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Abstract

We study the support recovery problem for compressed sensing, where the goal is to reconstruct the sparsity pattern of a high-
dimensional K-sparse signal x ∈ RN , as well as the corresponding sparse coefficients, from low-dimensional linear measurements
with and without noise. Our key contribution is a new compressed sensing framework through a new family of carefully designed
sparse measurement matrices associated with minimal measurement costs and a low-complexity recovery algorithm. Specifically,
the measurement matrix in our framework is designed based on the well-crafted sparsification through capacity-approaching sparse-
graph codes, where the sparse coefficients can be recovered efficiently in a few iterations by performing simple error decoding
over the observations. We formally connect this general recovery problem with sparse-graph decoding in packet communication
systems, and analyze our framework in terms of the measurement cost, computational complexity and recovery performance.
Specifically, we show that in the noiseless setting, our framework can recover any arbitrary K-sparse signal in O(K) time using
2K measurements asymptotically with a vanishing error probability. In the noisy setting, when the sparse coefficients take values
in a finite and quantized alphabet, our framework can achieve the same goal in time O(K log(N/K)) using O(K log(N/K))
measurements obtained from measurement matrix with elements {−1, 0, 1}. When the sparsity K is sub-linear in the signal
dimension K = O(Nδ) for some 0 < δ < 1, our results are order-optimal in terms of measurement costs and run-time,
both of which are sub-linear in the signal dimension N . The sub-linear measurement cost and run-time can also be achieved
with continuous-valued sparse coefficients, with a slight increment in the logarithmic factors. More specifically, in the continuous
alphabet setting, when K = O(Nδ) and the magnitudes of all the sparse coefficients are bounded below by a positive constant, our
algorithm can recover an arbitrarily large (1−p)-fraction of the support of the sparse signal using O(K log(N/K) log log(N/K))
measurements, and O(K log1+r(N/K)) run-time, where r is an arbitrarily small constant. For each recovered sparse coefficient,
we can achieve O(ε) error for an arbitrarily small constant ε. In addition, if the magnitudes of all the sparse coefficients are upper
bounded by O(Kc) for some constant c < 1, then we are able to provide a strong `1 recovery guarantee for the estimated signal
x̂: ‖x̂−x‖1 ≤ κ‖x‖1, where the constant κ can be arbitrarily small. This offers the desired scalability of our framework that can
potentially enable real-time or near-real-time processing for massive datasets featuring sparsity, which are relevant to a multitude
of practical applications.

I. INTRODUCTION

A classic problem of interest is that of estimating an unknown vector x of length N from noisy observations

y = Ax + w, (1)

where A is an M × N known matrix typically referred to as the measurement matrix and w is an additive noise vector.
We refer to N as the signal dimension. In general, if x has no additional structure, it is impossible to recover x from fewer
measurements than the signal dimension. However, if the signal is known to be sparse with respect to some basis, wherein only
K coefficients are non-zero or significant with K � N , it is possible to recover the signal from much fewer measurements. This
has been studied extensively in the literature under the name of compressed sensing [4]. The compressed sensing problem of
reconstructing high-dimensional signals from lower dimensional observations arises in diverse fields, such as medical imaging
[5], optical imaging [6], speech and image processing [7], data streaming and sketching [8], etc.

A large variety of measurement designs and reconstruction algorithms have been proposed in the literature to exploit the
inherent sparsity of signals to recover them from low-dimensional linear measurements. Clearly, the design of good measurement
matrices and efficient reconstruction algorithms are critical (see Section II for a brief review of existing methods). The key to
achieve this goal boils down to two questions of interest:
Q1) Measurement cost: what is the minimum number of measurements M required to guarantee recovery?
Q2) Computational cost: how fast can one reconstruct the signal given M measurements from some A?
The answer to Q1 is well understood under information-theoretic settings (e.g. [9]–[11]). In the presence of noise, the
predominant result indicates a minimum measurement cost of O(K log(N/K)) for exact support recovery, here referred
to as the order-optimal scaling. For Q2, it is desirable if the computational complexity scales linearly with the measurement
cost O(K log(N/K)). However, there are no existing schemes that achieve O(K log(N/K)) costs in both measurements and
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Fig. 1: A conceptual diagram of the “divide-and-conquer” philosophy used in our design. Zero entries are colored in white and the non-zero entries in the
sparse vector are colored in red, green and blue respectively. We have a 3-sparse recovery problem in sub-figure (a), where the measurement matrix is colored
in grey to indicate an arbitrary design. The resulting measurements are colored as mixtures because of the arbitrary mixing of different color components (red,
green, blue). In sub-figure (b), we sparsify the measurement matrix by placing three zeros in each row shown as the white spots. The resulting measurement
matrix divides the 3-sparse recovery problem into multiple sub-problems, where one of the sub-problems involves only one color that can be easily identified.
In this example, the first measurement contains a single red color, whereas the second and third measurements contain a mixture or red and blue and a mixture
of blue and green respectively. If the decoder knows that the first measurement contains a single red color, it can peel off its contribution from the mixture
of red and blue in the second measurement, which forms a new measurement containing a single blue color.

