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Abstract

We give new criteria for the existence of weak solutions to an equation with a super
linear source term

−∆u = u
q in Ω, u = σ on ∂Ω

where Ω is a either a bounded smooth domain or R
N
+ , q > 1 and σ ∈ M

+(∂Ω) is a
nonnegative Radon measure on ∂Ω. One of the criteria we obtain is expressed in terms
of some Bessel capacities on ∂Ω. We also give a sufficient condition for the existence
of weak solutions to equation with source mixed terms.

−∆u = |u|q1−1
u|∇u|q2 in Ω, u = σ on ∂Ω

where q1, q2 ≥ 0, q1 + q2 > 1, q2 < 2, σ ∈ M(∂Ω) is a Radon measure on ∂Ω.

1 Introduction and main results

Let Ω be a bounded smooth domain in R
N or Ω = R

N
+ := R

N−1 × (0,∞), N ≥ 3, and
g : R × R

N 7→ R be a continuous function. In this paper, we study the solvability of the
problem

−∆u = g(u,∇u) in Ω,
u = σ on ∂Ω,

(1.1)

where σ ∈ M(∂Ω) is a Radon measure on ∂Ω. All solutions are understood in the usual
very weak sense, which means that u ∈ L1(Ω), g(u,∇u) ∈ L1

ρ(Ω), where ρ(x) is the distance

from x to ∂Ω when Ω is bounded, or u ∈ L1(RN
+ ∩B), g(u,∇u) ∈ L1

ρ(R
N
+ ∩B) for any ball

B if Ω = R
N
+ , and

ˆ

Ω

u(−∆ξ)dx =

ˆ

Ω

g(u,∇u)ξdx−
ˆ

∂Ω

∂ξ

∂n
dσ (1.2)

for any ξ ∈ C2(Ω) ∩ Cc(R
N ) with ξ = 0 in Ωc, where ρ(x) = dist(x, ∂Ω), n is the outward

unit vector on ∂Ω. It is well-known that such a solution u satisfies

u = G[g(u,∇u)] +P[σ] a. e. in Ω,
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where G[.],P[.], respectively the Green and the Poisson potentials associated to −∆ in Ω,
are defined from the Green and the Poisson kernels by

P[σ](y) =

ˆ

∂Ω

P(y, z)dσ(z), G[g(u,∇u)](y) =

ˆ

Ω

G(y, x)g(u,∇u)(x)dx,

see [16].

Our main goal is to establish necessary and sufficient conditions for the existence of weak
solutions of (1.1) with boundary measure data, together with sharp pointwise estimates of
the solutions. In the sequel we study two cases for the problem (1.1):

1- The pure power case

−∆u = |u|q−1u in Ω,
u = σ on ∂Ω,

(1.3)

with u ≥ 0, q > 1 and σ ≥ 0.

2- The mixed gradient-power case

−∆u = |∇u|q2 |u|q1−1u in Ω,
u = σ on ∂Ω,

(1.4)

with q1, q2 > 0, q1 + q2 > 1 and q2 < 2.

The problem (1.3) has been first studied by Bidaut-Véron and Vivier [2] in the subcritical
case 1 < q < N+1

N−1 with Ω bounded. They proved that (1.3) admits a nonnegative solution

provided σ(∂Ω) is small enough. They also proved that for any σ ∈ M
+
b (∂Ω) there holds

G[(P[σ])q ] ≤ cσ(∂Ω)P[σ] (1.5)

for some c = c(N, p, q) > 0. Then Bidaut-Véron and Yarur [3] considered again the problem
(1.3) in a bounded domain in a more general situation since they allowed both interior and
boundary measure data, giving a complete description of the solutions in the subcritical case,
and sufficient conditions for existence in the supercritical case. In particular they showed
that the problem (1.3) has a solution if and only if

G[(P[σ])q ] ≤ cP[σ] (1.6)

for some c = c(N, q,Ω) > 0, see [3, Th 3.12-3.13, Remark 3.12].

The absorption case, i.e. g(u,∇u) = −|u|q−1u has been studied by Gmira and Véron [9]
in the subcritical case (again 1 < q < N+1

N−1 ) and by Marcus and Véron in the supercritical
case [13], [15], [16]. The case g(u,∇u) = −|∇u|q was studied by Nguyen Phuoc and Véron
[17] and extended recently to the case g(u,∇u) = −|∇u|q2 |u|q1−1u by Marcus and Nguyen
Phuoc [11]. To our knowledge, the problem (1.4) has not yet been studied.

To state our results, let us introduce some notations. We write A . (&)B if A ≤ (≥)CB
for some C depending on some structural constants, A ≍ B if A . B . A. Various capacities
will be used throughout the paper. Among them are the Riesz and Bessel capacities in R

N−1

defined respectively by

CapIγ ,s(O) = inf

{
ˆ

RN−1

f sdy : f ≥ 0, Iγ ∗ f ≥ χO

}

,

CapGγ ,s(O) = inf

{
ˆ

RN−1

f sdy : f ≥ 0, Gγ ∗ f ≥ χO

}

,
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for any Borel set O ⊂ R
N−1, where s > 1, Iγ , Gγ are the Riesz and the Bessel kernels in

R
N−1 with order γ ∈ (0, N − 1). We remark that

CapGγ ,s(O) ≥ CapIγ ,s(O) ≥ C|O|1− γs
N−1 (1.7)

for any Borel set O ⊂ R
N−1 where γs < N − 1 and C is a positive constant. When we

consider equations in a bounded smooth domain Ω in R
N we use a specific capacity that we

define as follows: there exist open sets O1, ..., Om in R
N , diffeomorphisms Ti : Oi 7→ B1(0)

and compact sets K1, ...,Km in ∂Ω such that

a. Ki ⊂ Oi, ∂Ω ⊂
m
⋃

i=1

Ki.

b. Ti(Oi ∩ ∂Ω) = B1(0) ∩ {xN = 0}, Ti(Oi ∩ Ω) = B1(0) ∩ {xN > 0}.

c. For any x ∈ Oi ∩ Ω, ∃y ∈ Oi ∩ ∂Ω, ρ(x) = |x− y|.

