondence preserves L-factors of pairs and of exterior square
L-factors, and for highly ramified twists these stabilize to 1 [16, 18, 11, 32],

(4) the resulting additivity of the arithmetic γ-factor and the multiplicativity of the
analytic γ-factor [11, 30].

�

Corollary 2 (General Analytic Stability). Let π1 and π2 be two irreducible admissible rep-
resentations of GLn(F ) with the same central character. Then for any suitably ramified
character of F× we have

γ(s, π1 ⊗ χ,Λ2, ψ) = γ(s, π2 ⊗ χ,Λ2, ψ).

Proof: Let ρ1 and ρ2 be continuous n-dimensional Φ-semisimple representations of the Weil-
Deligne group W ′

F so that πi = π(ρi). Then by Colollary 1 for every sufficiently ramified
character χ we have

γ(s,Λ2(ρi ⊗ χ), ψ) = γ(s, πi ⊗ χ,Λ2, ψ).

So, just as in the final step of the proof of Proposition 3.1 above, our result would follow if we
knew the analogue of arithmetic stability, Proposition 3.3, for representations ofW ′

F . But, as
in Corollary 1 this follows from Proposition 3.3 and the fact that for a representation of the
Weil-Deligne group, the ε-factor ε(s, ρ, ψ) = ε(s, ρss, ψ) depends only on the simplification of
ρ as a representation ofWF and that the semi simplification does not change the determinant
of the representation, thus giving the arithmetic stability of the γ–factors for Weil-Deligne
representations. �

3.5. Proof of Theorem 2.1 (1). We begin by proving Theorem 2.1 (1) for a special class
of representations of WF , namely those induced from finite order characters of WL for L/F
a finite Galois extension. Here we need to use ideas of Harris [14] and Henniart [16]. It is
established by another global-to-local argument combined with stability.
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Lemma 3.2 (Equality for Monomial Representations). Let E/F be a finite Galois extension
of degree n contained in F and set G = Gal(E/F ). Let F ⊂ L ⊂ E be an intermediate
extension. Let χ be a finite order character of H = Gal(E/L) Let ρ = IndGH(χ). Then

γ(s,Λ2ρ, ψ) = γ(s, π(ρ),Λ2, ψ).

Proof: As in Henniart’s proof of the Local Langlands Correspondence in [16], utilizing a
theorem of Harris [14] , we know there exists a global extension of number fields F ⊂ L ⊂ E

and a character X : L×\A×
L → C× satisfying

(i) there is a place v0 of F, having a unique place w0 of E above it, such that Fv0 = F ,
Ew0 = E and Gal(E/F) = Gal(E/F );

(ii) if v′0 is the unique place of L over v0 then Lv′0 = L and Xv′0
= χ,

such that, if we let Σ = Ind
Gal(E/F)
Gal(E/L)(X), then there is a cuspidal automorphic representation

Π of GLm(AF), where m = (L : F), satisfying condition

(iii) Σ and Π are associate in the sense that for all finite places where Σ and Π are
unramified, Πv = π(Σv).

Moreover, as Henniart later shows in [16] and/or [17], we also know

(iv) for all places Πv = π(Σv),
(v) at the place v0 we have Σv0 = IndWF

WL
(χ) = ρ and π(ρ) = Πv0 = π1,v0 ⊞ · · ·⊞ πr,v0 is a

full induced representation from supercuspidal representations.

Let Ψ = ⊗Ψv be a non-trivial additive character of F\AF such that Ψv0 = ψ from the
statement. Let S be the set of places of F such that for v /∈ S we have that v is non-
archimedean and Σv, Πv and Ψv are all unramified and let S ′ = S \ {v0}. Take η = ⊗ηv to
be a idele class character for F such that ηv0 is trivial, and for all v ∈ S ′, ηv is sufficiently
highly ramified that Proposition 3.1 holds for the pairs (Σv,Πv). Since the local Langlands
correspondence is compatible with twists by characters, we know that Σ⊗ η and Π⊗ η are
still associated and in fact π(Σv ⊗ ηv) = Πv ⊗ ηv for all places v of F.

We employ the global functional equations for the exterior square L-functions from [11]
and [31, 35], namely

L(s,Λ2(Σ⊗ η)) = ε(s,Λ2(Σ⊗ η))L(1− s,Λ2(Σ∨ ⊗ η−1))

L(s,Π⊗ η,Λ2) = ε(s,Π⊗ η,Λ2)L(1− s, Π̃⊗ η−1,Λ2),

as in the proof of Proposition 3.2. The unramified local Langlands correspondence again
implies

LS(s,Λ2(Σ⊗ η)) = LS(s,Π⊗ η,Λ2)

LS(1− s,Λ2(Σ∨ ⊗ η−1)) = LS(1− s, Π̃⊗ η−1,Λ2)

εS(s,Λ2(Σ⊗ η),Ψ) = εS(s,Π⊗ η,Λ2,Ψ)
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and so from the global functional equations we we have
∏

v∈S

γ(s,Λ2(Σv ⊗ ηv),Ψv) =
∏

v∈S

γ(s,Πv ⊗ ηv,Λ
2,Ψv).

For v ∈ S∞, the set of archimedean places of F, we know that

γ(s,Λ2(Σv ⊗ ηv),Ψv) = γ(s,Πv ⊗ ηv,Λ
2,Ψv)

by the results of [29], since we know that the arithmetic factors and the analytic factors
defined by the Langlands-Shahidi method always agree at archimedean places. For the
places v ∈ S ′ we also know

γ(s,Λ2(Σv ⊗ ηv),Ψv) = γ(s,Πv ⊗ ηv,Λ
2,Ψv)

by our choice of ηv and Proposition 3.1. Thus we are left with

γ(s,Λ2(Σv0 ⊗ ηv0),Ψv0) = γ(s,Πv0 ⊗ ηv0 ,Λ
2,Ψv0)

which by our construction, and since ηv0 is trivial, is precisely

γ(s,Λ2ρ, ψ) = γ(s, π(ρ),Λ2, ψ)

as desired. �

Still following the lead of Henniart, we next extend this to irreducible continuous repre-
sentations ρ of WF having determinant of finite order.

Lemma 3.3 (Equality for Galois Representations). Let ρ be an irreducible continuous rep-
resentation of WF of degree n with finite order determinant. Then

γ(s,Λ2ρ, ψ) = γ(s, π(ρ),Λ2, ψ).

Proof: We will work in the Grothendieck groups of representations. Following Henniart, we
let G0

F (m) denote the set of isomorphism classes of irreducible continuous complex represen-
tations of WF of degree m, G0

F the disjoint union of the G0
F (m) and RG(F ) the Grothendieck

group of WF , the free abelian group with basis G0
F . Similarly, we let A0

F (m) be the set of
isomorphism classes of irreducible admissible supercuspidal representations of GLm(F ), A

0
F

the disjoint union of the A0
F (m), and RA(F ) the Grothendieck group of GL(F ), the free

abelain group with basis A0
F .

Now let ρ be an irreducible continuous representation of WF of degree n with finite order
determinant. As in Henniart’s proof of the local Langlands correspondence in [16], there is
a finite Galois extension E/F and a n dimensional representation of Gal(E/F ) which gives
ρ by inflation to WF ; call it again ρ. Then by Brauer’s Theorem, in the group RG(F ) we
can write

ρ =
∑

i

niInd
G
Hi
(χi)

where Hi ⊂ G corresponds to a finite extension F ⊂ Li ⊂ E with Hi = Gal(E/Li) and χi
a character of Hi. If we let ρi = IndGHi

(χi), then we know by Henniart, quoted in (v) in the
proof of Lemma 3.2, that π(ρi) = πi is a full induced from supercuspidal representations,



EXTERIOR AND SYMMETRIC SQUARE ε–FACTORS 15

πi = πi,1 ⊞ · · · ⊞ πi,ri . Then by Henniart’s proof of the local Langlands correspondence we
know that

π(ρ) =
∑

i

ni(πi)
ss

where (πi)
ss indicates the supercuspidal support, so in our case (πi)

ss =
∑

j πi,j in RA(F ).

We now want to compare the exterior square γ-factors for ρ and π(ρ). For this it is easiest
to work with representations of WF or GLm(F ) rather than virtual representations. If ρ1
and ρ2 are representations of WF , then their sum in RG(F ) corresponds to the direct sum
ρ1 ⊕ ρ2 of representations. Under the local Langlands correspondence, if π(ρ1) = π1 and
π(ρ2) = π2, then ρ1 ⊕ ρ2 corresponds to the induced representation π1 ⊞ π2 and so in RA(F )
the sum corresponds to parabolic induction and this is consistent with the local Langlands
correspondence. By additivity of the arithmetic γ-factors and the multipliciaivity of the
analytic γ-factors of Shahidi, we know

γ(s,Λ2(ρ1 + ρ2), ψ = γ(sΛ2(ρ1 ⊕ ρ2), ψ) = γ(s,Λ2ρ1, ψ)γ(s,Λ
2ρ2, ψ)γ(s, ρ1 ⊗ ρ2, s)

γ(s, π1 + π2,Λ
2, ψ) = γ(s, π1 ⊞ π2,Λ

2, ψ) = γ(s, π1,Λ
2, ψ)γ(s, π2,Λ

2ψ)γ(s, π1 × π2, s).

So the exterior square γ factors satisfy the same formalism on the arithmetic and analytic
side for sums of representations. In particular, on the analytic side, this means that multi-
plicativity gives

γ(s, (πi)
ss,Λ2, ψ) = γ(s, πi,Λ

2, ψ).

Coming back to our expression

ρ =
∑

i

niInd
G
Hi
(χi) =

∑

i

niρi

renumbering the term if necessary, we can assume that ni > 0 for i = 1, . . . , r and ni < 0 for
i = r + 1, . . . r + s. Then we can rewrite this relation as

ρ+
r+s∑

i=r+1

(−ni)ρi =
r∑

i=1

niρi.

Now both sides are sums of true representations. Let us writemi = −ni for i = r+1, . . . , r+s.
Applying the formalism of the exterior square γ-function, from the expression we obtain

γ(s,Λ2(
r∑

i=1

niρi), ψ) = γ(s,Λ2(ρ+
r+s∑

i=r+1

miρi), ψ)

= γ(s,Λ2ρ, ψ)γ(s,Λ2(
∑

miρi), ψ)γ(s, ρ⊗ (
∑

miρi), ψ)

= γ(s,Λ2ρ, ψ)γ(s,Λ2(
∑

miρi), ψ)
∏

γ(s, ρ⊗ ρi, ψ)
mi

and so

γ(s,Λ2ρ, ψ) =
γ(s,Λ2(

∑r
i=1 niρi), ψ)

γ(s,Λ2(
∑r+s

i=r+1miρi), ψ)
∏r+s

i=r+1 γ(s, ρ⊗ ρi, ψ)mi

.
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On the analytic side we have

π(ρ) = π =
∑

i

ni(πi)
ss

or

π +
r+s∑

i=r+1

mi(πi)
ss =

r∑

i=1

ni(πi)
ss.

Performing the same steps on the analytic side, and using the fact that the formalism of the
exterior square γ-factors is the same for the arithmetic and analytic γ-factors, we arrive at

γ(s, π,Λ2, ψ) =
γ(s,Λ2(

∑r
i=1 ni(πi)

ss), ψ)

γ(s,Λ2(
∑r+s

i=r+1mi(πi)ss), ψ)
∏r+s

i=r+1 γ(s, π × (πi)ss, ψ)mi

.

By the multiplicativity of the analytic local Rankin-Selberg γ-factors, for each i = r +
1, . . . , r + s we have

γ(s, π × (πi)
ss, ψ) = γ(s, π × πi, ψ)

and since the local Langlands correspondence preserves local factors of pairs we can further
conclude

γ(s, π × πi, ψ) = γ(s, ρ⊗ ρi, ψ).

Hence we have
r+s∏

i=r+1

γ(s, π × (πi)
ss, ψ)mi =

r+s∏

i=r+1

γ(s, ρ⊗ ρi, ψ)
mi .

Then, by an induction on the number of factors, and utilizing that the formalism of the
exterior square γ-factors is the same on the analytic and arithmetic side, we have

γ(s,
r∑

i=1

ni(πi)
ss,Λ2, ψ) = γ(s,Λ2(

r∑

i=1

niρi), ψ)

with the base case being one summand where we know

γ(s, (πi)
ss,Λ2, ψ) = γ(s, πi,Λ

2, ψ) = γ(s,Λ2ρi, ψ)

with the first equality coming from the multiplicativity of the analytic γ-factor, as noted
above, and the second equality by Lemma 3.2. Similarly we have

γ(s,
r+s∑

i=r+1

mi(πi)
ss,Λ2, ψ) = γ(s,Λ2(

r+s∑

i=r+1

miρi), ψ).

Hence we can conclude
γ(s,Λ2ρ, ψ) = γ(s, π(ρ),Λ2, ψ)

and our lemma is proven. �

To complete the proof of Theorem 2.1 (1), we begin with Lemma 3.3. We can extend this
to arbitrary irreducible continuous n-dimensional representations ofWF by tensoring with an
unramified character. Both the local Langlands correspondence and the formalism of the ex-
terior square γ-factors are compatible with twisting by characters. We then can extend to ar-
bitrary continuous n-dimensional representations ofWF since the local Langlands correspon-
dence extends over direct sums and then again applying additivity/multiplicativity of the
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exterior square γ-factors. Finally, we extend to all continuous Φ-semisimple n-dimensional
representations of the Weil-Deligne group W ′

F by the compatibility of the reduction of the
local Langlands correspondence to the irreducible case on the Weil-Deligne side and the
Bernstein-Zelelvinsky reduction to the supercuspidal case on the analytic side, again com-
bined with additivity/multiplicativity of the exterior square γ-factors. �

4. Analytic stability for supercuspidal representations I: reduction to

partial Bessel integrals

The purpose of this section and the next is to provide the proof of Proposition 3.4. We
will follow the general theory of [10] and [33], specialized to GSp2n, combined with the ideas
from [22, 19, 42]. To ease the notational burden, we will use bold face letters H to denote
algebraic groups, all defined over F , and then H = H(F ) to denote their F -points.

4.1. Preliminaries. Let us recall that F is a non-archimedean local field of characteristic
zero with o the ring of integers of F , and p its unique maximal ideal with uniformizer ̟.
We set q = [o : p], and fix a valuation | · | = | · |F normalized by |̟| = q−1.

Let G = GLn as an algebraic group over F . Let B = AU be a Borel subgroup of G
over F , where A is a maximal split torus of G and U the unipotent radical of B. We
take the standard matrix realization of G = GLn(F ), in which B becomes the standard
upper triangular Borel subgroup, A the diagonal torus and U the upper triangular unipotent
matrices. Let Φ = Φ(A,G) be the roots of A in G, Φ+ to be the set of positive roots in G,
and ∆ = ∆(A,G) the simple roots. If we define rational characters ei of A by ei(a) = ai for
a = diag(a1, . . . , an) ∈ A. Then ∆ = {α1, . . . , αn−1} where αi = ei − ei+1 in the (additive)
group X(A)F of F -rational characters of A.

Let W = W (A,G) denote the Weyl group of G. If we use the standard splitting
which gives the usual matrix representation of GLn, and let xαi

(t) be the one parameter
subgroup xαi

(t) = In + tEi,i+1 with Ei,j the standard elementary matrix with a 1 in the
(i, j)–position and 0 everywhere else, and similarly x−αi

(t) = In + tEi+1,i, then, following
Chevalley/Steinberg/Bruhat–Tits, we choose as our representative for the simple reflection
si associated to αi the matrix

ṡi = xαi
(1)x−αi

(−1)xαi
(1).

This is a matrix ṡi with 1′s on the diagonal other than a 2×2 block of the form

(
0 1
−1 0

)
in

the (i, i+1) block. For the general Weyl group element w we choose a reduced expression for
w in terms of the simple reflections and take ẇ to be the corresponding product of matrix
representatives ṡi. This representative is independent of the choice of reduced decomposition
by Proposition 8.3.3 of Springer [38] or Lemma 56 of Steinberg [39]. This choice has the
advantage that for all w ∈ W we have det(ẇ) = 1, i.e., we take representatives that live in
the derived group, in our case SLn. If we let wℓ denote the longest element, then as the
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representative of the long element in our matrix realization we have

ẇℓ =




1
−1

. .
.

(−1)n−1


 .

Moreover, ifM ⊂ GLn is a standard Levi subgroup in block form, soM ≃ GLn1×· · ·×GLnt

then the long Weyl element of M will be of the form

ẇMℓ =




ẇℓ,1
ẇℓ,2

. . .
ẇℓ,t




with each ẇℓ,i the representative of the long Weyl element of GLni
as above.

We will let H = GSp2n be the symplectic similitude group over F for a positive integer n.
If we set

J = Jn =




1
−1

. .
.

(−1)n−1


 and J ′ = J ′

2n =

(
J

−tJ

)

then we can take a matrix realization of H as

H = GSp2n(F ) = {h ∈ GL2n(F ) |
thJ ′h = η(h)J ′ for some η(h) ∈ F×}.

η : H → F× is the similitude character of H . Note that tJ = J−1 = (−1)n−1J . The
center ZH of H is isomorphic to Gm and is thus cohomologically trivial. The cohomological
triviality of the center is necessary for the use of [33] and is responsible for our chioce of
H = GSp2n rather than (the seemingly simpler) Sp2n.

Let BH = AHUH be the standard (upper triangular) Borel subgroup of H over F , where
AH is a maximal split torus andUH is the unipotent radical ofBH. In the matrix realization,
we can represent the elements of AH by

a′ =

(
a

a0Ja
−1J−1

)
= diag(a1, . . . , an; a0a

−1
n , . . . , a0a

−1
1 ) with a =



a1

. . .
an


 ∈ A

which has similitude character η(a′) = a0.

Denote by PH = MHNH the standard Siegel parabolic subgroup of H. This is the self–
associate maximal parabolic subgroup of H over F with the Levi factor MH ≃ G ×Gm =
GLn×GL1 containing AH, and let NH be its unipotent radical. The matrices in MH are of
the form

m = m(g, a0) =

(
g

a0J
tg−1J−1

)
(4.1)
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with g ∈ G and a0 ∈ GL1(F ) while those in NH are of the form

n = n(y) =

(
In y

In

)
(4.2)

with y ∈ Matn(F ) with y = J tyJ . We will use the isomorphism g 7→ m(g, e) to identify G
with a subgroup of MH throughout this section. Then U ≃ UH ∩MH, which in the matrix
realization corresponds to the standard upper triangular maximal unipotent subgroup of G.

Let ΦH = Φ(AH,H) and ∆H = ∆(AH,H) be the roots and simple roots of AH in
H. Notice here ∆H = {α1, . . . , αn} in numbering from Bourbaki [5]. If we define rational
characters ei of AH by ei(a

′) = ai, including i = 0, then

αi = ei − ei+1 ∈ ∆ for i = 1 . . . , n− 1 and αn = 2en − e0

in the (additive) group X(AH)F of F -rational characters of AH. Denote by Φ+
H

the set of
positive roots in H.

Let {xα |α ∈ ∆H} be an F -splitting of H as defined in [9, 10] extending our splitting of
G. To do this, let Ei,j represent the elementary matrix in Mat2n(F ) having a single 1 in the
(i, j) position and zeroes elsewhere. Then we can set

xαi
(u) =

{
I2n + u(Ei,i+1 − E2n−i,2n−i+1) i = 1, . . . , n− 1

I2n + uEn,n+1 i = n
.

