
Direct Construction of Recursive MDS Diffusion
Layers using Shortened BCH Codes

Daniel Augot1 and Matthieu Finiasz2

1 INRIA - LIX UMR 7161 X-CNRS
2 CryptoExperts

Abstract. MDS matrices allow to build optimal linear diffusion layers
in block ciphers. However, MDS matrices cannot be sparse and usually
have a large description, inducing costly software/hardware implemen-
tations. Recursive MDS matrices allow to solve this problem by focus-
ing on MDS matrices that can be computed as a power of a simple
companion matrix, thus having a compact description suitable even for
constrained environments. However, up to now, finding recursive MDS
matrices required to perform an exhaustive search on families of compan-
ion matrices, thus limiting the size of MDS matrices one could look for.
In this article we propose a new direct construction based on shortened
BCH codes, allowing to efficiently construct such matrices for whatever
parameters. Unfortunately, not all recursive MDS matrices can be ob-
tained from BCH codes, and our algorithm is not always guaranteed to
find the best matrices for a given set of parameters.

Keywords: Linear diffusion, recursive MDS matrices, BCH codes.

1 Introduction

Diffusion layers are a central part of most block cipher constructions. There are
many options when designing a diffusion layer, but linear diffusion is usually
a good choice as it can be efficient and is easy to analyze. The quality of a
linear diffusion layer is connected to its branch number [3]: the minimum over
all possible nonzero inputs of the sum of the Hamming weights of the input and
the corresponding output of this diffusion layer. A high branch number implies
that changing a single bit of the input will change the output a lot, which is
exactly what one expects from a good diffusion layer. Before going into more
details on how to build linear diffusion with a high branch number, let us recall
some elements of coding theory.

Linear diffusion and coding theory. A linear code Γ of dimension k and
length n over Fq (denoted as an [n, k]q code) is a vectorial subspace of dimension
k of (Fq)n. Elements of Γ are called code words. The minimal distance d of a
code is the minimum over all nonzero code words c ∈ Γ of the Hamming weight
of c. A [n, k]q code of minimal distance d will be denoted as an [n, k, d]q code. A

ar
X

iv
:1

41
2.

46
26

v1
 [

cs
.C

R
]

 1
5

D
ec

 2
01

4

generator matrix G of a code is any k × n matrix over Fq formed by a basis of
the vectorial subspace Γ . We say a generator matrix is in systematic form when
it contains (usually on the left-most positions) the k× k identity matrix Ik. The
non-systematic part (or redundancy part) of G is the k× (n− k) matrix next to
this identity matrix.

Now, suppose a linear diffusion layer of a block cipher is defined by an in-
vertible matrix M of size k × k over Fq, so that an input x ∈ (Fq)k yields an
output y ∈ (Fq)k with y = x×M . Then, the k×2k generator matrix GM having
M as its non-systematic part (the matrix defined as the concatenation of the
k × k identity matrix Ik and of M , as GM = [Ik |M]) generates a [2k, k]q code
ΓM whose minimal distance is exactly the branch number of M . Indeed, a code
word c = x×GM in ΓM is the concatenation of an input x to the diffusion layer
and the corresponding output y = x×M . So the Hamming weight of every code
word is the sum of the Hamming weights of an input and its output.

Optimal linear diffusion can thus be obtained by using codes with the largest
possible minimal distance, namely maximum distance separable (MDS) codes. A
[n, k]q code is called MDS if its minimal distance is d = n− k+ 1. By extension,
we will say that a matrix M is MDS when its concatenation with the identity
matrix yields a generating matrix GM of an MDS code ΓM . In the context of
diffusion where n = 2k being MDS means that d = k + 1: changing a single
element in the input of the diffusion layer will change all the elements in its
output.

We also recall the MDS conjecture: if there exists an [n, k]q MDS code, mean-
ing an MDS code of length n and dimension k over Fq, then n ≤ q + 1, except
for particular cases which are not relevant to our context. All along this article
we will assume that this conjecture holds [8].

Note on Vector Representation. In coding theory, vectors are usually represented
as rows (with y = x ×M), as we have done for the moment. In cryptography,
however, they are more often represented as columns (with y = MT×x). Luckily,
the transposed of an MDS matrix is also MDS, so if GM defines an MDS code,
both M and MT can be used as MDS diffusion matrices. In the rest of the
article we will use the column representation, which people used to the AES and
the MixColumns operation are more familiar with: the diffusion layer defined
by a matrix M computes y = M × x. This way, the branch number of M is
the minimal distance of the code generated by GMT = [Ik | MT]. However, in
order to avoid matrix transpositions, we will rather check wether GM = [Ik |M]
generates an MDS code or not.

