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Eventual positivity of Hermitian

polynomials and integral operators ∗

Colin Tan †

Abstract

Quillen proved that, if a Hermitian bihomogeneous polynomial

is strictly positive on the unit sphere, then repeated multiplication

of the standard sesquilinear form to this polynomial eventually re-

sults in a sum of Hermitian squares. Catlin-D’Angelo and Varolin

deduced this positivstellensatz of Quillen from the eventual positive-

definiteness of an associated integral operator. Their arguments in-

volve asymptotic expansions of the Bergman kernel. The goal of this

article is to give an elementary proof of the positive-definiteness of

this integral operator.
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A central problem in real geometry is to establish certificates that di-

rectly witness the positivity of an algebraic morphism. The first of such

certificates, known as positivstellensatze, was Artin’s 1927 solution to

Hilbert’s 17th problem [1]. After a hiatus of four decades, Quillen [8]

proved the first Hermitian postivstellensatz, thereby filling a gap in the
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literature. His positivestellensatz states that, if a Hermitian bihomoge-

neous polynomial is strictly positive on the unit sphere, then repeated

multiplication of the standard sesquilinear form to this polynomial even-

tually results in a sum of Hermitian squares. We will deduce this as

Corollary 6 from the main result of this article.

Quillen’s positivstellensatz has attracted several proofs [3, 4, 5, 7, 10].

Some of these approaches lead to further improvements of Quillen’s re-

sult. For instance, Catlin-D’Angelo [4] gave a generalized embedding the-

orem of holomorphic vector bundles. To-Yeung’s positivstellensatz [10]

is a more precise refinement of Quillen’s result. Putinar-Scheiderer [7]

gave pesudoconvex bounaries other than the unit sphere on which every

strictly positive algebraic morphism is a sum of Hermitian squares.

In 1997, Catlin-D’Angelo [3] independently rediscovered Quillen’s re-

sult. They observed that this positivstellensatz of Quillen is equivalent

to the eventual positive-definiteness of an associated integral operator.

They then showed that this integral operator is well approximated by the

Bergman kernel in the limit. Later, this approach was taken by Varolin

[11]. In this article, we give an elementary proof that follows Varolin’s

approach and deduce Quillen’s positivstellensatz.

The global holomorphic sections of the tautological line bundle O(1) →
Pn over complex projective space form a complex vector space H0(Pn,O(1)).

Fix a basis (Φ0, . . . , Φn) of H0(Pn,O(1)). Let r := |Φ0|2 + · · · + |Φn|2.

Then r induces a Hermitian metric (s, s) 7→ |s|2/r on O(1) whose cur-

vature is a Fubini-Study Kähler form on Pn. More generally, given a

nonnegative integer d, a Hermitian metric p on O(d) → Pn is globalizable

if there exists a family {aαβ}|α|=|β|=d of complex constants doubly indexed

by multiindices α and β of length d such that

p(s, s) =
|s|2

∑|α|=|β|=d aαβΦαΦ
β

Here ΦαΦ
β

:= Φ
α0
0 Φ

α1
1 · · · Φ

αn
n Φ0

β0
Φ1

β1 · · · Φn
βn . Catlin-D’Angelo intro-

duced this concept of gloablizability of Hermtitian metric in [4].
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Normalize the Fubini-Study volume form Ω such that
∫

Pn Ω = 1. Let

m be a nonnegative integer. Equip the complex vector space H0(Pn,O(m + d))

of global holomorphic sections of O(m + d) with an inner product

(s1, s2) :=
∫

Pn

s1s2

rm p
Ω (0.1)

The induced norm is given by ‖s‖ =
√

(s, s). Associate to rm p a sesquilin-

ear form Krm p : H0(Pn,O(m + d))× H0(Pn,O(m + d)) → C given by

Krm p(s1, s2) =
∫

Pn

∫

Pn

(rm p)(x, y)s2(x)s1(y)

(rm p)(x, x)(rm p)(y, y)
Ω(y)Ω(X) (0.2)

In this article, we show that Krm p is eventually positive definite.