The simple root subgroups Uα = Uα(F ) = {xα(uα) | uα ∈ F} correspond to the one parame-
ter subgroups of UH lying just above the diagonal. Note that αn is the unique simple root in
∆H whose root subgroup sits in NH. In fact, NH is spanned by the following root subgroups

NH = 〈Uα | α = ei + ej with 1 ≤ i < j ≤ n or α = 2ei with 1 ≤ i ≤ n〉.

For any n ∈ NH , we can use the splitting to write n =
∏
xα(uα) where α runs over the roots

occurring in NH as above. Since NH is abelian, this is independent of the order taken in the
product. In particular, for αn, the coordinate uαn

will be independent of the order we take.
We will denote this by uαn

(n). If we use the matrix realization of our group, uαn
(n) will be

the (n, n+ 1)-entry of n. We let

ρ = ρPH
=
n+ 1

2
(e1 + · · ·+ en)−

n(n+ 1)

4
e0

denote half the sum of the positive roots occurring in NH .

Let WH = W (AH,H) denote the Weyl group of AH in H. Note that we have WG =
WMH

⊂ WH via w 7→ m(w, e) and we will use this identification. Let wHℓ denote the long
Weyl element in WH. Let w0 = wHℓ · w−1

ℓ . As a representative for these elements we have

ẇHℓ =

(
J

−tJ

)
, ẇℓ = m(ẇℓ, 1) =

(
J

J

)
, and ẇ0 =

(
In

(−1)nIn

)
. (4.3)

Then w0(∆) = ∆, and w0(αn) < 0. Since PH is self-associate, then NH = wHℓ NH(w
H
ℓ )

−1 =
N−

H
, where N−

H
is the opposite subgroup to NH with respect to MH.



20 J.W. COGDELL, F. SHAHIDI, AND T-L. TSAI

Given a non-trivial character ψ of F , we define a generic character of UH by

ψ(u) = ψ(
∑

α∈∆H

uα) =
n∑

i=1

(ui,i+1).

The condition of compatibility of ψ and w0 within H necessary for the use of [33] is that
ψ(w0uw

−1
0 ) = ψ(u) for u ∈ UH ∩MH ≃ U and one checks that this holds for our ψ and w0.

For i = 1, . . . , n, we define cocharacters

e∗i (t) = diag(1, . . . , 1, t, 1, . . . , 1; 1, . . . , 1, t−1, 1, . . . , 1),

which means e∗i (t) has t on the i-th component, t−1 on the (2n + 1 − i)-th component, and
1’s elsewhere. Additionally, we define

e∗0(t) = diag(1, . . . , 1; t, . . . , t).

In terms of these cocharacters, we see that the element a′ ∈ AH above is given by

a′ =
n∏

i=0

e∗i (ai)

so that
∏
e∗i : (F

×)n+1 → AH gives a splitting of AH . Another convenient splitting of AH is
given by the co-characters that are duals to the simple roots. To this end, for i = 1, . . . , n−1,
we define

α∗
i =

i∏

j=1

e∗j

so that

α∗
i (t) =



tIi

I2n−i
t−1Ii




with t in the first i entries, and for i = n we set

α∗
n =

n∏

i=0

e∗i

so that

α∗
n(t) =

(
tIn

In

)

Then we see that αi(α
∗
j (t)) =

{
t i = j

1 i 6= j
. We can also use these to split the torus via

e∗0
∏
α∗
i : (F

×)n+1 → AH .

In terms of the second splitting, we have

ZH = {e∗0(t)α
∗
n(t) | t ∈ F×} =

{(
tIn

tIn

)
| t ∈ F×

}

and

ZMH
= {e∗0(t2)α

∗
n(t1) | t2, t1 ∈ F×} =

{(
t1In

t2In

)
| t1, t2 ∈ F×

}
.
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We have a short exact sequence

1 → ZH → ZMH
→ F× → 1

which we can split using α∗
n. We let Z0

MH
denote the image of α∗

n then we get a factorization
ZMH

= ZHZ
0
MH

. In keeping with the notation in [33, 10] we will also use α∨ to denote α∗
n,

particularly when thinking about this splitting of the center of MH , to wit

α∨(t) =

(
tIn

In

)
.

Let X(MH)F be the group of F -rational characters of MH. Since MH ≃ G×Gm, this is
the free rank two Z-module spanned by the determinant and the similitude character. Let
aH = Hom(X(MH)F ,R), a

∗
H = X(MH)F ⊗Z R as in [31], and a∗H,C = a∗H ⊗R C. Also, define

HPH
= HMH

:MH → aH by

q〈χ,HMH
(m)〉 = |χ(m)|F for all χ ∈ X(MH)F .

(We hope the standard use of H for the Harish-Chandra “logarithm” and our use of H =
GSp2n(F ) will not cause confusion. The distinction should be clear from context.)

4.2. Reduction to local coefficients. Let π be an irreducible admissible ψ-generic repre-
sentation of G. Since G = GLn(F ), this is independent of the choice of the character and
the splitting chosen. We extend this to a representation of MH ≃ G × GL1(F ) by making
it trivial on the GL1 factor, i.e., as π ⊗ 1. The choice of the extension does not matter,
since any extension will lead to the same local coefficient. We will continue to denote this
representation by π and hope that there is no confusion. We note that in particular, with
the notation of (4.1), ωπ(m) = ωπ⊗1(m) = ωπ(g).

Given ν ∈ a∗H,C, let

I(ν, π) = IndHMHNH
(π ⊗ q〈ν,HMH

(−)〉 ⊗ 1)

be the induced representation, and denote its space by V (ν, π). Let

α̂ = 〈ρ, αn〉
−1ρ =

1

2
(e1 + · · ·+ en)−

n

4
e0

as in [10]. Now for s ∈ C, we define I(s, π) = I(sα̂, π) and let V (s, π) be its space. Note that
q〈sα̂,HMH

(m)〉 = | det(g)|s/2|a0|
−ns/4. The standard intertwining operator A(s, π) : I(s, π) →

I(−s, w0(π)), as defined in equation (2.6) of [33], is given by

A(s, π)f(h) =

∫

NH

f(ẇ−1
0 nh)dn

for all h ∈ H , and f ∈ V (s, π).

Let λ be a Whittaker functional for π. If λψ(s, π) is the Whittaker functional (see [27, 31])
for I(s, π) canonically attached to λ defined by

λψ(s, π)(f) =

∫

NH

〈f(ẇ−1
0 n), λ〉 · ψ−1(n)dn,
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which is the equation (2.6) of [33], then the local coefficient Cψ(s, π) is defined by

λψ(s, π) = Cψ(s, π) · λψ(−s, w0(π)) · A(s, π).

Next, we denote by LnH, the Lie algebra of the L-group of NH. Let r be the adjoint action
of LMH on LnH. For H = GSp2n,

LH can be taken to be GSpin2n+1(C),
LPH the Siegel

parabolic subgroup of GSpin2n+1(C) fixing a maximal isotropic subspace, LNH its unipotent
radical, and LMH ≃ GLn(C)×GL1(C). The representation r of GLn(C)×GL1(C) on

LnH
then decomposes as r = r1 ⊕ r2 where r1 = St is the standard n-dimensional representation
of GLn(C) and r2 = Λ2 is the exterior square representation of GLn(C). The copy of GL1(C)
lies in the center, and so acts trivially on LnH . Then by [31, 35] we have

Cψ(s, π) = γ(s, π̃, ψ−1)γ(2s, π̃,Λ2, ψ−1) (4.4)

where γ(s, π̃, ψ−1) = γ(s, π̃, St, ψ−1) is the standard γ-factor for π̃, the contragredient of π,
and γ(2s, π̃,Λ2, ψ−1) is the factor we want to prove stability for.

The standard γ-factor for GLn is known to be stable under highly ramified twists, with
the stable form depending only on the central character, by a result of Jacquet and Shalika
[21]. So the above equality reduces Proposition 3.4 to proving stability for the associated
local coefficients for supercuspidal representations of G.

4.3. An integral representation for local coeficients. We now specialize the results
in [33] and [9] to our situation. As in [33, 9], we start with a Bruhat decomposition. The
big Bruhat cell in H relative to PH , MHNHw0NH , can be translated to MHNHw0NHw

−1
0 =

MHNHNH . Then for n in an open set in N we have ẇ−1
0 n ∈MHNHNH and we can write

ẇ−1
0 n = mn′n, (4.5)

where m ∈MH , n
′ ∈ NH , and n ∈ NH . Indeed if we write

n =

(
In y

In

)

as in (4.2), then under the open condition det(y) 6= 0 we have

ẇ−1
0 n =

(
(−1)nIn

In

)(
In y

In

)
=

(
(−1)n−1y−1

y

)(
In −y

In

)(
In
y−1 In

)
(4.6)

and one can check from the condition y = J tyJ that the components of this decomposition
indeed live in G ⊂MH , NH , and NH as claimed.

Let µ be the densely defined map from NH to G ⊂MH sending n to its m component in

(4.5); in the notation of (4.6), when det(y) 6= 0 µ

(
In (−1)n−1y−1

In

)
=

(
y

(−1)n−1y−1

)
.

For m occurring in the decomposition (4.5) we may apply the Bruhat decomposition in G
relative to its Borel subgroup B to write

m = u1ẇau2 (4.7)

where u1, u2 ∈ U , a ∈ A and ẇ represents an element in the Weyl group of G.
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If we let B′
H = ẇ0BHẇ

−1
0 = AHNHU then there is a unique B′

H Bruhat cell C ′(w) =
B′
HwB

′
H which intersects NH in an open set NH(w) = NH ∩ C ′(w), and for n ∈ NH(w) will

have such a decomposition. For n ∈ NH(w) we have m = µ(n) lies in a unique B-Bruhat
cell in G ⊂MH , call it C(w̃) = Bw̃B and this is the Bruhat cell in G that intersects Im(µ)
in a subset of highest possible dimension. From Proposition 3.2 in [10] (see also Remark
1.11 in [34]) we have the relation w = w0w̃. In our situation W. Kuo, in the case 2(b) in his
appendix to [34], has used the analysis of [40] to compute w̃ and w in our case. We have
w̃ = wℓ and then w = wHℓ as in (4.3).

Note that in order to use Theorem 6.2 of [33] to establish the stability, the ẇ appearing
here must support a Bessel function on G in the sense of Section 2.2 in [9], recalled in Section
5.1 below. For us w̃ = wℓ and this supports a Bessel function by the criterion in [9]. Also,
Assumption 3.6 in [9] holds by the work of Sundaravaradhan [40].

The Bessel function associated to π and wℓ is a function on the Bruhat cell CMH
(wℓ) =

UwℓAHU of the form

jπ,wℓ
(m) =

∫

UM

W (mu)ψ−1(u)du (4.8)

with W ∈ W(π, ψ) with W (e) = 1. In our setting, we have taken the representation π of
G and extended it to MH ≃ G × GL1(F ) by making it trivial on the GL1(F ) factor. The
Whittaker function, which goes into the definition of the Bessel function, is then a Whittaker
function on G multiplied by the trivial character on GL1(F ). So we can write the Bessel
function as a function on the Bruhat cell C(wℓ) = UwℓAU of G, namely

jπ,wℓ
(m) =

∫

U

W (gu)ψ−1(u)du = jπ,wℓ
(g)

with the notation in (4.1). We will delay the discussion of the convergence of this integral,
which can be delicate in general, to Section 5.1.

The function that appears in the integral representation for the local coefficient in [33] is
not this Bessel function itself, but rather a partial Bessel function. To define this, we take a
cutoff function ϕN0

on NH , which is the characteristic function of a sufficiently large open

compact subgroup N 0 of NH . We can make this very explicit in our case. Fix κ ∈ N and let
ϕκ be the characteristic function of a neighborhood of 0 inMatn(F ) defined by the condition
that the (i, j)–entry of the matrix are bounded in absolute value by q(i+j−1)κ, i.e.

ϕκ(X) =

{
1 |Xi,j| ≤ q(i+j−1)κ

0 otherwise
.

The group NH is given by

NH =

{
n̄(y) =

(
In
y In

)
| y = J tyJ

}
.

We set

N 0 = N 0,κ =
{
n̄(y) | ϕκ(̟

d+f ẇℓy) = 1
}
= {n̄(y) | |yn−i+1,j| ≤ q(i+j−1)κ−(d+f)},
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where d is the conductor of ψ and f is the conductor of ω−1
π (w0ωπ), and let ϕN0,κ

be the

characteristic function of N0,κ. As κ grows, these subgroups exhaust NH . Then the partial
Bessel function jπ,wℓ,κ(m, z) associated to π, wℓ and the cutoff parameter κ (or equivalently

N 0,κ) is the function on MH × Z0
MH

given by

jπ,wℓ,κ(m, z) = jπ,wℓ,N0,κ
(m, z) =

∫

U

Wv(gu)ϕN0,κ
(zu−1n̄uz−1)ψ−1(u) du

(compare with (6.21) of [33]) where m and n̄ are related to n through (4.5) or (4.6). We
finally let z = α∨(̟d+fuαn

(ẇ0n̄ẇ
−1
0 )), where d is the conductor of ψ and f is the conductor

of ω−1
π (w0ωπ), and set

jπ,wℓ,κ(g) = jπ,wℓ,N0,κ
(m,α∨(̟d+fuαn

(ẇ0n̄ẇ
−1
0 )))

(compare with (6.24) and (6.39) of [33]).

We let πs denote the representation π ⊗ q〈sα̂,HMH
(−)〉. This will have central character

ωπs(m) = ωπ(g)| det(g)|
s/2|a0|

−ns/4. With this notation we can restate Theorem 6.2 of [33]
in our case.

Proposition 4.1. Let π be an irreducible admissible generic representation of G. Suppose
ωπ(w0ω

−1
π ) is ramified as a character of F×. Then for all sufficiently large κ

Cψ(s, π)
−1 = γ(2〈α̂, α∨〉s, ωπ(w0ω

−1
π ) ◦ α∨, ψ)−1

·

∫

Z0
MH

U\NH

jπ,wℓ,κ(g)ω
−1
πs (α

∨(un))(ẇ0ωπs)(α
∨(un))q

〈sα̂+ρ,HMH
(m)〉dn,

(4.9)

where, off a set of measure zero, we decompose ẇ−1
0 n = mn′n̄ as in (4.5) with m = µ(n),

g related to m as in (4.1), un = uα̃n
(ẇ0n̄ẇ

−1
0 ), and the integration is over the set of Z0

MH
U

orbits in NH .

The factor γ(2〈α̂, α∨〉s, ωπ(w0ω
−1
π ) ◦ α∨, ψ) is a simple abelian γ-factor depending only

on the central character of π.

We can simplify this in our situation as follows. First, from the formulas above for α̂ and
α∨ we have

〈α̂, α∨〉 =
n

2
−
n

4
=
n

4
.

Next,

ωπ(w0ω
−1
π ) ◦ α∨ = ωπ and ω−1

πs (w0ωπs) ◦ α
∨ = ω−1

π | · |−ns/2

as a characters of F×. Finally

q〈sα̂+ρ̃,HMH
(m)〉 = | det(g)|(s+n+1)/2|a0|

−(n(s+n+1))/4.

Then we can restate Proposition 4.1 as follows.
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Proposition 4.2. Let π be an irreducible admissible generic representation of G. Suppose
ωπ is ramified as a character of F×. Then for all sufficiently large κ

Cψ(s, π)
−1 = γ(ns

2
, ωπ, ψ)

−1

·

∫

Z0
MH

U\NH

jπ,wℓ,κ(g)ω
−1
π (un)|un|

−ns/2| det(g)|(s+n+1)/2|a0|
−n(s+n+1)/4dn,

(4.10)

where, off a set of measure zero, we decompose ẇ−1
0 n = mn′n̄ as in (4.5) with m = µ(n) and

un = uα̃n
(ẇ0n̄ẇ

−1
0 ); g and a0 are related to m as in (4.1), and the integration is over the set

of Z0
MH

U orbits in NH .

For our proof of stability, we will need to consider this integral representation for local
coefficients Cψ(s, π ⊗ χ)−1 for sufficiently ramified characters χ of F×. It will be important
for us to be able to choose κ, or equivalently N0 ⊂ N , to be independent of χ.

To establish this uniformity, we must recall how the subgroup N 0 comes about in the
proof of Theorem 6.2 of [33]. If we fix an irreducible generic representation π′ such that ωπ′

is ramified, then the subgroup N 0 in in Theorem 6.2 of [33] is chosen to satisfy the following
two conditions:

(1) There exists a section f ∈ V (s, π′) of the induced representation such that f is
supported in PHN0.

(2) N0 is sufficiently large so that α∨(t)N0α
∨(t)−1 depends only on |t| for all t ∈ F×.

The second condition is independent of π′. As for the first condition, it is known (see the
proof of Theorem 6.2 of [33]) that there exist sections f in V (s, π′) compactly supported in
PHN modulo PH . We fix such a section f and then choose N 0 large enough to contain the
support, that is, so that f is supported in PHN 0.

So let us fix a χ0 such that ωπ ⊗ χn0 , which is the central character of π ⊗ χ0, is ramified.
Then let us choose κ0 such that (1) and (2) hold for N0,κ0 and an appropriate section fχ0 in
V (s, π ⊗ χ0). If κ ≥ κ0 then N0,κ ⊃ N0,κ0 so that (1) and (2) also hold for any κ ≥ κ0. So
the formula of Proposition 4.2 holds for π ⊗ χ0 and any κ ≥ κ0.

Now let χ be any other character of F× such that ωπχ
n is ramified. Then, as noted

above, there is a section fχ ∈ V (s, π⊗χ) of the type needed in Theorem 6.2 of [33] which is
supported in PHN0,χ for some compact open N 0,χ ⊂ N . If N 0,χ ⊂ N 0,κ0, then Proposition
4.2 will hold for π ⊗ χ and any κ ≥ κ0.

On the other hand, ifN0,χ 6⊂ N0,κ0 , then we note that if we right translate fχ by e
∗
0(t) ∈MH

then R(e∗0(t))fχ will be supported in PH [e
∗
0(t)N0,χe

∗
0(t)

−1]. Note that for n̄ ∈ NH we have

e∗0(t)n(y)e
∗
0(t)

−1 =

(
In

tIn

)(
In
y In

)(
In

t−1In

)
=

(
In
ty In

)
,
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thus, for |t| < 1 this action contracts on NH . So for |t| sufficiently small, e∗0(t)N 0,χe
∗
0(t)

−1 ⊂
N 0,κ0. Hence, fixing such a t, if we use f ′

χ = R(e∗0(t))fχ in place of fχ, then f
′
χ has support

contained in PHN0,κ0 and Proposition 4.2 holds for π ⊗ χ and any κ ≥ κ0.

Taken together, this establishes the following strengthening of Proposition 4.2.

Proposition 4.3. Let π be an irreducible generic representation of G. Then there exists a
κ0 such that for all κ ≥ κ0 and all χ such that ωπχ

n is ramified we have

Cψ(s, π⊗χ)
−1 = γ(ns

2
, ωπχ

n, ψ)−1

·

∫

Z0
MH

U\NH

jπ⊗χ,wℓ,κ(g)(ωπχ
n)−1(un)|un|

−ns/2| det(g)|(s+n+1)/2|a0|
−n(s+n+1)/4dn,

(4.11)
where, off a set of measure zero, we decompose ẇ−1

0 n = mn′n̄ as in (4.5) with m = µ(n) and
un = uα̃n

(ẇ0n̄ẇ
−1
0 ); g and a0 are related to m̃ as in (4.1), and the integration is over the set

of Z0
MH

U orbits in NH .