Recursive MDS matrices. MDS matrices offer optimal linear diffusion, but
in general, they do not allow for a very compact description. Indeed, the non-
systematic part M of an MDS generator matrix cannot contain any 0 element3.

3 If the non-systematic part M of an MDS generator matrix contained a 0, then
the line of GM containing this zero would have Hamming weight ≤ k, which is in

These matrices can never be sparse and applying such a matrix to its input re-
quires a full matrix multiplication for the diffusion. Several different techniques
have been studied to obtain simpler MDS matrices, a well known example being
circulant matrices (or modifications of circulant matrices) as used in the AES [4]
or FOX [7]. Recently a new construction has been proposed: the so-called recur-
sive MDS matrices, that were for example used in Photon [5] or LED [6]. These
matrices have the property that they can be expressed as a power of a compan-
ion matrix C. For example, in Photon, using the same decimal representation of
elements of F256 as in [5]:

M =

1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11

 = C4, with C =

0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4

 = Companion(1, 2, 1, 4).

The advantage of such matrices is that they are particularly well suited for
lightweight implementations: the diffusion layer can be implemented as a linear
feedback shift register that is clocked 4 times (or more generally k times), using a
very small number of gates in hardware implementations, or a very small amount
of memory for software. The inverse of the diffusion layer also benefits from a
similar structure, see Eq. (1) for a particular case.

Outline. In the next section, we will present previous methods that have been
used to find recursive MDS matrices. Then, in Section 3, we will introduce BCH
codes and shortened BCH codes, show that they too can yield recursive MDS
matrices, and give a direct construction of such matrices. In Section 4 we will
then describe an algorithm to explore all BCH codes and the MDS diffusion
layers they yield for given parameters. We will conclude with a few experimental
results.

2 Exhaustive Search for Recursive MDS Matrices

Exhaustive search for recursive MDS matrices can be quite straightforward:

– pick some parameters: the matrix size k and the field size q = 2s,
– loop through all companion matrices C of size k over Fq,
– for each C, computes its k-th power and check if it is MDS.

However, this technique is very expensive as there are many companion matrices
(2ks, which could be 2128 for an 128-bit cipher) and checking if a matrix is MDS
is also expensive (the number of minors to compute is exponential in k). Also,
it does not specially explore the most efficient matrices first. In the Photon

contradiction with the minimal distance of the code. More generally, for an MDS
code ΓM , for any i ≤ k all the i× i minors of M must be non-zero.

example, the matrix uses very sparse coefficients (the field elements represented
by 1, 2 and 4) to make the implementation of their operations on inputs even
more efficient. Exhaustive search should focus on such matrices.

Following this idea, Sajadieh et al. [9] proposed to split the search in two.
Their companion matrices are symbolic matrices C(X) which have coefficients
in the polynomial ring Fq[X] where X is an indeterminate, which will be sub-
stituted later by some F2-linear operator L of Fq. Then their search space is re-
duced to symbolic companion matrices C(X) whose coefficients are small degree
polynomials in X (small degree polynomials will always yield a rather efficient
matrix). Once C(X) is raised to the power k, to get D(X) = C(X)k, the matrix
D(X) will give an MDS matrix D(L) when evaluated at a particular L, if for
all i ≤ k, all its i× i minors evaluated at L are invertible matrices (non-zero is
enough in a field, but now the coefficients are F2-linear operators). Indeed, for a
symbolic matrix D(X), the minors are polynomials in X, and their evaluation
at a particular linear operator L needs to be invertible matrices.

This way, for each matrix C(X) explored during the search, the minors of all
sizes of D(X) = C(X)k are computed: some matrices have minors equal to the
null polynomial and can never be made MDS when X is substituted by a linear
operator L, for the others this gives (many) algebraic polynomials in X which
must not vanish when evaluated at L, for the k-th power D(L) to be MDS. Then,
the second phase of the search of Sajadieh et al. is to look for efficient operators L
such that all the above minors are non zero when evaluated at L. The advantage
of this technique is that it finds specially efficient recursive MDS matrices, but
the computations of the minors of symbolic matrices can be pretty heavy, because
of the growth of the degree of the intermediate polynomials involved. In the case
of Photon, the matrix could be found as C = Companion(1, L, 1, L2) where L is
the multiplication by the field element represented by 2.