Clearly, ρ(T−1
i (z)) ≍ |zN | for any z = (z′, zN) ∈ B1(0) ∩ {xN > 0} and |JTi

(x)| ≍ 1 for any
x ∈ Oi ∩ Ω, here JTi

is the Jacobian matrix of Ti.

Definition 1.1 Let γ ∈ (0, N − 1), s > 1. We define the Cap∂Ωγ,s-capacity of a compact set
E ⊂ ∂Ω by

Cap∂Ωγ,s(E) =

m
∑

i=1

CapGγ ,s(T̃i(E ∩Ki)),

where Ti(E ∩Ki) = T̃i(E ∩Ki)× {xN = 0}.

Notice that, if γs > N − 1 then there exists C = C(N, γ, s,Ω) > 0 such that

Cap∂Ωγ,s({x}) ≥ C (1.8)

for all x ∈ ∂Ω. Also the definition does not depend on the choice of the sets Oi.

Our first two theorems give criteria for the solvability of the problem (1.1) in R
N
+ .

Theorem 1.2 Let q > 1 and σ ∈ M
+
b (R

N−1). Then, the following statements are equivalent

1 There exists C > 0 such that the inequality

σ(K) ≤ C CapI 2
q
,q′(K) (1.9)

holds for any compact set K ⊂ R
N−1.

2 There exists C > 0 such that the relation

G [(P[σ])
q
] ≤ CP[σ] < ∞ a.e in R

N
+ (1.10)

holds.

3. The problem
−∆u = uq in R

N
+ ,

u = εσ in ∂RN
+ ,

(1.11)

has a positive solution for ε > 0 small enough.
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Moreover, there is a constant C0 > 0 such that if any one of the two statement 1 and 2
holds with C ≤ C0, then equation (1.11) admits a solution u with ε = 1 which satisfies

u ≍ P[σ]. (1.12)

Conversely, if (1.11) has a solution u with ε = 1, then the two statements 1 and 2 hold for
some C > 0.

As a consequence of Theorem 1.2 when g(u,∇u) = |u|q−1u (q > 1) and Ω = R
N
+ , we

prove that if (1.3) has a nonnegative solution u with σ ∈ M
+
b (R

N−1), then

σ(B
′

r(y
′)) ≤ CrN− q+1

q−1 (1.13)

for any ball B
′

r(y
′) in R

N−1 where C = C(q,N) and q > N+1
N−1 ; if 1 < q ≤ N+1

N−1 , then σ ≡ 0.

Conversely, if q > N+1
N−1 , dσ = fdz for some f ≥ 0 which satisfies

ˆ

B′
r(y

′)

f1+εdz ≤ CrN−1− 2(ε+1)
q−1 (1.14)

for some ε > 0, then there exists a constant C0 = C0(N, q) such that (1.1) has a nonnegative
solution if C ≤ C0. The above inequality is an analogue of the classical Fefferman-Phong con-

dition [6]. In particular, (1.14) holds if f belongs to the Lorentz space L
(N−1)(q−1)

2 ,∞(RN−1).

We give sufficient conditions for the existence of weak solutions to (1.1) when g(u,∇u) =
|u|q1−1u|∇u|q2 , q1, q2 ≥ 0, q1 + q2 > 1 and q2 < 2.

Theorem 1.3 Let q1, q2 ≥ 0, q1 + q2 > 1, q2 < 2 and σ ∈ M(RN−1) such that P[|σ|] < ∞
a.e. in R

N−1. Assume that there exists C > 0 such that for any Borel set K ⊂ R
N−1 there

holds

|σ|(K) ≤ C CapI 2−q2
q1+q2

,(q1+q2)′(K). (1.15)

Then the problem
−∆u = |u|q1−1u|∇u|q2 in R

N
+ ,

u = εσ in ∂RN
+ ,

(1.16)

has a solution for ε > 0 small enough and it satisfies

|u| . P[|σ|], |∇u| . ρ−1P[|σ|]. (1.17)

Remark 1.4 In any case and in view of (1.7), if dσ = fdz, f ∈ L
(N−1)(q1+q2−1)

2−q2
,∞

(RN−1)
and (N − 1)(q1 + q2 − 1) > 2− q2 then (1.15) holds for some C > 0 and the problem (1.16)
has a solution for ε > 0 small enough. However, we can see that condition (1.15) implies
P[|σ|] < ∞ a.e, see Theorem 2.6.

In a bounded domain Ω we obtain existence results analogous to Theorem 1.2 and 1.3
provided the capacities on ∂Ω set in Definition 1.1 are used instead of the Riesz capacities.

Theorem 1.5 Let q > 1, Ω ⊂ R
N be a bounded domain with a C2 boundary and σ ∈

M
+(∂Ω). Then, the following statements are equivalent:

1 There exists C > 0 such that the inequality

σ(K) ≤ C Cap∂Ω2
q
,q′(K) (1.18)

for any Borel set K ⊂ ∂Ω.
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2 There exists C > 0 such that the inequality

G [(P[σ])
q
] ≤ CP[σ] < ∞ a.e in Ω, (1.19)

holds.

3. The problem
−∆u = uq in Ω,

u = εσ on ∂Ω,
(1.20)

admits a positive solution for ε > 0 small enough.

Moreover, there is a constant C0 > 0 such that if any one of the two statements 1 and 2
holds with C ≤ C0, then equation (1.20) has a solution u with ε = 1 which satisfies

u ≍ P[σ]. (1.21)

Conversely, if (1.20) has a solution u with ε = 1, the above two statements 1 and 2 hold for
some C > 0.

From (1.8), we see that if σ ∈ M
+(∂Ω) and 1 < q < N+1

N−1 , then (1.18) holds for some
constant C > 0. Hence, in this case, the problem (1.20) has a positive solution for ε > 0
small enough.

