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Eventual positivity of Hermitian

polynomials and integral operators *

Colin Tan *

Abstract

Quillen proved that, if a Hermitian bihomogeneous polynomial
is strictly positive on the unit sphere, then repeated multiplication
of the standard sesquilinear form to this polynomial eventually re-
sults in a sum of Hermitian squares. Catlin-D’Angelo and Varolin
deduced this positivstellensatz of Quillen from the eventual positive-
definiteness of an associated integral operator. Their arguments in-
volve asymptotic expansions of the Bergman kernel. The goal of this
article is to give an elementary proof of the positive-definiteness of

this integral operator.
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A central problem in real geometry is to establish certificates that di-
rectly witness the positivity of an algebraic morphism. The first of such
certificates, known as positivstellensatze, was Artin’s 1927 solution to
Hilbert’s 17th problem [1]. After a hiatus of four decades, Quillen [8]
proved the first Hermitian postivstellensatz, thereby filling a gap in the
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literature. His positivestellensatz states that, if a Hermitian bihomoge-
neous polynomial is strictly positive on the unit sphere, then repeated
multiplication of the standard sesquilinear form to this polynomial even-
tually results in a sum of Hermitian squares. We will deduce this as
Corollary [l from the main result of this article.

Quillen’s positivstellensatz has attracted several proofs [3, 4, 5, 7, [10].
Some of these approaches lead to further improvements of Quillen’s re-
sult. For instance, Catlin-D’Angelo [4] gave a generalized embedding the-
orem of holomorphic vector bundles. To-Yeung'’s positivstellensatz [10]
is a more precise refinement of Quillen’s result. Putinar-Scheiderer [7]
gave pesudoconvex bounaries other than the unit sphere on which every
strictly positive algebraic morphism is a sum of Hermitian squares.

In 1997, Catlin-D’Angelo [3] independently rediscovered Quillen’s re-
sult. They observed that this positivstellensatz of Quillen is equivalent
to the eventual positive-definiteness of an associated integral operator.
They then showed that this integral operator is well approximated by the
Bergman kernel in the limit. Later, this approach was taken by Varolin
[11]. In this article, we give an elementary proof that follows Varolin’s
approach and deduce Quillen’s positivstellensatz.

The global holomorphic sections of the tautological line bundle O(1) —
IP" over complex projective space form a complex vector space H’(IP", O(1)).
Fix a basis (®y,...,®,) of H'(IP",O(1)). Let r := |[®g|> + - + |Dy|2.
Then r induces a Hermitian metric (s,5) — |s|?>/7 on O(1) whose cur-
vature is a Fubini-Study Kéahler form on P”. More generally, given a
nonnegative integer d, a Hermitian metric p on O(d) — P" is globalizable
if there exists a family {ap }|4|—|p|—q Of complex constants doubly indexed
by multiindices « and p of length d such that

sI”

p(S, §) = —B
Lfu|=|p|=d ap P P

Here @ = DD @ﬁ"ﬁﬁ 031/3 1., -@ﬁ". Catlin-D’Angelo intro-

duced this concept of gloablizability of Hermtitian metric in [4].
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Normalize the Fubini-Study volume form () such that fIP” O =1. Let
m be a nonnegative integer. Equip the complex vector space H’(IP", O(m + d))
of global holomorphic sections of O(m + d) with an inner product
5152

0.1
e RV

(81,82) =

The induced norm is given by ||s|| = 1/(s,s). Associate to r"p a sesquilin-
ear form Kyn, : HO(IP", O(m +d)) x H(P", O(m + d)) — C given by

Ky (51, 52) / ) / ) (x, Sz(p))s(;% )) QWQX)  (02)

In this article, we show that K;m) is eventually positive definite.

Theorem. Let d be a nonnegative integer and p be a Hermitian metric on
O(d) — P". If p is globalizable, then for m sufficiently large, the following
asymptotic holds uniformly for s € HO(IP", O(m +d)):

n+2
Kynp(s,5) = {n’;—' +0 (%) } Is|? 03)

The author is aware that the above result (in fact a stronger asymptotic
without the (logm)"*?2 factor) would follow from pp. 313-314 of [11], but
is unable to follow the argument provided there.

