
ar
X

iv
:1

41
2.

51
81

v4
  [

he
p-

th
] 

 2
0 

Fe
b 

20
18

The anisotropic λ-deformed SU(2) model is integrable

Konstantinos Sfetsos1 and Konstantinos Siampos2

1Department of Nuclear and Particle Physics

Faculty of Physics, University of Athens,

Athens 15784, Greece

ksfetsos@phys.uoa.gr

2Albert Einstein Center for Fundamental Physics,

Institute for Theoretical Physics, Bern University,

Sidlerstrasse 5, CH3012 Bern, Switzerland

siampos@itp.unibe.ch

Abstract

The all-loop anisotropic Thirring model interpolates between the WZW model and the

non-Abelian T-dual of the anisotropic principal chiral model. We focus on the SU(2)

case and we prove that it is classically integrable by providing its Lax pair formulation.

We derive its underlying symmetry current algebra and use it to show that the Poisson

brackets of the spatial part of the Lax pair, assume the Maillet form. In this way we

procure the corresponding r and s matrices which provide non-trivial solutions to the

modified Yang–Baxter equation.
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1 Introduction and motivation

The general class of σ-models whose integrability properties will be investigated was

constructed in [1]. The corresponding action is given by

Sk,λ(g) = SWZW,k(g)−
k

π

∫
JA
+M−1

AB JB
− , MAB = (λ−1 − DT)AB , (1.1)

where the first term is the WZW model action for a semi-simple compact group G and

a group element g ∈ G given by [2]

SWZW.k(g) = − k

2π

∫
Tr(g−1∂+gg−1∂−g) +

k

6π

∫

B
Tr(g−1dg)3 . (1.2)
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This is a CFT with two commuting current algebras at level k. The second term in (1.1)

represents the deformation from the conformal point. Our conventions are1

JA
+ = Tr(tA∂+gg−1) , JA

− = Tr(tAg−1∂−g) , DAB = Tr(tAgtBg−1) . (1.3)

The above action has a dim G target space with coordinates the parameters in the

group element g ∈ G. The tA’s are representation matrices obeying the Lie algebra

[tA, tB] = fABC tC and normalized as Tr(tAtB) = δAB. The deviation from the WZW

model is parametrized by the coupling matrix elements λAB. For small such elements

the Lagrangian density is proportional to the current bilinear λAB JA
+ JB

−. Hence the

name λ-deformed models. The above action develops an extra local invariance under

the vector action of a subgroup H ⊂ G when λAB assumes the block diagonal form

λAB = diag(Iab, λαβ), where the lower case Latin indices take values in the Lie algebra

of H and the Greek ones in the coset G/H. Due to this local invariance dim H degrees

of freedom become redundant. Hence, dim H variables among those parameterizing g

should be gauged fixed. For vanishing λαβ the σ-model corresponds to the coset G/H

CFT. In addition, the perturbation is driven by parafermion bilinears λαβΨ
α
+Ψ

β
−, where

the Ψ
α
±’s are gauge invariant versions of the currents Jα

±. The renormalization group

equations for λAB in the action (1.1) have been computed for the isotropic case in [3]

and in full generality in [4]. In addition, the (1.1) has been used as a building block to

construct full solution of type-II supergravity in [5] which are likely also integrable at

the string level.

In this paper we are interested in investigating integrability property of the above ac-

tion. Integrability has been first proven for the isotropic case when λAB = λδAB and a

general semi-simple group G in [1]. This was done by explicitly showing that certain

algebraic conditions developed in [6] (based on earlier work in [7]) were satisfied.2

In addition, it has been proved that these models have an underlying Yangian sym-

metry [8]. In [1], integrability was also expected for the coset SU(2)/U(1) case by

making contact with the work of [9] where a CFT approach was utilized. The most

efficient way to prove integrability of (1.1) for specific choices of the matrix λ is to

1 The world-sheet coordinates (σ+, σ−) and (τ, σ) are related by σ± = τ ± σ, so that ∂0 = ∂τ =
∂+ + ∂−, ∂1 = ∂σ = ∂+ − ∂−.