Theorem. Let d be a nonnegative integer and p be a Hermitian metric on

O(d) → Pn. If p is globalizable, then for m sufficiently large, the following

asymptotic holds uniformly for s ∈ H0(Pn,O(m + d)):

Krm p(s, s) =

{

n!
mn

+ O
(

(log m)n+2

mn+1

)}

‖s‖2 (0.3)

The author is aware that the above result (in fact a stronger asymptotic

without the (log m)n+2 factor) would follow from pp. 313-314 of [11], but

is unable to follow the argument provided there.

In our proof, we show that the double integral (2.1) which represents

this integral operator concentrates in a tubular neighbourhood of the di-

agonal with radius (log m)/
√

m. This concentration result is inspired by

the asymptotically concentration of the Bergman kernel along the diago-

nal. Our choice of (log m)/
√

m as radius is influenced by Tian, who used

the same radius to construct peak sections in [9] to prove the convergence

of Bergman metrics.

1 Some lemmas

We use the following notation and conventions throughout this article.

Unless stated otherwise, asymptotics in this article are taken in an integer
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m that approaches infinity. Following Knuth [6], the Iverson bracket of a

proposition τ is the quantity

[τ] :=







1 if τ is true

0 if τ is false

For example, the characteristic function of a subset E of Pn is given by

χE(y) = [y ∈ E]. Another example is the Kronecker delta, which is given

by δij = [i = j].

Recall from the introduction that r := |Φ0|2 + · · · + |Φn|2 for some

chosen basis (Φ0, . . . , Φn) of H0(Pn,O(1)). This globalizable metric r can

be polarized to yield a metric on Pn. This metric d̃ : Pn × Pn → [0, ∞] is

given by

d̃(x, y) =

(

r(x, x)r(y, y)

|r(x, y)|2 − 1
)1/2

=

(

(|Φ0(x)|2 + · · ·+ |Φn(x)|2)(|Φ0(y)|2 + · · ·+ |Φn(y)|2)
|Φ0(x)Φ0(y) + · · ·+ Φn(x)Φn(y)|2

− 1

)1/2

For each point x of P
n, there exists a canonical coordinate z centered at x

such that

d̃([1 : 0], [1 : z]) =

(

(12 + 02 + · · ·+ 02)(12 + |z1|2 + · · ·+ |zn|2)
|1 · 1 + 0 · z1 + · · ·+ 0 · zn|2

− 1
)1/2

= |z|

For example, if x is a point of Pn, then the subset {y : d̃(x, y) < ∞} is

biholomorphic to C
n.

Lemma 1. Let p be a globalizable metric on O(d) → Pn. There exists a positive

constant Cp such that

∣

∣

∣

∣

∣

[ |p(x, y)|2
p(x, x)p(y, y)

]1/2

−
[

p(x, x)p(y, y)

|p(x, y)|2
]1/2

∣

∣

∣

∣

∣

≤ Cpd̃(x, y)2

4



Proof. Fix a point x of Pn. Define a function G : Pn → [0, ∞) by

G(y) =

[ |p(x, y)|2
p(x, x)p(y, y)

]1/2

(1.1)

Choose a trivialization of O(d). Choose a canonical coordinate z centered

at x. In this trivialization and coordinate,

2 log G(z) = log p(z, 0) + log p(0, z)− log p(z, z)− log p(0, 0)

Taking the holomorphic derivative,

2
∂G(z)

G(z)
=

∂p(z, 0)

p(z, 0)
+ 0 − ∂p(z, z)

p(z, z)
− 0

Noting that G(0) = 1, evaluation at z = 0 gives ∂G(0) = 0. The chain

rule ∂(G−1) = −∂G/G2 implies ∂(G−1)(0) = 0. Since G = G, we also

have the vanishing of the antiholomophic derivatives, namely ∂G(0) =

∂(G−1)(0) = 0.