Now we have the reciprocal of the local coefficient, up to abelian γ-factors, as an integral
transform of a partial Bessel function. We will identify this as a multi-variable Mellin
transform in the next section.

4.4. Change of variables. By Propositions 4.1 and 4.2, we have an integral representation
for the inverse of the local coefficient Cψ(s, π)

−1. In this section, we will replace the domain
Z0
MH

U\NH by a suitable torus inside Z\A and will show that the integral representation
given above can be written as a Mellin transform of a Bessel function. This is similar to
Proposition 2.1 in [8] and Theorem 4.22 in [10].

We begin with the following description of U\NH .

Proposition 4.4. Set

R =

{(
In aẇℓ

In

)
| a = diag(a1, . . . , an) ∈ A

}
.

Then, on a open dense subset of NH , R is a set of representatives of U\NH .

We begin by recalling the following elementary lemma on symmetric matrices.

Lemma 4.1. There exists an open dense subset Sym′
n(F ) of the space of symmetric n× n

matrices with the property that for each matrix S in this subset one has an upper triangular
unipotent matrix u and a non-singular diagonal matrix t such that S = uttu.

The Zariski open subset Sym′
n(F ) is characterized by the non-vanishing of the principal

minors, beginning from the lower right corner. It is now easy to prove the proposition.

Proof: Suppose n =

(
In y

In

)
∈ NH . Then y satisfies y = J tyJ . Note that as matrices

J = ẇℓ. If we let S = yẇℓ, then S is symmetric and, by the lemma, on the open dense
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set Sym′
n(F ) we can write S = uatu with a ∈ A and u ∈ U . Then, on this open set,

y = Sẇℓ = uaẇℓ(ẇ
−1
ℓ (tu)ẇℓ). As the action of U on NH translates into this twisted conjugacy

on y, we see that on the open dense set of those n such that yẇℓ ∈ Sym′
n(F ), R gives a

complete set of representatives for U\NH . �

If we take r =

(
In aẇℓ

In

)
∈ R and apply the decomposition (4.6) then we see

µ(r) = m =

(
(−1)n−1(aẇℓ)

−1

aẇℓ

)
=

(
ẇℓa

−1

(−1)n−1J t(ẇa−1)−1J−1

)

so that g = ẇℓa
−1 and a0 = (−1)n−1. So in (4.10) we have | det(g)| = | det(a)|−1 and |a0| = 1.

Then

r̄ =

(
In

(−1)n−1ẇℓa
−1 In

)
and w0r̄w

−1
0 =

(
In −ẇℓa

−1

In

)

so that in (4.10) we have un is the lower left entry of −ẇa−1 which is (−1)na−1
1 . Thus, as a

first step, we can write the integral in Proposition 4.2 as

ωπ(−1)n
∫

Z0
MH

\R

jπ,ẇ,κ(ẇa
−1)ωπ(a1)|a1|

ns/2| det(a)|−(n+s+1)/2

∣∣∣∣
dn

dr

∣∣∣∣ dr (4.12)

and we are left with computing the Jacobian
∣∣dn
dr

∣∣.

Under the isomorphism R ≃ A = {diag(a1, . . . , an) | ai ∈ F×} we take the invariant
measure dr on R to be dr =

∏
i d

×ai =
∏

i
dai
|ai|

. Then we can easily compute this Jacobian.

Proposition 4.5.

∣∣∣∣
dn

dr

∣∣∣∣ =
∏

i

|ai|
i.

Proof: As we have noted in the proof of Proposition 4.4, the action of UM onN by conjugation
is equivalent, under a multiplication by ẇ, to the standard action of UM on Symn(F ). So
we can compute this Jacobian there.

We will prove the formula by induction on n, utilizing Lemma 4.1. The case n = 1 is
immediate.

In general, for S = (si,j) ∈ Sym′
n(F ) we let dS =

∏
i dsi,i

∏
i<j dsi,j. Utilizing Lemma 4.1

we write

S =

(
In−1 x

1

)(
S ′

an

)(
In−1
tx 1

)
=

(
S ′ + anx

tx anx
an

tx an

)

with S ′ ∈ Sym′
n−1(F ) and x ∈ F n−1. We then compute

dS = | ∧i dsi,i ∧i<j dsi,j| = |(d(S ′ + anx
tx)) ∧ (∧i(andxi + xidan)) ∧ dan|

= |(dS ′ + d(anx
tx)) ∧ (∧i(andxi)) ∧ dan| = |an|

n−1|dS ′ ∧ (∧idxi) ∧ dan|
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and

= |an|
ndS ′

∏

i

(dxi)d
×an.

By induction, we have dS ′ =
∏n−1

i=1 (|ai|
id×ai)dun−1 where we have used dun−1 to denote the

invariant measure on the upper triangular subgroup Un−1 ⊂ GLn−1(F ). Substituting into
the result of the previous computation then gives

dS =
n∏

i=1

(|ai|
id×ai)dun.

As dn = dS
dun

and dr =
∏

i d
×ai we arrive at

∣∣dn
dr

∣∣ = ∏
i |ai|

i as claimed. �

Observe that R ≃ A ≃ ZH\AH is a n-dimensional torus as desired. Furthermore, it is easy
to see that under this isomorphism of R with A, the action of Z0

MH
on R by left translation

becomes the action of Z on A, again by left translation. Thus Z0
MH

\R ≃ Z\A. If we combine
this with the Jacobian calculation, then the integral in (4.12) becomes

ωπ(−1)n
∫

Z\A

jπ,ẇℓ,κ(ẇℓa
−1)ωπ(a1)|a1|

ns/2| det(a)|−(n+s+1)/2
∏

i

|ai|
i da (4.13)

and if we then send a 7→ a−1 and simplify, we arrive at the following proposition, which
identifies the local coefficient as a Mellin transform of the partial Bessel function.

Proposition 4.6. Let π be an irreducible admissible generic representation of G. Suppose
ωπ is ramified as a character of F×. Then for all sufficiently large κ,

Cψ(s, π)
−1 = γ(ns

2
, ωπ, ψ)

−1ωπ(−1)n

·

∫

Z\A

jπ,ẇℓ,κ(ẇℓa)ωπ(a1)
−1|a1|

−(n−1)(s−1)/2
n∏

i=2

|ai|
(n+s+1−2i)/2 da.

(4.14)

Moreover, for π any irreducible generic representation of G, there exists a κ0 such that for
all κ ≥ κ0 and all χ for which ωπχ

n is ramified we have

Cψ(s, π ⊗ χ)−1 = γ(ns
2
, ωπχ

n, ψ)−1ωπχ
n(−1)n

·

∫

Z\A

jπ⊗χ,ẇℓ,κ(ẇℓa)ωπχ
n(a1)

−1|a1|
−(n−1)(s−1)/2

n∏

i=2

|ai|
(n+s+1−2i)/2 da.

(4.15)

Let us revisit our partial Bessel function jπ,ẇℓ,κ(ẇℓa) in terms of these change of variables.
By definition we have

jπ,ẇℓ,κ(ẇℓa) =

∫

U

Wv(ẇℓau)ϕN0
(zu−1n̄uz−1)ψ−1(u) du

where z = α∨(̟d+fuαn
(w0n̄w

−1
0 )). There is a relation between g = ẇℓa and n̄ mediated by

(4.6). Taking y−1 = ẇℓa in (4.6) gives
(

(−1)nIn
In

)(
In (ẇℓa)

−1

In

)
=

(
(−1)n−1ẇℓa

(ẇa)−1

)(
In −(ẇa)−1

In

)(
In
ẇa In

)

(4.16)
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so we see that in the above formula n̄ is given by

n̄ =

(
In
ẇa In

)
.

If we write

u =

(
u0

J tu−1
0 J−1

)
and z =

(
z0In

In

)
= α∨(z0)

then

zu−1n̄uz−1 =

(
In

z−1
0 J tu0J

−1ẇℓau0 In

)
.

Thus
ϕN0,κ

(zu−1n̄uz−1) = ϕκ(̟
d+f ẇℓz

−1
0 J tu0J

−1ẇℓau0).

As matrices, Jn = ẇℓ, so z
−1
0 J tu0J

−1ẇℓau0 = z−1
0 ẇℓ

tu0au0. Next, for n̄ as above, uα̃n
(w0n̄w

−1
0 )

is the lower left entry of ẇℓa, which is (−1)n−1a1. So z0 = ̟d+fuαn
(w0n̄w

−1
0 ) = ̟d+f(−1)n−1a1.

If we write a = ta′ with t = diag(a1, . . . , a1) and a
′ = diag(1, a′2, . . . , a

′
n) then

ϕκ(̟
d+f ẇℓz

−1
0 J tu0J

−1ẇℓau0) = ϕκ(ẇℓẇℓ
tu0a

′u0) = ϕκ(
tu0a

′u0)

and hence

jπ,ẇℓ,κ(ẇℓa) = jπ,ẇℓ,κ(ẇℓta
′) = ωπ(t)

∫

U

Wv(ẇℓa
′u0)ϕκ(

tu0a
′u0)ψ

−1(u0) du0 (4.17)

where we now view all the variables ẇℓ, t, a
′, u0 as matrices in G.

4.5. Bessel functions and Bessel integrals. Conceptually, a Bessel function on G is a
function satisfying j(u1gu2) = ψ(u1)j(g)ψ(u2) for u1, u2 ∈ U . If we decompose G into Bruhat
cells, so G =

∐
C(w) with C(w) = UẇAU and restrict a Bessel function to a Bruhat cell

C(w), the compatibility of the right and left transformation laws under U put restrictions
on which cells C(w) can support Bessel functions and within such cells which parts of A are
allowed.

Let B(G) ⊂ W consist of those Weyl group elements that support Bessel functions in the
sense of [9], that is, w ∈ W such that for every simple root α ∈ ∆ we have that wα > 0
implies wα ∈ ∆, or equivalently, wℓw is the long element of a standard Levi subgroup of G.
In particular, from Section 2.2 of [9], to a w ∈ B(G) we associate the set of simple roots

θ+w = {α ∈ ∆ | wα > 0} ⊂ ∆

which then determines a standard parabolic subgroup Pw with Levi M =Mw and long Weyl
element wMℓ ∈ Mw such that wMℓ = wℓw. Then we also have

θ+w = θ−
wM

ℓ

= ∆M ⊂ ∆.

We have a torus associated to w

Aw = {a ∈ A | α(a) = 1 for all α ∈ θ+w} ⊂ A

which is the center ZMw
of Mw.

(This notation differs slightly from that in Section 2.2 of [9]. First, there is a conjugation
by w. The reason for this can be found in (4.14). The Bessel function is evaluated at ẇa
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and is considered as a function on the Bruhat cell C(w) written as C(w) = UẇAU , while
in [9] we evaluated the Bessel functions at aẇ and viewed them on the cell C(w) written
as C(w) = UAẇU . Also note that in [19] Jacquet indexes these tori by the corresponding
element w̃ = wMℓ of his R(G).)

We now collect some more useful facts about B(G). We first recall from [9] the following
lemma.

Lemma 4.2. Let w,w′ ∈ B(G). Then w′ ≤ w iff Mw ⊂ Mw′.

Thus the Bruhat order on B(G) reverses the containment order on the Levi subgroups.
Since the containment on the centers is also reversed, we have that if w,w′ ∈ B(G) then
w′ ≤ w iff Mw ⊂Mw′ iff Aw′ ⊂ Aw.

For w ∈ W , we have the decomposition U = U+
wU

−
w , where

U+
w = U ∩ w−1Uw, and U−

w = U ∩ w−1U−w

with U− being the opposite of U with respect to the diagonal torus A. Let w ∈ B(G). By
definition

U−
w = {u ∈ U |wuw−1 ∈ U−} and U+

w = {u ∈ U | wuw−1 ∈ U}.

Since w ∈ B(G) we have an associated Levi subgroup M = Mw ⊂ G such that w = wℓw
M
ℓ .

Let UM =M ∩ U denote the standard maximal unipotent subgroup of M and N = NM the
unipotent radical of the associated standard parabolic P . So U = UM ·N . For w = wMℓ we
have

U−
wM

ℓ

= UM and U+
wM

ℓ

= NM ,

while for w = wℓ we have

U−
wℓ

= U and U+
wℓ

= {e}.

Hence, if w = wℓw
M
ℓ we have

U−
w = U+

wM
ℓ

= NM and U+
w = UM .

An important observation is the following. Because of the alternating signs on ẇℓ, an
elementary computation gives that for any simple root α we have

ẇℓxα(t)ẇ
−1
ℓ = xwℓα(−t) (4.18)

where if xα(t) = I + tEi,i+1 then xwℓα(−t) = I − tEn−i+1,n−i. Note that the same is true for
ẇ−1
ℓ

ẇ−1
ℓ xα(t)ẇℓ = xwℓα(−t)

Also, using the block form for ẇMℓ given above, the same formulas hold for ẇMℓ and simple
roots α that occur in M . This then yields compatibility in the following sense.

Proposition 4.7. Let w = wℓw
M
ℓ ∈ B(G). Then for any u ∈ U+

w = UM we have
ψ(ẇuẇ−1) = ψ(u).
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Since a Bessel function on G is a function satisfying j(u1gu2) = ψ(u1)j(g)ψ(u2) for u1, u2 ∈
U , if we decompose G into Bruhat cells, so G =

∐
C(w) with C(w) = UẇAU , then it

is now an easy matter of checking compatibility to see that j(g) 6= 0 would imply that
g ∈ Cr(w) = UẇAwU = UẇAwU

−
w for w ∈ B(G) [9].

In order to construct Bessel functions, let C∞
c (G) be the space of smooth functions of

compact support on G and, for any continuous character ω of the center Z, we let C∞
c (G;ω)

be the space of functions on G that are smooth and of compact support modulo the center
Z and satisfy f(zg) = ω(z)f(g) for all g ∈ G and z ∈ Z. We have a projection from C∞

c (G)
to C∞

c (G;ω) given by

φ 7→ fφ(g) =

∫

Z

φ(zg)ω−1(z)dz. (4.19)

The integral converges since for fixed g the orbit Zg is closed in G and φ is locally constant
of compact support. This map is known to be surjective (see Lemma 5.1.1.4 of [44] for
example).

Let π be an irreducible supercuspidal representation of G with ramified central character
ωπ so that Proposition 4.6 holds. Let M(π) ⊂ C∞

c (G;ωπ) be its space of matrix coefficients.
For every f ∈ M(π) there exists φf ∈ C∞

c (G) which projects to f by (4.19). For each
f ∈ M(π) we may define a Whittaker function W f in the associated Whittaker model
W(π, ψ) of π by

W f(g) =

∫

U

f(u1g)ψ
−1(u1)du1 =

∫

U

∫

Z

φf(u1zg)ωπ(z)ψ
−1(u1) dzdu1

which again converges since the orbit UZg is closed in G. For an appropriate choice of
f ∈ M(π) we will have W f(e) = 1.

For w ∈ B(G) we can define the Bessel function jπ,w on Cr(w) = UẇAwU
−
w by

jπ,w(g) = BG(g, f) =

∫

U−
w

W f(gu2)ψ
−1(u2)du2

=

∫

U−
w

∫

U

∫

Z

φf(u1zgu2)ωπ(z)ψ
−1(u1)ψ

−1(u2) dzdu1du2

(4.20)

as long as W f(e) = 1. Again, since for fixed g the orbit UZgU−
w is closed in G, the integral

converges absolutely. We refer to BG(g, f) as a Bessel integral. As the convergence of these
Bessel functions can be delicate in general, we state this convergence formally for future
reference.

Proposition 4.8. Let π be an irreducible supercuspidal representation of G. Then for f ∈
M(π) with W f(e) = 1 and w ∈ B(G) the Bessel integral BG(g, f) converges absolutely for
fixed g ∈ Cr(w).

The definition of the Bessel function above is consistent with [9] since the Bessel function
is independent of the Whittaker function used to define it as long as W (e) = 1.

For our analysis of stability of the local coefficients, and hence our γ-factors, we will need
the analogue of our partial Bessel function, namely partial Bessel integrals. To define them,
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we first need the definition of twisted centralizer. For g ∈ G we define the twisted centralizer
of g in U by

Ug = {u ∈ U | tuẇ−1
ℓ gu = ẇ−1

ℓ g}.

Note that the condition that u ∈ Ug is equivalent to the twisted centralizer condition
ẇℓ

tuẇ−1
ℓ gu = g and to the commutation relation gu = ẇℓ

tu−1ẇ−1
ℓ g.

We now define the partial Bessel integral BG
ϕ (g, f) as follows. Let g ∈ G. Then g ∈ C(w)

for some w ∈ W . Write C(w) = UẇAU−
w with uniqueness of expression. We decompose

A = ZA′ as above and so write C(w) = ZUẇA′U−
w = ZC ′(w), again with uniqueness of

expression. We can then decompose g accordingly, that is, write g = zg′ with g′ ∈ UẇA′U−
w .

Then the partial Bessel integral is defined by

BG
ϕ (g, f) =

∫

Ug\U

W f(gu)ϕ(tuẇ−1
ℓ g′u)ψ−1(u) du

=

∫

Ug\U

∫

U

f(xgu)ϕ(tuẇ−1
ℓ g′u)ψ−1(x)ψ−1(u) dxdu

= ωπ(z)B
G
ϕ (g

′, f).

(4.21)

If we change u by left translating by an element u′ of Ug on the left, then by the defini-

tion of the twisted centralizer we have tu′ẇ−1
ℓ gu′ = ẇ−1

ℓ g and gu′ = ẇℓ
tu′

−1
ẇ−1
ℓ g ; since

ψ(ẇℓ
tu′

−1
ẇ−1
ℓ ) = ψ(tu′

−1
) = ψ(u′) we see that the integral is well defined. Since UgU is

closed in G and f is compactly supported mod Z, we see that the integral converges for any
g ∈ G.

To see that this really behaves partially like a Bessel function, we need the following
lemma. Let ϕ = ϕN be as in Section 4.3. Then ϕ is the characteristic function of matrices
of the form 



p−N p−2N p−3N · · ·
p−2N p−3N p−4N . . .
p−3N p−4N p−5N · · ·
...

...
...

. . .




We can characterize this set as

X(N) = {x = (xi,j) ∈Matn(F ) | xi,j ∈ p−(i+j−1)N}.

Note that if we consider the large compact open subgroup U(N) of U defined by

U(N) = {u = (ui,j) ∈ U | ui,j ∈ p−N for i, j > 1},

then X(N) is stable under the action of U(N) on the right and tU(N) on the left. Hence
we have the following.

Lemma 4.3. If ϕ = ϕN then ϕ(tugu) = ϕ(g) for all u ∈ U(N).

In the arguments that follow, we will need the invariance of Lemma 4.3 to hold for in-
creasingly large compact open subgroups of the type U(N). We will use the phrase “for
sufficiently large ϕ” to mean “for ϕ = ϕN for sufficiently large N”.

Now, a simple change of variables gives the following proposition.



EXTERIOR AND SYMMETRIC SQUARE ε–FACTORS 33

Proposition 4.9. Let ϕ = ϕN . Then BG
ϕ (u1gu2, f) = ψ(u1)B

G
ϕ (g, f)ψ(u2) for all u1 ∈ U

and u2 ∈ U(N).

If we now take g = ẇℓa with a ∈ Awℓ
= A then Uẇℓa = Uẇℓ

= {e}. Then

BG
ϕ (ẇℓa, f) =

∫

U

W f(ẇℓau)ϕ(
tua′u)ψ−1(u) du.