Theorem 1.6 Let q1, q2 ≥ 0, q1 + q2 > 1, q2 < 2, Ω ⊂ R
N be a bounded domain with a C2

boundary and σ ∈ M(∂Ω). Assume that there exists C > 0 such that the inequality

|σ|(K) ≤ C Cap∂Ω2−q2
q1+q2

,(q1+q2)′
(K) (1.22)

holds for any Borel set K ⊂ ∂Ω. Then the problem

−∆u = |u|q1−1u|∇u|q2 in Ω,
u = εσ on ∂Ω,

(1.23)

has a solution for ε > 0 small enough which satisfies (1.17).

Remark 1.7 A discussion about the optimality of this condition, as well as the one of
Theorem 1.3, is conducted in Remark 3.1. We define the subcritical range by

(N − 1)q1 +Nq2 < N + 1 or equivalently (N − 1)(q1 + q2 − 1) < 2− q2. (1.24)

If we assume that we are in the subcritical case, then problem (1.23) has a solution for any
measure σ ∈ Mb(∂Ω) and ε > 0 small enough.

2 Integral equations

Let Ω be either RN−1 × (0,∞) or Ω a bounded domain in R
N with a C2 boundary ∂Ω. For

0 ≤ α ≤ β < N , we denote

Nα,β(x, y) =
1

|x− y|N−β max {|x− y|, ρ(x), ρ(y)}α ∀(x, y) ∈ Ω× Ω. (2.1)

We set

Nα,β[ν](x) =

ˆ

Ω

Nα,β(x, y)dν(y) ∀ν ∈ M
+(Ω),

and denote Nα,β[f ] := Nα,β[fdx] if f ∈ L1
loc(Ω), f ≥ 0.
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In this section, we are interested in the solvability of the following integral equations

U = Nα,β [U
q(ρ(.))α0 ] +Nα,β[ω] (2.2)

where α0 ≥ 0 and ω ∈ M
+(Ω).

We follow the deep ideas developed by Kalton and Verbitsky in [10] who analyzed a PDE
problem under the form of an integral equation. They proved a certain number of properties
of this integral equation which are crucial for our study and, for the sake of completeness, we
recall them here. Let X be a metric space and ν ∈ M

+(X). Let K be a Borel positive kernel
function K : X × X 7→ (0,∞] such that K is symmetric and K−1 satisfies a quasi-metric
inequality, i.e. there is a constant C ≥ 1 such that for all x, y, z ∈ X we have

1

K(x, y)
≤ C

(

1

K(x, z)
+

1

K(z, y)

)

.

Under these conditions, we can define the quasi-metric d by

d(x, y) =
1

K(x, y)
,

and denote by Br(x) = {y ∈ X : d(x, y) < r} the open d-ball of radius r > 0 and center x.
Note that this set can be empty.

For ω ∈ M
+(X), we define the potentials Kω and Kνf by

Kω(x) =

ˆ

X

K(x, y)dω(y), Kνf(x) =

ˆ

X

K(x, y)f(y)dν(y),

and for q > 1, the capacity Capν
K,q′ in X by

Capν
K,q′(E) = inf

{
ˆ

X

gq
′

dν : g ≥ 0,Kνg ≥ χE

}

,

for any Borel set E ⊂ X .

Theorem 2.1 ([10]) Let q > 1 and ν, ω ∈ M
+(X) such that

ˆ 2r

0

ν(Bs(x))

s

ds

s
≤ C

ˆ r

0

ν(Bs(x))

s

ds

s
, (2.3)

sup
y∈Br(x)

ˆ r

0

ν(Bs(y))

s

ds

s
≤ C

ˆ r

0

ν(Bs(x))

s

ds

s
, (2.4)

for any r > 0, x ∈ X, where C > 0 is a constant. Then the following statements are
equivalent:

1 The equation u = Kνuq + εKω has a solution for some ε > 0.

2 The inequality

ˆ

E

(KωE)
qdσ ≤ Cω(E) (2.5)

holds for any Borel set E ⊂ X where ωE = χEω.

3. For any Borel set E ⊂ X, there holds

ω(E) ≤ C Capν
K,q′(E). (2.6)
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4. The inequality

Kν (Kω)
q ≤ CKω < ∞ ν − a.e. (2.7)

holds.

We check below that Nα,β satisfies all assumptions of K in Theorem 2.1.

Lemma 2.2 Nα,β is symmetric and satisfies the quasi-metric inequality.

Proof. Clearly, Nα,β is symmetric. Now we check the quasi-metric inequality associated to
Nα,β and X = Ω. For any x, z, y ∈ Ω such that x 6= y 6= z, we have

|x− y|N−β+α . |x− z|N−β+α + |z − y|N−β+α

.
1

Nα,β(x, z)
+

1

Nα,β(z, y)
.

Since |ρ(x)− ρ(y)| ≤ |x− y|, there holds

|x− y|N−β(ρ(x))α + |x− y|N−β(ρ(y))α . |x− y|N−β(min{ρ(x), ρ(y)})α + |x− y|N−β+α

.
(

|x− z|N−β + |z − y|N−β
)

(min{ρ(x), ρ(y)})α + |x− z|N−β+α + |z − y|N−β+α

.
(

(ρ(x))α|x− z|N−β + |x− z|N−β+α
)

+
(

(ρ(y))α|z − y|N−β + |z − y|N−β+α
)

.
1

Nα,β(x, z)
+

1

Nα,β(z, y)
.

Thus,

1

Nα,β(x, y)
.

1

Nα,β(x, z)
+

1

Nα,β(z, y)
.

Next we give sufficient conditions for (2.3), (2.4) to hold, in view of the applications that
we develop in Sections 3 and 4.

Lemma 2.3 If dν(x) = (ρ(x))α0χΩdx with α0 ≥ 0, then (2.3) and (2.4) hold.