Noting that G(0) − (G−1)(0) = 0, the Taylor theorem gives local

functions hαβ, say defined whenever |z| < δ for some small δ, such

that G(z) − G(z)−1 = ∑|α|+|β|=2 hαβ(z)z
αzβ. Hence, if |z| < δ, then

|G(z) − G(z)−1| ≤ C′|z|2 where C′ := ∑|α|+|β|=2

(

sup|z|<δ |hαβ(z)|
)

Re-

call (1.1) for the definition of G, this says that, if d̃(x, y) < δ, then
∣

∣

∣

∣

∣

[ |p(x, y)|2
p(x, x)p(y, y)

]1/2

−
[

p(x, x)p(y, y)

|p(x, y)|2
]1/2

∣

∣

∣

∣

∣

≤ C′d̃(x, y)2

If d̃(x, y) ≥ δ, then
∣

∣

∣

∣

∣

[ |p(x, y)|2
p(x, x)p(y, y)

]1/2

−
[

p(x, x)p(y, y)

|p(x, y)|2
]1/2

∣

∣

∣

∣

∣

≤ C′′d̃(x, y)2

where

C′′ := δ−2 sup
x,y∈Pn

∣

∣

∣

∣

∣

[ |p(x, y)|2
p(x, x)p(y, y)

]1/2

−
[

p(x, x)p(y, y)

|p(x, y)|2
]1/2

∣

∣

∣

∣

∣

Hence we obtain the desired inequality bysetting Cp := max {C′, C′′}.
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Let V denote the Lebesgue measure on Cn. Equip the unit sphere

S2n−1 of Cn with its Haar measure, namely the unique rotationally in-

variant Borel probability measure. The integral of a Borel measurable

function f : Cn → C can be transformed into polar coordinates (see p.6

in [2]):
∫

Cn
f (z)

n! dV(z)

πn
= 2n

∫ ∞

0
r2n−1

∫

S2n−1
f (rξ)dξdr (1.2)

If g : [0, ∞) → C is Borel measurable, then (1.2) simplifies to
∫

Cn
g(|z|) n! dV(z)

πn
= 2n

∫ ∞

0
r2n−1g(r)dr (1.3)

Lemma 2. If a function R : N → [0, ∞) satisfies limm→∞ R(m) = 0, then the

following asymptotics hold uniformly for x ∈ Pn:

∫

Pn

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) =
n!
mn

+ O
(

1
mn+1

)

(1.4)

∫

{y: d̃(x,y)≥R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) = O
(

e−
m
2 R(m)2

)

(1.5)
∫

{y: d̃(x,y)<R(m)}
Ω(y) = O(R(m)2n) (1.6)

Proof. Choose a canonical coordinate z centered at x. Recall that Ω is

a normalization of the Fubini-Study volume form, hence there exists a

constant c > 0 such that

Ω(z) = c
n! dV(z)

πn(1 + |z|2)n+1

Hence
∫

Pn

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) =
∫

Cn

1
(1 + |z|2)m

c
n! dV(z)

πn(1 + |z|2)n+1

= c
∫

Cn

1
(1 + |z|2)m+n+1

n! dV(z)

πn
(1.7)

By polar coordinate formula (1.3):
∫

Cn

1
(1 + |z|2)m+n+1

n! dV(z)

πn
= 2n

∫ ∞

0
r2n−1 1

(1 + r2)m+n+1 dr

=
n!

(m + n)(m + n − 1) · · · (m + 1)
(1.8)
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Combine (1.7) and (1.8) to obtain
∫

Pn

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) = c
n!

(m + n)(m + n − 1) · · · (m + 1)

In particular, when m = 0, this becomes
∫

Pn Ω = c. Hence c = 1, by our

normalization of Ω. This proves (1.4):
∫

Pn

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) =
n!