2In this work the σ-model fields corresponding to (1.1) for the isotropic case and when G = SU(2)
were also constructed by a brute force computation which is not generalizable in practice for larger
groups.
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employ its origin via a gauging procedure as much as possible. This was done for the

aforementioned isotropic group case as well as for the general symmetric coset space,

for isotropic coupling λαβ = λδαβ in [10].

In the present paper we will generalize this approach for a symmetric matrix λ

and we will prove integrability for the anisotropic SU(2) model for symmetric ma-

trix λAB. The computation amounts to showing integrability for the diagonal matrix

λ = diag(λ1, λ2, λ3). In addition, we will compute the Poisson brackets of the spatial

component of the corresponding monodromy matrix and we will provide non-trivial

solutions to the modified Yang–Baxter equation.

2 Origin of integrability

In this section we review the construction of our models, derive the equations of mo-

tion and set them up in such a way that investigating the existence of a Lax pair for-

mulation becomes immediate.

2.1 Review of the models

We review the construction of the models by following [1]. The starting point is the

action

S(g, g̃) = SWZW,k(g) + SPCM,E(g̃) , (2.1)

where the first term is the WZW action (1.2) and the second term is the principal chiral

model (PCM) action for G using a group element g̃ ∈ G,

SPCM,E(g̃) = − 1

π

∫
EABTr(tA g̃−1∂+ g̃)Tr(tB g̃−1∂− g̃) . (2.2)

The action (2.1) is invariant under left-right current algebra symmetry of the WZW

action and a global left symmetry of the PCM. We will gauge the same global group

g → Λ
−1gΛ , g̃ → Λ

−1g̃ , Λ ∈ G . (2.3)

Hence we consider the action

Sk,E(g, g̃) = SgWZW,k(g, A±) + SgPCM,E(g̃, A±) , (2.4)

3



where

SgWZW,k(g, A±) = SWZW,k(g) +
k

π

∫
Tr

(
A−∂+gg−1 − A+g−1∂−g

+A−gA+g−1 − A−A+

)
,

(2.5)

and

SgPCM,E(g̃, A±) = − 1

π

∫
EABTr(tA g̃−1D̃+ g̃)Tr(tB g̃−1D̃− g̃) , (2.6)

with the covariant derivatives being D̃± g̃ = ∂± g̃ − A± g̃. This action (2.5) is invariant

under the local symmetry

g̃ → Λ
−1g̃ , g → Λ

−1gΛ , A± → Λ
−1A±Λ − Λ

−1∂±Λ . (2.7)

We will use the coupling matrix λ defined as E = k(λ−1 − I). Finally we mention that

the action (2.4) is invariant under the generalized parity symmetry

σ+ ↔ σ− , g 7→ g−1 , g̃ 7→ g̃ , A+ ↔ A− , λ 7→ λT . (2.8)

2.2 Gauge fixing and equations of motion

We may choose the gauge g̃ = I. It is easily seen that the equation of motion followed

by varying g̃ is automatically satisfied. Varying the action with respect to A± we find

the constraints

D+g g−1 = (λ−T − I)A+ , g−1D−g = −(λ−1 − I)A− , (2.9)

where D±g = ∂±g − [A±, g], or equivalently

A+ = (λ−T − D)−1 J+ , A− = −(λ−1 − DT)−1 J− . (2.10)

Varying with respect to the group element g we obtain that

D−(D+gg−1) = F+− , D+(g
−1D−g) = F+− ,

F+− = ∂+A− − ∂−A+ − [A+, A−] ,
(2.11)
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which due to [D+, D−]g = [g, F+−], turn out to be equivalent. Substituting (2.9) into

(2.11) we obtain that

D−
(
(λ−T − I)A+

)
= F+− , −D+

(
(λ−1 − I)A−

)
= F+− , (2.12)

which can be cast as3

∂+A− − ∂−(λ−T A+) = [λ−T A+, A−] ,

∂+(λ
−1A−)− ∂−A+ = [A+, λ−1A−] .

(2.13)

Unless λ = I, the A± are not pure gauges. Solving for λ 6= I we obtain that

∂+A− = (I − λλT)−1
(
−λλT [λ−T A+, A−] + λ[A+, λ−1A−]

)
,

∂−A+ = (I − λTλ)−1
(

λTλ[A+, λ−1A−]− λT[λ−T A+, A−]
)

.