run-time in the worst case. More specifically, in existing methods, for any fixed measurement matrix, one can always find
a K-sparse signal such that the algorithm fails to recover the sparse coefficients using O(K log(N/K)) measurements and
run-time. To relax this worst-case assumption, an intriguing question is:

“Under probabilistic settings, is it possible to achieve the order-optimal scaling in both the measurement cost and the
computational run-time?”

In this work, we answer this question in the affirmative under the sub-linear sparsity regime K = O(Nδ) for any constant
δ ∈ (0, 1). To the best of our knowledge, this is the first constructive design for noisy compressed sensing that achieves the
same order-optimal costs in both measurements and complexity under probabilistic guarantees. Meanwhile, we note that our
algorithm also works in the linear sparsity regime where K = O(N), with O(K log(N)) costs in both measurements and
run-time. In this regime, our algorithm brings new insights to the design of measurement matrix for compressed sensing, and
the measurement cost and run-time are still order-optimal up to logarithmic factors.

A. Design Philosophy

We take a simple but powerful “divide-and-conquer” approach to the problem by viewing compressed sensing through a
“sparse-graph coding” lens. Our design philosophy is depicted in Fig. 1 as a cartoon illustration, where we use different colors
to distinguish the entries in the sparse vector, namely, we choose red, green and blue respectively for the non-zero entries, and
white for zero entries. A conventional design in compressed sensing is to generate weighted linear measurements of the sparse
vector through a carefully designed measurement matrix [12]. In this example, all the entries of the measurement matrix are
colored in grey to indicate an arbitrary design and the corresponding measurements are some generic mixtures of red, green
and blue, as shown in Fig. 1-(a).

We design the measurement matrix by sparsifying each row of the measurement matrix with zero patterns guided by sparse-
graph codes, indicated by the white spots in Fig. 1-(b). This new measurement matrix leads to a different set of measurements,
where some contain single colors and some contain their mixtures. Our design philosophy is to disperse the signal into multiple
single color measurements (e.g., the red color in the first measurement) and peel them off from color mixtures (e.g., the red-blue
mixture in the second measurement and the blue-green mixture in the third measurement) to decode other unknown colors in
the spirit of “divide-and-conquer”. By analogy, the use of sparse-graph codes essentially divides the general sparse recovery
problem into multiple sub-problems that can be easily conquered and synthesized for reconstructions. Furthermore, by viewing
our design from a coding-theoretic lens, our design can further leverage the properties of sparse-graph codes in terms of both
measurement cost (capacity-approaching) and computational complexity (fast peeling-based decoding). This leads to a new
family of sparse measurement matrices simultaneously featuring low measurement costs and low computational costs.

B. Objective

We mainly focus on the recovery of the exact support of any K-sparse N -length signal and its sparse coefficients. This
so-called support recovery problem arises in an array of applications such as model selection [13], sparse approximation [14]
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and subset selection in regression problems [15]. Given x̂ generated by some recovery method, a typical metric for support
recovery is the error probability PF of failing to recover the exact support of the signal:

PF := Pr (supp (x̂) 6= supp (x)) , (2)

where supp (·) represents the support of some vector supp (x) := {k : x[k] 6= 0, 0 ≤ k ≤ N − 1}. The probability PF is
evaluated with respect to the randomness associated with the noise w and the measurement matrix A. In other words, for any
given K-sparse signal x, our design generates a measurement matrix A (from a specific random ensemble1) and produces an
estimate x̂ whose support matches exactly that of x with probability 1 − PF approaching 1 asymptotically in K and N . In
addition to support recovery, we also target accurate recovery of the sparse coefficients. In the noiseless setting and the noisy
setting where the sparse coefficients take quantized values, we aim to recover the exact values of the sparse coefficients. In
the continuous alphabet setting, we aim to get strong `∞ and `1 norm recovery guarantees.