(m + n)(m + n − 1) · · · (m + 1)

=
n!
mn

+ O
(

1
mn+1

)

Next we show (1.5). Note that
[ |r(x, y)|2

r(x, x)r(y, y)

]m

=
1

(1 + d̃(x, y)2)m

Hence
∫

{y: d̃(x,y)≥R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) ≤
∫

{y: d̃(x,y)≥R(m)}

1

(1 + d̃(x, y)2)m
Ω(y)

≤ 1
(1 + R(m)2)m

∫

{y: d̃(x,y)≥R(m)}
Ω(y)

≤ 1
(1 + R(m)2)m

∫

Pn
Ω(y)

=
1

(1 + R(m)2)m

The inequality 1 + ǫ ≥ eǫ/2 holds for small ǫ > 0. By the assumption

limm→∞ R(m) = 0, hence

1
1 + R(m)2 ≤ 1

eR(m)2/2

Hence (1.5) follows.

Finally we prove (1.6). In the canonical coordinate z, the volume form

Ω has an upper bound

Ω =
n! dV(z)

πn(1 + |z|2)n+1

≤ n! dV(z)

πn
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Integrating, the polar coordinate formula (1.3) gives
∫

{y: d̃(x,y)<R(m)} Ω(y) ≤
2n
∫ R(m)

0 r2n−1 dr = R(m)2n. Hence (1.6) follows.

Lemma 3. Let R0 ≥ 0. If q : Pn × Pn → [0, ∞) and g : Pn → [0, ∞) are

continuous functions, then

∫

Pn

∫

{y: d̃(x,y)<R0}
q(x, y)g(x)g(y) Ω(y)Ω(x)

≤
√

sup
x∈Pn

∫

{y: d̃(x,y)<R0}
q(x, y)2 Ω(y)

√

∫

{y: d̃(•,y)<R0}
Ω

∫

Pn
g2 Ω (1.9)

For any two points x and x′ on P
n, the integrals

∫

{y: d̃(x,y)<R0} Ω and
∫

{y: d̃(x′,y)<R0} Ω are equal. Let
∫

{y: d̃(•,y)<R0} Ω denote this particular value.

Proof. For convenience, we suppress the integrand of (1.9) in the notation.

That is to say, when a single or double integral appears without integrand,

the reader understands that we refer respectively to the inner or double

integral on the lefthand side of (1.9).

Suppose x is a point on P
n. By the Schwarz inequality,

∫

{y: d̃(x,y)<R0}
q(x, y)g(x)g(y)Ω(y)

= g(x)
∫

{y: d̃(x,y)<R0}
q(x, y)g(y)Ω(y)

≤ g(x)

√

∫

{y: d̃(x,y)<R0}
q(x, y)2 Ω(y)

√

∫

{y: d̃(x,y)<R0}
g(y)2 Ω(y)

≤ g(x)

√

sup
x∈Pn

∫

{y: d̃(x,y)<R0}
q(x, y)2 Ω(y)

√

∫

{y: d̃(x,y)<R0}
g(y)2 Ω(y)

Integrating with respect to x,
∫

Pn

∫

{y: d̃(x,y)<R0}
q(x, y)g(x)g(y) Ω(y)Ω(x)

≤
∫

Pn
g(x)

√

sup
x∈Pn

∫

{y: d̃(x,y)<R0}
q(x, y)2 Ω(y)

√

∫

{y: d̃(x,y)<R0}
g(y)2 Ω(y) Ω(x)

=

√

sup
x∈Pn

∫

{y: d̃(x,y)<R0}
q(x, y)2 Ω(y)

∫

Pn
g(x)

√

∫

{y: d̃(x,y)<R0}
g(y)2 Ω(y) Ω(x)
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Apply the Schwarz inequality again:

∫

Pn

∫

{y: d̃(x,y)<R0}
≤
√

sup
x∈Pn

∫

{y: d̃(x,y)<R0}
q(x, y)2 Ω(y)

·
√

∫

Pn
g(x)2 Ω(x)