Continuing this idea and focusing on hardware implementation, Wu, Wang,
and Wu [11] were able to find recursive MDS matrices using an impressively
small number of XOR gates. They used a technique similar to Sajadieh et al.,
first searching for symbolic matrices with a list of polynomials having to be
invertible when evaluated in L, then finding an F2-linear operator L using a
single XOR operation and with a minimal polynomial not among the list of
polynomials that have to be invertible.

Then, looking for larger recursive MDS matrices, Augot and Finiasz [1] pro-
posed to get rid of the expensive symbolic computations involved in this tech-
nique by choosing the minimal polynomial of L before the search of companion
matrices C(X). Then, all computation can be done in a finite field (modulo the
chosen minimal polynomial of L), making them much faster. Of course, assum-
ing the MDS conjecture holds, the length of the code cannot be larger than the
size of the field plus one, so for an L with irreducible minimal polynomial of
degree s, the field is of size q = 2s, and k must verify 2k ≤ 2s + 1. Larger MDS
matrices will require an operator L with a higher degree minimal polynomial.
Also, in the case where the bound given by the MDS conjecture is almost met
(when k = 2s−1), Augot and Finiasz noted that all companion matrices found

had some kind of symmetry: if the k-th power of Companion(1, c1, c2, . . . , ck−1)
is MDS, then ci = ck−i for all 1 ≤ i ≤ k−1

2 .

2.1 An Interesting Example

One of the symmetric MDS matrices found by Augot and Finiasz [1] for k = 8
and Fq = F16 is

C = Companion(1, α3, α4, α12, α8, α12, α4, α3)

with α4+α+1 = 0. As we will see later, there is a strong link between companion
matrices and the associated polynomial, here

PC(X) = 1 + α3X + α4X2 + α12X3 + α8X4 + α12X5 + α4X6 + α3X7 +X8.

In this example, this polynomial factors into terms of degree two:

PC(X) = (1 + α2X +X2)(1 + α4X +X2)(1 + α8X +X2)(1 + α9X +X2),

meaning that PC(X) is split in a degree-2 extension of F16, the field F256.
If we now consider PC(X) in F256[X], which we can, since F16 is a subfield of

F256, and look for its roots in F256, we find that there are 8 roots in F256, which,
for a certain primitive 255-th root of unity β ∈ F256, are

[β5, β6, β7, β8, β9, β10, β11, β12].

This indicates a strong connection with BCH codes that we will now study.

3 Cyclic Codes, BCH Codes, and Shortening

Before jumping to BCH codes, we must first note a few things that are true for
any cyclic code and not only BCH codes. For more details on the definition and
properties of cyclic codes, the reader can refer to [8].

3.1 A Systematic Representation of Cyclic Codes

An [n, k]q code is said to be cyclic if a cyclic shift of any element of the code
remains in the code. For example, the code defined by the following generator
matrix G over F2 is cyclic:

G =

1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1

 .

A cyclic shift to the right of the last line of G gives (1, 0, 0, 0, 1, 0, 1) which is the
sum of the first, third and last lines of G, thus remains in the code: G indeed
generates a cyclic code.

c0 c1 ... ck-1ck-2

Fig. 1. An LFSR corresponding to the companion matrix C of polynomial g(X) =
Xk + ck−1X

k−1 + ... + c0. Clocking it k times is equivalent to applying Ck to its
internal state.

Cyclic codes can also be defined in terms of polynomials: (1, 0, 1, 1, 0, 0, 0)
corresponds to 1 +X2 +X3 and a cyclic shift to the right is a multiplication by
X modulo Xn−1. This way, cyclic codes can be seen as ideals of Fq[X]/(Xn−1),
meaning that each cyclic code Γ can be defined by a generator polynomial g(X)
such that Γ =< g(X) > and g(X) divides Xn − 1. Then, the code defined by
g(X) has dimension k = n−deg(g). In our example, g(X) = 1+X2 +X3, which
divides X7 − 1, and the code is indeed of dimension 4.

Any multiple of g(X) is in the code, so for any polynomial P (X) of degree
less than n, the polynomial P (X) − (P (X) mod g(X)) is in the code. Using
this property with P (X) = Xi for i ∈ [deg(g), n − 1], we obtain an interesting
systematic form for any cyclic code generator matrix:

G =

−X3 mod g(X) 1 0 0 0
−X4 mod g(X) 0 1 0 0
−X5 mod g(X) 0 0 1 0
−X6 mod g(X) 0 0 0 1

 =

1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 0 0 0 1

 .