In our proof, we show that the double integral (2.1) which represents
this integral operator concentrates in a tubular neighbourhood of the di-
agonal with radius (logm)/+/m. This concentration result is inspired by
the asymptotically concentration of the Bergman kernel along the diago-
nal. Our choice of (logm)/+/m as radius is influenced by Tian, who used
the same radius to construct peak sections in [9] to prove the convergence

of Bergman metrics.

1 Some lemmas

We use the following notation and conventions throughout this article.

Unless stated otherwise, asymptotics in this article are taken in an integer
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m that approaches infinity. Following Knuth [6], the Iverson bracket of a

proposition T is the quantity

7] :=

1 if Tis true
0 if Tis false

For example, the characteristic function of a subset E of IP" is given by
Xxe(y) = [y € E]. Another example is the Kronecker delta, which is given
by &;j = [i = j].

Recall from the introduction that r := |®g|? + - - + |®,|> for some
chosen basis (®y, ..., D,) of H'(IP", O(1)). This globalizable metric r can
be polarized to yield a metric on P”. This metric d : P" x P" — [0, 0] is
given by

o - (DY) )Y
it = (g )
1/2
_ <<r<1>o<x>|2+---+rq>n<x>|2><|q>o<y>12+---+ @4 (y)P) _1> /

Do (x)@o(y) + -+ - + Pu(x) P (y) 2

For each point x of IP”, there exists a canonical coordinate z centered at x
such that

(P00 O F [z - o+ |z —1)1/2

= |z]

For example, if x is a point of IP", then the subset {y : d(x,y) < oo} is
biholomorphic to C".

Lemma 1. Let p be a globalizable metric on O(d) — P". There exists a positive

constant Cp such that

{ p(x, 7)) T“_{p(xﬁ)p(y,wr/z
p(x,%)p(y,y) lp(x,y)?




Proof. Fix a point x of P". Define a function G : P" — [0, c0) by

_[_lepl? 1
0= [ -

Choose a trivialization of O(d). Choose a canonical coordinate z centered

at x. In this trivialization and coordinate,

2log G(z) = log p(z,0) +log p(0,z) — log p(z,z) — log p(0,0)
Taking the holomorphic derivative,

28G(z) _ ap(z,_ﬁ) 0— ap(z,_Z)
G(z)  p(z0) p(z%)

Noting that G(0) = 1, evaluation at z = 0 gives dG(0) = 0. The chain

rule 9(G™!) = —9G/G? implies (G~ 1)(0) = 0. Since G = G, we also

have the vanishing of the antiholomophic derivatives, namely 9G(0) =

(G 1)(0) = 0.

Noting that G(0) — (G™1)(0) = 0, the Taylor theorem gives local
functions h,g, say defined whenever |z| < J for some small §, such
that G(z) — G(z) ™! = Lju4|pj=2hap(z)z*ZP. Hence, if |z| < 4, then
G(z) — G(2) | < C'|z|* where C' := ¥y, 52 (sup|z‘<(5|h,xﬁ(z)|> Re-
call (LI) for the definition of G, this says that, if d(x,y) < J, then

{ p(x, 7)) T“_{p(xﬁ)p(y,wr/z
p(x,%)p(v, ) lp(x,y)?

< C'd(x,y)?

If d(x,y) > 5, then

i) - [Peam] | s

x,%)p(v, ) p(x,9)[?
where
_ 1/2 _ _
C” =672 sup [ ()P } _{p(m)p(w)}m
wyepr | LP(xX)p (Y, ) p(x,9)[?