(2.14)

Note that for a symmetric matrix λ, with dim G linearly independent eigenvectors, it

is sufficient to prove integrability using its diagonal form. To show this, we note that

(2.13) (or (2.14)) are covariant under the orthogonal transformation λ 7→ SλST , with

A± 7→ SA±ST.

Our goal/effort would be to rewrite, if possible, the equations of motion (2.14) as

a Lax equation

dL = L ∧ L or ∂+L− − ∂−L+ = [L+, L−] , (2.15)

where L± = L±(τ, σ, µ) depend on a spectral parameter µ ∈ C.

2.3 The current algebra

For a gauged WZW we can define

S+ =
k

2

(
D+gg−1 + A+ − A−

)
, S− =

k

2

(
−g−1D−g + A− − A+

)
, (2.16)

3 In components

PA+ = PBCAC
+ tB , [PA+, A−] = fBCDPCEAE

+AD
− tB ,

where P is an arbitrary square matrix.
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which obey two commuting copies of current algebras [7, 11]

{SA
±, SB

±} = fABCSC
±δσσ′ ± k

2
δABδ′σσ′ , δσσ′ = δ(σ − σ′) , (2.17)

where we have dropped the time dependence at usual equal time Poisson brackets.

Since the action does not depend on derivatives of A±, its equations-of-motion are

second class constraints [10, 12]

S+ =
k

2

(
λ−T A+ − A−

)
, S− =

k

2

(
λ−1A− − A+

)
(2.18)

and inversely

A+ =
2

k
g−1λT(S+ + λS−) , A− =

2

k
g̃−1λ(S− + λTS+) ,

g = I − λTλ , g̃ = I − λλT ,

(2.19)

where we assume that g, g̃ are positive-definite matrices. It is just a matter of algebra

to rewrite the current algebras for S± in the base of A±, as we are going to present in

the subsequent sections.

3 Known integrable cases

In this section we review the known (isotropic) integrable cases, semi-simple group

and general symmetric coset spaces, using the previous formulation.

3.1 The isotropic group space

As a warmup, we review the integrability for the isotropic case for a semi-simple

group G [1, 10]. Then the equations of motion for the gauge field read

∂±A∓ = ± 1

1 + λ
[A+, A−] . (3.1)

and a simple rescaling

A± = −1

2
(1 + λ)I± , (3.2)
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proves the integrability. As for the Lax pair, this is given by

L± =
2

1 + λ

µ

µ ∓ 1
A± , (3.3)

where µ ∈ C is the spectral parameter.

3.1.1 Algebraic structure

Employing (2.17), (2.19) and (3.2), we find the Poisson brackets for I± [6]

{IA
± , IB

±} = e2 fABC

(
IC
∓ − (1 + 2x)IC

±
)

δ12 ± 2e2δABδ′12 ,

{IA
± , IB

∓} = −e2 fABC

(
IC
+ + IC

−
)

δ12 ,

(3.4)

where

e =
2λ√

k(1 − λ2)(1 + λ)
, x =

1 + λ2

2λ
> 1 , (3.5)

where the deformation parameter is a root of unity [10]. We note that the same un-

derlying structure, but with −1 < x < 1, corresponds to integrable deformations of

the σ-model [13] constructed in [17,18], where the deformation parameter is real. The

corresponding quantum properties at one-loop were studied in [14–16].

There are two interesting limits. Expanding λ near zero and rescaling IA
± 7→ −2e2xIA

±
we find that

{IA
± , IB

±} = fABC IC
± δσσ′ ± k

2
δABδ′σσ′ , {IA

+ , IB
−} = 0 . (3.6)

These are two commuting current algebras in accordance with the fact that in this limit

the σ-model corresponds to a CFT.

Parameterizing λ as λ = k(k + ε)−1 and then letting k ≫ 1, we find the algebra of

the non-Abelian T-dual of the PCM on G

{IA
± , IB

±} =
1

2ε
fABC(IC

∓ − 3IC
±)δ12 ±

1

ε
δABδ′12 ,

{IA
± , IB

∓} = − 1

2ε
fABC(IC

+ + IC
−)δ12 .