This form is exactly what we are looking for when searching for powers
of companion matrices. Indeed, if we associate the companion matrix C =
Companion(c0, . . . , ck−1) to the polynomial g(X) = Xk + ck−1X

k−1 + · · · + c0,
then the successive powers of C are (continuing with our example where k = 3):

C =

 0 1 0
0 0 1

−X3 mod g(X)

, C2 =

 0 0 1
−X3 mod g(X)
−X4 mod g(X)

, C3 =

−X3 mod g(X)
−X4 mod g(X)
−X5 mod g(X)

.
To build recursive MDS matrices we thus simply need to build MDS cyclic codes
with suitable parameters and their corresponding g(X).

Note that a multiplication by a companion matrix can also be expressed in
terms of LFSR. Initializing the LFSR of Fig. 1 with a vector and clocking it
once corresponds to the multiplication of this vector by C. Clocking it k times
corresponds to the multiplication by M = Ck. We will continue using the matrix
representation in the rest of the paper, but most results could also be expressed
in terms of LFSR.

3.2 BCH Codes and Shortened BCH Codes

In general, given a generator polynomial g(X), computing the minimal distance
of the associated cyclic code is a hard problem. For instance, the code generated
by g(X) = 1 + X2 + X3 in the example of the previous section has minimal
distance 3, but even for such small examples it is not necessarily immediate to
find the minimum distance. Nonetheless, lower bounds exist for some specific
constructions. This is the case for BCH codes, as described for example in [8].

Definition 1 (BCH codes). A BCH code over Fq is defined using an ele-
ment β in some extension Fqm of Fq. First, pick integers ` and d and take
the (d − 1) consecutive powers β`, β`+1, . . . , β`+d−2 of β, then compute g(X) =
lcm(MinFq

(β`), . . . ,MinFq
(β`+d−2)), where MinFq

(β`) is the minimal polynomial
of β` over Fq.

The cyclic code over Fq of length ord(β) defined by g(X) is called a BCH
code, it has dimension (ord(β) − deg(g)) and has minimal distance at least d.
We write this as being an [ord(β), ord(β)− deg(g),≥ d]q code.

For such a BCH code to be MDS, g(X) must have degree exactly d− 1 (for
a cyclic code deg(g(X)) = n−k and for an MDS code d = n−k+ 1, so an MDS
BCH code necessarily verifies deg(g(X)) = d− 1). Seeing that g(X) already has
d−1 roots over Fqm , it cannot have any other roots. This means that the powers
β`+j , j = 0, . . . , d− 2, must all be conjugates of each other.

The need for shortening. When building diffusion layers, the input and out-
put of the diffusion generally have the same size (otherwise inversion might be
a problem), so we need codes of length 2k and dimension k. In terms of BCH
codes, this translates into using k consecutive powers of an element β of order
2k, and having g(X) of degree k. Of course, elements of even order do not exist
in extensions of F2, so this is not possible. Instead of using full length BCH
codes, we thus use shortened BCH codes.

Definition 2 (Shortened code). Given a [n, k, d]q code Γ , and a set I of z
indices {i1, . . . , iz}, the shortened code ΓI of C at indices from I is the set of
words from Γ which are zero at positions i1, . . . , iz, and whose zero coordinates
are deleted, thus effectively shortening these words by z positions. The shortened
code ΓI has length n− z, dimension ≥ k − z and minimal distance ≥ d.

If Γ is MDS, then d = n−k+1 and ΓI will necessarily be an [n−z, k−z, d]q MDS
code, as neither the dimension nor the minimal distance can increase without
breaking the Singleton bound [10].

We can thus look for [2k + z, k + z, k + 1]q BCH codes and shorten them
on z positions to obtain our MDS codes. However, shortened BCH codes are
no longer cyclic, so the shortening has to be done in a way that conserves the
recursive structure. This is easy to achieve by using the previous systematic

representation and shortening on the last positions. Starting from g(X) of degree
k, which divides X2k+z − 1, we get a generating matrix:

G =

Xk mod g(X) 1 0 0 0
Xk+1 mod g(X) 0 1 0 0

· · · · · ·
X2k+z−1 mod g(X) 0 0 0 1

 .

︸ ︷︷ ︸
size k+z

Shortening the code on the z last positions will maintain the systematic form
and simply remove the z last lines to obtain:

GI =

Xk mod g(X) 1 0 0 0
Xk+1 mod g(X) 0 1 0 0

· · · · · ·
X2k−1 mod g(X) 0 0 0 1

 .

︸ ︷︷ ︸
size k

As said above, when G generates an MDS code, then GI also generates an MDS
code, and this is (up to a permutation of the two k × k blocks, that will not
affect the MDS property) exactly what we are looking for: a recursive MDS
matrix defined by the companion matrix associated to the polynomial g(X).