Hence we obtain the desired inequality bysetting C,, := max {C’,C"}. O
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Let V denote the Lebesgue measure on C". Equip the unit sphere
§21=1 of C" with its Haar measure, namely the unique rotationally in-
variant Borel probability measure. The integral of a Borel measurable
function f : C" — C can be transformed into polar coordinates (see p.6
in [2]):

[ 1) %‘g@ — 2n /0 " e [, J(r2)dear (1.2)

If ¢ : [0,00) — C is Borel measurable, then (1.2) simplifies to

/Cng(|z]) %‘i(z) =2n /Ooo rZ”_lg(r) dr (1.3)

Lemma 2. If a function R : N — [0, 00) satisfies limy, 0o R(m) = 0, then the
following asymptotics hold uniformly for x € IP":

Je [%r a0) =1 +0 (o) )

ML PP N
/{%J(X,y)>R(m)} {r(x, %)r(y,v) (v) (e ) (1.5)
Q(y) = O(R(m)*" 16

/{y:tf(X,y)<R(m)} (y) ( (ﬂ’l) ) (1.6)

Proof. Choose a canonical coordinate z centered at x. Recall that ) is
a normalization of the Fubini-Study volume form, hence there exists a
constant ¢ > 0 such that

n!'dV(z)

Qz) =
(2) T 1 |22)n

Hence

re ) 1" _ 1 . n!dV(z)
/]Pn [r(x,f)r(y,y)] Qy) = /n (1+ [z2)" " (1 + |z[2)n T
_ c/ 1 n!dV(z) (1.7)
cr (

By polar coordinate formula (L.3):

1 n!dV(z) ® 51 1
/C” 1+ [z2)mntl 0 2”/0 oy r2)m+n+1dr

n!
T mtn)mtn—1)---(m+1) (1.8)
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Combine (L.7) and (1.8) to obtain

/ [ r(x,7)|? rQ( )= c n!
D] Y T )t n 1) (1)
In particular, when m = 0, this becomes f]P" () = c. Hence c = 1, by our

normalization of (). This proves (L.4):

r(x,7)|? _ n!
/n [r(x,f)r(y,y)} Q) = (m+m)(mtn—1)--(m+1)

n! 1
- W +0 (mn—H)

Next we show (I.5). Note that

[ r(x, 7)1 r: 1
rDrw )] (T+dy)?)m
Hence
r(x,7) 2 1
[ L(xli)f(y,?)} S Y e comeriell)
1
= (T+R(m)2)™ Jiy:d(xy)>R(m)} QW)
< L / Q(y)
= W+ Rm2)m Jou
1

The inequality 1+ ¢ > /2 holds for small € > 0. By the assumption
lim, 00 R(m) = 0, hence

1 1
<
1+ R(m)? = (Rm?/2

Hence (1.5) follows.
Finally we prove (L.6). In the canonical coordinate z, the volume form
() has an upper bound
_ nldV(z)
(1 + |z[2)n T
< n!dV(z)

nn
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IN

Integrating, the polar coordinate formula (L.3) gives [ (y:d(xy)<R(m)} Q(y)
2n |, ROm)y2n—1 g — R(m)?". Hence (L6) follows. O

Lemma 3. Let Ry > 0. If g : P" x P" — [0,00) and g : P" — [0, 00) are

continuous functions, then

/ ; /{y T <ryy T EYIEE)EW) QW)O)

)2 Oy / 0 O (19
\/xe]l)n [{y d( (xy) <R0}q( \/ {y: d(e Y)<Ro} ]P”g ( )

For any two points x and x’ on P”, the integrals | {y:d(xy)<Ro} Q) and

| (v d(x'y)<Ro} Q) are equal. Let | (y:d(ey)<R }Q denote this particular value.