Proof. It is easy to see that for any x ∈ Ω, s > 0

B
2
− α+1

N−β S
(x) ∩Ω ⊂ Bs(x) ⊂ BS(x) ∩ Ω, (2.8)

with S = min{s 1
N−β+α , s

1
N−β (ρ(x))−

α
N−β } and Bs(x) = Ω when s > 2

αN
N−α (diam (Ω))N .

We show that for any 0 ≤ s < 8diam (Ω), x ∈ Ω

ν(Bs(x)) ≍ (max{ρ(x), s})α0sN . (2.9)

Indeed, take 0 ≤ s < 8diam (Ω), x ∈ Ω. There exist ε = ε(Ω) ∈ (0, 1) and xs ∈ Ω such that
Bεs(xs) ⊂ Bs(x) ∩ Ω and ρ(xs) > εs.

(a) If 0 ≤ s ≤ ρ(x)
4 , so for any y ∈ Bs(x), ρ(y) ≍ ρ(x). Thus we obtain (2.9) because

ν(Bs(x)) ≍ (ρ(x))α0 |Bs(x) ∩ Ω| ≍ (ρ(x))α0sN .

(b) If s > ρ(x)
4 , since ρ(y) ≤ ρ(x) + |x− y| < 5s for any y ∈ Bs(x), there holds ν(Bs(x)) .

sN+α0 and we have the following dichotomy:

(b.1) either s ≤ 4ρ(x), then

ν(Bs(x)) & ν(B ρ(x)
4

(x)) ≍ (ρ(x))α0+N & sN+α0 ;

7



(b.2) or s ≥ 4ρ(x), we have for any y ∈ Bεs/2(xs), ρ(y) ≥ −|y − xs| + ρ(xs) > εs/2. It
follows

ν(Bs(x)) & ν(Bεs/2(xs)) & sN+α0 .

Therefore (2.9) holds.

Next, for any 0 ≤ s < 2
(α+1)(N−β+α)

N−β (diam (Ω))N−β+α and x ∈ Ω, we have

ν(Bs(x)) ≍ (max{ρ(x),min{s 1
N−β+α , s

1
N−β (ρ(x))−

α
N−β }})α0

×
(

min{s 1
N−β+α , s

1
N−β (ρ(x))−

α
N−β }

)N

≍
{

s
α0+N

N−β+α if ρ(x) ≤ s
1

N−β+α ,

(ρ(x))α0− αN
N−β s

N
N−β if ρ(x) ≥ s

1
N−β+α ,

and ν(Bs(x)) = ν(Ω) ≍ (diam (Ω))α0+N if s > 2
(α+1)(N−β+α)

N−β (diam (Ω))N−β+α. We get,

ˆ r

0

ν(Bs(x))

s

ds

s
≍











(diam (Ω))α0+β−α if r > (diam (Ω))N−β+α,

r
α0+β−α

N−β+α if r ∈ ((ρ(x))N−β+α, (diam (Ω))N−β+α],

(ρ(x))α0− αN
N−β r

β
N−β if r ∈ (0, (ρ(x))N−β+α].

Therefore (2.3) holds. It remains to prove (2.4). For any x ∈ Ω and r > 0, it is clear that if
r > 1

2 (ρ(x))
N−β+α we have

sup
y∈Br(x)

ˆ r

0

ν(Bs(y))

s

ds

s
. min{r

α0+β−α

N−β+α , (diam (Ω))α0+β−α},

from which inequality we obtain

sup
y∈Br(x)

ˆ r

0

ν(Bs(y))

s

ds

s
.

ˆ r

0

ν(Bs(x))

s

ds

s
.

If 0 < r ≤ 1
2 (ρ(x))

N−β+α, we have Br(x) ⊂ B
r

1
N−β (ρ(x))

− α
N−β

(x) and ρ(x) ≍ ρ(y) for all

y ∈ B
r

1
N−β (ρ(x))

− α
N−β

(x), thus

sup
y∈Br(x)

ˆ r

0

ν(Bs(y))

s

ds

s
≤ sup

|y−x|<r
1

N−β (ρ(x))
− α

N−β

ˆ r

0

ν(Bs(y))

s

ds

s

≍ sup

|y−x|<r
1

N−β (ρ(x))
− α

N−β

(ρ(y))α0− αN
N−β r

β
N−β

≍ (ρ(x))α0− αN
N−β r

β
N−β

≍
ˆ r

0

ν(Bs(x))

s

ds

s
.

Therefore, (2.4) holds.

Remark 2.4 Lemma 2.2 and 2.3 in the case α = β = 2 and α0 = q + 1 had already been
proved by Kalton and Verbitsky in [10].

Definition 2.5 For α0 ≥ 0, 0 ≤ α ≤ β < N and s > 1, we define Capα0

Nα,β ,s
by

Capα0

Nα,β ,s
(E) = inf

{
ˆ

Ω

gs(ρ(x))α0dx : g ≥ 0,Nα,β[g(ρ(.))
α0 ] ≥ χE

}

for any Borel set E ⊂ Ω.
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Clearly, we have

Capα0

Nα,β ,s
(E) = inf

{
ˆ

Ω

gs(ρ(x))−α0(s−1)dx : g ≥ 0,Nα,β[g] ≥ χE

}

for any Borel set E ⊂ Ω. Furthermore we have by [1, Theorem 2.5.1],

(

Capα0

Nα,β ,s
(E)
)1/s

= sup
{

ω(E) : ω ∈ M
+
b (E), ||Nα,β [ω]||Ls′(Ω,(ρ(.)))α0dx) ≤ 1

}

(2.10)

for any compact set E ⊂ Ω, where s′ is the conjugate exponent of s.

Thanks to Lemma 2.2 and 2.3 , we can apply Theorem 2.1 and we obtain:

Theorem 2.6 Let ω ∈ M
+(Ω), α0 ≥ 0, 0 ≤ α ≤ β < N and q > 1. Then the following

statements are equivalent:

1 The equation u = Nα,β[u
q(ρ(.))α0 ] + εNα,β[ω] has a solution for ε > 0 small enough.

2 The inequality
ˆ

E∩Ω

(Nα,β [ωE])
q(ρ(x))α0dx ≤ Cω(E) (2.11)

holds for some C > 0 and any Borel set E ⊂ Ω, ωE = ωχE.