This then gives our partial Bessel function in (4.17) as one of our family of partial Bessel
integrals.

Proposition 4.10. Let f ∈ M(π) such that W f(e) = 1 and let ϕ = ϕκ. Then

jπ,ẇℓ,κ(ẇℓa) = BG
ϕ (ẇℓa, f).

5. Analytic stability for supercuspidal representations II: analysis of

partial Bessel integrals

5.1. Bessel integrals and orbital integrals. We will now introduce a class of orbital
integrals as defined in [22, 19]. For U × U acting on the right of G by g · (u1, u2) =

tu1gu2,
we define the stabilizer Ug of g in U ×U by the equation tu1gu2 = g. Then for any function
φ ∈ C∞

c (G), we define the orbital integral I(g, φ) by

I(g, φ) =

∫

Ug\U×U

φ(tu1gu2)ψ
−1(u1)ψ

−1(u2)du1du2. (5.1)

For this to be well defined we must have that ψ(u1u2) = 1 if tu1gu2 = g and following
Jacquet we call these g relevant.

By the Bruhat decomposition, the elements of the form ẇa with w ∈ W , a ∈ A form a set
of representatives for the orbits of U ×U on G. Following the terminology in [19], we say an
element w ∈ W is relevant if w2 = e, and, for all α ∈ ∆ with w(α) < 0 we have w(α) ∈ −∆.
Let R(G) denote the set of relevant elements in W . From [19] we know that w ∈ R(G) if
and only if there exists a standard Levi M of G such that w = wMℓ . Thus

R(G) = {w ∈ W | w = wMℓ for some standard Levi M ⊂ G}.

Note that from their definitions, and since w2
ℓ = e, we have that R(G) = wℓB(G) and

B(G) = wℓR(G), so w ∈ B(G) iff w̃ = wℓw ∈ R(G). Note that with our choice of represen-
tatives we find that if w = wℓw

M
ℓ ∈ B(G), then since ℓ(wℓ) = ℓ(w) + ℓ(wMℓ ) we have that

if we concatinate minimal expressions for w and wMℓ we get a minimal expression for wℓ so
that ẇℓ = ẇẇMℓ or ẇ = ẇℓ(ẇ

M
ℓ )−1 = ẇGM . (See Steinberg [39], page 262.)

By [19], for φ ∈ C∞
c (G) and w ∈ W , and a ∈ A, we have the orbital integral I(ẇa, φ) in

(5.1) is non-vanishing if and only if w is relevant and a is relevant for w, that is to say, ẇa
supports an orbital integral if and only if w = wMℓ ∈ R(G) and a ∈ ZM .
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Now we take f ∈ M(π) to be a matrix coefficient of π. Then we may similarly define

I(ẇa, f) =

∫

U ẇa\U×U

f(tu1ẇau2)ψ
−1(u1)ψ

−1(u2)du1du2.

If we take φf ∈ C∞
c (M) which projects to f by (4.19) we have

I(ẇa, f) =

∫

U ẇa\U×U

(∫

Z

φf(
tu1ẇzau2)ω

−1
π (z)dz

)
ψ−1(u1)ψ

−1(u2)du1du2

=

∫

Z

(∫

U ẇa\U×U

φf(
tu1ẇzau2)ψ

−1(u1)ψ
−1(u2)du1du2

)
ω−1
π (z)dz

=

∫

Z

I(ẇza, φf )ω
−1
π (z)dz.

Since φf ∈ C∞
c (G), there is no convergence issue for I(ẇa, f), and hence we may switch the

order of the integrations.

Proposition 5.1. If we take f ∈ M(π) with W f(e) = 1, then for w ∈ B(G), w = wℓw
M
ℓ ∈

R(G), and f̃(g) = f(ẇℓg) we have

BG(ẇa, f) = I((ẇMℓ )−1a, f̃)

for all a ∈ Aw = ZM .

Proof. We begin with the expression for BG(ẇa, f) in (4.20)

BG(ẇa, f) =

∫

U−
w

∫

U

f(u1ẇau2)ψ
−1(u1)du1ψ

−1(u2)du2.

If we make the change of variables u1 = ẇℓ
tuẇ−1

ℓ , then by the compatibility of our character
and choice of Weyl group representatives ψ(u1) = ψ(u), and we can rewrite our integral as

BG(ẇa, f) =

∫

U×U−
w

f̃(tu(ẇMℓ )−1au2)ψ
−1(u)ψ−1(u2) dudu2.

Let w̃ = (ẇMℓ )−1.

The orbital integral is given by

I(w̃a, f̃) =

∫

U w̃a\U×U

f̃(tuw̃au2)ψ
−1(u)ψ−1(u2) dudu2.

Since a ∈ Aw = ZM , U w̃a = U w̃ = {(u, u2) ∈ U × U | tuw̃u2 = w̃}. Using w̃ = ẇ−1
ℓ ẇ we

see (u, u2) ∈ U w̃ iff u1ẇu2 = ẇ iff u1 = ẇu−1
2 ẇ−1. Since u1 and u2 ∈ U , this is possible

iff u2 ∈ U+
w and then (u1, u2) = (ẇu−1

2 ẇ−1, u2) or equivalently (u, u2) = (w̃tu−1
2 w̃−1, u2).

Therefore we have U+
w ≃ U w̃ through the map u2 7→ (w̃tu−1

2 w̃−1, u2). Hence U w̃\U × U ≃
U × (U+

w \U) ≃ U × U−
w .

Thus the integrals for BG(ẇa, f) and I(w̃a, f̃) are the same for all a ∈ Aw̃. �
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If we combined Proposition 5.1 with the analysis of Jacquet and Ye [22, 19] we could
develop a theory of Shalika germs for our Bessel integrals. If these Bessel integrals appeared
in our integral representation for the local coefficients, the desired supercuspidal stability
would quickly follow from the germ expansion. Unfortunately, the functions in the integral
representations are only partial Bessel integrals. In this section we will adapt the techniques
of Jacquet and Ye [22], and particularly Jacquet’s paper [19], to our partial Bessel integrals.
This will not yield a full theory of Shalika germs for the partial Bessel integrals, but it will
allow us to establish “uniform smoothness” results which will be sufficient for stability.

5.2. Preliminaries. Before we begin our adaptation of [19] we need a few more preliminar-
ies. We retain the notation for G = GLn(F ) as in Section 4.1.

5.2.1. Basic Weyl elements. For the convenience of the reader, we collect here the various
Weyl elements that will play a role in what follows. Let L ⊂ M ⊂ G be standard Levi
subgroups of G. We let wℓ = wGℓ be the longest Weyl group element of G and wMℓ the
longest Weyl group element of M . Their representatives in G, set in Section 4.1, are ẇℓ and
ẇMℓ . The elements of B(G) are thus of the form w = wℓw

M
ℓ = wGM with representative ẇGM =

ẇℓ(ẇ
M
ℓ )−1. We similarly set wML = wMℓ w

L
ℓ ∈ B(M) with representative ẇML = ẇMℓ (ẇLℓ )

−1.
For convenience we also set w̃M = (ẇMℓ )−1.

5.2.2. The basic open sets. For each w ∈ W we let C(w) = UwAU be the associated Bruhat

cell, so w ≤ w′ iff C(w) ⊂ C(w′) defines the Bruhat order. For w ∈ B(G) we will let
Cr(w) = UwAwU ⊂ C(w) denote the relevant part of the Bruhat cell. We define

Ωw =
∐

w≤w′

C(w′).

Since the individual Bruhat cells are invariant under the two sided action of U ×U , so is Ωw.

The following is a simple consequence of the topology of Bruhat cells.

Lemma 5.1. Ωw is an open subset of G and C(w) is closed in Ωw.

5.2.3. Bessel distance. If w,w′ ∈ B(G) with w > w′ we set (following Jacquet)

dB(w,w
′) = max{m | there exist wi ∈ B(G) with w = wm > wm−1 > · · · > w0 = w′}

This counts the number of Weyl elements (or Bruhat cells) that support Bessel functions
between w and w′ (or C(w) and C(w′)). dB(w,w

′) = 1 if w and w′ support Bessel functions
but no Weyl elements in between do. [The cases where we have proved stability in the past
have involved Bessel functions for w such that dB(w, e) = 1. Now we are dealing with wℓ
which is as far away from e as possible.]

5.2.4. Twisted centralizers. We next collect some useful facts about twisted centralizers. We
let w ∈ B(G), so that w = wℓw

M
ℓ = wMG for some Levi subgroup M =Mw ⊂ G.

Lemma 5.2. Let w ∈ B(G). Then Uẇ ⊂ U+
w .
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Proof: Since w = wℓw
M
ℓ we have ẇ = ẇℓ(ẇ

M
ℓ )−1 = ẇGM . Then ẇ−1

ℓ ẇ = (ẇMℓ )−1 = w̃M . So
u ∈ Uẇ iff tuw̃Mu = w̃M iff w̃Muw̃

−1
M = tu−1. Therefore u ∈ U−

wM
ℓ

= UM = U+
w . �

Lemma 5.3. Let w ∈ B(G) and a ∈ A. Then Uẇa ⊂ U+
w .

Proof: If u ∈ Uẇa then tuw̃Mau = w̃Ma or tu = w̃Mau
−1a−1w̃−1

M . Now u ∈ U implies
u−1 ∈ U and au−1a−1 ∈ U . Since tu ∈ U− this gives au−1a−1 ∈ U−

ẇM
ℓ

= UM . Thus

u−1 ∈ a−1UMa = UM and so u ∈ UM = U+
w . �

Lemma 5.4. Let w ∈ B(G) and a ∈ Aw. Then Uẇa = Uẇ.

Proof: We have seen that Uẇ ⊂ UM . Since Aw = ZM , for u ∈ Uẇ we have aua−1 = u for
a ∈ Aw. So for u ∈ Uẇ and a ∈ Aw

tuw̃Mau = tuw̃Maua
−1a = tuw̃Mua = w̃Ma

so Uẇ ⊂ Uẇa.

Similarly, since Uẇa ⊂ UM , if u ∈ Uẇa then tuw̃Mau = w̃Ma so that tuw̃Maua
−1 = w̃M .

But u ∈ UM and a ∈ ZM implies aua−1 = u. So tuw̃Mu = w̃M and u ∈ Uẇ. �

Note that if the blocks in M are of size 3 or larger then UẇG
M

will be strictly smaller than

U+
wG

M

.

5.2.5. B(M). Let M ⊂ G be a Levi subgroup. Then there is a partition (n1, . . . , nt) of n so
that M ≃ GLn1(F )× · · · ×GLnt

(F ) embeds in G as a block diagonal subgroup.

We define B(M) in the same way we defined B(G), that is

w ∈ B(M) ⊂WM iff for all α ∈ ∆M , wα > 0 implies wα ∈ ∆M .

Then B(M) ≃ B(GLn1)× · · · × B(GLnt
) in the block diagonal representation. Once again

we have that w ∈ B(M) iff there exists a levi subgroup L = Lw ⊂ M such that w = wMℓ w
L
ℓ

where wLℓ is the long Weyl element of the Weyl group of L.

Given w ∈ B(M) we set

Aw = {a ∈ AM | α(a) = 1 for all simple α ∈ ∆M such that wα > 0}.

If w = wMℓ w
L
ℓ then Aw = ZL is the center of L.

Let R(G) be the relevant Weyl elements of Jacquet. Then w ∈ R(G) iff w = wMℓ for some
Levi subgroup M ⊂ G. Similarly, w ∈ R(M) iff w = wLℓ for some Levi subgroup L ⊂ M .
Since M is a Levi of G, L will also be a Levi subgroup of G, so R(M) ⊂ R(G).

We have B(G) = wℓR(G), or R(G) = w−1
ℓ B(G), and similarly B(M) = wMℓ R(M), or

R(M) = (wMℓ )−1B(M), so wℓ(w
M
ℓ )−1B(M) = wℓR(M) ⊂ wℓR(G) = B(G).
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Given L ⊂ M ⊂ G let wGL = wℓw
L
ℓ ∈ B(G) and wML = wMℓ w

L
ℓ ∈ B(M) be the associated

Weyl group elements that support Bessel functions on G and M , respectively. Note that we
have wGL = wGMw

M
L and

AwG
L
= AwM

L
= ZL.

The results of the previous sections transfer mutatis mutandis to M .

5.2.6. Parametrizing tori. For each i = 0, . . . , n− 1, set

Hi =

{
hi(t) =

(
Ii

tIn−i

)∣∣t ∈ F×

}
≃ F×.

Then H0 = Z is the center of G and
∏n−1

0 Hi = A gives another splitting of the maximal

(diagonal) torus of G. We set A′ =
∏n−1

i=1 Hi so that A = H0A
′ = ZA′.

If αi is the i
th simple root of A in G, i = 1, . . . , n− 1, then

αi(hj(t)) =

{
t−1 i = j

1 i 6= j

for all j = 0, . . . , n − 1. It will be convenient to index the Hi for i = 1, . . . , n − 1 by the
corresponding simple root as well, so Hαi

= Hi.

Now let M ⊂ G be a Levi subgroup. So M ≃ GLn1 × · · · × GLnt
for some partition

(n1, . . . , nt) of n, realized as block diagonal matrices in G

M =



GLn1(F )

. . .
GLnt

(F )


 .

Let ∆M denote the simple roots occurring in M . Then the center of M is parametrized as

ZM = H0

∏

αi /∈∆M

Hαi

and we set Z ′
M =

∏
αi /∈∆M

Hαi
. Let us set T ′

M to be a complement in A to ZM given by

T ′
M =

∏

αi∈∆M

Hαi

so A = T ′
MZM = T ′

MZ
′
MZ.

5.2.7. Transverse tori. For M any Levi subgroup of G we let Md be the derived group
of M , so Md ≃ SLn1 × · · · × SLnt

. Let w′, w ∈ B(G) with associated Levi subgroups
Mw′ = M ′ and Mw = M . Suppose w′ ≤ w. Then Mw ⊂ Mw′ and Aw′ ⊂ Aw. Let
Aw

′

w = Aw ∩Md
w′ = ZM ∩ (M ′)d ⊂ Aw. Note that Aww = ZM ∩Md is finite, consisting of

appropriate roots of unity on the blocks of M . Similarly Aw
′

w ∩ Aw′ = Aw
′

w′ is finite and
the subgroup Aw

′

w Aw′ ⊂ Aw is open and of finite index. This decomposition essentially
decomposes the relevant torus Aw for w into the relevant torus for the smaller cell Aw′ and a
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transverse torus Aw
′

w . In the germ analysis of [19], the germ functions live along the transverse
tori Aw

′

w .

Note that our notion of transverse tori is independent of G in the sense that if w,w′ ∈
B(M) for some Levi subgroup M of G with w = wMℓ w

L
ℓ and w′ = wMℓ w

L′

ℓ and w′ ≤ w, so

that L ⊂ L′ ⊂ M ⊂ G, then Aw
′

w = Aw ∩ L′d = ZL ∩ (L′)d, which is the same as if we took
w = wℓw

L
ℓ and w′ = wℓw

L′

ℓ above.

5.3. Basic properties of partial Bessel integrals. Now let g = ẇa with w ∈ B(G)
and a ∈ Aw. Let M = Mw be the Levi subgroup of G such tht w = wℓw

M
ℓ . Then we have

Uẇa = Uẇ ⊂ U+
w = UM . Write U = U+

wU
−
w which is the same as U = UMNM . Since Uẇ ⊂ U+

w

we have Uẇ\U = (Uẇ\U
+
w )U

−
w . Note that U−

w = NM is normal in U .

In the integral for BG
ϕ (ẇa, f) in (4.21), write u = u+u−. Then

BG
ϕ (ẇa, f) =

∫

Uẇ\U+
w

∫

U−
w

∫

U

f(xẇau+u−)ϕ(tu− tu+w̃Ma
′u+u−)ψ−1(x)ψ−1(u+u−) dxdu−du+.

Since u+ ∈ U+
w = UM and a ∈ Aw = ZM we have a′u+ = u+a′. We can then conjugate past

ẇ in the argument of f to obtain

BG
ϕ (ẇa, f) =

∫

Uẇ\U+
w

∫

U−
w

∫

U

f(x(ẇu+ẇ−1)ẇau−)

× ϕ(tu− tu+w̃Ma
′u+u−)ψ−1(x)ψ−1(u+u−) dxdu−du+.

Now do the change of variables x 7→ x(ẇu+ẇ−1)−1. Then ψ−1(x) becomes ψ−1(x)ψ(ẇu+ẇ−1).
Since w ∈ B(G) then by Proposition 4.7 we have ψ(ẇu+ẇ−1) = ψ(u+). Then we are left
with

BG
ϕ (ẇa, f) =

∫

Uẇ\U+
w

∫

U−
w

∫

U

f(xẇau−)ϕ(tu− tu+w̃Mau
+u−)ψ−1(x)ψ−1(u−) dxdu−du+.

We can state this as the following lemma.

Lemma 5.5. Let w ∈ B(G) with w = wℓw
M
ℓ and a ∈ Aw. Then we can write

BG
ϕ (ẇa, f) =

∫

Uẇ\U+
w

[∫

U−
w

∫

U

f(xẇau−)ϕ(tu− tu+w̃Ma
′u+u−)ψ−1(x)ψ−1(u−) dxdu−

]
du+.

Suppose now that f ∈ C∞
c (Ωw;ωπ). Since C(w) is closed in Ωw, the support of f inter-

sected with C(w) will be compact mod Z. There will be open compact subgroups U1 ⊂ U
and U2 ⊂ U−

w such that the support of (x, u−) 7→ f(xẇau−) lies in U1 × U2 independent
of a ∈ Aw. Take ϕ = ϕN with N large enough depending on f such that for all g ∈ G,
ϕ(tu2gu2) = ϕ(g) for u2 ∈ U2 as in Lemma 4.3. Then BG

ϕ (ẇa, f) is really an integral over
U1 × U2 and for u− ∈ U2 we have

ϕ(tu−(tu+w̃Ma
′u+)u−) = ϕ(tu+w̃Mau

+)
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is independent of x and u−. Then this can come out of the inner two integrals. If we now let

ϕ̃GM(a′) =

∫

Uẇ\U+
w

ϕ(tu+w̃Ma
′u+) du+

we obtain the following lemma.

Lemma 5.6. Let w = wℓw
M
ℓ ∈ B(G) and f ∈ C∞

c (Ωw;ωπ). Then for a suitable ϕ, depending
on f as above, we have

BG
ϕ (ẇa, f) = ϕ̃GM(a′)

∫

U×U−
w

f(xẇau−)ψ−1(x)ψ−1(u−) dxdu− = ϕ̃GM(a′)BG(ẇa, f)

for a ∈ Aw = ZM .

We next investigate the coefficient of proportionality ϕ̃GM(a′) that occurs.

Lemma 5.7. Let w = wℓw
M
ℓ ∈ B(G). Then for a ∈ ZM , ϕ̃GM(a′) = 0 iff ϕ(w̃Ma

′) = 0.

Proof. By definition

ϕ̃GM(a′) =

∫

Uẇ\U+
w

ϕ(tu+w̃Ma
′u+) du+.

If we let OM = {m ∈ M | tmw̃Mm = w̃M} then we have U+
w = UM and, by the proof of

Lemma 5.2, Uẇ = OM ∩ UM .