C. Contributions

Our key contribution is the proposed new compressed sensing design framework for support recovery, with O(K log(N/K))
costs for both measurements and run-time in the presence of noise. The measurement cost and computational complexity are
obtained under the assumption that the sparse coefficients take values in a quantized alphabet, which can have arbitrarily fine
but finite precision, and is practical in most cases of interest. Moreover, with a slight increment in the logarithmic factor,
our results can be extended to the continuous alphabet setting, where we can obtain recovery guarantees in the `0 and `1
norms: for each recovered sparse coefficient, we can achieve O(ε) error for an arbitrarily small constant ε; if the magnitudes
of all the sparse coefficients are upper bounded by O(Kc) for some constant c < 1, then the estimated signal x̂ satisfies
‖x̂ − x‖1 ≤ κ‖x‖1, where the constant κ can be arbitrarily small. In the noiseless setting, our measurement cost is can be
reduced to 2K asymptotically, and run-time is reduced to O(K) accordingly. When K is sub-linear in N , and more specifically
K = O(Nδ) for some 0 < δ < 1, our results are order-optimal and furthermore, sub-linear in the signal dimension N . This
offers the desired scalability of the algorithm that can potentially enable real-time or near-real-time processing for massive
datasets featuring sparsity, which are relevant to a multitude of practical applications. Here, using the big-O notation2, we
briefly summarize our technical result as follows.

Measurement Complexity Recovery Guarantee
Noiseless 2(1 + ε)K O(K) Support & exact value

Noisy (quantized alphabet) O(K log(N/K)) O(K log(N/K)) Support & exact value
Noisy (continuous alphabet) O(K log(N/K) log log(N/K)) O(K log1+r(N/K)) Support & `∞, `1 norm bound

TABLE I: Measurement cost and complexity of our framework when K = O(Nδ), δ ∈ (0, 1) (ε > 0 and r > 0 are arbitrarily small
constants)

Here, we also note that one can directly apply our algorithm in the linear sparsity setting, i.e., K = O(N). In this scenario,
the log(N/K) and log log(N/K) factors in Table I are replaced with log(N) and log log(N), respectively. Therefore, the
measurement and time costs of our algorithm are still order-optimal up to logarithmic factors.

We now provide some intuition about our results. Recall that the idea is to use sparse-graph codes to structure the measurement
matrix in order to generate different measurements containing isolated 1-sparse coefficients, as well as their mixtures. From
Fig. 1, these 1-sparse coefficients (e.g., the red color in the first measurement) can be peeled off from their mixtures (e.g., the
red and blue mixture in the second measurement), which forms new 1-sparse coefficients for further peeling. This divide-and-
conquer approach allows us to tackle a K-sparse recovery problem by solving a series of 1-sparse problems of dimension N .
Therefore, the challenge is to keep this peeling process going until all 1-sparse components have been recovered. Hence we
invoke sparse-graph codes principles to study this “turbo” peeling process theoretically to guarantee the success of decoding.
As a result, we can focus on solving each 1-sparse problem. Clearly, depending on the specific measurement matrix used,
there are many ways to solve these 1-sparse problems in N dimension.

In the noiseless setting, we choose the first two rows of the Discrete Fourier Transform (DFT) matrix as the measurement
matrix before being sparsified by sparse-graph codes, and solve the 1-sparse problem by leveraging spectral estimation
techniques [16]. We have two measurements to estimate the unknown index and the unknown value of the 1-sparse coefficient,
which is equivalent to estimating the frequency and amplitude of a complex discrete sinusoid from the DFT matrix. Therefore,
in the noiseless setting, the frequency can be estimated by simply examining the relative phase between the two measurements,

1Note that this is what is known as the “for-each” guarantee [8] in contrast to the “for-all” guarantee in some compressed sensing contributions, where a
single measurement matrix is used for all sparse signals once generated.