3. The inequality

ω(K) ≤ C Capα0

Nα,β ,q′
(K) (2.12)

holds for some C > 0 and any compact set K ⊂ Ω.

4. The inequality

Nα,β [(Nα,β[ω])
q
(ρ(.))α0 ] ≤ CNα,β [ω] < ∞ a.e in Ω (2.13)

holds for some C > 0.

To apply the previous theorem we need the following result.

Proposition 2.7 Let q > 1, ν, ω ∈ M
+(X). Suppose that A1, A2, B1, B2 : X×X 7→ [0,+∞)

are Borel positive Kernel functions with A1 ≍ A2, B1 ≍ B2. Then, the following statements
are equivalent:

1 The equation u = Aν
1u

q + εB1ω ν-a.e has a solution for ε > 0 small enough.

2 The equation u = Aν
2u

q + εB2ω ν−a.e has a solution for ε > 0 small enough.

3. The problem u ≍ Aν
1u

q + εB1ω ν-a.e has a solution for ε > 0 small enough.

4. The equation u & Aν
1u

q + εB1ω ν-a.e has a solution for ε > 0 small enough.

Proof. We prove only that 4 implies 2. Suppose that there exist c1 > 0, ε0 > 0 and a
position Borel function u such that

Aν
1u

q + ε0B1ω ≤ c1u.

Taken c2 > 0 with A2 ≤ c2A1, B2 ≤ c2B. We consider un+1 = Aν
2u

q
n + ε0(c1c2)

− q
q−1B2ω

and u0 = 0 for any n ≥ 0. Clearly, un ≤ (c1c2)
− 1

q−1 u for any n and {un} is nondecreasing.

Thus, U = lim
n→∞

un is a solution of U = Aν
2U

q + ε0(c1c2)
− q

q−1B2ω.

The following results provide some relations between the capacities Capα0

Nα,β ,s
and the

Riesz capacities on R
N−1 which allow to define the capacities on ∂Ω.
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Proposition 2.8 Assume that Ω = R
N−1 × (0,∞) and let α0 ≥ 0 such that

−1 + s′(1 + α− β) < α0 < −1 + s′(N − β + α).

There holds

Capα0

Nα,β ,s
(K × {0}) ≍ CapI

β−α+
α0+1

s′
−1

,s′(K) (2.14)

for any compact set K ⊂ R
N−1,

Proof. The proof relies on an idea of [18, Corollary 4.20]. Thanks to [1, Theorem 2.5.1]
and (2.10), we get (2.14) from the following estimate: for any µ ∈ M

+
b (R

N−1)

||Nα,β [µ⊗ δ{xN=0}]||Ls′ (Ω,(ρ(.)))α0dx) ≍ ||I
β−α+

α0+1

s′
−1

[µ]||Ls′(RN−1), (2.15)

where Iγ [µ] is the Riesz potential of µ in R
N−1, i.e

Iγ [µ](y) =

ˆ ∞

0

µ(B′
r(y))

rN−1−γ

dr

r
∀ y ∈ R

N−1,

with B′
r(y) being a ball in R

N−1. We have

||Nα,β[µ⊗ δ{xN=0}]||s
′

Ls′(Ω,(ρ(.))α0dx)
=

ˆ

RN−1

ˆ ∞

0

(

ˆ

RN−1

dµ(z)

(|x′ − z|2 + x2
N )

N−β+α
2

)s′

xα0

N dxNdx′

≍
ˆ

RN−1

ˆ ∞

0

(
ˆ ∞

xN

µ(B′
r(x

′))

rN−β+α

dr

r

)s′

xα0

N dxNdx′.

Notice that

ˆ ∞

0

(
ˆ ∞

xN

µ(B′
r(x

′))

rN−β+α

dr

r

)s′

xα0

N dxN ≥
ˆ ∞

0

(
ˆ 2xN

xN

µ(B′
r(x

′))

rN−β+α

dr

r

)s′

xα0

N dxN

&

ˆ ∞

0





µ(B′
xN

(x′))

x
N−β+α−α0+1

s′

N





s′

dxN

xN
.

On the other hand, using Hölder’s inequality and Fubini’s Theorem, we obtain

ˆ ∞

0

(
ˆ ∞

xN

µ(B′
r(x

′))

rN−β+α

dr

r

)s′

xα0

N dxN ≤
ˆ ∞

0

(
ˆ ∞

xN

r−
s

2s′
dr

r

)
s′

s
ˆ ∞

xN

(

µ(B′
r(x

′))

rN−β+α− 1
2s′

)s′
dr

r
xα0

N dxN

= C

ˆ ∞

0

ˆ ∞

xN

(

µ(B′
r(x

′))

rN−β+α− 1
2s′

)s′
dr

r
x
α0− 1

2

N dxN

= C

ˆ ∞

0

ˆ r

0

x
α0− 1

2

N dxN

(

µ(B′
r(x

′))

rN−β+α− 1
2s′

)s′
dr

r

= C

ˆ ∞

0

(

µ(B′
r(x

′))

rN−β+α−α0+1

s′

)s′
dr

r
.

Thus,

||Nα,β [µ⊗ δ{xN=0}]||Ls′(Ω,(ρ(.)))α0dx) ≍
(

ˆ

RN−1

ˆ ∞

0

(

µ(B′
r(y))

rN−β+α−α0+1

s′

)s′
dr

r
dy

)1/s′

.

(2.16)

It implies (2.15) from [4, Theorem 2.3].
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Proposition 2.9 Let Ω ⊂ R
N be a bounded domain a C2 boundary. Assume α0 ≥ 0 and

−1 + s′(1 + α− β) < α0 < −1 + s′(N − β + α). Then there holds

Capα0

Nα,β ,s
(E) ≍ Cap∂Ω

β−α+
α0+1

s′
−1,s

(E) (2.17)

for any compact set E ⊂ ∂Ω ⊂ R
N .