√

∫

Pn

∫

{y: d̃(x,y)<R0}
g(y)2 Ω(y)Ω(x) (1.10)

By the Fubini theorem, we compute using the Iverson bracket nota-

tion,
∫

Pn

∫

{y: d̃(x,y)<R0}
g(y)2 Ω(y)Ω(x)

=
∫

Pn

∫

Pn
[d̃(x, y) < R0]g(y)

2 Ω(y)Ω(x)

=
∫

Pn
g(y)2

∫

Pn
[y ∈ {y : d̃(x, y) < R0}] Ω(x)Ω(y)

=
∫

Pn
g(y)2

∫

{x: d̃(x,y)<R0}
Ω(x)Ω(y)

=
∫

{y: d̃(•,y)<R0}
Ω

∫

Pn
g(y)2 Ω(y)

Hence, by (1.10),
∫

Pn

∫

{y: d̃(x,y)<R0}
g(y)2 Ω(y)Ω(x)

≤
√

sup
x∈Pn

∫

{y: d̃(x,y)<R0}
q(x, y)2 Ω(y)

√

∫

Pn
g(x)2 Ω(x)

√

∫

{y: d̃(x,y)<R0}
Ω

∫

Pn
g(y)2 Ω(y)

=

√

sup
x∈Pn

∫

{y: d̃(x,y)<R0}
q(x, y)2 Ω(y)

√

∫

{y: d̃(x,y)<R0}
Ω

∫

Pn
g2 Ω

Our normalization of Ω implies that
∫

{y: d̃(x,y)<R0} Ω ≤
∫

Pn Ω = 1.

Hence the above lemma has the following weaker form.

Corollary 4. Under the same conditions as in the above lemma, the following
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inequality holds:
∫

Pn

∫

{y: d̃(x,y)<R0}
q(x, y)g(x)g(y) Ω(y)Ω(x)

≤
√

sup
x∈Pn

∫

{y: d̃(x,y)<R0}
q(x, y)2 Ω(y)

∫

Pn
g2 Ω

Lemma 5. Let R0 ∈ [0, ∞] and let x be a point of Pn. If h : [0, R0) → C is a

continuous function and f is holomorphic on {y : d̃(x, y) < R0}, then
∫

{y: d̃(x,y)<R0}
h(d̃(x, y)) f (y)Ω(y) = f (x)

∫

{y: d̃(x,y)<R0}
h(d̃(x, y))Ω(y)

Proof. Define J as the difference between the two sides of the required

identity. Then J =
∫

{y: d̃(x,y)<R0}h(d̃(x, y)){ f (y) − f (x)}Ω(y). We wish to

show that J = 0.

Choose a canonical coordinate z centered at x. Write B(R0) for the

Euclidean ball in Cn centered at the origin of radius R0. In terms of this

coordinate z,

J =
∫

B(R0)
h(|z|){ f (z) − f (0)} n! dV(z)

πn(1 + |z|2)n+1

=
∫

B(R0)

h(|z|){ f (z) − f (0)}
(1 + |z|2)n+1

n! dV(z)

πn

Transform this integral to polar coordinates using (1.2):

J = 2n
∫ R0

0
r2n−1

∫

S2n−1

h(r){ f (rξ) − f (0)}
(1 + r2)n+1 dµ(ξ)dr

= 2n
∫ R0

0

r2n−1h(r)

(1 + r2)n+1

∫

S2n−1
{ f (rξ) − f (0)}dµ(ξ)dr

A holomorphic function f is harmonic. By the mean value property of

harmonic functions (see 1.4 of [2]), we have
∫

S2n−1{ f (rξ) − f (0)}dµ(ξ) =

0. Thus J = 0, which completes the proof.

2 Proof of main theorem

Let m be a nonnegative integer and s ∈ H0(Pn,O(m + d)). Suppose

R : N → [0, ∞) is a function with limm→∞ R(m) = 0. We will choose

10



a particular R later. By our definition (0.2) of Krm p,

Krm p(s, s) =
∫

Pn

∫

Pn

(rm p)(x, y)s(x)s(y)

