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Local distributions for eigenfunctions and
for perfect colorings of q-ary hypercube 1
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Abstract. Under study are the eigenfunctions and perfect colorings of the graph

of n-dimensional q-ary Hamming space. We obtain the interdependence of local

distributions of an eigenfunction in two orthogonal faces. We prove also an analogous

result for perfect colorings.

1 Introduction

We study the eigenfunctions and perfect colorings of n-dimensional q-ary hyper-
cube. The particular case of perfect colorings, which is extensively investigated
now, corresponds to the completely regular codes. The aim of the paper is to
provide a connection between the local distributions in two orthogonal faces.
Earlier this question was considered in [2,4–6] for the 1-error correcting perfect
codes and perfect colorings in binary case (q = 2). In case q > 2 the question
is investigated in [1] for the 1-error-correcting codes. In [3] a more general case
of the direct product of graphs is studied; however, the formula is not extended
for the classes of graphs.

The paper is organised as follows: In Section 2 we give some necessary
notations and propositions. In Section 3 we establish a formula for local weight
enumerators of an eigenfunction in a pair of orthogonal faces. Using this, we
obtain in Section 4 the formula for local weight enumerators of a perfect coloring
in a pair of orthogonal faces. Both derived formulas are symmetric under choice
of the face from the pair.

The results in the paper were published in part at the Seventh International
Workshop on Optimal Codes and Related Topics, September, 2013 [7].

2 Preliminaries

Consider the set Fq = {0, 1, . . . , q − 1} as the group modulo q and F
n
q as the

abelian group Fq × . . .×Fq. We investigate functions and the colorings on the
graph of Fn

q of q-ary n-dimensional hypercube; in this graph two vertices are
adjacent if they differ in exactly one position.

1This research is partially supported by the Russian Foundation for Basic Research under

the grant no. 13-01-00463
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Let α ∈ F
n
q be an arbitrary vertex. Here and elsewhere I denotes a subset

of {1, . . . , n} and I = {1, . . . , n}\I. We denote the support of the vertex α by
s(α) (i.e., the set of its nonzero positions); the cardinality of the support is the
Hamming weight of α and is denoted by wt(α); the Hamming distance between
two vertices α and β that equals the Hamming weight of α − β is denoted by
ρ(α, β). We write Wi(α) for the sphere of radius i centered at the vertex α (i.e.,
the set of all vertices with distance i from α) and we write Bi(α) for the ball
of radius i centered at the vertex α (i.e., the set of all vertices with distance at
most i from α). By definition, put

ΓI(α) = {β ∈ F
n
q : βi = αi ∀ i /∈ I},

then ΓI(α) is an |I|-dimensional face, it has the structure of F
|I|
q . We write

simplyWi and ΓI instead ofWi(α) and ΓI(α) in the case of the all-zero vertex α.
Two faces ΓI(α) and ΓJ(β) are orthogonal if J = I. Obviously, two orthogonal
faces have exactly one common vertex. Given α, β ∈ F

n
q , we denote 〈α, β〉 =

α1β1 + . . .+ αnβn mod q.
Let us consider the set of all functions f : Fn

q −→ C as qn-dimensional vector

space V over the complex field C. Let ξ = e2π
√
−1/q. For β ∈ F

n
q , the function

ϕβ ∈ V , where

ϕβ(α) = ξ〈α,β〉, α ∈ F
n
q ,

is called the character. All characters ϕβ, β ∈ F
n
q , form the orthogonal basis

of the vector space V with respect to the inner product 〈 , 〉 defined as follows:

〈f, g〉 =
∑

β∈Fn
q

f(β)g(β).

The Fourier transform f̂ of the function f is defined as the inner product with
the characters:

f̂(α) = 〈f, ϕα〉 =
∑

β∈Fn
q

f(β)ξ〈α,β〉, α ∈ F
n
q . (1)

The initial function f can be presented in the basis of the characters:

f(α) = q−n
∑

β∈Fn
q

f̂(β)ξ〈α,β〉, α ∈ F
n
q . (2)

Lemma 1. Let β ∈ F
n
q and I ⊆ {1, . . . , n}. Then

∑

α∈ΓI

ϕβ(α)x|I|−|s(α)|y|s(α)| = (x− y)|I
⋂

s(β)|(x+ (q − 1)y)|I|−|I⋂ s(β)|.
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Proof. Let |I| = k. Without loss of generality assume that I = {1, . . . , n}. By
definition of the characters,

∑

α∈ΓI

ϕβ(α)x|I|−|s(α)|y|s(α)| =
q−1∑

α1=0

. . .

q−1∑

αk=0

k∏

i=1

ξαiβix1−|s(αi)|y|s(αi)|.