Proof. Let K1, ...,Km be as in definition 1.1. We have

Capα0

Nα,β ,s
(E) ≍

m
∑

i=1

Capα0

Nα,β ,s
(E ∩Ki),

for any compact set E ⊂ ∂Ω. By definition 1.1, we need to prove that

Capα0

Nα,β ,s
(E ∩Ki) ≍ CapG

β−α+
α0+1

s′
−1

,s(T̃i(E ∩Ki)) ∀ i = 1, 2, ...,m. (2.18)

We can show that for any ω ∈ M
+
b (∂Ω) and i = 1, ...,m, there exists ωi ∈ M

+
b (T̃i(Ki)) with

Ti(Ki) = T̃i(Ki)× {xN = 0} such that

ωi(O) = ω(T−1
i (O × {0}))

for all Borel set O ⊂ T̃i(Ki), its proof can be found in [1, Proof of Lemma 5.2.2]. Thanks
to [1, Theorem 2.5.1], it is enough to show that for any i ∈ {1, 2, ...,m} there holds

||Nα,β[χKi
ω]||Ls′(Ω,(ρ(.)))α0dx) ≍ ||G

β−α+
α0+1

s′
−1

[ωi]||Ls′(RN−1), (2.19)

where Gγ [ωi] (0 < γ < N − 1) is the Bessel potential of ωi in R
N−1, i.e

Gγ [ωi](x) =

ˆ

RN−1

Gγ(x− y)dωi(y).

Indeed, we have

||Nα,β[ωχKi
]||s′

Ls′(Ω,(ρ(.)))α0dx)
=

ˆ

Ω

(
ˆ

Ki

dω(z)

|x− z|N−β+α

)s′

(ρ(x))α0dx

=

ˆ

Oi∩Ω

(
ˆ

Ki

dω(z)

|x− z|N−β+α

)s′

(ρ(x))α0dx+

ˆ

Ω\Oi

(
ˆ

Ki

dω(z)

|x− z|N−β+α

)s′

(ρ(x))α0dx

≍
ˆ

Oi∩Ω

(
ˆ

Ki

dω(z)

|x− z|N−β+α

)s′

(ρ(x))α0dx+ (ω(Ki))
s′ .

Here we used |x− z| ≍ 1 for any x ∈ Ω\Oi, z ∈ Ki.
By a standard change of variable we obtain

ˆ

Oi∩Ω

(
ˆ

Ki

dω(z)

|x− z|N−β+α

)s′

(ρ(x))α0dx + (ω(Ki))
s′

=

ˆ

Ti(Oi∩Ω)

(
ˆ

Ki

dω(z)

|T−1
i (y)− z|N−β+α

)s′

(ρ(T−1
i (y)))α0 |JTi

(T−1
i (y))|−1dy + (ω(Ki))

s′

≍
ˆ

B1(0)∩{xN>0}

(
ˆ

Ki

dω(z)

|y − Ti(z)|N−β+α

)s′

yα0

N dy + (ω(Ki))
s′ with y = (y′, yN ),
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since |T−1
i (y) − z| ≍ |y − Ti(z)|, |JTi

(T−1
i (y))| ≍ 1 and ρ(T−1

i (y)) ≍ yN for all (y, z) ∈
Ti(Oi ∩Ω)×Ki. From the definition of ωi, we have

ˆ

B1(0)∩{xN>0}

(
ˆ

Ki

1

|y − Ti(z)|N−β+α
dω(z)

)s′

yα0
n dy + (ω(Ki))

s′

=

ˆ

B1(0)∩{xN>0}

(

ˆ

T̃i(Ki)

1

(|y′ − ξ|2 + y2N)
N−β+α

2

dωi(ξ)

)s′

yα0

N dyNdy′ + (ω(Ki))
s′

≍
ˆ

RN−1

ˆ ∞

0

(

ˆ 2R

min{yN ,R}

ωi(B
′
r(y

′))

rN−β+α

dr

r

)s′

yα0

N dyNdy′ with R = diam (Ω).

As in the proof of Proposition 2.8, there holds

ˆ

RN−1

ˆ ∞

0

(

ˆ 2R

min{yN ,R}

ωi(B
′
r(y

′))

rN−β+α

dr

r

)s′

yα0

N dyNdy′

≍
ˆ

RN−1

ˆ 2R

0

(

ωi(B
′
r(y

′))

rN−β+α−α0+1

s′

)s′
dr

r
dy′.

Therefore, we get (2.19) from [4, Theorem 2.3].

Remark 2.10 Proposition 2.8 and 2.9 with α = β = 2, α0 = q + 1 were demonstrated by
Verbitsky in [5, Apppendix B], using an alternative approach.

3 Proof of the main results

We denote

P[σ](x) =

ˆ

∂Ω

P(x, z)dσ(z), G[f ](x) =

ˆ

Ω

G(x, y)f(y)dy

for any σ ∈ M(∂Ω), f ∈ L1
ρ(Ω), f ≥ 0. Then the unique weak solution of

−∆u = f in Ω,
u = σ on ∂Ω,

can be represented by

u(x) = G[f ](x) +P[σ](x) ∀ x ∈ Ω.

We recall below some classical estimates for the Green and the Poisson kernels.