(rm p)(x, x)(rm p)(y, y)
Ω(y)Ω(x) (2.1)

= A+ B+ C, (2.2)

where

A :=
∫

Pn

∫

{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m
s(x)s(y)

(rm p)(y, x)
Ω(y)Ω(x)

B :=
∫

Pn

∫

{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m [ |p(x, y)|2
p(x, x)p(y, y)

− 1
]

s(x)s(y)

(rm p)(y, x)
Ω(y)Ω(x)

C :=
∫

Pn

∫

{y: d̃(x,y)≥R(m)}

(rm p)(x, y)s(x)s(y)

(rm p)(x, x)(rm p)(y, y)
Ω(y)Ω(x)

Term A will be dominant for our eventual choice of R.

First we compute A. The zero section of the polarization of p lies off

the diagonal of Pn × Pn. Hence for sufficiently large m, we have R(m)

small, so that for d̃(x, y) < R(m), the expression s(x)s(y)
(rm p)(y,x) is well-defined

and holomorphic in y. Note that
[ |r(x, y)|2

r(x, x)r(y, y)

]m

=
1

(1 + d̃(x, y))m

Hence, we may use Lemma 5, which gives for each x

∫

{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m
s(x)s(y)

(rm p)(y, x)
Ω(y)

=
s(x)s(x)

rmp(x, x)

∫

{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y)

Integrating with respect to x,

A =
∫

Pn

s(x)s(x)

rmp(x, x)

∫

{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y)Ω(x)

Taking the difference of (1.4) and (1.5),

∫

{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y) =
n!
mn

+ O
(

1
mn+1 +

1

e
m
2 R(m)2

)

11



Hence

A =

[

n!
mn

+ O
(

1
mn+1 +

1

e
m
2 R(m)2

)]

∫

Pn

s(x)s(x)

(rm p)(x, x)
Ω(x)

=

[

n!
mn

+ O
(

1
mn+1 +

1

e
m
2 R(m)2

)]

‖s‖2 (2.3)

Next, we estimate B. By Lemma 1, The modulus of its integrand is
∣

∣

∣

∣

∣

[ |r(x, y)|2
r(x, x)r(y, y)

]m [ |p(x, y)|2
p(x, x)p(y, y)

− 1
]

s(x)s(y)

(rm p)(y, x)

∣

∣

∣

∣

∣

=

[ |r(x, y)|2
r(x, x)r(y, y)

]m/2
∣

∣

∣

∣

∣

[ |p(x, y)|2
p(x, x)p(y, y)

]1/2

−
[

p(x, x)p(y, y)

|p(x, y)|2
]1/2

∣

∣

∣

∣

∣

· |s(x)|
(rm p)1/2(x, x)

|s(y)|
(rm p)1/2(y, y)

≤ Cpd̃(x, y)2
[ |r(x, y)|2

r(x, x)r(y, y)

]m/2 |s(x)|
(rm p)1/2(x, x)

|s(y)|
(rm p)1/2(y, y)

Hence

|B| ≤
∫

Pn

∫

{y: d̃(x,y)<R(m)}

∣

∣

∣

∣

∣

[ |r(x, y)|2
r(x, x)r(y, y)

]m [ |p(x, y)|2
p(x, x)p(y, y)

− 1
]

s(x)s(y)

(rm p)(y, x)

∣

∣

∣

∣

∣

Ω(y)Ω(x)

= CpR(m)2
∫

Pn

∫

{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m/2 |s(x)|
(rm p)1/2(x, x)

|s(y)|
(rm p)1/2(y, y)

Ω(y)Ω(x)

By Lemma 3, this becomes

|B| ≤ CpR(m)2

√

∫

{y: d̃(x,y)<R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y)