(3.7)

This is the same as the algebra for the PCM for G, in accordance with the fact that the

two cases are related by a canonical transformation.
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3.2 The isotropic symmetric coset

Let us consider a semi-simple group G and its decomposition to a semi-simple sub-

group H and a symmetric coset G/H.4 Take the case where the matrix λ has elements

λab = λH δab , λαβ = λG/H δαβ . The restriction to symmetric cosets translates to struc-

ture constants fαβγ = 0, whereas fabc, fαβc 6= 0. For λH , λG/H 6= 1 we have that (2.13)

or (2.14) read5

∂±A∓ = ±(1 + λH)
−1

(
[A+, A−] +

λH

λG/H
[B+, B−]

)
,

∂±B∓ =
1

λH(1 − λ2
G/H)

(
(λ2

G/H − λH)[B∓, A±] + λG/H(1 − λH)[B±, A∓]
)

,

(3.8)

where A± and B± are Lie algebra valued one forms (A± = Aa
±ta, B± = Bα

±tα), on the

subgroup and coset respectively.6 The above consideration is drastically modified in

the two cases we have excluded. The first special case is when λH = 1. In this singular

limit we have to use (2.13) and the equations of motion simplify drastically

∂+A− − ∂−A+ = [A+, A−] +
1

λG/H
[B+, B−] ,

∂±B∓ = −[B∓, A±] ,

(3.9)

and the two eom for A± in (3.8) are replaced by their difference. This case was shown

to be integrable in [10] with Lax pair given by

L± = A± +
µ±1

√
λG/H

B± , (3.10)

where µ ∈ C. It can be readily checked that then (2.15) is satisfied.

4In the conventions of section 1 we denote subgroup indices by Latin letters and coset indices by
Greek letters.

5Note that for λG/H = 1, λH turns to be one for finiteness of the expressions. For general cosets
G/H the equations for B± contain the additional term ±(1 + λG/H)

−1[B+, B−].
6 We have tried to construct a Lax pair for (3.8) of the form L± = a±A± + b±B± where the co-

efficients are constants. For λH 6= 1 and for non-Abelian subgroup H one obtains a linear algebraic
inhomogeneous system with has a unique solution. This implies that within this ansatz for the Lax pair
one cannot prove integrability.
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4 The anisotropic SU(2) case

In this section we consider the other special case in which the subgroup H is Abelian.

In addition to demanding that the space G/H is symmetric, restrict our considerations

to the group case SU(2). We will consider the cases of a symmetric matrix λAB, A, B =

1, 2, 3. Then as explained before it is sufficient to consider the case with

λ = diag(λ1, λ2, λ3) , (4.1)

that is the fully anisotropic albeit diagonal case. In this case the generators are tA =

−i σA/
√

2, where σA are the Pauli matrices, so that fABC =
√

2 εABC. Then a straight-

forward computation shows that

∂±A1
∓ =

√
2 λ1

(1 − λ2
1)λ2λ3

[
(λ2 − λ1λ3)A2

±A3
∓ − (λ3 − λ1λ2)A3

±A2
∓
]

, (4.2)

and cyclic in 1, 2 and 3.

This is in agreement with (3.8), for λH = λ1, λG/H = λ2 = λ3, where H = U(1) and

SU(2)/U(1) symmetric coset. Moreover, along the results of the section 3.2 and [10],

the coset limit λ1 = 1 is integrable and for compatibility λ2 = λ3. As shown in [1]

expanding the λi’s around one, we get the non-Abelian T-dual of the anisotropic PCM

for SU(2), which is integrable due to the fact that the PCM is integrable [19, 20] and

non-Abelian T-duality preserves integrability [21].7 All these are signals that the more

general case we consider here with (4.1) is likely integrable as well.