Consider the map T : (OM ∩ UM )\UM → Matn(F ) given by u 7→ tuw̃Mu. This is a
polynomial map and hence continuous. If we then consider ϕ = ϕN so that ϕN is the
characteristic function of X(N), then X(N) is open and

ϕ̃GM(e) = V ol(OM∩UM )\UM
(T−1(X(N))) 6= 0.

The effect of multiplying by a′ ∈ A′
w = Z ′

M , where we write a′ = diag(In1 , a2In2 , . . . , atInt
),

is to scale the entries of T (u) by an appropriate ai. If we let ϕa′(x) = ϕ(a′x) for x ∈Matn(F )
then ϕa′ is the characteristic function of

Xa′(N) = {x ∈Matn(F ) | a
′x ∈ X(N)}.

Since Xa′(N) is still open, we have T−1(Xa′(N)) is open in (OM ∩ UM)\UM . Finally, T (u)
is of block form

T (u) =



T1(u1)

. . .
Tt(ut)


 with Ti(ui) =




0 1
. .
.

∗
±1 ∗ ∗




so that

a′T (u) =



a1T1(u1)

. . .
atTt(ut)


 with aiTi(ui) =




0 ai
. .
.

∗
±ai ∗ ∗
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and a1 = 1. So we see that ϕN(a
′T (u)) 6= 0 places conditions on a′ coming from the bounds

on the |ai| from the diagonal entries of the aiTi(ui). In fact we see that this condition is
equivalent to ϕN(w̃Ma

′) 6= 0. Combined this gives the computation

ϕ̃GM(a′) = ϕ(w̃Ma
′)V ol(OM∩UM )\UM

(T−1(Xa′(N))

so that

ϕ̃GM(a′) 6= 0 ⇐⇒ ϕ(w̃Ma
′) 6= 0.

�

This now gives the following result that will be important for what follows.

Lemma 5.8. Let w = wℓw
M
ℓ ∈ B(G). Given f ∈ C∞

c (Ωw;ωπ) and ϕ = ϕN so that Lemma
5.6 holds, then (enlarging N if necessary)

BG
ϕ (ẇa, f) 6= 0 ⇐⇒ BG(ẇa, f) 6= 0.

Proof. We first choose ϕ = ϕN so that Lemma 5.6 holds, i.e.,

BG
ϕ (ẇa, f) = ϕ̃GM(a′)BG(ẇa, f)

for a ∈ Aw. Then by Lemma 5.7 we have ϕ̃GM(a′) 6= 0 iff ϕ(w̃Ma
′) 6= 0.

Since f ∈ C∞
c (Ωw;ωπ) and

C(w) = UAU−
w = UẇZA′U−

w ≃ U × Z × A′ × U−
w

is closed in Ωw, we see that there are compact sets U1 ⊂ U , U2 ⊂ U−
w and K ′ ⊂ A′ such that

f(xẇau) 6= 0 implies x ∈ U1, u ∈ U2 and a = za′ with z ∈ Z and a′ ∈ K ′.

By the proof of Lemma 5.7 we know ϕ(w̃Ma
′) 6= 0 if a′ satisfies a system of inequalities

of the form |a′i| ≤ qNi depending on ϕ. Since a′ ∈ K ′, the absolute values entries |a′i| are
bounded above and below, and for N sufficiently large we will have |a′i| < qNi. Then we will
have ϕ(w̃Ma

′) 6= 0 for all a′ ∈ K ′ and thus ϕ̃GM(a′) 6= 0. Thus BG(ẇa, f) 6= 0 implies

BG
ϕ (ẇa, f) = ϕ̃GM(a′)BG(ẇa, f) 6= 0.

Since the other implication is elementary, we are done. �

5.4. Partial Bessel Integrals for M . In what follows we will also need partial Bessel
integrals on Levi subgroups M ⊂ G. We let C∞

c (M ;ωπ) be the smooth functions of compact
support on M which satisfy h(zm) = ωπ(z)h(m) for z ∈ Z = ZG; note that this is a
transformation under the center of G, not M . For m ∈M the twisted centralizer in UM is

UM,m = {u ∈ UM | tuw̃Mmu = w̃Mm}.

The partial Bessel integral on M is then

BM
ϕ (m, h) =

∫

UM,m\UM

∫

UM

h(xmu)ϕ(tuw̃Mm
′u)ψ−1(xu) dxdu

where m′ is obtained from m by “stripping off the center Z of G” as in Section 4.5,
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We wish to compare these integrals with the Bessel integrals on G. In what follows we let
w′ = wℓw

M
ℓ = wGM ∈ B(G). We begin with the following Lemma.

Lemma 5.9. f ∈ C∞
c (Ωw′;ωπ). Set

h(m) = hf (m) =

∫

U−

w′

∫

U−

(w′)−1

f(x−ẇ′mu−) dx−du−.

Then h ∈ C∞
c (M ;ωπ) and every such h can be obtained this way.

Proof. We have the decomposition Ωw′ = U−
(w′)−1 × ẇ′M × U−

w′. Since f is compactly sup-

ported on Ωw′ mod center, then there are compact subsets U1 ⊂ U−
(w′)−1 , U2 ⊂ U−

w′ such that

f(x−ẇ′mu−) 6= 0 implies x− ∈ U1 and u
− ∈ U2. Thus the integral converges. Since f is com-

pactly supported mod Z then there is also a compact set K ⊂M such that f(x−ẇmu−) 6= 0
implies m ∈ ZK. Hence h(m) 6= 0 only if m ∈ ZK, i.e, h is compactly supported mod Z.
The transformation under Z is preserved. Hence h ∈ C∞

c (M ;ωπ). The surjectivity follows
as in Jacquet [19]. �

The main result of this section is the following relation between the Bessel integrals for f
and h which are related in this way.

Proposition 5.2. Let f ∈ C∞
c (Ωw′ ;ωπ) and let h = hf ∈ C∞

c (M ;ωπ). Then for all ϕ = ϕN
with N sufficiently large and for every Levi L ⊂M ⊂ G we have

BG
ϕ (ẇ

G
La, f) = BM

ϕ (ẇML a, h)

for all a ∈ ZL.

We first need to compare the twisted centralizers that appear in the two Bessel integrals.

Lemma 5.10. Suppose we have a chain of Levi subgroups L ⊂ M ⊂ G with associated
Weyl elements wGL ∈ B(G) and wML ∈ B(M). Then the twisted centralizers agree, i.e.
UM,ẇM

L
a = UẇG

L
a for all a ∈ ZL.

Proof. From Lemma 5.4 we know that for a ∈ AwG
L
, UẇG

L
a = UẇG

L
⊂ U+

wG
L

= UL. So

UẇG
L
a = {u ∈ UL | tuw̃Lu = w̃L}.

Since UL ⊂ UM , the same calculation will give

UM,ẇM
L
a = {u ∈ UL | tuw̃Lu = w̃L}.

Hence UM,ẇM
L
a = UẇG

L
a for all a ∈ ZL. �

Proof of the Proposition. By definition, for a ∈ ZL,

BG
ϕ (ẇ

G
La, f) =

∫

U
ẇG
L
\U

∫

U

f(xẇGLau)ϕ(
tuw̃La

′u)ψ−1(xu) dxdu



42 J.W. COGDELL, F. SHAHIDI, AND T-L. TSAI

and

BM
ϕ (ẇML a, h) =

∫

U
ẇM
L

\UM

∫

UM

h(x′ẇML au
′)ϕ(tu′w̃La

′u′)ψ−1(x′u′) dx′du′.

Note that we have UẇG
L
= UẇM

L
⊂ UL ⊂ UM ⊂ U .

In BG
ϕ (ẇ

G
La, f), let us decompose the dx integration as x = x−x+ ∈ U = U−

(w′)−1U
+
(w′)−1

where w′ = wGM and the du integration as u = u+u− ∈ U = U+
w′U

−
w′. Recall that U+

w′ = UM
and U−

w′ = NM . Further write ẇGL = ẇGM ẇ
M
L = ẇ′ẇML . Then

f(xẇGLau) = f(x−x+ẇ′ẇML au
+u−) = f(x−ẇ′(x′ẇML au

′)u−)

with x′ ∈ U ′ = UM and u′ = u+ ∈ U ′ = UM .

Decomposing UẇG
L
\U = UẇM

L
\U as (UẇM

L
\UM)NM = (UẇM

L
\UM)U−

w′ , we can now write

BG
ϕ (ẇ

G
La, f) =

∫

U
ẇM
L

\UM×UM

[∫

U−

(w′)−1×U
−

w′

f(x−ẇ′(x′ẇML au
′)u−)ϕ(tu−(tu′w̃La

′u′)u−)ψ−1(x−u−) dx−du−

]

ψ−1(x′u′) dx−du−.

As we noted above, we have the decomposition Ωw′ = U−
(w′)−1 × ẇ′M × U−

w′ . Since f

is compactly supported on Ωw′ mod center, then there are compact subsets U1 ⊂ U−
(w′)−1 ,

U2 ⊂ U−
w′ such that f(x−ẇ′mu−) 6= 0 implies x− ∈ U1 and u− ∈ U2. If we then increase N

so that ϕ = ϕN is invariant under sufficiently large open compact subgroups of U−
w′, then we

will have

ϕ(tu−(tu′
M
w̃La

′u′)u−) = ϕ(tu′w̃La
′u′).

Then

BG
ϕ (ẇℓa, f) =
∫

U
ẇM
L

\U ′×U ′

[∫

U−

(w′)−1×U
−

w′

f(x−ẇ′(x′ẇML au
′)u−)ϕ(tu−(tu′w̃La

′u′)u−)ψ−1(x−u−) dx−du−

]

ψ−1(x′u′) dx′du′

=

∫

U
ẇM
L

\U ′×U ′

[∫

U−

(w′)−1×U
−

w′

f(x−w′(x′ẇML au
′)u−)ψ−1(x−u−)dx−du−

]
ϕ(tu′w̃La

′u′)

ψ−1(x′u′) dx′du′

=

∫

U
ẇM
L

\U ′×U ′

h(x′ẇML au
′)ϕ(tu′w̃La

′u′)ψ−1(x′u′) dx′du′

= BM
ϕ (ẇMℓ a, h

′).

which indeed establishes the desired equality. �
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5.5. Removing non-relevant cells. We return to consideration of Bessel integrals on G.
Whether analyzing the asymptotics of Bessel functions to establish the stability of γ-factors
or analyzing Shalika germs for orbital integrals, one proceeds Bruhat cell by Bruhat cell. We
expect non-zero contributions only from the relevant parts of the Bruhat cells that support
Bessel functions. Other cells should contribute nothing. We refer to this as “removing non-
relevant cells”. In this section we present a number of lemmas analyzing the contributions
of non-relevant cells.

5.5.1. Basic Lemma. We begin with our basic lemma:

Lemma 5.11 (Basic Lemma). Let f ∈ C∞
c (G;ωπ). Let U1 and U2 be compact open subsets

of U . Set

f ′(g) =
1

V ol(U1 × U2)

∫

U1×U2

f(u1gu2)ψ
−1(u1)ψ

−1(u2) du1du2.

Then for for appropriate ϕ, depending on U2, we have

BG
ϕ (g, f) = BG

ϕ (g, f
′)

for all g ∈ G

Proof: By definition

BG
ϕ (g, f

′) =

∫

Ug\U

∫

U

f ′(xgu)ϕ(tuẇ−1
ℓ g′u)ψ−1(x)ψ−1(u) dxdu

=
1

V ol(U1 × U2)

∫

Ug\U

∫

U

[∫

U1×U2

f(u1xguu2)ψ
−1(u1)ψ

−1(u2) du1du2

]

× ϕ(tuẇ−1
ℓ g′u)ψ−1(x)ψ−1(u) dxdu

We interchange integrations, justifiable since U1 and U2 are compact, to have

BG
ϕ (g, f

′) =
1

V ol(U1 × U2)

∫

U1×U2

[∫

Ug\U

∫

U

f(u1xguu2)ϕ(
tuẇ−1

ℓ g′u)ψ−1(x)ψ−1(u) dxdu

]

× ψ−1(u1)ψ
−1(u2) du1du2.

Now make the change of variables x 7→ u−1
1 x and u 7→ uu−1

2 . Note that this last change of
variables just permutes the cosets of the domain of integration Ug\U . Then ψ

−1(x) becomes
ψ(u1)ψ

−1(x) and ψ−1(u) becomes ψ−1(u)ψ(u2). The characters on the ui then cancel and
we are left with

BG
ϕ (g, f

′) =
1

V ol(U1 × U2)

∫

U1×U2

[∫

Ug\U

∫

U

f(xgu)ϕ(tu
−1
2

tuẇ−1
ℓ g′uu−1

2 )ψ−1(x)ψ−1(u) dxdu

]

× du1du2.

Since U2 is compact, by increasing the support of ϕ if necessary, we can assume that
ϕ(tu2ẇ

−1
ℓ g′u2) = ϕ(ẇ−1

ℓ g′) for all u2 ∈ U2 and g ∈ G by Lemma 4.3. In this case, the



44 J.W. COGDELL, F. SHAHIDI, AND T-L. TSAI

integrand is independent of u1 and u2, so that

BG
ϕ (g, f

′) =
1

V ol(U1 × U2)

∫

U1×U2

[∫

Ug\U

∫

U

f(xgu)ϕ(tuẇ−1
ℓ g′u)ψ−1(x)ψ−1(u) dxdu

]
du1du2

=

∫

Ug\U

∫

U

f(xgu)ϕ(tuẇ−1
ℓ g′u)ψ−1(x)ψ−1(u) dxdu

= BG
ϕ (g, f).

�

Remark. Since our sets Ωw, for w ∈ B(G), are open, we have C∞
c (Ωw;ωπ) ⊂ C∞

c (G;ωπ),
so the Basic Lemma 5.11 holds in this context as well.

5.5.2. Relevant torus to full torus. We fix an element w = wℓw
M
ℓ ∈ B(G), so a Weyl element

that supports a Bessel function. We have

Ωw =
∐

w≤w′

C(w′)

an open set in G. Then C(w) = UwAU is closed in Ωw. Since any two choices of representa-
tives of w differ by an element of A, C(w) is independent of the choice of representative. Let
Cr(ẇ) = UẇAwU be the relevant part of the cell C(w). Since two choices of representatives
for w may not differ by an element of Aw, this now depends on a choice of representative.
Cr(ẇ) is closed in C(w), being defined by the closed conditions of αi(a) = 1 for certain
simple roots αi, and hence in Ωw. Let Ω′

ẇ = Ωw − Cr(ẇ), the complement in Ωw of the
relevant part of the cell. The following is the analogue of Jacquet’s Lemma 2.2 in [19] for
our partial Bessel integrals.

Lemma 5.12. Let f ∈ C∞
c (Ωw;ωπ). Suppose BG

ϕ (ẇa, f) = 0 for all a ∈ Aw. Then there
exists f0 ∈ C∞

c (Ω′
ẇ;ωπ) such that, for all sufficiently large ϕ depending only on f , we have

BG
ϕ (g, f) = BG

ϕ (g, f0) for all g ∈ G.

Proof. We have

0 −→ C∞
c (Ω′

ẇ;ωπ) −→ C∞
c (Ωw;ωπ) −→ C∞

c (Cr(ẇ);ωπ) −→ 0.

The Bessel integral is given by

BG
ϕ (ẇa, f) =

∫

Uẇa\U

∫

U

f(xẇau)ϕ(tuw̃Ma
′u)ψ−1(x)ψ−1(u) dxdu.

Let us write C(w) = UwAU as C(w) = UẇZA′U−
w , where U

−
w = {u ∈ U | wuw−1 ∈ U−}. In

this decomposition we have uniqueness of expression, and in fact U × Z ×A′ ×U−
w → C(w)

is a homeomorphism. Since f ∈ C∞
c (Ωw;ωπ) and C(w) is closed in Ωw, there are compact

subgroups U1 ⊂ U and U−
2 ⊂ U−

w such that for every a ∈ A the map (x, u) 7→ f(xẇau) is
supported in U1 × U−

2 .



EXTERIOR AND SYMMETRIC SQUARE ε–FACTORS 45

Now let us apply Lemma 5.6. Then we have, for a ∈ Aw,

BG
ϕ (ẇa, f) = ϕ̃GM(a′)

∫

U×U−
w

f(xẇau−)ψ−1(x)ψ−1(u−) dxdu−.

Then from our hypotheses and Lemma 5.8, we can conclude that
∫

U1×U
−
2

f(xẇau−)ψ−1(x)ψ−1(u−) dxdu− =

∫

U×U−
w

f(xẇau−)ψ−1(x)ψ−1(u−) dxdu− = 0.

Let U+
2 ⊂ U+

w be an open compact subgroup such that ẇU+
2 ẇ

−1 ⊂ U1. Let U2 = U+
2 U

−
2 ⊂

U . Let

f0(g) =
1

V ol(U1 × U2)

∫

U1×U2

f(u1gu2)ψ
−1(u1)ψ

−1(u2) du1du2.

Then f0 ∈ C∞
c (Ωw;ωπ). Suppose g = ẇa with a ∈ Aw. Then setting u2 = u+2 u

−
2 , conjugating

u+2 past ẇa, and doing a change of variable in u1 we obtain

f0(ẇa) =
1

V ol(U1 × U2)

∫

U+
2

∫

U−
2

∫

U1

f(u1ẇau
+
2 u

−
2 )ψ

−1(u1)ψ
−1(u+2 u

−
2 ) du1du

−
2 du

+
2

=
1

V ol(U1 × U2)

∫

U+
2

∫

U−
2

∫

U1

f(u1ẇau
−
2 )ψ

−1(u1)ψ(ẇu
+
2 ẇ

−1)ψ−1(u+2 u
−
2 ) du1du

−
2 du

+
2 .

Since w supports a Bessel function, then as in Proposition 4.7, ψ(ẇu+2 ẇ
−1) = ψ(u+2 ). Hence

the characters cancel and the integrand is independent of u+2 . Thus we have

f0(ẇa) =
V ol(U+

2 )

V ol(U1 × U2)

∫

U−
2

∫

U1

f(u1ẇau
−
2 )ψ

−1(u1)ψ
−1(u−2 ) du1du

−
2 = 0.

As in Jacquet [19], one can extend this to show that f0 vanishes on all of Cr(ẇ), so in
fact f0 ∈ C∞

c (Ω′
ẇ) by the above exact sequence. The method Jacquet uses is to assume

that say u′ ∈ U . Then if f0(u
′ẇa) 6= 0 then for some u1 ∈ U1 and u−2 ∈ U−

w we must
have f(u1u

′ẇau−u ) 6= 0 in the integrand of f0. But from our assumption on the support
of f this implies that u1u

′ ∈ U1 and since U1 was a subgroup of U , u′ ∈ U1. Hence we
can perform a change of variables to obtain f0(u

′ẇa) = ψ(u′)f(aẇ) = 0, contradiction.
Hence f0(u

′ẇa) = 0. One does the same argument for any u−
′
∈ U−

w on the right. Hence
f0(u

′ẇau−
′
) = 0 for all u ∈ U , u−

′
∈ U−

w and a ∈ Aw.

Finally we can apply the Basic Lemma 5.11 to conclude BG
ϕ (g, f) = BG

ϕ (g, f0). �

We now want to extend from Cr(ẇ) to C(w), that is, from the relevant torus to the full
torus. This is the analogue of Jacquet’s Lemma 2.3 in [19]. We now consider C(w) as a
closed set in Ωw and take Ω◦

w = Ωw − C(w).