√

∫

{y: d̃(•,y)<R0}
Ω

∫

Pn

|s|2
rm p

Ω

≤ CpR(m)2

√

∫

Pn

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y)

√

∫

{y: d̃(•,y)<R0}
Ω‖s‖2

Hence, by the asymptotics (1.4) and (1.6),

B = O
(

R(m)2
)

√

n!
mn

√

O (R(m)2n)‖s‖2

= O
(

R(m)n+2

mn/2

)

‖s‖2 (2.4)
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Finally, we estimate C. Let

Mp := sup
x,y∈Pn

[ |p(x, y)|2
p(x, x)p(y, y)

]1/2

By the compactness of Pn, this positive constant Mp is finite. Hence

|(rm p)(x, y)||s(x)||s(y)|
(rm p)(x, x)(rm p)(y, y)

=

[ |r(x, y)|2
r(x, x)r(y, y)

]m/2 [ |p(x, y)|2
p(x, x)p(y, y)

]1/2 |s(x)|
(rm p)1/2(x, x)

|s(y)|
(rm p)1/2(y, y)

≤ Mp

[ |r(x, y)|2
r(x, x)r(y, y)

]m/2 |s(x)|
(rm p)1/2(x, x)

|s(y)|
(rm p)1/2(y, y)

Hence

|C| ≤ Mp

∫

Pn

∫

{y: d̃(x,y)≥R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m/2 |s(x)|
(rm p)1/2(x, x)

|s(y)|
(rm p)1/2(y, y)

Ω(y)Ω(x)

By Corollary 4, this becomes

|C| ≤ Mp

√

∫

{y: d̃(x,y)≥R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y)
∫

Pn

|s|2
rmp

Ω

= Mp

√

∫

{y: d̃(x,y)≥R(m)}

[ |r(x, y)|2
r(x, x)r(y, y)

]m

Ω(y)‖s‖2

Hence, by the asymptotic (1.5),

C = O(1)

√

O
(

1

e
m
2 R(m)2

)

‖s‖2

= O
(

1

e
m
4 R(m)2

)

‖s‖2 (2.5)

Since Krm p(s, s) = A+ B+ C, combining (2.3), (2.4) and (2.5),

Krm p(s, s) =

{

n!
mn

+ O
(

1
mn+1 +

1

e
m
2 R(m)2 +

R(m)n+2

mn/2
+

1

e
m
4 R(m)2

)}

‖s‖2

=

{

n!
mn

+ O
(

1
mn+1 +

R(m)n+2

mn/2 +
1

e
m
4 R(m)2

)}

‖s‖2
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To complete the proof, it suffices to find R such that limm→∞ R(m) = 0

and
1

mn+1 +
R(m)n+2

mn/2 +
1

e
m
4 R(m)2 = O

(

(log m)n+2

mn+1

)

(2.6)

Indeed, such a function is given by

R(m) =
log m√

m

3 Application to Quillen’s positivstellensatz

Let n be a positive integer. Let C[Z, Z] denote the complex polynomial

algebra on the indeterminates Z0, . . . , Zn, Z0, . . . , Zn. A multiindex α is a

sequence (α0, . . . , αn) of n + 1 nonnegative integers whose length |α| is

α0 + · · ·+ αn. Given a nonnegative integer d, a bihomogeneous polynomial

of bidegree (d, d) is a finite sum ∑|α|=|β|=d aαβZαZ
β
, where each aαβ is a

complex scalar and ZαZ
β

:= Zα0
0 · · · Zαn

n Z0
β0 · · · Zn

βn . This polynomial

is said to be Hermitian if aαβ = aβα for each α and β. A polynomial is

said to be holomorphic if only the indeterminates Z0, . . . , Zn occur. Given

a holomorphic polynomial s(Z), write |s(Z)|2 := s(Z)s(Z).

With these concepts, we can state Quillen’s Positivstellensatz.

Corollary 6. Let p be a Hermitian bihomogeneous polynomial of bidegree (d, d).