Let’s define a convenient set of fields given by

X1
± =

A1
±

λ1

√
(1 − λ2

2)(1 − λ2
3)

(4.3)

and cyclic in 1, 2 and 3. Then we assume the following expression for a Lax pair

LA
±(τ, σ; µ) = vA

±(µ) XA
± , (4.4)

7 We provide a detailed self-contained proof for the general case in Appendix A.
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where µ ∈ C and vA
± satisfy six non-linear equations

c2v1
∓ + c3v1

± = v2
±v3

∓ , c3v2
∓ + c1v2

± = v3
±v1

∓ , c1v3
∓ + c2v3

± = v1
±v2

∓ , (4.5)

with c1 = λ1 − λ2λ3 and cyclic in 1, 2 and 3. This system turns out to have a one

parameter solution. To prove this, we solve for example the first and the fourth with

respect to v1,2
− and we do the same by solving the fifth and the sixth. By equating

these alternative expressions for v1,2
− we find that (v1

+)
2 − (v2

+)
2 = c2

1 − c2
2. Working

analogously we find two more conditions following by cyclic permutation of 1, 2 and

3 and three analogue expressions for vA
− through a parity transformation vA

+ 7→ vA
−.

Hence all together we have the conditions

(v1
±)

2 − (v2
±)

2 = c2
1 − c2

2 , (v2
±)

2 − (v3
±)

2 = c2
2 − c2

3 , (v3
±)

2 − (v1
±)

2 = c2
3 − c2

1 . (4.6)

We proceed by solving them as

vA
± =

√
z± + c2

A , z± ∈ C , A = 1, 2, 3 . (4.7)

Plugging the latter in (4.5) and after some algebraic manipulations, we find one more

independent condition for z±

(z+z− − c2
1c2

2 − c2
2c2

3 − c2
3c2

1)
2 = 4c2

1c2
2c2

3(z+ + z− + c2
1 + c2

2 + c2
3) . (4.8)

This condition determines z+ in terms of an arbitrary complex number z− or vise versa

and so we have proved that there is a spectral parameter (z+ or z−). As a check, in the

isotropic case, where λA = λ, using (4.3) we find that the construction yields (3.3)

v± = 2c
µ

µ ∓ 1
, z± = c2 (3µ ∓ 1)(µ ± 1)

(µ ∓ 1)2
, c = λ(1 − λ) , µ ∈ C . (4.9)
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4.1 The Poisson algebra

Employing (2.17) and (2.19) we find the Poisson brackets for the currents

{A1
±, A2

∓} =
2
√

2λ1λ2

k(1 − λ2
1)(1 − λ2

2)λ3

(
c2A3

± + c1A3
∓
)

δ12 ,

{A1
±, A1

±} = ± 2λ2
1

k(1 − λ2
1)

δ′12 ,

{A1
±, A2

±} = − 2
√

2λ1λ2

k(1 − λ2
1)(1 − λ2

2)λ3

(
c3A3

∓ − (1 − λ1λ2λ3)A3
±
)

δ12 ,

(4.10)

and with cyclic permutations in 1, 2 and 3 for the other pairs. For consistency we have

checked that they satisfy the Jacobi identity.

Rescaling the gauge fields AA
± 7→ λA AA

±, we can easily take the limit λA → 0

{A1
±, A2

±} =
2
√

2

k
A3
±δ12 , {A1

±, A1
±} = ±2

k
δ′12 , {A1

±, A2
∓} = 0 , (4.11)

and with cyclic permutations in 1, 2 and 3 for the other pairs. These expressions can

be also obtained from (3.6) by an appropriate rescaling.

Expanding λA near the identity, we find the algebra of the non-Abelian T-dual of

the PCM on SU(2)

{A1
±, A2

∓} =
1√

2ε1ε2

(
A3
±(ε3 + ε1 − ε2) + A3

∓(ε2 + ε3 − ε1)
)

δ12 ,

{A1
±, A1

±} = ±δ′12

ε1
,

{A1
±, A2

±} = − 1√
2ε1ε2

(
A3
∓(ε1 + ε2 − ε3)− A3

±(ε1 + ε2 + ε3)
)

δ12 ,

(4.12)

where we have let λA = 1 − εA

k
, for k ≫ 1. This algebra should be equivalent to the

anisotropic PCM since they are related by a canonical transformation.