Lemma 5.13. Let f ∈ C∞
c (Ωw;ωπ). Suppose BG

ϕ (ẇa, f) = 0 for all a ∈ Aw. Then there
exists f0 ∈ C∞

c (Ω◦
w;ωπ) such that, for all sufficiently large ϕ depending only on f , we have

BG
ϕ (g, f) = BG

ϕ (g, f0) for all g ∈ Ωw.
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Proof: By Lemma 5.12 we can assume that f vanishes on Cr(ẇ), i.e., f ∈ C∞
c (Ω′

ẇ;ωπ).

Since f is compactly supported (mod Z) on Ωw and C(w) is closed in Ωw, f will be com-
pactly supported on C(w) mod Z. Since we can write C(w) = UẇZA′U−

w with uniqueness
of expression, then there are compact subgroups U1 ⊂ U , U−

2 ⊂ U−
w and K ′ ⊂ A′ such that

if f(uẇza1u
−) = ωπ(z)f(uẇa1u

−) 6= 0 then u ∈ U1, u
− ∈ U−

2 and a′ ∈ K ′. Moreover, since
we can (and have) assume f vanishes on Cr(ẇ), then there is c > 0 such that for all a′ ∈ K ′

there exists at least one simple root α in M such that |α(a′) − 1| ≥ c (since Aw = ZM , the
center of M).

Take U+
2 ⊂ U+

w a large enough compact open subgroup such that the character

u+2 7→ ψ(ẇa′u+2 (a
′)−1ẇ−1(u+2 )

−1)

is non-trivial on U+
2 for all a′ ∈ K ′, so that

∫

U+
2

ψ(ẇa′u2(a
′)−1ẇ−1u−1

2 ) du+2 = 0.

Note that since w supports a Bessel function, then every simple root space in U+
w remains

simple upon conjugation by ẇ, and since a′ ∈ K ′ there is a simple root of M such that
|α(a′) − 1| ≥ c. Hence the character above is non-trivial for large enough U+

2 . Enlarge U−
2

if necessary so that it is normalized by U+
2 and take U2 = U+

2 U
−
2

Let us take U1 to be decomposable, that is, of the form U1 = U−
1 U

+
1 with U−

1 a compact
subgroup of U−

w and U+
1 a compact subgroup of U+

w such that U+
1 normalizes U−

1 . Enlarge
U+
1 to be a large enough compact open subgroup that (a′)−1U+

2 a
′ ⊂ U+

1 for all a′ ∈ K ′. Then
enlarge U−

1 if necessary to be normalized by U+
1 so that U1 = U−

1 U
+
1 is an enlarged compact

open subgroup of U .

Define f1 on Ωw by

f1(g) =

∫

U2

∫

U1

f(u1gu2)ψ
−1(u1u2) du1du2.

We now claim that

f1(ẇa) =

∫

U2

∫

U1

f(u1ẇau2)ψ
−1(u1u2) du1du2 = 0

for all a ∈ A. If we first write a = za′ with z ∈ Z and a′ ∈ A′ we have f1(ẇa) = f1(ẇza
′) =

ωπ(z)f1(ẇa
′). So it is enough to consider f1(ẇa

′). Decompose U2 = U+
2 U

−
2 as above. Then

f1(ẇa
′) =

∫

U+
2

∫

U−
2

∫

U1

f(u1ẇa
′u+2 u

−
2 )ψ

−1(u1u
+
2 u

−
2 ) du1du

−
2 du

+

=

∫

U+
2

∫

U−
2

∫

U1

f(u1(ẇa
′u+2 (a

′)−1ẇ−1)ẇa′u−2 )ψ
−1(u1u

+
2 u

−
2 ) du1du

−
2 du

+.
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If f(u1(ẇa
′u+2 (a

′)−1ẇ−1)ẇa′u−2 ) 6= 0, then u1(ẇa
′u+2 (a

′)−1ẇ−1) ∈ U1 and a′ ∈ K ′. Once
a′ ∈ K ′ we have ẇa′u+2 (a

′)−1ẇ−1 ∈ U+
1 ⊂ U1. So we can change variables to obtain

f1(ẇa
′) =

∫

U+
2

∫

U−
2

∫

U1

f(u1ẇa
′u−2 )ψ

−1(u1u
+
2 u

−
2 )ψ(ẇa

′u+2 (a
′)−1ẇ−1) du1du

−
2 du

+

=

∫

U+
2

ψ(ẇa′u+2 (a
′)−1ẇ−1)ψ−1(u+2 ) du

+
2

∫

U−
2

∫

U1

f(u1ẇa
′u−2 )ψ

−1(u1u
−
2 ) du1du

−
2 .

Since a′ must be in K ′, as we have seen, then the first integral vanishes by our choice of U+
2 .

We now need to extend this vanishing to all of C(w). As above we can reduce to a′ ∈ A′.
Suppose f1(uẇa

′) 6= 0 for some u ∈ U and a′ ∈ A′. Then as above

f1(uẇa
′) =

∫

U+
2

∫

U−
2

∫

U1

f(u1uẇa
′u+2 u

−
2 )ψ

−1(u1u
+
2 u

−
2 ) du1du

−
2 du

+

=

∫

U+
2

∫

U−
2

∫

U1

f(u1u(ẇa
′u+2 (a

′)−1ẇ−1)ẇa′u−2 )ψ
−1(u1u

+
2 u

−
2 ) du1du

−
2 du

+.

The integrand is identically zero unless a′ ∈ K ′ by our choice of K ′. Then ẇa′u+2 (a
′)−1ẇ−1 ∈

U+
1 ⊂ U1. If f1(uẇa

′) 6= 0 then there must be a choice of u1 ∈ U1 and u2 ∈ U2 so that

f(u1uẇa
′u2) = f(u1uẇa

′u+2 u
−
2 ) = f(u1u(ẇa

′u+2 (a
′)−1ẇ−1)ẇa′u−2 ) 6= 0.

This implies that a′ ∈ K ′ and u1u(ẇa
′u+2 (a

′)−1ẇ−1) ∈ U1. But as U1 is a subgroup and u1
and now ẇa′u+2 (a

′)−1ẇ−1 ∈ U1 then u ∈ U1. Then returning to the basic definition of f1
we see f1(uẇa

′) = ψ(u)f1(ẇa
′) = 0, a contradiction. Hence f1(uẇa

′) = 0 for all u ∈ U and
a′ ∈ A′.

Next consider u′ ∈ U−
w and suppose there are u ∈ U and a′ ∈ A′ so that f1(uẇa

′u′) 6= 0.
Since U+

w normalizes U−
w , we can write f1(uẇa

′u′) as

f1(uẇa
′u′) =

∫

U+
2

∫

U−
2

∫

U1

f(u1uẇa
′u′u+2 u

−
2 )ψ

−1(u1u
+
2 u

−
2 ) du1du

−
2 du

+

=

∫

U+
2

∫

U−
2

∫

U1

f(u1u(ẇa
′u+2 (a

′)−1ẇ−1)ẇa′((u+2 )
−1u′u+2 )u

−
2 )ψ

−1(u1u
+
2 u

−
2 ) du1du

−
2 du

+.

For the integrand to be non-vanishing we must have a′ ∈ K ′ and ((u+2 )
−1u′u+2 )u

−
2 ∈ U−

2 .
Since U−

2 is a subgroup, this implies that (u+2 )
−1u′u+2 ∈ U−

2 , and since this is normalized by
U+
2 , this forces u

′ ∈ U+
2 . Regardless, once (u

+
2 )

−1u′u+2 ∈ U−
2 , we can do a change of variables

in the U−
2 integral to obtain

f1(uẇa
′u′) =

∫

U+
2

∫

U−
2

∫

U1

f(u1u(ẇa
′u+2 (a

′)−1ẇ−1)ẇa′u−2 )ψ
−1(u1u

+
2 u

−
2 )ψ((u

+
2 )

−1u′u+2 ) du1du
−
2 du

+.

= ψ(u′)f1(uẇa) = 0

This is a contradiction. Hence f1(uẇa
′u′) = 0 for all u ∈ U , a′ ∈ A′, and u′ ∈ U−

w , that is,
f1(g) = 0 for all g ∈ C(w).
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Now we let

f0(g) =
1

V ol(U1 × U2)
f1(g) =

1

V ol(U1 × U2)

∫

U2

∫

U1

f(u1gu2)ψ
−1(u1u2) du1du2

for g ∈ Ωw. Then f0 ∈ C∞
c (Ωw;ωπ) and f0 vanishes on C(w), which is closed in Ωw. Hence by

the usual exact sequence, f0 ∈ C∞
c (Ω◦

w;ωπ). By our Basic Lemma 5.11, BG
ϕ (g, f) = BG

ϕ (g, f0)
for all g ∈ Ωw. Hence we are done. �

5.5.3. Removing non-relevant cells. This is the analogue of Jacquet’s Lemma 2.4 in [19] for
our partial Bessel integrals.

Lemma 5.14. Let w = wℓw
M
ℓ ∈ B(G). Let Ωw,0 and Ωw,1 be U × U and A-invariant open

sets of Ωw such that Ωw,0 ⊂ Ωw,1 and Ωw,1 −Ωw,0 is a union of Bruhat cells C(w′) such that
w′ does not support a Bessel function, i.e., w′ /∈ B(G). Then for any f1 ∈ C∞

c (Ωw,1;ωπ)
there exists f0 ∈ C∞

c (Ωw,0;ωπ) such that, for all sufficiently large ϕ depending only on f1,
we have BG

ϕ (g, f0) = BG
ϕ (g, f1) for all g ∈ G.

Proof: Since Ωw is a finite union of Bruhat cells, we can find an increasing union

Ωw,0 = Ω′
w0

⊂ Ω′
w,1 ⊂ · · · ⊂ Ω′

w,r = Ωw,1

such that each Ω′
w,i+1 −Ω′

w,i is a single Bruhat cell C(w′
i) with w

′
i /∈ B(G) and C(w′

i) closed
in Ω′

w,i+1. So, by induction, we can reduce to proving the assertion for a single pair, that is,
we can assume

Ωw,1 − Ωw,0 = C(w′)

with w′ /∈ B(G) and C(w′) closed in Ωw,1.

Since C(w′) is closed in Ωw,1 and f1 has compact support mod Z there, then f1 has
compact support mod Z on C(w′). Since U ×U−

w′ ×Z ×A′ is homeomorphic to C(w′), there
is a compact subset K ′ ⊂ A′ and compact open subgroups U1 ⊂ U and U−

2 ⊂ U−
w′ such that

f1(uẇ
′u−za′) 6= 0 implies u ∈ U1, u

− ∈ U−
w′ and a′ ∈ K ′. Let Ũẇ′a be the stabilizer of ẇ′a in

U × U , that is, Ũẇ′a = {(u1, u2) ∈ U × U | u1ẇ
′au2 = ẇ′a}. Note that U acts on U × U on

the left by left multiplication in the first factor and on the right by right multiplication in
the second factor.

Suppose f1(u1ẇ
′u2a

′) 6= 0 with ui ∈ U and a′ ∈ A′. Write u2 = u+2 u
−
2 with u±2 ∈ U±

w′.
Then f1(u1ẇ

′u2a
′) = f1(u1(ẇ

′u+2 ẇ
′−1)ẇ′u−2 a

′). If this is non-zero, then

u1(ẇ
′u+2 ẇ

′−1) ∈ U1, u−2 ∈ U−
2 , and a′ ∈ K ′.

If we write u1 = u′1(ẇ
′u+2 ẇ

′−1)−1, then u1(ẇ
′u+2 ẇ

′−1) = u′1 ∈ U1. Note that the pair

((ẇ′u+2 ẇ
′−1)−1, u+2 ) ∈ Ũẇ′. So we have that f1(u1ẇ

′u2a
′) 6= 0 implies that

(u1, u2) ∈ U1 · Ũẇ′ · U−
2 and a′ ∈ K ′.

Let us thicken U−
2 to a subgroup of U as follows. Let U+

2 = {u+ ∈ U+
w′ | w′u+w′−1 ∈ U1} =

U+
w′ ∩ w′−1U1w

′. This is a compact open subgroup of U+
w′. Enlarge U−

2 if necessary so that
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U+
2 normalizes U−

2 and let U2 = U+
2 U

−
2 , a compact open subgroup of U . We still have that

f1(u1ẇ
′u2a

′) 6= 0 implies (u1, u2) ∈ U1 · Ũẇ′ · U2 and a′ ∈ K ′.

Then if we consider f1(u1ẇ
′a′u2) = f1(u1ẇ

′(a′u2(a
′)−1)a′), then we see that this being non-

zero implies

(u1, (a
′u2(a

′)−1)) ∈ U1 · Ũẇ′ · U2 and a′ ∈ K ′.

Now, (u1, u2) ∈ Ũẇ′a′ iff (u1, (a
′u2(a

′)−1)) ∈ Ũẇ′. So we have

f1(u1ẇ
′a′u2) 6= 0 implies (u1, u2) ∈ U1 · Ũẇ′a′ · (a

′)−1U2a
′ and a′ ∈ K ′.

Since K ′ is compact, we can enlarge U2 to a compact open and decomposable U ′
2 = U ′

2
+U ′

2
−

such that for all a′ ∈ K ′ we have (a′)−1U2a
′ ⊂ U ′

2. Then we have

f1(u1ẇ
′a′u2) 6= 0 implies (u1, u2) ∈ U1 · Ũẇ′a′ · U

′
2 and a′ ∈ K ′

with both U1 and U ′
2 compact and open in U .

We now come to the construction of f0. Since w
′ does not support a Bessel function, there

is a positive root α such that w′α is positive but not simple. If Uα is the unipotent root
subgroup associated to α, then necessarily Uα ⊂ U+

w′ and ψ is non-trivial on Uα but not on

w′Uαw
′−1. Enlarge U ′

2 if necessary, still keeping it decomposable, so that ψ is non-trivial on
Uα ∩U

′
2 = Uα ∩ U

′
2
−. Then enlarge U1 to U ′

1 if necessary so that if for some a′ ∈ K ′ we have

(u1, u2) ∈ Ũẇ′a′ and u2 ∈ U ′
2 then u1 ∈ U ′

1.

Now consider f ′
0 defined on Ωw′,1 by

f ′
0(g) =

∫

U ′
2

∫

U ′
1

f1(u1gu2)ψ
−1(u1u2) du1du2.

Consider f ′
0(ẇ

′a′) for a′ ∈ A′. We have

f ′
0(ẇ

′a′) =

∫

U ′
2

∫

U ′
1

f1(u1ẇ
′a′u2)ψ

−1(u1)ψ
−1(u2) du1du2.

Note that if a′ /∈ K ′, the integrand vanishes identically. So we may assume a′ ∈ K ′. Now let
u′2 ∈ Uα ∩ U

′
2 such that ψ(u′2) 6= 0. Then

ψ(u′2)f
′
0(ẇ

′a′) = ψ(u′2)

∫

U ′
2

∫

U ′
1

f1(u1ẇ
′a′u2)ψ

−1(u1)ψ
−1(u2) du1du2

=

∫

U ′
2

∫

U ′
1

f1(u1ẇ
′a′u2)ψ

−1(u1)ψ
−1((u′2)

−1u2) du1du2

=

∫

U ′
2

∫

U ′
1

f1(u1ẇ
′a′u′2u2)ψ

−1(u1)ψ
−1(u2) du1du2

=

∫

U ′
2

∫

U ′
1

f1(u1(ẇ
′a′u′2(a

′)−1ẇ′−1)ẇ′a′u2)ψ
−1(u1)ψ

−1(u2) du1du2.
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Since u′2 ∈ U ′
2, we have that ẇ′a′u′2(a

′)−1ẇ′−1 ∈ U ′
1. So we can again change variables and

obtain

ψ(u′2)f
′
0(ẇ

′a′) =

∫

U ′
2

∫

U ′
1

f1(u1(ẇ
′a′u′2(a

′)−1ẇ′−1)ẇ′a′u2)ψ
−1(u1)ψ

−1(u2) du1du2

=

∫

U ′
2

∫

U ′
1

f1(u1ẇ
′a′u2)ψ

−1(u1)ψ(ẇ
′a′u′2(a

′)−1ẇ′−1)ψ−1(u2) du1du2

= ψ(ẇ′a′u′2(a
′)−1ẇ′−1)

∫

U ′
2

∫

U ′
1

f1(u1ẇ
′a′u2)ψ

−1(u1)ψ
−1(u2) du1du2.

By our choice of α, we know that since u′2 ∈ Uα that ẇ′a′u′2(a
′)−1ẇ′−1 ∈ w′Uαw

′−1 which is
a positive but non-simple root subgroup. Thus ψ(ẇ′a′u′2(a

′)−1ẇ′−1) = 1. Thus

ψ(u′2)f
′
0(ẇ

′a′) =

∫

U ′
2

∫

U ′
1

f1(u1ẇ
′a′u2)ψ

−1(u1)ψ
−1(u2) du1du2.

= f ′
0(ẇ

′a1).

Since ψ(u′2) 6= 1 we conclude that f ′
0(ẇ

′a′) = 0, as desired.

Now consider f ′
0 on the full cell C(w′). Let g = u′1ẇ

′za′u′2 with u′1 ∈ U , u′2 ∈ U−
w′ and

a′ ∈ A′. Suppose f ′
0(g) = ωπ(z)f

′
0(u

′
1ẇ

′a′u′2) 6= 0. Then, from the definition of f ′
0 there

exist u1 ∈ U ′
1 and u2 ∈ U ′

2 such that f0(u1u
′
1ẇ

′a′u′2u2) 6= 0. From our previous analysis, this
implies that

a′ ∈ K ′ and (u1u
′
1, u

′
2u2) ∈ U ′

1 · Ũẇ′a′ · U
′
2.

Since U ′
1 and U ′

2 are groups, this last condition is equivalent to

(u′1, u
′
2) ∈ U ′

1 · Ũẇ′a′ · U
′
2.

So we can write (u′1, u
′
2) = (u01v1, v2u

0
2) where (v1, v2) ∈ Ũẇ′a′ and u

0
i ∈ U ′

i . Thus we have

f ′
0(u

′
1ẇ

′a′u′2) = f ′
0(u

0
1v1ẇ

′a′v2u
0
2) = f ′

0(u
0
1ẇ

′a′u02).

Since now u0i ∈ U ′
i we can perform a change of variables and arrive at

f ′
0(u

′
1ẇ

′a′u′2) = ψ(u01u
0
2)f

′
0(ẇ

′a′).

But as we showed above, f ′
0(ẇ

′a′) = 0 for all a′ ∈ A′. This is a contradiction. Thus f ′
0(g) = 0

for all g ∈ C(w′).

Now let

f0(g) = V ol(U ′
1 × U ′

2)
−1f ′

0(g)

for g ∈ G (actually g ∈ Ωw,1 ⊂ Ωw ⊂ G since f1 is only supported in Ωw,1). By the above
analysis, we have f0 ∈ C∞

c (Ωw,1;ωπ) and f0 vanishes on C(w
′). Since C(w′) is closed in Ωw,1

and Ωw,1 − C(w′) = Ωw,0 we have that f0 ∈ C∞
c (Ωw,0;ωπ).

By our Basic Lemma 5.11, for appropriate choice of ϕ depending only on f1 through U ′
2 ,

we have BG
ϕ (g, f0) = BG

ϕ (g, f1) for all g ∈ G. This finishes Lemma 5.14. �
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5.6. Supecuspidal stability for GLn, I: Small cell analysis. As noted above, to analyze
the asymptotics of Bessel integrals or orbital integrals, one analyses the contributions from
each relevant cell inductively, beginning with the smallest cell. In this section we analyze
the small cell contributions to these asymptotics both on G and, for induction purposes, on
M . Since our functions f always transform by a character of the center Z of G, the small
cells for G and M will behave a bit differently and require separate analysis.