Proof. For convenience, we suppress the integrand of (1.9) in the notation.
That is to say, when a single or double integral appears without integrand,
the reader understands that we refer respectively to the inner or double

integral on the lefthand side of (1.9).
Suppose x is a point on P". By the Schwarz inequality,

/{y: f(x,y)<Ro}q(x’ y)8(x)8(y) Ay)

=50 [ L)) 0)

2 2
x)\/ /{y, j(x,ymo}q(x,y) Q(y)\/ [{y:j(x/ykRo}g(y) Q(y)

x/ 20 B ZQ
\/XGW [ <y>\/ =t

Integrating with respect to x,

/n/{y Txy) <R0}q(x,y)g(X)g(y)O(y)Q( x)

Q(x
JP” \/xe]P” /{y d(xy <Ro} \//{y d(xy <Ro} ) Q)

(x,y)>Q(y Q(x
\/xe]Pn /{y d(xy <R0} ]/) IP” \//{y d(xy <R0} (]/) ( )
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Apply the Schwarz inequality again:

/" /{y d(xy)<Ro} \/xe]Pn /{y d(xy) <R0}q(x,y)2 Qy)
.\//]Pné;f(X)2 Q(x)\//Hjn/{y:ﬂx,y)do}g(y)z Q@y)Q(x) (1.10)

By the Fubini theorem, we compute using the Iverson bracket nota-

tion,

2 X
Jor ety ey 2 OHIOE)
= [ [ Jdtxy) < RolgwP o))
= [ 8w? [ v e {y: d(x.y) < RHODOW)

= Q(x)Q
&)’ ) <Ro) (x) O(y)

(@) 20)
{y:d(e,y)<Ro} ]Png(y) (v)

Hence, by (1.10),
¥)2Q(y)Q
L, / enery SO OO

X, ZQ \// ZQ X / 0O 20
\/ SUP ety <oy 1Y) 8 ( )\/ iy <ry) W)
x, )% Q(y / O 0

\/xe]P” d(x,y) <Ro}q( ]/ \/ {y:d(x,y)<Ro} ]P”g

O

Our normalization of () implies that | (y-d(xy)<Ro) O< Q=1

Hence the above lemma has the following weaker form.

Corollary 4. Under the same conditions as in the above lemma, the following



inequality holds:

/11’” /{y d(xy <Ro} SER yO)

x, )2 Q) 20
\/xe]l’" /{y d(x,y) <R0}q( y)*Oly) ]P"g

Lemma 5. Let Ry € [0, 00| and let x be a point of P". If h : [0,Ry) — Cisa
continuous function and f is holomorphic on {y : d(x,y) < Rq}, then

/{y: dN(x,y)<R0}h(d~(x,y))f(y) Q(y) - f(X) /{y: dN(x,y)<RO}h(d~(x’y)) Q(y)

Proof. Define J as the difference between the two sides of the required

identity. Then J = f{y d(xy) <Ry} (4 1(x,y)){f(y) — f(x)} Q(y). We wish to
show that J = 0.

Choose a canonical coordinate z centered at x. Write B(Ry) for the

Euclidean ball in C" centered at the origin of radius Ry. In terms of this
coordinate z,

-/ hwwvw—f@}ﬂgf§QH1

[ MDA /o) aavey
O R R
Transform this integral to polar coordinates using (L.2):

[ [ MO

01,2n 1
_ZL/?1+;;H {F(rE) — F(0)} du(&)dr

§2n—1
A holomorphic function f is harmonic. By the mean value property of

harmonic functions (see 1.4 of [2]), we have [, +{f(r&) — f(0)} du(¢) =
0. Thus J = 0, which completes the proof. O

2 Proof of main theorem

Let m be a nonnegative integer and s € H°(P",O(m+d)). Suppose
R : IN — [0,00) is a function with lim,,_. R(m) = 0. We will choose
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a particular R later. By our definition (0.2) of K;m),

Kynp(s,s) /n /n ,xalc ))i( ))Q(y)Q(x) (2.1)

=A+B+Q (2.2)
where
byl o
o5 W T o

"p) (2, 7)) (y)
C‘/n/{ydw p)( AP, )” )

Term A will be dominant for our eventual choice of R.