In the isotropic case, where εA = ε, it is in accordance with (3.7) under the identifi-

cation given in (3.2).
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4.2 Maillet brackets

Following Sklyanin [22], we compute the equal time Poisson bracket of L1:

{L
(1)
1 (σ1; µ), L

(2)
1 (σ2; ν)} = {LB

1 (σ1; µ), LC
1 (σ2; ν)} tB ⊗ tC , (4.13)

where L1 = LA
1 tA and the superscript in parenthesis denotes the vector spaces on

which the matrices act.8 These brackets assume the Maillet form [23]

(
[r−µν, L

(1)
1 (σ1; µ)] + [r+µν, L

(2)
1 (σ1; ν)]

)
δ12 − 2sµν δ′12 , (4.14)

where r±µν = rµν ± sµν and rµν, sµν are matrices on the basis tB ⊗ tC depending on

(µ, ν). This is guaranteed to give a consistent Poisson structure, provided the Jacobi

identities for these brackets are obeyed. This enforces r±µν to satisfy the modified

classical Yang–Baxter relation

[r
(13)
+ν1ν3

, r
(12)
−ν1ν2

] + [r
(23)
+ν2ν3

, r
(12)
+ν1ν2

] + [r
(23)
+ν2ν3

, r
(13)
+ν1ν3

] = 0 . (4.15)

The non-vanishing coefficient of the δ′ term in (4.14) is responsible for the above mod-

ification, appearance of sµν, of the classical Yang–Baxter relation. In what follows

within this section, we shall rewrite (4.13) and (4.14) and retrieve r±µν, sµν.

Expanding the Poisson bracket (4.13) we find that

vB
+µvC

+ν{XB
+, XC

+}+ vB
−µvC

−ν{XB
−, XC

−}− vB
+µvC

−ν{XB
+, XC

−}− vB
−µvC

+ν{XB
−, XC

+} . (4.16)

As noted this will take the form of (4.14). To proceed we decompose this in two terms

corresponding to δ′12 and δ12.

To compute the coefficient of δ′12 we use (4.12) with (4.3) and (4.16). We find that

8 In brief:

M(1) = M ⊗ I , M(2) = I ⊗ M , M = MAtA ,

m(12) = mAB tA ⊗ tB ⊗ I, m(13) = mAB tA ⊗ I ⊗ tB, m(23) = mAB I ⊗ tA ⊗ tB,

for an arbitrary matrix m = mAB tA ⊗ tB.
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that sµν has only diagonal elements

s11
µν = − 1

k(1 − λ2
1)(1 − λ2

2)(1 − λ2
3)

(
v1
+µv1

+ν − v1
−µv1

−ν

)
, (4.17)

and with cyclic permutations in 1, 2 and 3 the other two. Note that they are symmetric

under the exchange of µ, ν as expected by the antisymmetry of the Poisson bracket

[23].

To compute the coefficient of δ12 we expand in the tB ⊗ tC basis and we obtain

∂1rBC
−µν +

√
2 εABD rDC

−µνLA
1µ −

√
2 εADC rBD

+µνLA
1ν . (4.18)

Using (4.16) and (4.18), we find that rµν has only diagonal elements. Analyzing the

t1 ⊗ t2 component and heavily using (4.5) we find that

k

2
(1 − λ2

1)(1 − λ2
2)(1 − λ2

3)
(

v3
+µv3

−ν − v3
+νv3

−µ

)
r11
+µν =

(c3(1 − λ1λ2λ3)− c1c2)(v
2
+µv2

+ν + v2
−µv2

−ν)+

(c1(1 − λ1λ2λ3)− c2c3)(v
2
+µv2

−ν + v2
−µv2

+ν)

− c1

(
v1
+µv2

−νv3
+µ + v1

−µv2
+νv3

−µ

)
− c3

(
v1
+µv2

+νv3
+µ + v1

−µv2
−νv3

−µ

)
,

(4.19)

and

k

2
(1 − λ2

1)(1 − λ2
2)(1 − λ2

3)
(

v3
+µv3

−ν − v3
+νv3

−µ

)
r22
−µν =

(c3(1 − λ1λ2λ3)− c1c2)(v
1
+µv1

+ν + v1
−µv1

−ν)+

(c2(1 − λ1λ2λ3)− c1c3)(v
1
+µv1

−ν + v1
−µv1

+ν)