3.3 Direct Construction of Recursive MDS Matrices

From this result, in the case where q = 2s, we can deduce a direct construction of
recursive MDS matrices based on MDS BCH codes that were already described
in [8], Chapter 11, §5. We first pick a β of order q + 1. As q + 1 divides q2 − 1,
β is always in Fq2 , the degree-2 extension of Fq. Then, apart from β0 = 1, all
powers of β have minimal polynomials of degree 2: since β is of order q+ 1, each
βi has a conjugate βqi = β−i which is the second root of MinFq

(βi). From there,
it is easy to build a [q + 1, q + 1 − k, k + 1]q MDS BCH code for any value of
k ≤ q

2 .

– If k is even, we need to select k consecutive powers of β that are conjugates
by pairs: if βi is selected, βq+1−i is selected too. We thus select all the powers
βi with i ∈ [q−k2 + 1, q+k

2], grouped around q+1
2 .

– If k is odd, we need to select β0 as well. We thus select all the powers βi

with i ∈ [−k−1
2 , k−12], grouped around 0.

In both cases, we get a polynomial g(X) of degree k defining an MDS BCH code
of length q+ 1. We can then shorten this code on z = (q+ 1− 2k) positions and
obtain the [2k, k, k+1]q MDS code we were looking for. The non-systematic part
of the generator matrix of this code is the k-th power of the companion matrix
defined by g(X).

Also, as the conjugate of βi is its inverse, g(X) enjoys the same symmetry
as the example of Section 2.1: Xkg(X−1) = g(X). This explains the symmetry

observed in [1]. Furthermore, the companion matrix associated to g(X) thus
has at most k

2 different coefficients and can be implemented with at most k
2

multiplications.
Finally, by cycling over all β of order q + 1, in the case where 2k = q we

were able to recover with this direct construction all the solutions found in [1]
through exhaustive search. We conjecture that when 2k = q, the only recursive
MDS matrices that exist come from these shortened BCH codes.

4 An Algorithm to Find All MDS BCH Codes

We have seen that shortened BCH codes allow to directly build recursive MDS
matrices. However, when building a block cipher, the designer usually has some
parameters in mind (say, a diffusion layer on k symbols of s bits each) and wants
the best diffusion layer matching these parameters. Our direct construction gives
good solutions, but cannot guarantee they are the best. So the designer needs
an algorithm that will enumerate all possible matrices and let him pick the most
suitable one. For this, we will consider BCH codes where β is a (2k+ z)-th root
of unity and not only a (2k + 1)-th root of unity as in the direct construction.
First, there are a few constraints to consider.

Field Multiplication or F2-linearity? The designer has to choose the type of
linearity he wants for his diffusion layer. If he wants (standard) linearity over
F2s , then the BCH code has to be built over F2s (or a subfield of F2s , but the
construction is the same). However, as in the Sajadieh et al. [9] or the Wu et
al. [11] constructions, he could choose to use an F2-linear operator L. Assuming
L has an irreducible minimal polynomial of degree s′ ≤ s (see [1] for how to deal
with non-irreducible minimal polynomials), then he needs to build a BCH code
over F2s′ . This choice is up to the designer but does not change anything to the
rest of the algorithm, so we will assume s′ = s.

The MDS Conjecture. Our shortened BCH construction starts by building an
MDS code of length 2k+ z over F2s . The MDS conjecture tells us that 2k+ z ≤
2s + 1 must hold. When k = 2s−1, z = 1 is the only choice. In general, we
can choose any z ∈ [1, 2s + 1 − 2k], so the algorithm will need to try all these
possibilities.

Minimal Polynomials of Roots of Unity. The β involved in the BCH construction
is a (2k + z)-th root of unity, and g(X) is formed as the product of minimal
polynomials of powers of β. First, (2k+ z)-th roots of unity must exist, meaning
2k + z must be odd (or more generally coprime with q when q is not 2s). Then,
when factorizing X2k+z − 1, the minimal polynomials of the βi are factors of
this decomposition, and g(X) is the product of some of these factors. It must
thus be possible to obtain a polynomial of degree k this way. This is not always
possible: for example, X23 − 1 decomposes over F28 in a factor of degree 1 and
two factors of degree 11 and very few values of k can be obtained. However, this

last condition is rather complex to integrate in an algorithm and it will be easier
to simply not take it into account.