2Recall that a single variable function f(x) is said to be O(g(x)), if for a sufficiently large x the function |f(x)| is bounded above by |g(x)|, i.e.,
limx→∞ |f(x)| < c|g(x)| for some constant c. Similarly, f(x) = Ω(g(x)) if limx→∞ |f(x)| > c|g(x)| and f(x) = o(g(x)) if the growth rate of |f(x)|
as x→∞, is negligible as compared to that of |g(x)|, i.e. limx→∞ |f(x)|/|g(x)| = 0.
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which only requires O(1) measurements and computations. Then the unknown value of the coefficient can be obtained easily
given the frequency.

To motivate our noisy result, we begin with another approach in the noiseless scenario by using a simple log2N × N
binary indexing matrix, which contains the binary index vector of each column included in the set of N columns divided in
the sub-problem. Using this measurement matrix, there are log2N measurements in each sub-problem. By taking the absolute
values of the measurements, in the noiseless setting, we can directly obtain the signs of the measurements as the binary
index of the 1-sparse coefficient (assuming that the coefficient is positive3). In fact, the signs of the measurements can be
viewed as a length-log2N message bits for obtaining the unknown location of the 1-sparse coefficient. Therefore in the noisy
setting, according to the channel coding theorem, we can encode the binary indexing matrix using good channel codes with N
codewords of block length O(log2N) such that it can still be decoded correctly in the presence of noise with high probability.
If the channel code has a linear decoding time in its block length O(logN), then we can achieve O(logN) costs for both
measurements and computations for solving each 1-sparse problem. Since K = O(Nδ), our results are order-optimal because
O(logN) = O(log(N/K)), where the big-O constant changes according to δ.

Finally, since there are in total K sparse coefficients to estimate, the overall measurement and computational costs are further
multiplied by a factor of K, which gives our result.

D. Notation and Organization

Throughout this paper, we use R and C to denote the real and complex fields. For any non-negative integer n, we denote
by [n] the set {0, 1, . . . , n − 1}. Any boldface lowercase letter such as x ∈ CN represents a vector containing the complex
elements4 x = [x[0], · · · , x[N − 1]]T , and a boldface uppercase letter, such as X ∈ CM×N , represents a matrix with elements
Xi,j for i ∈ [M ] and j ∈ [N ]. We denote the support of a vector x by supp (x). For any subset Γ of [N ], we define xΓ as a
vector with elements given by

xΓ[k] =

{
x[k] if k ∈ Γ,

0 otherwise.

The inner product between two vectors is defined as 〈x,y〉 =
∑
k∈[N ] x[k](y[k])∗ with arithmetic over C. Let A be a set. We

denote the cardinality of A by |A|, and the complement of A by Ac.
This paper is organized as follows. We first summarize our main technical results in Section II, followed by a brief overview

of existing sparse recovery methods in Section III. In Section IV, for illustration purpose we provide a concrete example of
our design framework using sparse-graph codes, followed by the analysis of the peeling decoder for sparse support recovery.
Based on the example, we propose the principle and mathematical formulation of our measurement design in Section V. We
provide the general framework of the peeling decoding algorithm, and the density evolution analysis in Section VI. Then, we
proceed to discuss specific constructions for our noiseless recovery results in Section VII, and further the noisy recovery results
in the quantized alphabet and continuous alphabet settings in Section VIII and Section IX, respectively. We provide numerical
results in Section X to corroborate our noisy recovery performance, and make conclusions in Section XI.

II. MAIN RESULTS

In this section, we summarize the main results in this paper. We consider the problem of recovering the sparse5 signal x
from the measurements obtained in (1). In particular, we are interested in support recovery for both the noiseless and noisy
settings. Our design is characterized by the triplet (M,T,PF ), where M is the measurement cost, T is the computational
complexity in terms of arithmetic operations, and PF is the failure probability defined in (2).

Theorem 1 (Noiseless Recovery). For any ε > 0, with probability at least 1 − O(1/K), our framework can recover any
K-sparse signal x in time T = O(K) with M = 2(1 + ε)K measurements if w = 0.