− c2

(
v1
+µv2

−νv3
−ν + v1

−µv2
+νv3

+ν

)
− c3

(
v1
+µv2

+νv3
+ν + v1

−µv2
−νv3

−ν

)
,

(4.20)

which expressions determine r11
+µν and r22

−µν. The rest of the coefficients are determined

by a cyclic permutations in 1, 2 and 3. Although cyclicity is not profound in the above

expressions, we can restore it by adding the corresponding equivalent expressions

evaluated by the other components.

Finally, as it was stated in (4.15), r±µν satisfy the modified classical Yang–Baxter

13



equation, which in our case reduces to six equations given compactly by

rAA
+ν1ν2

rCC
+ν2ν3

= rBB
−ν1ν2

rCC
+ν1ν3

+ rAA
+ν1ν3

rBB
+ν2ν3

, A 6= B 6= C . (4.21)

The explicit form of the equations can be extracted from the coefficients of the com-

bination εABC tA ⊗ tB ⊗ tC. We have checked that this condition is indeed satisfied

through a heavy use of (4.5).

5 Conclusion and outlook

In this paper we proved that the σ-model action (1.1) for the group SU(2) and for a

symmetric coupling matrix λAB is classically integrable. We achieved this by explicitly

constructing the spectral depending Lax pair (4.4) and thus giving rise to an infinite

number of conserved charges. We computed the Poisson bracket of the spatial part L1

of the Lax pair and demonstrated that it assumes the Maillet-type form [23, 24] from

which we read off the r and s matrices satisfying the modified Yang–Baxter equation,

arising from the Jacobi identity for these Poisson brackets. Our result establish an

integrable interpolation between the WZW model (CFT) and the non-Abelian T-dual

for the anisotropic PCM for SU(2).

In the context of λ-deformations, integrability has been proven so far for three

cases: The isotropic case, i.e. single coupling and any group G, the symmetric coset

case G/H again for a single coupling, and finally for the anisotropic SU(2) case with

a symmetric coupling matrix in the present paper. The latter case is special as it pos-

sesses only Abelian subgroups which seems to be at the root of the integrability proof

we have achieved. One may wonder if there exist other cases, based either on groups

or on (non) symmetric cosets for which specific choices of the matrix λ may render

the corresponding σ-model as classically integrable. A starting point in this direc-

tion could be to examine if with the right amount of torsion non-symmetric coset

spaces may prove integrable. In fact the U(3)/U(1)3 non-symmetric coset was re-

cently shown to belong in this category [25], although the two-form takes imaginary

values.
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A Anisotropic PCM and its non-abelian T-dual

In this appendix we prove that the equations of motion and the Bianchi identities of

the anisotropic PCM and its non-abelian T-dual are mapped to each other.

The anisotropic PCM action (2.2) can be reformulated as

S =
1

2π

∫
Tr (j ∧ ⋆Gj − j ∧ Bj) , j = g−1dg , E = G + B . (A.1)

Varying with respect to g we find the eom

G d ⋆ j = B dj − (G ⋆ j − Bj) ∧ j − j ∧ (G ⋆ j − Bj) , (A.2)

plus the flatness condition for j

dj + j ∧ j = 0 . (A.3)

We would like to show that these follow from (2.14) by letting k ≫ 1

λ = I − E

k
+O

(
1

k2

)
, (A.4)

and keeping the leading term in the
1

k
expansion. Indeed one easily obtains that

∂+A− = (E + ET)−1
(

ET[A+, A−] + [A+, EA−]− [ET A+, A−]
)

,

∂−A+ = (E + ET)−1
(
−E[A+, A−] + [A+, EA−]− [ET A+, A−]

)
.

(A.5)
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These can be rewritten as

∂+A− − ∂−A+ = [A+, A−] or dA = A ∧ A (A.6)

and

E ∂+A− + ET∂−A+ = [A+, EA−]− [ET A+, A−] . (A.7)

It is elementary to prove that these can be mapped to (A.2), (A.3) for A = −j.
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