We begin with f ∈ M(π) ⊂ C∞
c (G;ωπ) such that W f(e) = 1.

5.6.1. The contribution of the small cell of G. Considering e was a Weyl group element, we
have Me = G, Ae = ZG = Z, and U+

e = U . Also Ωe =
∐

e≤w′ C(w′) = G. If we view e
as a Weyl group element then our choice of representative is simply ė = In. Since our f
transforms under Z = Ae by the central character of π, the small cell is special and must be
dealt with separately first.

Proposition 5.3. Let f0 ∈ C∞
c (Gωπ) with W f0(e) = 1. For each f ∈ C∞

c (G;ωπ) with
W f(e) = 1 and for each w′ ∈ B(G) with dB(e, w

′) = 1 there exists a function fw′ ∈
C∞
c (Ωw′;ωπ) such that for any w ∈ B(G) we have

BG
ϕ (ẇa, f) =

∑

w′

BG
ϕ (ẇa, fw′) +

∑

a=bc

ωπ(c)B
G
ϕ (ẇb, f0)

for all a ∈ Aw. Here a = bc runs over the possible decompositions of a with b ∈ Aew and
c ∈ Ae = Z.

Proof. By definition, for a ∈ Ae = Z, we have a′ = e and

BG
ϕ (ėa, f) = BG

ϕ (a, f) = ωπ(a)

∫

Ue\U

∫

U

f(xu)ϕ(tuw̃Gu)ψ
−1(x)ψ−1(u) dxdu

= ωπ(a)

∫

Ue\U

ϕ(tuw̃Gu) du

∫

U

f(x)ψ−1(x) dx

= ωπ(a)ϕ̃
G
G(e)W

f(e) = ωπ(a)ϕ̃
G
G(e).

We have defined

BG(ẇa, f) =

∫

U−
w

∫

U

f(xẇau−)ψ−1(x)ψ−1(u−) dxdu−

for a ∈ Aw and f ∈ C∞
c (Ωw;ωπ). This is a pure Bessel integral, not a partial one. For w = e

we have U−
e = {e} and the integral becomes

BG(ėa, f) =

∫

U

f(xa)ψ−1(x) dx = ωπ(a)W
f(e) = ωπ(a).

We have fixed an auxiliary function f0 ∈ C∞
c (G;ωπ) with W f0(e) = 1. From f0 we will

construct a second auxiliary function f1 ∈ C∞
c (G;ωπ) having the same Bessel integrals as f

on the small cell following Jacquet [19]. To define f1 we need to decompose G into Gd and
Ae. By definition Gd = SLn(F ). By an elementary observation, given g ∈ GLn(F ) there
are only finitely many decompositions g = g1c with g1 ∈ Gd and c ∈ Z and they differ by
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elements in Aee. We observe that Aee is finite, and in fact consists of the diagonal matrices
whose entries are nth– roots of unity. There will be no such decompositions if det(g) /∈ F×,n.
We now set

f1(g) =
∑

g=g1c

f0(g1)B
G(ėc, f) =

∑

g=g1c

f0(g1)ωπ(c).

Note that if det(g) is not a nth-power in F× then f1(g) = 0. Then f1 ∈ C∞
c (G;ωπ), the

subgroup of elements whose determinant is a nth-power being open in G.

Lemma 5.15. BG
ϕ (ėa, f1) = BG

ϕ (ėa, f) for all a ∈ Ae = Z.

Proof. Since f1 ∈ C∞
c (G;ωπ) then we know that as above

BG
ϕ (ėa, f1) = ϕ̃GG(e)ωπ(a)W

f1(e).

But we have

W f1(e) =

∫

U

f1(x)ψ
−1(x) dx.

To compute this we must decompose x ∈ U into x = g1c with g1 ∈ Gd and c ∈ Z. But now
we have a unique such decomposition, namely g1 = x and c = e. So f1(x) = f0(x) and since
W f0(e) = 1, we have BG

ϕ (ėa, f1) = ϕ̃Ge (e)ωπ(a) = BG
ϕ (ėa, f) for all a ∈ Z. �

We now have BG
ϕ (ėa, f − f1) = 0 for all a ∈ Ae. We can begin to apply our non-relevant

cell lemmas. We have Cr(ė) = ZU ⊂ C(e) = AU and Ω◦
e = Ωe − C(e) = G− AU . Then by

Lemma 5.13 there is f ′
2 ∈ C∞

c (Ω◦
e;ωπ) such that BG

ϕ (g, f − f1) = BG
ϕ (g, f

′
2) for all g ∈ G.

We next want to apply Lemma 5.14 to move up to the next cells that support Bessel
functions. To that end, in the notation of Lemma 5.14, we let

Ω1 =
⋃

w∈B(G)
w 6=e

Ωw =
⋃

w′∈B(G)

dB(w′,e)=1

Ωw′ and Ω0 = Ω◦
e = G− C(e).

Then by Lemma 5.14 there exists f2 ∈ C∞
c (Ω1;ωπ) such that for an appropriate ϕ we have

BG
ϕ (g, f2) = BG

ϕ (g, f
′
2) = BG

ϕ (g, f − f1)

for all g ∈ G. This can also then be written as

BG
ϕ (g, f) = BG

ϕ (g, f1) +BG
ϕ (g, f2)

for all g ∈ G. Following Jacquet [19], we then use a partition of unity argument to write

f2 =
∑

fw′ with fw′ ∈ C∞
c (Ωw′;ωπ).

Therefore, for any w ∈ B(G) we will have

BG
ϕ (ẇa, f) = BG

ϕ (ẇa, f1) +
∑

dB(w′,e)=1

BG
ϕ (ẇa, fw′)

for a ∈ Aw.

So we are left with analyzing BG
ϕ (ẇa, f1). Since w ∈ B(G) we can write w = wℓw

L
ℓ for

some Levi subgroup L ⊂ G. Then w = wGL and a ∈ Aw = ZL.
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By definition

BG
ϕ (ẇa, f1) =

∫

Uẇa\U

∫

U

f1(xẇau)ϕ(
tuw̃La

′u)ψ−1(x)ψ−1(u) dxdu.

Since a ∈ Aw we have Uẇa = Uẇ, so

BG
ϕ (ẇa, f1) =

∫

Uẇ\U

∫

U

f1(xẇau)ϕ(
tuw̃La

′u)ψ−1(x)ψ−1(u) dxdu

and by Lemma 5.5 we can write this as

BG
ϕ (ẇa; f1) =

∫

Uẇ\U+
w

[∫

U−
w

∫

U

f1(xẇau
−)ϕ(tu− tu+w̃La

′u+u−)ψ−1(x)ψ−1(u−) dxdu−
]
du+.

To insert our definition of f1 we must decompose

xẇau− = g1c

with g1 ∈ Gd and c ∈ Ae = Z. Following Jacquet, write this as

g1 = xẇau−c−1 = xẇac−1u−

using that c ∈ Z. Since g1 ∈ Gd we have

1 = det(g1) = det(xẇac−1u−) = det(ac−1).

By definition, this says b = ac−1 ∈ Aew = SLn(F )∩ZL. So g1 = xẇbu with b ∈ Aew such that
a = bc. Thus

f1(xẇau
−) =

∑

a=bc

f0(xẇbu
−)ωπ(c).

For the following computation, note that since c ∈ Z, if we decompose Aw = ZA′
w so that

the first entry of the elements of A′
w is 1 then a′ = (bc)′ = b′.

If we insert this expression for f1 into our formula for BG
ϕ (ẇa, f1) we obtain

BG
ϕ (ẇa, f1) =

∫

Uẇ\U

∫

U

f1(xẇau)ϕ(
tuw̃La

′u)ψ−1(x)ψ−1(u) dxdu

=

∫

Uẇ\U+
w

[∫

U×U−
w

f1(xẇau
−)ϕ(tu− tu+w̃La

′u+u−)ψ−1(x)ψ−1(u−) dxdu−
]
du+

=

∫

Uẇ\U+
w

[∫

U×U−
w

∑

a=bc

f0(xẇbu
−)ωπ(c)ϕ(

tu− tu+w̃La
′u+u−)ψ−1(x)ψ−1(u−) dxdu−

]
du+

=
∑

a=bc

ωπ(c)

∫

Uẇ\U+
w

[∫

U×U−
w

f0(xẇbu
−)ϕ(tu− tu+w̃Lb

′u+u−)ψ−1(x)ψ−1(u−) dxdu−
]
du+

=
∑

a=bc

ωπ(c)

∫

Uẇ\U

∫

U

f0(xẇbu)ϕ(
tuw̃Lb

′u)ψ−1(x)ψ−1(u) dxdu

=
∑

a=bc

ωπ(c)B
G
ϕ (ẇb, f0).

This completes the proof of Proposition 5.3. �
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The last term in the expression in Proposition 5.3 depends only on π through ωπ and
otherwise depends only on the auxiliary function f0. So, in the proof of stability, these terms
will always be the same for π1 and π2 as long as ωπ1 = ωπ2 and we take the same auxiliary
function f0.

5.6.2. The contribution of the small cell of M . Take M the Levi of a proper parabolic
subgroup PM = MNM of G = GLn corresponding to the partition (n1, . . . , nt) of n. So
M ≃ GLn1 × · · · ×GLnt

and can be viewed as block diagonal matrices

M =



m =



m1

. . .
mt





 ≃ GLn1 × · · · ×GLnt

.

Let w′ = wℓw
M
ℓ be the corresponding element of B(G). Then

Aw′ = ZM =







a1In1

. . .

atInt





 ≃ GLt1.

We have UM = U+
w′ .

We begin with h ∈ C∞
c (M ;ωπ) where the ωπ is a character of the center Z of G, not that

of M .

We begin with the small cell of M . We have Md = SLn1(F )× · · · × SLnt
(F ) and Aw

′

w′ =
ZM ∩Md. Aw

′

w′ is finite and consists of nthi roots of unity in the ith block of M .

We take h0 ∈ C∞
c (M ;ωπ) such that BM (ėM , h0) = BM(ė, h0) =

1
κM

, where κM = |Z∩Aw
′

w′|,

and BM(b, h0) = 0 for b ∈ Aw
′

w′ and b /∈ Z ∩Aw
′

w′. Note that

BM(ė, h0) =

∫

U−
M,e

∫

UM

h0(xu
−)ψ−1(x)ψ−1(u−) dxdu− =

∫

UM

h0(x)ψ
−1(x) dx =W h0(e)

and in fact, for any b ∈ Z ∩Aw
′

w′

BM(b, h0) = W h0(b) = ωπ(b)W
h0(e).

To define h1 we (partially) decompose M into Md and Aw′ = ZM . Md ∩ ZM = Aw
′

w′ is
finite. We define

h1(m) =
∑

m=m′c

h0(m
′)BM(c, h)

with m′ ∈ Md and c ∈ ZM = Aw′. Note that if det(mi) is not a nthi power on each block,
then h1(m) = 0.

Proposition 5.4. BM
ϕ (a, h1) = BM

ϕ (a, h) for all a ∈ ZM = Aw′.
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Proof. Note that Uẇ′ = UM,ėM ⊂ UM . Now we have, for a ∈ ZM ,

BM
ϕ (ėMa, h1) = BM

ϕ (a, h1) =

∫

UM,ėM
\UM

∫

UM

h1(xau)ϕ(
tuw̃Ma

′u)ψ−1(xu) dxdu.

Since the small cell is closed in M , the M-version of Lemma 5.6 applies and we can write

BM
ϕ (ėMa, h1) = ϕ̃MM(a′)

∫

UM

h1(xa)ψ
−1(x) dx = ϕ̃MM(a′)BM(a, h1)

for all sufficiently large ϕ depending on h1.

We now substitute the definition of h1. We must decompose xa = m′c with m′ ∈ Md

and c ∈ ZM . Since UM ⊂ Md if we decompose a = bc with b ∈ Md ∩ ZM = Aw
′

w′ and
c ∈ ZM = Aw′ then there are only a finitely many possible b. We can write xa = xbc with
xb ∈ Me. We must also decompose a′ = (bc)′ = b′c′ where b′ and c′ are the components of b
and c in A′

w′ = Z ′
M , that is, having first coordinate 1. We then arrive at

BM
ϕ (ėMa, h1) = ϕ̃MM(a′)

∫

UM

∑

a=bc

h0(xb)B
M (c, h)ψ−1(x) dx

=
∑

a=bc

BM(c, h)

[
ϕ̃MM(b′c′)

∫

UM

h0(xb)ψ
−1(x) dx

]

=
∑

a=bc

ϕ̃MM(b′c′)BM(c, h)BM(b, h0).

Now, by construction, BM(b, h0) = 0 unless b ∈ Z ∩ Aw
′

w′ and in this case BM(b, h0) =

ωπ(b)B
M(e, h0) =

ωπ(b)
κM

. Then the above becomes

BM
ϕ (ėMa, h1) =

1

κM

∑

a=bc

b∈Z∩Aw′

w′

ϕ̃MM(b′c′)BM(c, h)ωπ(b)

=
1

κM

∑

a=bc

b∈Z∩Aw′

w′

ϕ̃MM(b′c′)BM(bc, h)

=
1

κM

∑

a=bc

b∈Z∩Aw′

w′

BM
ϕ (a, h)

where we now need to take ϕ such that the analogue of Lemma 5.6 holds for h and h1. Since
in the decomposition a = bc both a and c are in ZM = Aw′, for any choice of b ∈ Z ∩ Aw

′

w′

there is a decomposition. So there are κM terms in the sum. Thus we conclude

BM
ϕ (a, h1) = BM

ϕ (a, h)

as desired. �

We next want to understand BM
ϕ (ẇMℓ a, h1) for a ∈ AwM

ℓ
= Awℓ

= A as this is what will
occur in expression for the local coefficient. We are looking for uniform smoothness in certain
directions.
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First, since a ∈ A = AwM
ℓ

we have UẇM
ℓ
a = UẇM

ℓ
⊂ U+

wM
ℓ

= {eM} since we are working on

M and so we compute U+
wM

ℓ

in UM . Therefore

BM
ϕ (ẇMℓ a, h1) =

∫

UM×UM

h1(xẇ
M
ℓ au)ϕ(

tua′u)ψ−1(xu) dxdu.

If we decompose a as a = za′ in accord with the decomposition A = ZA′, so the first
coordinate of a′ is 1, then

BM
ϕ (ẇMℓ a, h1) =

∫

UM×UM

h1(xẇ
M
ℓ za

′u)ϕ(tua′u)ψ−1(xu) dxdu = ωπ(z)B
M
ϕ (ẇMℓ a

′, h1)

We next insert the definition of h1

h1(m) =
∑

m=m′c

h0(m
′)BM(c, h)

with m′ ∈ Md and c ∈ ZM . Thus in our integral we must write

xẇMℓ a
′u = m1c or xẇMℓ a

′c−1u ∈Md.

For M = GLn1 × · · ·×GLnt
we have Md = SLn1 × · · ·× SLnt

and x, u, ẇMℓ ∈Md, thus it is
enough to decompose a′ = bc with b ∈ A ∩Md and c ∈ ZM . The intersection is finite, so we
have at most a finite number of such decompositions (and for some a there may be no such
decomposition). We therefore have

h1(xẇ
M
ℓ a

′u) =
∑

a′=bc

h0(xẇ
M
ℓ bu)B

M(c, h).

If we now decompose b = zbb
′, with zb ∈ Z and b′ ∈ A′, and c = zcc

′, with zc ∈ Z and
c′ ∈ Z ′

M , then a′ = zbzcb
′c′ implies a′ = b′c′ and zbzc = 1. Since h, h0 ∈ C∞

c (M ;ωπ) we have

h0(xẇ
M
ℓ bu)B

M(c, h) = ωπ(zb)ωπ(zc)h0(xẇ
M
ℓ b

′u)BM(c′, h) = h0(xẇ
M
ℓ b

′u)BM(c′, h).

Therefore we have

BM
ϕ (ẇMℓ a

′, h1) =

∫

U×U

∑

a′=bc

h0(xẇ
M
ℓ b

′u)BM(c′, h)ϕ(tub′c′u)ψ−1(xu) dxdu

=
∑

a′=bc

BM(c′, h)

∫

U×U

h0(xẇ
M
ℓ b

′u)ϕ(tub′uc′)ψ−1(xu) dxdu

=
∑

a′=bc

BM(c′, h)BM
ϕc′

(ẇMℓ b
′, h0)

where, as before, ϕc′(m) = ϕ(mc′) for c′ ∈ Z ′
M .

Proposition 5.5. For a ∈ Aw
′

wℓ
Aw′ ⊂ Awℓ

= A let a = bc be a fixed decomposition. All such

decompositions are of the form a = (bζ−1)(ζc) with ζ ∈ Aw
′

w′, which is a finite set of matrices
with appropriate roots of unity on the diagonal. Further write c = c′z with c′ ∈ Z ′

M = A′
w′

and z ∈ Z. Then BM
ϕ (ẇMℓ a, h1) = ωπ(z)B

M
ϕ (ẇMℓ bc

′, h1) is uniformly smooth as a function of
c′.
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Proof: We have the expression

BM
ϕ (ẇMℓ a, h1) =

∑

a=bc

BM (c, h)BM
ϕc
(ẇMℓ b, h0)

where we sum over all decompositions of a = bc. If we fix one such decomposition and
replace the sum over the decompositions as a sum over ζ ∈ Aw

′

w′ this becomes

BM
ϕ (ẇMℓ a, h1) =

∑

ζ

BM(ζc, h)BM
ϕζc

(ẇMℓ bζ
−1, h0).

As ϕ is a characteristic function depending on the absolute value of the entries and then
entries of ζ are roots of unity, ϕζc = ϕc. So this is

BM
ϕ (ẇMℓ a, h1) =

∑

ζ

BM(ζc, h)BM
ϕc
(ẇMℓ bζ

−1, h0).

Now

BM(ζc, h) =

∫

U

h(xζc)ψ−1(x) dx = ωπ(ζ1z)

∫

U

h(xζ ′c′)ψ−1(x) dx

where ζ = diag(ζ1In1, . . . , ζtInt
) and ζ ′ = diag(In1, ζ2ζ

−1
1 In2 , . . . , ζtζ

−1
1 Int

). Since we have
h ∈ C∞

c (M ;ωπ) and the small cell CM(eM) = AU = ZA′U is closed in M we see that
there are compact subsets U1 ⊂ U and K ′ ⊂ A′ such that h(xζ ′c′) 6= 0 implies x ∈ U1 and
ζ ′c′ ∈ K ′. In fact, since Z ′

M ⊂ A′ is closed, there is a further subset K ′′ ⊂ Z ′
M such that

h(xζ ′c′) 6= 0 implies x ∈ U1 and ζ ′c′ ∈ K ′′ or c′ ∈ (ζ ′)−1K ′′. Therefore, writing a = bc = bc′z
as above, we see

BM
ϕ (ẇMℓ a, h1) = ωπ(z)

∑

ζ

BM(ζc′, h)BM
ϕc
(ẇMℓ bζ

−1, h0).

is zero unless c′ ∈
⋃
ζ′(ζ

′)−1K ′′. Thus we have compact support on Z ′
M depending only on h

through K ′′ and TM1 ∩ ZM , hence independent of a or b.