(For a ∈ Fq it holds |s(a)| = 0 if a = 0 and |s(a)| = 1 if a 6= 0.) Then we
change the order of summations and multiplication:

k∏

i=1

q−1∑

αi=0

ξαiβix1−|s(αi)|y|s(αi)|. (3)

Owing to the properties of the primitive root of unity, we have

q−1∑

a=0

ξab =

{
0, b 6= 0,
q, b = 0

,

and therefore

q−1∑

a=0

ξabx1−|s(a)|y|s(a)| =

{
x− y, b 6= 0,
x+ (q − 1)y, b = 0.

Applying this to (3), we finally obtain

(1− t)|I
⋂

s(β)|(1 + (q − 1)t)|I|−|I
⋂

s(β)|.

Now we introduce the concept of a local distribution. By definition, put

vI,fj (α) =
∑

β∈ΓI(α)
⋂

Wj(α)

f(β),

the vector vI,f (α) = (vI,f0 (α), . . . , vI,f|I| (α)) is called the local distribution of the

function f in the face ΓI(α) with respect to the vertex α or shortly the (I, α)-
local distribution of f . We say that the polynomial

gI,αf (x, y) =

|I|∑

j=0

vI,fj (α)yjx|I|−j =
∑

β∈ΓI(α)

f(β)y|s(β−α)|x|I|−|s(β−α)|

is a local weight enumerator of the function f in the face ΓI(α) with respect to
the vertex α or shortly the (I, α)-local weight enumerator of f . We omit α (in
all notations) if α = (0, . . . , 0).

Let us describe the local weight enumerator of an arbitrary function in terms
of its Fourier coefficients:
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Lemma 2. Let f be an arbitrary function. Then

gIf (x, y) = q−n
∑

β∈Fn
q

f̂(β)(x + (q − 1)y)|I|−|I
⋂

s(β)|(x− y)|I
⋂

s(β)|. (4)

Proof. By Lemma 1,

gIf (x, y) =
∑

β∈ΓI

f(β)y|s(β)|x|I|−|s(β)|

= q−n
∑

δ∈Fn
q

f̂(δ)
∑

β∈ΓI

ξ〈β,δ〉x|I|−|s(β)|y|s(β)|.

Then we can apply Lemma 1 and obtain (4).

3 Eigenfunctions

The first object of our consideration is the set of all eigenfunctions of the n-
dimensional q-ary hypercube F

n
q . As usual, we refer to as the eigenvalue of a

graph the eigenvalue of its adjacency matrix. It is known that the eigenvalues
λ of the graph of n-dimensional q-ary hypercube are equal to

λh = (q − 1)n − qh, h = 0, 1, . . . , n,

here h is called the number of the eigenvalue λh. Obviously, an eigenvalue λ

has the number h = h(λ) = (q−1)n−λ
q . The corresponding eigenfunctions (we

call them λ-functions) satisfy the equations
∑

β∈W1(α)

f(β) = λhf(α), α ∈ F
n
q , (5)

or in the matrix form:
Df = λhf,

where D is the adjacency matrix of F
n
q and f is a vector of the function f

values. It is easy to see that the Fourier coefficients f̂(α) of a λ-function f
equal zero apart from the case, where the Hamming weight of α is equal to the
number of λ.

We are going to derive the interdependence between the local weight enu-
merators for an eigenfunction in two orthogonal faces.

Theorem 1. Let λ be an eigenvalue of Fn
q with the number h = (q−1)n−λ

q , let

f be an arbitrary λ-function, and let α ∈ F
n
q . Then

(x+ (q − 1)y)h−|I|gI,αf (x, y) = (x′ + (q − 1)y′)h−|I|gI,αf (x′, y′),

where x′ = x+ (q − 2)y, y′ = −y.
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Proof. The faces ΓI(α) and ΓI(α) are orthogonal. Without loss of generality

assume that α is the all-zero vertex. Using Lemma 2, we can express the (I,0)-
local weight enumerator of the λ-function f in terms of the Fourier coefficients:

gIf (x, y) = q−n
∑

β∈Fn
q

f̂(β)(x+ (q − 1)y)n−|I|−|s(β)|+|I⋂ s(β)|(x− y)|s(β)|−|I⋂ s(β)|.

Since f̂(β) = 0 for every β /∈ Wh, the summation can be taken over all vertices
of weight h instead of all vertices of Fn

q . This implies

gIf (x, y) = q−n(x+ (q − 1)y)n−|I|−h(x− y)h−|I|

×
∑

β∈Wh

f̂(β)(x+ (q − 1)y)|I
⋂

s(β)|(x− y)|I|−|I⋂ s(β)|.

We choose new variables x′ and y′ such that

{
x′ + (q − 1)y′ = x− y,

x′ − y′ = x+ (q − 1)y,
or

{
x′ = x+ (q − 2)y,
y′ = −y.

Hence,

gIf (x, y) = q−n(x+ (q − 1)y)n−|I|−h(x− y)h−|I|

×
∑

β∈Wh

f̂(β)(x′ − y′)|I
⋂

s(β)|(x′ + (q − 1)y′)|I|−|I⋂ s(β)|.