4.1 A Simple Algorithm

For given parameters k and q = 2s we propose to use Algorithm 1 to enumerate
all possible recursive MDS matrices coming from shortened BCH codes. This
algorithm explores all code lengths from 2k + 1 to q + 1, meaning that the
number of shortened columns can be much larger than the final code we are
aiming for. Instead of computing minimal polynomials and their least common
multiple as in the definition of BCH codes we directly compute

∏k−1
j=0 (X−β`+j)

and check if it is in Fq[X]. This allows the algorithm to be more efficient and also
makes upper bounding its complexity much easier. The following lemma shows
that the two formulations are equivalent.

Lemma 1. A BCH code over Fq defined by the d − 1 roots [β`, ..., β`+d−2] is

MDS, if and only if P (X) =
∏d−2

j=0(X − β`+j) is in Fq[X]. In this case, g(X) =

lcm
(
MinFq

(β`), ...,MinFq
(β`+d−2)

)
is equal to P (X).

Proof. We have seen that a BCH code is MDS if and only if g(X) is of degree
d− 1 exactly. Also, g(X) is always a multiple of P (X).

First, assume we have an MDS BCH code. Then g(X) is of degree d− 1 and
is a multiple of P (X) which is also of degree d − 1. So, up to a scalar factor,
g(X) = P (X) and P (X) ∈ Fq[X].

Conversly, assume we have a BCH code such that P (X) ∈ Fq[X]. Then, for
any j ∈ [0, d−2], P (X) is a polynomial in Fq[X] having β`+j as a root, so P (X)
is a multiple of MinFq (β`+j). Therefore, g(X) divides P (X) and, as P (X) also
divides g(X), we have g(X) = P (X). g(X) thus has degree d − 1 and the code
is MDS. ut

4.2 Complexity

The previous algorithm simply tests all possible candidates without trying to be
smart about which could be eliminated faster. It also finds each solution several
times (typically for β and β−1), and finds some equivalent solutions (applying
α 7→ α2 on all coefficients of the polynomial preserves the MDS property, so each
equivalence class is found s times).

The product at line 7 does not have to be fully recomputed for each value
of `. It can be computed once for ` = 0, then one division by (X − β`) and one
multiplication by (X − β`+k) are enough to update it at each iteration. This
update costs O(k) operations in the extension of Fq containing α. The whole
loop on ` can thus be executed in O((2k+ z)k) operations in the extension field.

The number of β for which the loop has to be done is Euler’s phi function
ϕ(2k+z) which is smaller than (2k+z), itself smaller than q, and there are q−2k

2 +
1 values of z to test. This gives an overall complexity of O(q2k(q−2k)) operations

Algorithm 1: Search for Recursive MDS Matrices

Input: parameters k and s
Output: a set S of polynomials yielding MDS matrices

1 q ← 2s

2 S ← ∅
3 for z ← 1 to (q + 1− 2k), with z odd do
4 α← primitive (2k + z)-th root of unity of Fq

5 forall the β = αi such that ord(β) = 2k + z do
6 for `← 0 to (2k + z − 2) do

7 g(X)←
∏k−1

j=0 (X − β`+j)

8 if g(X) ∈ Fq[X] then (we test if g has all its coefficients in Fq)
9 S ← S ∪ {g(X)}

10 end

11 end

12 end

13 end
14 return S

Fig. 2. Algorithm searching for MDS BCH codes

in an extension of Fq. This extension is of degree at most 2k + z, so operations
are at most on q log q bits in this extension and cost at most O(q2(log q)2). This
gives an upper bound on the total complexity of O

(
q4k(q − 2k)(log q)2

)
binary

operations, a degree-6 polynomial in k and q. This is a quite expensive, but as we
will see in the next section, this algorithms runs fast enough for most practical
parameters. It should also be possible to accelerate this algorithm using more
elaborate computer algebra techniques.

5 Experimental Results

We implemented Algorithm 1 in Magma [2] (see the code in Appendix A) and
ran it for various parameters.

5.1 The Extremal Case: 2k = 2s.

First, we ran the algorithm for parameters on the bound given by the MDS
conjecture, that is, when 2k = 2s. These are the parameters that were studied
by Augot and Finiasz in [1]. It took their algorithm 80 days of CPU time to
perform the exhaustive search with parameters k = 16 and s = 5 and find
the same 10 solutions that our new algorithm finds in a few milliseconds. The
timings and number of solutions we obtained are summarized in Table 1. We
were also able to find much larger MDS diffusion layers. For example, we could
deal with k = 128 elements of s = 8 bits, which maybe is probably too large
to be practical, even with a recursive structure and the nice symmetry. Below