The dependence on c′ is in the argument of h and in the scaling of ϕ. As h is smooth and
its support is compact in c′ there will be a uniform open compact subgroup C1 ⊂ Z ′

M such
that h(xζc′c1) = h(xζc′) for c1 ∈ C1 and all x ∈ U1 and c′ ∈ Z ′

M . Shrinking if necessary, we
can take C1 ⊂ Z ′

M(o), that is, so that the entries of c1 are all units. But then in the scaling
ϕcc1 this will not effect the absolute values of the entries and hence the value of ϕc.

So there exists a compact open subgroup C1 ⊂ Z ′
M such that

BM
ϕ (ẇMℓ bzc

′c1, h1) = BM
ϕ (ẇMℓ bzc

′, h1)

for all a = bc ∈ AMd and c1 ∈ C1. Since B
M(ẇMℓ a, h1) vanishes off of AM1, this holds for all

a ∈ A. �
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5.6.3. Lifting to G. Let M ⊂ G be the (proper) Levi subgroup from the previous section.
Let h1 ∈ C∞

c (M ;ωπ) be as above with w′ = wℓw
M
ℓ ∈ B(G).

Let fw′ ∈ C∞
c (Ωw′;ωπ), and h = hf ′w ∈ C∞

c (M ;ωπ) as in Lemma 5.9. Construct h1 as in
the previous section such that BM

ϕ (a, h1) = BM
ϕ (a, h) for all a ∈ ZM = Aw′. As in Lemma

5.9 choose f1 ∈ C∞
c (Ωw′;ωπ) such that
∫

U−

(w′)−1×U
−

w′

f1(x
−ẇ′mu−)ψ−1(x−u−) dx−du− = h1(m).

with h1 ∈ C∞
c (M ;ωπ). This is possible by the surjectivity of the map f 7→ hf of Lemma 5.9.

Then from Proposition 5.2 we know that for all L with A ⊂ L ⊂ M we have

BG
ϕ (ẇ

G
La, f1) = BM

ϕ (ẇML a, h1)

for a ∈ AwG
L
= AwM

L
= ZL.

If we apply this with L =M we have

BG
ϕ (ẇ

′a, f1) = BM
ϕ (ėMa, h1) = BM

ϕ (a, h) = BG
ϕ (ẇ

′a, fw′).

Therefore fw′−f1 ∈ C∞
c (Ωw′;ωπ) such that BG

ϕ (ẇ
′a, fw′−f ′

1) = 0 for all a ∈ Aw′. We can now
apply Lemma 5.12, Lemma 5.13 and finally Lemma 5.14, plus a partition of unity argument,
to find a family {fw′′} parametrized by w′′ ∈ B(G) such that w′′ > w′ and dB(w

′′, w′) = 1 so
that fw′′ ∈ C∞

c (Ωw′′ ;ωπ) and that for any w ∈ B(G) we have

BG
ϕ (ẇa, fw′) = BG

ϕ (ẇa, f1) +
∑

w′′

BG
ϕ (ẇa, fw′′)

for all a ∈ Aw. Now for each fw′′ we have w′′ = wGM ′′ and we will be able to perform an
induction.

If we apply the above equality with L = A corresponding to the big cells, we have

BG
ϕ (ẇℓa, f1) = BM

ϕ (ẇMℓ a, h1)

for all a ∈ A. By Proposition 5.5, if we decompose Aw
′

wℓ
Aw′ (with finite intersection), as

a = bc, then

BG
ϕ (ẇℓa, f1) = BM

ϕ (ẇMℓ a, h1) = BM
ϕ (ẇMℓ bc, h1) = ωπ(z)B

M
ϕ (ẇMℓ bc

′, h1)

is compactly supported in c′ ∈ Z ′
M and thus BG

ϕ (ẇℓbc, f1) is uniformly smooth as a function
of c′ ∈ Z ′

M = Aw′. This gives us the “uniform smoothness” on A′
w” that we will need for

stability.

5.6.4. Summary. For use below, let us state the results in this subsection formally.

Proposition 5.6. Let w′ = wℓw
M
ℓ ∈ B(G) and fw′ ∈ C∞

c (Ωw′ ;ωπ). Then there exists
f1,w′ ∈ C∞

c (Ωw′ ;ωπ) such that
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(i) There exists a family {fw′′} parametrized by w′′ ∈ B(G) such that w′′ > w′ and
dB(w

′′, w′) = 1 so that fw′′ ∈ C∞
c (Ωw′′ ;ωπ) and for any w ∈ B(G) we have

BG
ϕ (ẇa, fw′) = BG

ϕ (ẇa, f1,w′) +
∑

w′′

BG
ϕ (ẇa, fw′′)

for all a ∈ Aw.

(ii) BG
ϕ (ẇℓa, f1,w′) = ωπ(z)B

G
ϕ (ẇℓbc

′, f1,w′) is uniformly smooth as a function of c′ ∈
Z ′
M = A′

w′.

This is analogue of Jacquet’s Proposition 2.1 of [19] for our partial Bessel integrals. In
place of our uniform smoothness statement for BG

ϕ (ẇℓa, f1,w′) he has the beginning of his
germ expansion. The presence of our cutoff function ϕ keeps us from decomposing this Bessel
integral into two pieces, one along the cell and one transverse to the cell, as Jacquet does.

5.7. Supercuspidal stability for GLn, II: Uniform smoothness. We can now establish
the “uniform smoothness” result we will need for our proof of stability.

5.7.1. Setting up the induction. We consider the Bruhat order on W (G) restricted to B(G).

We recall that in the Bruhat order, w′ < w if w 6= w′ and C(w′) ⊂ C(w), so the Bruhat
cell for w′ is contained in the closure of the Bruhat cell for w. As we have noted, B(G)
is in bijection with the set of standard Levi subgroups L(G) = {M | A ⊂ M ⊂ G} since
w ∈ B(G) iff w = wℓw

M
ℓ with M ∈ L(G). Then the Bruhat order on B(G) corresponds to

the reverse containment order on L(G).

We will induct on dB(w, e).

5.7.2. The induction. Let us make explicit the first two steps of the induction. The first step
is essentially Proposition 5.3. Fix an auxiliary f0 ∈ C∞

c (G;ωπ) with W
f0(e) = 1.

Let f ∈ M(π) ⊂ C∞
c (G, ωπ) also withW

f(e) = 1. ; Step 1. There exists f1,e ∈ C∞
c (G;ωπ)

and for each w′ ∈ B(G) with dB(w
′, e) = 1 there exist a function fw′ ∈ C∞

c (Ωw′ ;ωπ) such
that for sufficiently large ϕ

(i) for any w ∈ B(G) we have

BG
ϕ (ẇa, f) = BG

ϕ (ẇa, f1,e) +
∑

dB(w′,e)=1

BG
ϕ (ẇa, fw′)

for all a ∈ Aw;

(ii) for each w ∈ B(G), BG
ϕ (ẇa, f1,e) depends only upon the auxiliary function f0 and ωπ

for all a ∈ Aw.

This is simply a restatement of Proposition 5.3 in the previous section.
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For the second step, essentially the induction step, we apply Proposition 5.6 to each fw′

above.

Step 2′. For each fw′, there exists f1,w′ ∈ C∞
c (Ωw′;ωπ) such that for sufficiently large ϕ

(i) there exists a family {fw′,w′′} parametrized by w′′ ∈ B(G) with w′′ > w′ and dB(w
′′, w′) =

1 so that fw′,w′′ ∈ C∞
c (Ωw′′ ;ωπ) and for any w ∈ B(G) we have

BG
ϕ (ẇa, fw′) = BG

ϕ (ẇa, f1,w′) +
∑

dB(w′′,w′)=1

BG
ϕ (ẇa, fw′,w′′)

for all a ∈ Aw;

(ii) BG
ϕ (ẇℓa, f1,w′) = ωπ(z)B

G
ϕ (ẇℓbc

′, f1,w′) is uniformly smooth as a function of c′ ∈ Z ′
M .

If we combine Step 1 and Step 2′ we have that for any w ∈ B(G) we have

BG
ϕ (ẇa, f) = BG

ϕ (ẇa, f1,e) +
∑

dB(w′,e)=1

BG
ϕ (ẇa, f1,w′) +

∑

dB(w′′,w′)=dB(w′,e)=1

BG
ϕ (ẇa, fw′,w′′)

for all a ∈ Aw. We note that dB(w
′′, w′) = 1 and dB(w

′, e) = 1 is equivalent to dB(w
′′, e) = 2.

So if we set
fw′′ =

∑

dB(w′′,w′)=1

fw′,w′′ ∈ C∞
c (Ωw′′ ;ωπ)

then we can combine Step 1 and Step 2′ as follows.

Step 2. For f ∈ M(π) withW f(e) = 1 there exists f1,e ∈ C∞
c (G;ωπ) and for each w

′ ∈ B(G)
with dB(w

′, e) = 1 there exist fw′,1 ∈ C∞
c (Ωw′ ;ωπ) and for each w′′ ∈ B(G) with dB(w

′′, e) = 2
an element fw′′ ∈ C∞

c (Ωw′′ ;ωπ) such that for sufficiently large ϕ

(i) for any w ∈ B(G) we have

BG
ϕ (ẇa, f) = BG

ϕ (ẇa, f1,e) +
∑

dB(w′,e)=1

BG
ϕ (ẇa, f1,w′) +

∑

dB(w′′,e)=2

BG
ϕ (ẇa, fw′′)

for all a ∈ Aw;

(ii) for each w ∈ B(G), BG
ϕ (ẇa, f1,e) depends only upon the auxiliary function f0 and ωπ

for all a ∈ Aw.

(iii) BG
ϕ (ẇℓa, f1,w′) = ωπ(z)B

G
ϕ (ẇℓbc

′, f1,w′) is uniformly smooth as a function of c′ ∈ A′
w′.

Inductively we can now show the following.

General Step. Let f ∈ M(π) with W f(e) = 1. Let m be an integer with 1 ≤ m ≤
dB(wℓ, e) + 1. Then

(a) there exits f1,e ∈ C∞
c (G;ωπ)

(b) for each w′ ∈ B(G) with 1 ≤ dB(w
′, e) < m there exist f1,w′ ∈ C∞

c (Ωw′;ωπ)
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(c) for each w′′ ∈ B(G) with dB(w
′′, e) = m there is an element fw′′ ∈ C∞

c (Ωw′′;ωπ)

such that for appropriate ϕ

(i) for any w ∈ B(G) we have

BG
ϕ (ẇa, f) = BG

ϕ (ẇa, f1,e) +
∑

1≤dB(w′,e)<m

BG
ϕ (ẇa, f1,w′) +

∑

dB(w′′,e)=m

BG
ϕ (ẇa, fw′′)

for all a ∈ Aw;

(ii) for each w ∈ B(G), BG
ϕ (ẇa, f1,e) depends only on the auxiliary function f0 and ωπ

for all a ∈ Aw;

(iii) for each w′ ∈ B(G) with 1 ≤ dB(w
′, e) < m, BG

ϕ (ẇℓa, f1,w′) = ωπ(z)B
G
ϕ (ẇℓbc

′, f1,w′)
is uniformly smooth as a function of c′ ∈ A′

w′.

Proof: The first step in the induction is Step 2 above. The induction step is done by applying
Proposition 5.6 to each w′′ with dB(w

′′, e) = m to attain the analogue of Step 2′ and then
argue as above in passing from Step 2′ to Step 2. �

This is our analogue of Jacquet’s Proposition 3.1 of [19].

5.7.3. Uniform smoothness. If we take the case of m = dB(wℓ, e)+ 1 we arrive at the propo-
sition that we need to prove stability. This is our analogue of the main theorem of Jacquet
[19], his germ expansion for his Kloosterman orbital integrals. Recall that we have fixed an
auxiliary f0 ∈ C∞

c (G;ωπ) with W
f0(e) = 1.

Proposition 5.7. Let f ∈ M(π) with W f(e) = 1. Then

(a) there exits f1,e ∈ C∞
c (G;ωπ)

(b) for each w′ ∈ B(G) with 1 ≤ dB(w
′, e) there exist f1,w′ ∈ C∞

c (Ωw′;ωπ)

such that for sufficiently large ϕ

(i) we have

BG
ϕ (ẇℓa, f) = BG

ϕ (ẇℓa, f1,e) +
∑

1≤dB(w′,e)

BG
ϕ (ẇℓa, f1,w′)

for all a ∈ A;

(ii) BG
ϕ (ẇℓa, f1,e) depends only upon the auxiliary function f0 and ωπ for all a ∈ A;

(iii) for each w′ ∈ B(G) with 1 ≤ dB(w
′, e) we have BG

ϕ (ẇℓa, f1,w′) = ωπ(z)B
G
ϕ (ẇℓbc

′, f1,w′)
is uniformly smooth as a function of c′ ∈ A′

w′.
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We have stated this proposition for the long Weyl element wℓ since this is what we need
for stability. Statements (i) – (iii) hold for any w ∈ B(G) and a ∈ Aw. In this case, if w < w′

the terms BG
ϕ (ẇa, f1,w′) = 0 since f1,w′ ∈ C∞

c (Ωw′;ωπ) and hence vanishes on C(w).

5.8. Supercuspidal stability for GLn, III: Stability. Since the stability involves twisting
by a highly ramified character, we need to know how the partial Bessel function varies under
twisting. This is elementary and follows from the formula (4.20).

Lemma 5.16. Let χ be a character of F×, viewed as a character of G = GLn(F ) through
composition with the determinant.

(1) Let w ∈ B(G) support a Bessel function. Then for all g ∈ C(w) we have

jπ⊗χ,w(g) = χ(det(g))jπ,w(g).

(2) For the partial Bessel function of Proposition 4.6

jπ⊗χ,ẇℓ,κ(ẇℓa) = χ(det(a))jπ,ẇℓ,κ(ẇℓa)

for all a ∈ A.

Now we prove the stability of local coefficients under twisting by a sufficiently highly
ramified character, and hence the stability of local γ-factors in the supercuspidal case.

Proof. We begin with π1 and π2 two supercuspidal representations of G = GLn(F ) having
the same central character ω = ωπ1 = ωπ2. Note that if χ is a character of F×, then the
central character of πi ⊗ χ is ωχn.

We consider the difference Cψ(s, π1 ⊗ χ)−1 − Cψ(s, π2 ⊗ χ)−1. For χ sufficiently ramified,
ωχn will be ramified; this is necessary for Proposition 4.6. Then applying Proposition 4.6
to both local coefficients, we have a κ0 so that for all κ ≥ κ0 the representation (4.11) holds
for all π1 ⊗ χ and π2 ⊗ χ, and we can expresses the difference as

Cψ(s, π1 ⊗ χ)−1 − Cψ(s, π2 ⊗ χ)−1 = γ(ns
2
, ωχn, ψ)ω(−1)χ(−1)nDχ(s),

where

Dχ(s) =

∫

Z\A

(jπ1⊗χ,ẇℓ,κ(ẇℓa)− jπ2⊗χ,ẇℓ,κ(ẇℓa))ωχ
n(a1)

−1|a1|
−(n−1)(s−1)/2

n∏

i=2

|ai|
(n+s+1−2i)/2 da

=

∫

A′

(jπ1⊗χ,ẇℓ,κ(ẇℓa
′)− jπ2⊗χ,ẇℓ,κ(ẇℓa

′))

n∏

i=2

|ai|
(n+s+1−2i)/2 da′.

Consider now the difference in Bessel functions. By Lemma 5.16 we have

jπ1⊗χ,ẇℓ,κ(ẇℓa
′)− jπ2⊗χ,ẇℓ,κ(ẇℓa

′) = χ(det(a′))(jπ1,ẇℓ,κ(ẇℓa
′)− jπ2,ẇℓ,κ(ẇℓa

′)).

Now choose f1 ∈ M(π1) and f2 ∈ M(π2) such that W f1(e) =W f2(e) = 1 and such that

jπi,ẇℓ,κ(ẇℓa
′) = BG

ϕκ
(ẇℓa

′, fi).
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We may assume that κ is large enough that Proposition 5.7 holds for both f1 and f2 with
the same auxiliary f0, and drop κ from the notation. Then applying Proposition 5.7 we have

jπ1,ẇℓ,κ(ẇℓa
′)− jπ2,ẇℓ,κ(ẇℓa

′) = BG
ϕ (ẇℓa

′, f1)− BG
ϕ (ẇℓa

′, f2)

= (BG
ϕ (ẇℓa

′, f1,1,e)−BG
ϕ (ẇℓa

′, f2,1,e))

+
∑

1≤dB(w′,e)

(BG
ϕ (ẇℓa

′, f1,1,w′)−BG
ϕ (ẇℓa

′, f2,1,w′))

Since both BG
ϕ (ẇℓa

′, f1,1,e) and B
G
ϕ (ẇℓa

′, f2,1,e) only depend on the common f0 and ωπ1 =
ωπ2, these will cancel and we are left with

jπ1,ẇℓ,κ(ẇℓa
′)− jπ2,ẇℓ,κ(ẇℓa

′) =
∑

1≤dB(w′,e)

(BG
ϕ (ẇℓa

′, f1,1,w′)− BG
ϕ (ẇℓa

′, f2,1,w′)).

Substituting this in the formula for Dχ(s) we find

Dχ(s) =
∑

1≤dB(w′,e)

∫

A′

(BG
ϕ (ẇℓa

′, f1,1,w′)− BG
ϕ (ẇℓa

′, f2,1,w′))χ(det(a′))

n∏

i=2

|a′i|
(n+s+1−2i)/2 da′.

If we now utilize part (iii) of Proposition 5.7 we can write this as

Dχ(s) =
∑

1≤dB(w′,e)

∫

Aw′
wℓ

[ ∫

A′
w′

(BG
ϕ (ẇℓbc

′, f1,1,w′)−BG
ϕ (ẇℓbc

′, f2,1,w′))

χ(det(c′))

n∏

i=2

|c′i|
(n+s+1−2i)/2 dc′

]
χ(det(b))

n∏

i=2

|b′i|
(n+s+1−2i)/2 db.

Again appealing to part (iii) of Proposition 5.7, we have that the piece of the inner
integrand

(BG
ϕ (ẇℓbc

′, f1,1,w′)− BG
ϕ (ẇℓbc

′, f2,1,w′))
n∏

i=2

|c′i|
(n+s+1−2i)/2

is uniformly smooth as a function of c′ ∈ A′
w′. Thus for χ sufficiently highly ramified we

have
∫

A′
w′

(BG
ϕ (ẇℓbc

′, f1,1,w′)−BG
ϕ (ẇℓbc

′, f2,1,w′))

n∏

i=2

|c′i|
(n+s+1−2i)/2χ(c′) dc′ = 0.

Taking χ sufficiently highly ramified that all inner integrals vanish, we may conclude that
Dχ(s) = 0. Hence

Cψ(s, π1 ⊗ χ) = Cψ(s, π2 ⊗ χ).

which establishes Proposition 3.4. �
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[2] E. Artin, Über eine neue Art von L-Reihen. Abh. Math. Sem. Hamburg 3 (1923), 89–108.
[3] E. Artin, Zur Theorie L-Reihen mit allgemeinen Gruppencharakteren. Abh. Math. Sem. Hamburg 8

(1930), 292–306.
[4] E. Artin, Die gruppentheoretische Struktur der Diskriminanten algebraischer Zahlkörper. J. reine angew.

Math. 164 (1931), 1–11.

[5] N. Bourbaki, Groupes et algebres de Lie, IV–VI. Élements de mathématique, Fasc. XXXIV. Actua;ités
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