Comparing with Lemma 2, we finally have

gIf (x, y) = (x+ (q − 1)y)n−|I|−h(x′ + (q − 1)y′)h−|I|gIf (x
′, y′).

4 Perfect colorings

In this section we prove an analog of Theorem 1 for perfect colorings.
The partition C = (C1, . . . , Cr) of F

n
q is called a perfect r-coloring (or

an equitable partition, or a partition design) with the parameter matrix S =
(sij)i,j=1,...,r if for every i, j ∈ {1, . . . , r} and each vertex α ∈ Ci the number of
vertices β ∈ Cj at distance 1 from α is equal to sij. Present a perfect r-coloring
by (0, 1)-matrix C of size qn × r with the rows corresponding to the vertices of
F
n
q and the columns corresponding to the colors {1, . . . , r}. The matrix C is
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defined as follows: each row has only one nonzero position that marks the color
of the corresponding vertex. In these terms the coloring is perfect if

DC = CS, (6)

where D is the adjacency matrix of the hypercube F
n
q .

We define a local distribution of a coloring as a local distribution of charac-
teristic functions of the colors. More precisely, a local distribution of the coloring
C in the face ΓI(α) with respect to the vertex α (or (I, α)-local distribution) is
the r × (|I|+ 1)-matrix

vI,C(α) =




vI,C1
0 (α) . . . vI,C1

|I| (α)
...

...

vI,Cr

0 (α) . . . vI,Cr

|I| (α)


 ,

where vI,Ci

j (α) = |Ci
⋂

Wj(α)
⋂

ΓI(α)|, i = 1, . . . , r, and j = 0, . . . , |I|. Let

gI,αCi
(x, y), i = 1 . . . , r, be the (I, α)-local weight enumerator of the ith color Ci;

i.e.,

gI,αCi
(x, y) =

|I|∑

j=0

vI,Ci

j (α)yjx|I|−j.

The vector-function

gI,αC (x, y) = (gI,αC1
(x, y), . . . , gI,αCr

(x, y))

is called the local weight enumerator of the coloring C in the face ΓI(α) with
respect to the vertex α (or the (I, α)-local weight enumerator).

The next theorem is an analog of Theorem 1 for perfect colorings.

Theorem 2. Let C = (C1, . . . , Cr) be an arbitrary perfect coloring of Fn
q with

parameter matrix S and α ∈ F
n
q . Put h(S) =

(q−1)nE−S
q , where E is an identity

matrix. Then

gI,αC (x, y)(x+ (q − 1)y)h(S)−|I|E = gI,αC (x′, y′)(x′ + (q − 1)y′)h(S)−|I|E. (7)

Proof. Without loss of generality assume that α = (0, . . . , 0).
Perfect colorings are closely related with eigenfunctions of the hypercube.

Indeed, let µ1, . . . , µr be the all eigenvalues (not necessarily distinct) of the
parameter matrix S and let T 1, . . . , T r be the linearly independent eigenvectors
of S that corresponds to the eigenvalues; i.e.,

ST i = µiT
i, i = 1, . . . , r.
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Thus, for the matrices T = [T 1, . . . , T r] and M = diag{µ1, . . . , µr} it holds

ST = TM.

Multiplying both sides of (6) by T and applying the last equation, we have for
the matrix

F = CT (8)

that

DF = DCT = CST = CTM = FM.

It means that the columns F 1, . . . , F r of F are the eigenfunctions of D or λ-
functions; i.e.,

DF i = µiF
i, i = 1 . . . , r.

Applying Theorem 1 to these λ-functions, we have

(x+(q− 1)y)hi−|I|gIF i(x, y) = (x′+(q− 1)y′)hi−|I|gIF i(x
′, y′), i = 1, . . . , r, (9)

where for i = 1 . . . , r the value hi is equal to the number of the eigenvalue µi

of the hypercube F
n
q ; i.e., hi =

(q−1)n−µi

q . Put gF = (gF 1 , . . . , gF r) and

MI(x, y) = diag
{
(x+ (q − 1)y)h1−|I|, . . . , (x+ (q − 1)y)hr−|I|

}
.

So we can rewrite the equations (9) in terms of these matrices:

gIF (x, y)MI(x, y) = gIF (x
′, y′)MI(x

′, y′).

It follows from (8) that

gF = (gF 1 , . . . , gF r) = (gC1 , . . . , gCr )T = gCT.

Therefore, we obtain

gIC(x, y)TMI(x, y) = gIC(x
′, y′)TMI(x

′, y′). (10)

Then we multiply both sides of (10) by T−1 and recall the definition of a matrix
function:

(x+ (q − 1)y)
(q−1)nE−S

q
−|I|E = TMI(x, y)T

−1,

which gives (7) and concludes the proof.
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