First we compute A. The zero section of the polarization of p lies off

the diagonal of IP" x IP". Hence for sufficiently large m, we have R(m)

small, so that for d(x,y) < R(m), the expression (:,%))s((yy;) is well-defined
and holomorphic in y. Note that

[Iﬂ%@F}m: 1
(x,x)r(y,y) (T+d(x,y))m

Hence, we may use Lemma 5] which gives for each x

A%%WKMMJ“%YVWJ

Integrating with respect to x,

Ao [ SE)s() / { r(x, 7)1
P p(x, X) Ny dey)<r(m)y (%) (y, )
Taking the difference of (I.4) and (L5),

mnmﬁ]m n! ( 1 1 )
L Oy)=—+0
~Awd@y%ﬂ«m»lr@afﬁ%ydﬂ W)=t e S

11
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Hence

[t 1 1 s(x)s(x)
= i +0 (e + m) | oo n 3y )
! 1 1
_ LZ_ +0 (mnﬂ + ,SR(m)z)} s 23)

Next, we estimate B. By Lemma [1) The modulus of its integrand is

{ r(x,7)|? }m{ p(x, 7)) _1} s(x)s(y)
( )1 Lp( (rp)(y, %)

x,X)r(y,y x,X)p(v,Y)
:[ r(x,7)2 r”[ p(x,7)2 }”Z_{mx,%)p(y,y)]”z
r(x,%)r(y,y) p(x,%)p(y, ) p(x,y)[?
5(x)] 5(y)|
PIV2(x, %) ()2 (y,7)

(i
c o IR 1 s ()]
< Cpd(x,y) [( %)r(y,m} P 2(x, ) ()2 (5, 7)

Hence

e P)I> 1" [ e 7)1
|B|</ /{ydxy<R [ Y)Vy(}/?)} [P(p_y y)
|

G| N C] s(v)| )
/ /{y d(x,y)<R(m }L’ x E (y ]7)} (rmp)l/z(x,f) (rmp)l/z(y,y) Q(y)Q( )

By Lemma 3] this becomes

r(x, }/)!2 }m ER
B| < C,R / 0 / ) af g
Bl =G \/ {y:d(xy)<R(m x)r(y,y) ) {y:d(ey)<Ro} Jpnr™p

|1’ y |2 2
QOlls
\// X, (]/) /{y:tf(-,y)< o} || H

Hence, by the asymptotics (1.4) and (L.6),

m)? \/E\/ O (R(m)™)ls

R(m)
=o( )l 24
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Finally, we estimate C. Let

2 172
M, := sup [M]
P eyer Lp(x®)p(y,7)

By the compactness of IP", this positive constant M), is finite. Hence

(" p) (x, §)Is(x)]s(y)]
(rp) (%, %) (" p)(y, )

:{ r(x,9) 2 ]’”/2[ p(x,7)2 ]”Z 5(x)] s(v)]

(x, %)r(y,7) p(x,X)p(y,y) |  (Mp)V/2(x,%) (Mp)/2(y,7)
) 1 s s(y)]

=My lr(xff)r(y,}?)} )72 (6, %) (7 p) 2 (y, )

Hence

eyl 1" s ()
LS Y P L(xff)r(y,?)} (rp)172(x,7) (7 p) 29, )

By Corollary 4 this becomes

P 1" 82
'C’<M”\//{ydxy>z< s 20 om0

(,7)] "
\//{ydxy>z< [( )(y,w} Wl

Hence, by the asymptotic (L.5),

_ 1 2
¢ = 0(1),/0 (g ) s

1
=0 (W) Is||? (2.5)

Since K;m(s,s) = A+ B+ C, combining @2.3), 2.4) and @.5),

n! 1 1 R(m)"+2 1 5
Krmp(s,s):{ﬁ—i—O(mnH—i— R+ o+ )

n! 1 R(m)"+? 1 5
{0 (o Rt ) e

Q(y)O(x)