G(x, y) ≍ min

{

1

|x− y|N−2
,
ρ(x)ρ(y)

|x− y|N
}

,

P(x, z) ≍ ρ(x)

|x− z|N ,

and

|∇x G(x, y)| . ρ(y)

|x− y|N min

{

1,
|x− y|

√

ρ(x)ρ(y)

}

, |∇x P(x, z)| .
1

|x− z|N ,

for any (x, y, z) ∈ Ω× Ω× ∂Ω, see [2]. Since |ρ(x)− ρ(y)| ≤ |x− y| we have

max
{

ρ(x)ρ(y), |x − y|2
}

≍ max {|x− y|, ρ(x), ρ(y)}2 .
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Thus,

min

{

1,

(

|x− y|
√

ρ(x)ρ(y)

)γ}

≍ |x− y|γ
(max {|x− y|, ρ(x), ρ(y)})γ for γ > 0. (3.1)

Therefore,

G(x, y) ≍ ρ(x)ρ(y)N2,2(x, y), P(x, z) ≍ ρ(x)Nα,α(x, z) (3.2)

and

|∇x G(x, y)| . ρ(y)N1,1(x, y), |∇x P(x, z)| . Nα,α(x, z) (3.3)

for all (x, y, z) ∈ Ω× Ω× ∂Ω, α ≥ 0.

Proof of Theorem 1.2 and Theorem 1.5. By (3.2), the following equivalence holds

G [(P[σ])
q
] . P[σ] < ∞ a.e in Ω. ⇐⇒ N2,2

[

(N2,2[σ])
q
ρq+1

]

. N2,2[σ] < ∞ a.e in Ω.

Furthermore

U ≍ G[U q] +P[σ] ⇐⇒ U ≍ ρN2,2[ρU
q] + ρN2,2[σ],

which in turn is equivalent to

V ≍ N2,2[ρ
q+1V q] +N2,2[σ] with V = Uρ−1.

By Proposition 2.8 and 2.9 we have:

CapI 2
q
,q′(K) ≍ Capq+1

N2,2,q′
(K × {0}) ∀K ⊂ R

N−1,K compact.

if Ω = R
N
+ , and

Cap∂Ω2
q
,q′(K) ≍ Capq+1

N2,2,q′
(K) ∀K ⊂ ∂Ω,K compact.

if Ω is a bounded domain. Thanks to Theorem (2.6) with ω = σ, α = 2, β = 2, α0 = q + 1
and proposition 2.7, we get the results.

Proof of Theorem 1.3 and 1.6. By (3.2) and (3.3), we have

G(x, y) ≤ Cρ(x)ρ(y)N1,1(x, y), |∇x G(x, y)| ≤ Cρ(y)N1,1(x, y), (3.4)

P(x, z) ≤ Cρ(y)N1,1(x, z), |∇x P(x, z)| ≤ CN1,1(x, z), (3.5)

for all (x, y, z) ∈ Ω× Ω× ∂Ω and for some constant C > 0.
For any u ∈ W 1,1

loc (Ω), we set

F(u)(x) =

ˆ

Ω

G(x, y)|u(y)|q1−1u(y)|∇u(y)|q2dy +

ˆ

∂Ω

P(x, z)dσ(z).

Using (3.4) and (3.5), we have

|F(u)| ≤ Cρ(.)N1,1 [|u|q1 |∇u|q2ρ(.)] + Cρ(.)N1,1[|σ|],
|∇F(u)| ≤ CN1,1 [|u|q1 |∇u|q2ρ(.)] + CN1,1[|σ|].

Therefore, we can easily see that if

N1,1

[

(N1,1[|σ|])q1+q2 (ρ(.))q1+1
]

≤ (q1 + q2 − 1)
q1+q2−1

(C(q1 + q2))
q1+q2

N1,1[|σ|] < ∞ a.e in Ω (3.6)
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holds, then F is the map from E to E, where

E =
{

u ∈ W 1,1
loc (Ω) : |u| ≤ λρ(.)N1,1[|σ|], |∇u| ≤ λN1,1[|σ|] a.e in Ω

}

with λ = C(q1+q2)
q1+q2−1 .

Assume that (3.6) holds. We denote S by the subspace of functions f ∈ W 1,1
loc (Ω) with norm

||f ||S = ||f ||Lq1+q2(Ω,(ρ(.))1−q2dx) + |||∇f |||Lq1+q2(Ω,(ρ(.))1+q2dx) < ∞.

Clearly, E ⊂ S, E is closed under the strong topology of S and convex.
On the other hand, it is not difficult to show that F is continuous and F(E) is precompact in
S. Consequently, by Schauder’s fixed point theorem, there exists u ∈ E such that F(u) = u.
Hence, u is a solution of (1.16)-(1.23) and it satisfies

|u| ≤ λρ(.)N1,1[|σ|], |∇u| ≤ λN1,1[|σ].

Thanks to Theorem 2.6 and Proposition 2.8, 2.9, we verify that assumptions (1.15) and
(1.23) in Theorem 1.3 and 1.6 are equivalent to (3.6). This completes the proof of the
Theorems.

Remark 3.1 We do not know whether conditions (1.15) and (1.22) are optimal or not. It
is noticeable that if P[|σ|] ∈ Lq1+q2(Ω, ρ1−q2dx), it is proved in [14, Th 1.1] that, if Ω is a

ball, then |σ| belongs to the Besov-Sobolev space B
− 2−q2

q1+q2
,q1+q2(∂Ω). Therefore inequality

|σ|(K) ≤ C

(

Cap∂Ω2−q2
q1+q2

,(q1+q2)′
(K)

)
1

(q1+q2)′

holds for any Borel set K ⊂ ∂Ω, and it is a necessary condition for (1.22) to hold since
1

(q1+q2)′
< 1. In a general C2 bounded domain, it is easy to see that this property, proved

in a particular case in [13, Th 2.2] is still valid thanks to the equivalence relation (2.23)
therein between Poisson’s kernels, see also the proof of Proposition 2.9. The difficulty for
obtaining a necessary condition of existence lies in the fact that, if the inequality u ≥ P[σ]
is clear, |∇u| & ρ−1P[σ] is not true. It can also be shown that if

|u|q1 |∇u|q2 ≤ C(G(|σ|))q1 (ρN1,1[|σ|])q2 ∈ L1(Ω, ρ(.)dx),

then σ is absolutely continuous with respect to Cap∂Ω2−q2
q1+q2

,(q1+q2)′
.