Table 1. Experimental results for parameters on the bound given by MDS conjecture.
The value “diff. bits” is the size in bits of the corresponding diffusion layer. The number
of solutions is given as both the raw number and the number of distinct equivalence
classes.

k s
diff. solutions

time
bits num. classes

4 3 12 3 1 <0.01s
8 4 32 8 2 <0.01s
16 5 80 10 2 <0.01s
32 6 192 24 4 ∼0.02s
64 7 448 42 6 ∼0.07s
128 8 1024 128 16 ∼0.52s
256 9 2304 162 18 ∼1.71s

Table 2. Experimental results for other interesting parameters. The reg. solutions refer
to regular solutions where the constant term of the polynomial is 1.

k s
diff. solutions

time
bits num. reg.

4 4 16 68 12 ∼0.02s
4 8 32 20180 252 ∼37s
8 8 64 20120 248 ∼44s
16 8 128 19984 240 ∼55s
32 8 256 19168 224 ∼80s

are the logs in base α (with α8 + α4 + α3 + α2 + 1 = 0) of the last line of the
companion matrix of an example of such 1024-bit diffusion:

[0, 83, 25, 136, 62, 8, 73, 112, 253, 110, 246, 156, 53, 1, 41, 73, 5, 93, 190, 253, 149,

98, 125, 124, 149, 94, 100, 41, 37, 183, 81, 6, 242, 74, 252, 104, 57, 117, 55, 224,

153, 130, 77, 156, 192, 176, 52, 133, 218, 59, 158, 18, 228, 89, 218, 126, 146,

210, 217, 18, 84, 209, 30, 123,97, 123, . . . [symmetric] . . . , 83]

5.2 The General Case

We also ran some computations for other interesting parameters, typically for
values of k and s that are both powers of 2 as it is often the case in block ciphers.
The results we obtained are summarized in Table 2. Note that for these solutions
the number of shortened positions is sometime huge: for k = 4 and s = 8 one can
start from a [257, 253, 5]256 BCH code and shorten it on 249 positions to obtain
a [8, 4, 5]256 code. We counted both the total number of solutions we found and
the number of regular solutions where the constant term of the polynomial is 1.
Regular solutions are particularly interesting as the diffusion and its inverse

share the same coefficients:

Companion(1, c1, . . . , ck−1)−1 =

0 1 0

. . .

0 0 1
1 c1 ck−1

−1

=

c1 ck−1 1
1 0 0

. . .

0 1 0

 . (1)

In the case of symmetric solutions (like those from Section 3.3), encryption and
decryption can even use the exact same circuit by simply reversing the order of
the input and output symbols. Here are some examples of what we found:

– for parameters k = 4 and s = 4, with α such that α4+α+1 = 0, the matrices
Companion(1, α3, α, α3)4 and Companion(α3 + α, 1, α, α3)4 are MDS.

– for parameters k = 4 and s = 8, with α such that α8 +α4 +α3 +α2 + 1 = 0,
the matrices Companion(1, α3, α−1, α3)4, Companion(1, α3+α2, α3, α3+α2)4,
and Companion(α+ 1, 1, α202 + 1, α202)4 are MDS.

The reader might note the absence of larger fields in Table 2. One could for
example want to obtain a 128-bit diffusion layer using k = 8 symbols of s = 16
bits. However, going through all the possible values of z and ` takes too long
with q = 216. Our algorithm is too naive, and an algorithm enumerating the
divisors of X2k+z − 1 of degree k and checking if they correspond to BCH codes
could be faster in this case. Otherwise, it is always possible to use the direct
construction given in Section 3.3.

5.3 Further Work

As we have seen, for most parameters, this algorithm runs fast enough to find
all recursive MDS matrices coming from BCH codes. However, not all recursive
MDS matrices come from a BCH code.

– First, there are other classes of cyclic codes that are MDS and could be
shortened in a similar way. Any such class of codes can directly be plugged
into our algorithm, searching for polynomials g(X) having another structure
than roots that are consecutive powers of β.

– Then, there also are cyclic codes which are not MDS, but become MDS
once they are shortened. These will be much harder to track as they do not
have to obey the MDS conjecture and can have a much larger length before
shortening.

For this reason, we are not always able (yet) to find the most efficient matrices
with our algorithm. For example, the matrix used in Photon corresponds to a
cyclic code of length 224−1 over F28 which is not MDS. We know that this code
has minimum distance 3, and its distance grows to 5 when shortened from the
length 224 − 1 to the length 8.