To complete the proof, it suffices to find R such that lim,,_e R(m) = 0

1 R(m)"+2 1 :O<(1ogm)"+2) 2.6)

Indeed, such a function is given by

and

_ logm

R(m) N

3 Application to Quillen’s positivstellensatz

Let n be a positive integer. Let C[Z,Z] denote the complex polynomial
algebra on the indeterminates Z, ..., Zy, Zo, ..., Zy. A multiindex « is a
sequence (ag,...,a,) of n+ 1 nonnegative integers whose length |a| is
ag + - - - + ay. Given a nonnegative integer d, a bihomogeneous polynomial
of bidegree (d,d) is a finite sum YJj,—g/=4 a,X/;Z“Zﬁ, where each 4,5 is a
complex scalar and Z*Z' := Zy" Z8ZoP . ZP". This polynomial
is said to be Hermitian if a5 = ag, for each a and f. A polynomial is
said to be holomorphic if only the indeterminates Zy, ..., Z, occur. Given
a holomorphic polynomial s(Z), write |s(Z)|? := s(Z)s(Z).

With these concepts, we can state Quillen’s Positivstellensatz.

Corollary 6. Let p be a Hermitian bihomogeneous polynomial of bidegree (d, d).
If p(z,Z) > O for each point z # 0 in C"*1, then for sufficiently large m, there
exists a basis {sy };| =4 of the holomorphic polynomials of degree m + d such
that

(1Zof* + - +1Za)"p(2,2) =} Isy(2)P (3.1)
n|=m-+d

Proof. Recall from the introduction that we chose a basis (P, ..., P,) of
HO(P",O(1)). The map Zg + ®y,...,Z, +— D, induces a graded C-
algebra isomorphism

C[Z] — é H(IP", O(k)) (3.2)
k=0
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This isomorphism induces the given Hermitian bihomogeneous polyno-
mial p of bidegree (d,d) with a globalizable metric on O(d), which we
will also denote as p by abuse of notation.

Recall the inner product on H?(IP", O(m + d)) defined by ([@.I). Choose
an orthonormal basis (e,) of H'(IP",O(m+d)). In terms of this ba-
sis, write r"'p =}, 5cqseq€5. Since this polynomial r"p is Hermitian,
its coefficients form a Hermitian matrix (c;,). Diagonalizing, there ex-
ists a unitary matrix P = (P,;) and a real-valued diagonal matrix D =
diag(...,Ay,...) such that (c;,) = PDP*. In particular, we have c,s =
Y PW)"?P—M' Hence, setting f, := ), Pyye,,

m o e~ -
r"p =} PryAyPoyeses
;7/,)//5

= ZAU ZPW‘WZPM%
n Y 1)

= ZAW fufn (3.3)
]

We claim that (f;) is an orthonormal basis of H*(P", O(m + d)). In-

deed, the basis (e,) is chosen to be orthonormal, hence

(fiyrfG) = Z PWP—(;@(ef,, es)

7,0
=) PPy
>

The columns of a unitary matrix are orthonormal under the standard
inner product. The matrix P is unitary, hence Y, Py, P,g = [ = 6], the
Kronecker delta. Therefore (f;, fg) = [17 = 6], which proves the claim.

By (@.I) and (@.2), the inner product K;u(fy, f;) is given by a double

integral:

_ )(x
Keplfyo o) = [, ot e ) QW) G4
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By (3.3) and the orthonormality of {f;}, this becomes

B Yo Aofo(x) fo(y) fy (x) fy (v)
Koo ) = [ fo <rmp><x D) (4, 7)

(x) fy (%) f(W) fo(y)
=0 L Gl 1) O oy ) O
Z;)\e (fo. f)(fy, fo)

= A, (3.5)

By the main theorem, for sufficiently large m and each f;,

Konplfy i) = { 2 +0 (LBIEN o

A global section that forms part of a basis is necessarily nonzero, hence
|f4]I> # 0. The above asymptotic has leading coefficient n! > 0, hence
Kiny(fy, fy) > 0 for m large. From (B.5), we get A, > 0. Thus B.3)
can be rewritten as "'p = ¥, |\/A, fﬁ}z where ((/A;f;) is a basis of
HO(P", O(m +d)). Apply the C-algebra isomorphism (3.2) between C[Z]
and @, H'(IP", O(k)) to complete the proof. O
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