4 Extension to Schrödinger operators with Hardy po-

tentials

We can apply Theorem 2.6 to solve the problem

−∆u− κ
ρ2 u = uq in Ω,

u = σ on ∂Ω,

where κ ∈ [0, 1
4 ] and σ ∈ M

+(∂Ω).

Let Gκ,Pκ be the Green kernel and Poisson kernel of −∆ − κ
ρ2 in Ω with κ ∈ [0, 1

4 ]. It
is proved that

Gκ(x, y) ≍ min

{

1

|x− y|N−2
,
(ρ(x)ρ(y))

1+
√

1−4κ
2

|x− y|N−1+
√
1−4κ

}

,

Pκ(x, z) ≍
(ρ(x))

1+
√

1−4κ
2

|x− z|N−1+
√
1−4κ

,
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for all (x, y, z) ∈ Ω× Ω× ∂Ω, see [7, 12, 8]. Therefore, from (3.1) we get

Gκ(x, y) ≍ (ρ(x)ρ(y))
1+

√
1−4κ
2 N1+

√
1−4κ,2(x, y), (4.1)

Pκ(x, z) ≍ (ρ(x))
1+

√
1−4κ
2 Nα,1−

√
1−4κ+α(x, z), (4.2)

for all (x, y, z) ∈ Ω× Ω× ∂Ω, α ≥ 0. We denote

Pκ[σ](x) =

ˆ

∂Ω

Pκ(x, z)dσ(z), Gκ[f ](x) =

ˆ

Ω

Gκ(x, y)f(y)dy

for any σ ∈ M
+(∂Ω), f ∈ L1(Ω, ρ

1+
√

1−4κ
2 dx), f ≥ 0. Then the unique weak solution of

−∆u− κ
ρ2 u = f in Ω,

u = σ on ∂Ω,

satisfies the following integral equation [8]

u = Gκ[f ] +Pκ[σ] a.e. in Ω.

As in the proofs of Theorem 1.2 and Theorem 1.5 the relation

Gκ [(Pκ[σ])
q
] . Pκ[σ] < ∞ a.e in Ω,

is equivalent to

N1+
√
1−4κ,2

[

(

N1+
√
1−4κ,2[σ]

)q
ρ

(q+1)(1+
√

1−4κ)
2

]

. N1+
√
1−4κ,2[σ] < ∞ a.e in Ω,

and the relation

U ≍ Gκ[U
q] +Pκ[σ],

is equivalent to

V ≍ N1+
√
1−4κ,2[ρ

(q+1)(1+
√

1−4κ)
2 V q] +N1+

√
1−4κ,2[σ] with V = Uρ−

1+
√

1−4κ
2 .

Thanks to Theorem 2.6 with ω = σ, α = 1 +
√
1− 4κ, β = 2, α0 = (q+1)(1+

√
1−4κ)

2 and
proposition 2.7, 2.8, 2.9, we obtain.

Theorem 4.1 Let q > 1, 0 ≤ κ ≤ 1
4 and σ ∈ M

+(∂Ω). Then, the following statements are
equivalent

1 There exists C > 0 such that the following inequalities hold

σ(O) ≤ C CapI q+3−(q−1)
√

1−4κ
2q

,q′(O) (4.3)

for any Borel set O ⊂ R
N−1 if Ω = R

N
+ and

σ(O) ≤ C Cap∂Ωq+3−(q−1)
√

1−4κ
2q ,q′

(O) (4.4)

for any Borel set O ⊂ ∂Ω if Ω is a bounded domain.

2 There exists C > 0 such that the inequality

Gκ [(Pκ[σ])
q
] ≤ CPκ[σ] < ∞ a.e in Ω, (4.5)

holds.
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3. Problem
−∆u− κ

ρ2u = uq in Ω,

u = εσ on ∂Ω,
(4.6)

has a positive solution for ε > 0 small enough.

Moreover, there is a constant C0 > 0 such that if any one of the two statements 1 and 2
holds with C ≤ C0, then equation 4.6 has a solution u with ε = 1 which satisfies

u ≍ Pκ[σ]. (4.7)

Conversely, if (4.6) has a solution u with ε = 1, then the two statements 1 and 2 hold for
some C > 0.

Remark 4.2 The problem (4.6) admits a subcritical range

1 < q <
N + 1+

√
1−4κ
2

N + 1+
√
1−4κ
2 − 2

.

If the above inequality, the problem can be solved with any positive measure provided σ(∂Ω)
is small enough. The role of this critical exponent has been pointed out in [12] and [8] for
the removability of boundary isolated singularities of solutions of

−∆u− κ

ρ2
u+ uq = 0 in Ω

i.e. solutions which vanish on the boundary except at one point. Furthermore the complete
study of the problem

−∆u− κ
ρ2 u+ uq = 0 in Ω,

u = σ on ∂Ω,
(4.8)

is performed in [8] in the supercritical range

q ≥ N + 1+
√
1−4κ
2

N + 1+
√
1−4κ
2 − 2

.

The necessary and sufficient condition is therein expressed in terms of the absolute continuity
of σ with respect to the CapI q+3−(q−1)

√
1−4κ

2q

,q′-capacity.
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[9] A. Gmira, L. Véron, Boundary singularities of solutions of some nonlinear elliptic
equations, Duke Math. J. 64 (1991), 271-324.

[10] N.J. Kalton, I.E. Verbitsky, Nonlinear equations and weighted norm inequality, Trans.
Amer. Math. Soc. 351 (1999) 3441-3497.

[11] M. Marcus, T. Nguyen Phuoc, Positive solutions of quasilinear elliptic equations with
subquadratic growth in the gradient, arXiv:1311.7519v1 (2013).

[12] M. Marcus, P. T. Nguyen, Moderate solutions of semilinear elliptic equations with Hardy
potential, arXiv:1407.3572v1 (2014).
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[15] M. Marcus, L. Véron, Boundary trace of positive solutions of semilinear elliptic equa-
tions in Lipschitz domains: the subcritical case, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)
10 (2011), 913-984.
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