However, for some parameters, our algorithm is able to find very nice so-
lutions. For k = 4 and α verifying α5 + α2 + 1 = 0 (a primitive element
of F25 , or an F2-linear operator with this minimal polynomial), the matrix

Companion(1, α, α−1, α) found by Algorithm 1 yields an MDS diffusion layer.
This is especially nice because it is possible to build simple F2-linear opera-
tors that also have a simple inverse, and this solution is symmetric meaning the
inverse diffusion can use the same circuit as the diffusion itself.

6 Conclusion

The main result of this article is the understanding that recursive MDS matrices
can be obtained directly from shortened MDS cyclic codes. From this, we derive
both a direct construction and a very simple algorithm, based on the enumera-
tion of BCH codes, that allows to efficiently find recursive MDS matrices for any
diffusion and symbol sizes. These constructions do not always find all existing
recursive MDS matrices and can thus miss some interesting solutions. As part
of our future works, we will continue to investigate this problem, trying to un-
derstand what properties the other solutions have and how we can extend our
algorithm to find them all. A first step is to elucidate the Photon matrix in terms
of cyclic codes which are not BCH codes, hopefully finding a direct construction
of this matrix. However, in the same way as computing the minimal distance of a
cyclic code is difficult, it might turn out that finding all recursive MDS matrices
of a given size is a hard problem.

References

1. Daniel Augot and Matthieu Finiasz. Exhaustive search for small dimension re-
cursive MDS diffusion layers for block ciphers and hash functions. In Information
Theory Proceedings (ISIT), 2013 IEEE International Symposium on, pages 1551–
1555. IEEE, 2013.

2. Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system.
I. The user language. Journal of Symbolic Computation, 24(3-4):235–265, 1997.

3. Joan Daemen. Cipher and hash function design, strategies based on linear and
differential cryptanalysis, PhD Thesis. K.U.Leuven, 1995.

4. Joan Daemen and Vincent Rijmen. The Design of Rijndael. Information Security
and Cryptography. Springer, 2002.

5. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of
lightweight hash functions. In Phillip Rogaway, editor, Crypto 2011, volume 6841
of Lecture Notes in Computer Science, pages 222–239. Springer, 2011.

6. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In Bart Preneel and Tsuyoshi Takagi, editors, CHES 2011,
volume 6917 of Lecture Notes in Computer Science, pages 326–341. Springer, 2011.

7. Pascal Junod and Serge Vaudenay. FOX: A new family of block ciphers. In Helena
Handschuh and M. Anwar Hasan, editors, Selected Areas in Cryptography, volume
3357 of Lecture Notes in Computer Science, pages 114–129. Springer, 2004.

8. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error Correcting Codes.
North-Holland Mathematical Library. North-Holland, 1978.

9. Mahdi Sajadieh, Mohammad Dakhilalian, Hamid Mala, and Pouyan Sepehrdad.
Recursive diffusion layers for block ciphers and hash functions. In Anne Canteaut,
editor, Fast Software Encryption 2012, volume 7549 of Lecture Notes in Computer
Science, pages 385–401. Springer Berlin Heidelberg, 2012.

10. Richard Singleton. Maximum distance q-nary codes. IEEE Transactions on Infor-
mation Theory, 10(2):116–118, April 1964.

11. Shengbao Wu, Mingsheng Wang, and Wenling Wu. Recursive diffusion layers for
(lightweight) block ciphers and hash functions. In Lars R. Knudsen and Huapeng
Wu, editors, Selected Areas in Cryptography, volume 7707 of Lecture Notes in Com-
puter Science, pages 355–371. Springer, 2013.

A Magma Code

Here is the Magma code for Algorithm 1. Simply run BCH(k,s) to get the set of
all polynomials of degree k over F2s that yield MDS diffusion layers on ks bits.
Of course, these polynomials have to be written as companion matrices which
then have to be raised to the power k to obtain the final MDS matrices.

BCH := function(k,s)

q := 2^s;

F := GF(q);

P := PolynomialRing(F);

S := { };

for z:=1 to q+1-2*k by 2 do

a := RootOfUnity(2*k+z, F);

Pext<X> := PolynomialRing(Parent(a));

for i:=0 to 2*k+z-1 do

b := a^i;

if Order(b) eq (2*k+z) then

g := &*[(X-b^l): l in [-1..k-2]];

for l in [0..2*k+z-2] do

g := (g*(X-b^(l+k-1))) div (X-b^(l-1));

if IsCoercible(P,g) then

Include(~S, P!g);

end if;

end for;

end if;

end for;

end for;

return S;

end function;

	Direct Construction of Recursive MDS Diffusion Layers using Shortened BCH Codes