If p(z, z) > 0 for each point z 6= 0 in Cn+1, then for sufficiently large m, there

exists a basis {sη}|η|=m+d of the holomorphic polynomials of degree m + d such

that

(|Z0|2 + · · ·+ |Zn|2)m p(Z, Z) = ∑
|η|=m+d

|sη(Z)|2 (3.1)

Proof. Recall from the introduction that we chose a basis (Φ0, . . . , Φn) of

H0(Pn,O(1)). The map Z0 7→ Φ0, . . . , Zn 7→ Φn induces a graded C-

algebra isomorphism

C[Z] →
∞
⊕

k=0

H0(Pn,O(k)) (3.2)
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This isomorphism induces the given Hermitian bihomogeneous polyno-

mial p of bidegree (d, d) with a globalizable metric on O(d), which we

will also denote as p by abuse of notation.

Recall the inner product on H0(Pn,O(m + d)) defined by (0.1). Choose

an orthonormal basis (eγ) of H0(Pn,O(m + d)). In terms of this ba-

sis, write rm p = ∑γ,δ cγδeγeδ. Since this polynomial rm p is Hermitian,

its coefficients form a Hermitian matrix (cδγ). Diagonalizing, there ex-

ists a unitary matrix P = (Pγη) and a real-valued diagonal matrix D =

diag(. . . , λη , . . .) such that (cδγ) = PDP∗. In particular, we have cγδ =

∑η Pγηλη Pδη . Hence, setting fη := ∑γ Pγηeγ,

rmp = ∑
η,γ,δ

Pγηλη Pδηeγeδ

= ∑
η

λη ∑
γ

Pγηeγ∑
δ

Pδηeδ

= ∑
η

λη fη fη (3.3)

We claim that ( fη) is an orthonormal basis of H0(Pn,O(m + d)). In-

deed, the basis (eγ) is chosen to be orthonormal, hence

( fη , fθ) = ∑
γ,δ

PγηPδθ(eγ, eδ)

= ∑
γ

PγηPγθ

The columns of a unitary matrix are orthonormal under the standard

inner product. The matrix P is unitary, hence ∑γ PγηPγθ = [η = θ], the

Kronecker delta. Therefore ( fη , fθ) = [η = θ], which proves the claim.

By (0.1) and (0.2), the inner product Krm p( fη , fη) is given by a double

integral:

Krm p( fη , fη) =
∫

Pn

∫

Pn

(rm p)(x, y) fη(x) fη(y)

(rm p)(x, x)(rm p)(y, y)
Ω(y)Ω(x) (3.4)
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By (3.3) and the orthonormality of { fη}, this becomes

Krm p( fη , fη) =
∫

Pn

∫

Pn

∑θ λθ fθ(x) fθ(y) fη(x) fη(y)

(rm p)(x, x)(rm p)(y, y)
Ω(y)Ω(x)

= ∑
θ

λθ

∫

Pn

fθ(x) fη(x)

(rm p)(x, x)
Ω(x)

∫

Pn

fη(y) fθ(y)

(rm p)(y, y)
Ω(y)

= ∑
θ

λθ( fθ , fη)( fη , fθ)

= λη (3.5)

By the main theorem, for sufficiently large m and each fη ,

Krm p( fη , fη) =

{

n!
mn

+ O
(

(log m)n+2

mn+1

)}

‖ fη‖2

A global section that forms part of a basis is necessarily nonzero, hence

‖ fη‖2 6= 0. The above asymptotic has leading coefficient n! > 0, hence

Krm p( fη , fη) > 0 for m large. From (3.5), we get λη > 0. Thus (3.3)

can be rewritten as rm p = ∑η

∣

∣

√

λη fη

∣

∣

2 where (
√

λη fη) is a basis of

H0(Pn,O(m + d)). Apply the C-algebra isomorphism (3.2) between C[Z]

and
⊕∞

k=0 H0(Pn,O(k)) to complete the proof.
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