Details of the noiseless recovery algorithm is provided in Section VII.
When it comes to the noisy settings, we assume that the elements in the noise vector w are i.i.d. Gaussian distributed with

mean 0 and variance σ2. We further consider two cases in the noisy setting: the quantized alphabet setting and the continuous
alphabet setting. In the quantized alphabet setting, all the non-zero coefficients belong to a finite set X = {±ρ,±2ρ, . . . ,±Bρ},
and the minimum signal-to-noise ratio (SNR) is denoted by SNRmin := ρ2/σ2. Our main result is as follows.

Theorem 2 (Noisy Recovery, Quantized Alphabet). Let K = O(Nδ) for some δ ∈ (0, 1). With probability at least 1 −
O(1/K), our framework can recover any K-sparse signal with quantized alphabet X in time T = O(K log(N/K)) with
M = O(K log(N/K)) measurements, where the big-O constant depends on SNRmin and the sparsity regime δ.

3When the sign of the coefficient is unknown, we can use an extra row consisting of all one’s to provide a reference sign.
4Here, we slightly abuse the symbol [n]. When attached to a lowercase letter, e.g., x[n], [n] represents the index of elements in a vector; otherwise, [n]

represents the set {0, . . . , n− 1}.
5More generally, we also allow the signal to be sparse in any linear transform domain. If the signal is sparse in the transform domain, one can pre-multiply

the measurement matrix A on right by the appropriate inverse transform.
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We provide the details in Section VIII and Appendix A. In addition, when K = O(N), the run-time and measurement cost
become M = O(K log(N)) and T = O(K log(N)), respectively.

In the continuous alphabet setting, we assume that all the sparse coefficients have absolute values at least β > 0, i.e., for
any k ∈ supp (x), we have |x[k]| ≥ β. We provide the performance guarantee for recovering an arbitrarily large fraction of
the support, as well as the `∞ and `1 norm recovery guarantees.

Theorem 3 (Noisy Recovery, Continuous Alphabet). Let K = O(Nδ) for some δ ∈ (0, 1). Let Γ be the support of x, and
x̂ be the recovered signal with support Γ̂. Suppose that for some ε > 0, β = Ω(max{ε, (σ + ε)2}), and that ‖x‖∞ ≤ O(Kc)
for some constant c ∈ (0, 1). Then, using M = O(K log(N/K) log log(N/K)) measurements, our algorithm satisfies:
• Γ̂ ⊂ Γ (no false discovery)
• |Γ̂| ≥ (1− p)K, for arbitrarily small constant p > 0 (recovering an arbitrarily large fraction of the support)
• ‖x̂Γ̂ − xΓ̂‖∞ ≤ O(ε) (`∞ norm recovery guarantee)
• ‖x̂− x‖1 ≤ κ‖x‖1, for an arbitrarily small constant κ > 0 (`1 norm recovery guarantee)

with probability at least 1− O(1/poly(N)). Further, our algorithm runs in time T = O(K log1+r(N/K)) with an arbitrary
small constant r > 0.

The details of the continuous alphabet setting are provided in Section IX. Again, we mention that in the linear sparsity regime
where K = O(N), the measurement cost and run-time become M = O(K log(N) log log(N)) and T = O(K log1+r(N)),
respectively. In the following discussion, we focus on the sub-linear sparsity regime where K = O(Nδ). In the continuous
alphabet setting, the definition of minimum signal-to-noise ratio SNRmin is changed to SNRmin := ε2

σ2 , where ε is the accuracy
in the `∞ norm in Theorem 3. In the `1 recovery guarantee, the constant κ depends on ε, β, and p, and can be made arbitrarily
small by tuning the design parameters in the algorithm. Here, since we focus on the regime where K and N approach infinity,
we hide the dependence on ε, p, δ, SNRmin in the big-O notation in the measurement cost and run-time. As one can see, the
continuous alphabet setting is more complicated than the quantized alphabet setting, and in Theorem 3, we only guarantee to
recover an arbitrarily large fraction of the support of x. However, recovering the full support is indeed possible by running
the algorithm O(logK) times independently, and collecting all the recovered sparse coefficients. In this case, we can recover
the full support with M = O(K log2(N/K) log log(N/K)) measurements and time T = O(K log2+r(N/K)). Furthermore,
the reason that the log log(N/K) term appears in the measurement cost is that, we design a concatenated code in order to
solve the 1-sparse problem. We would like to mention that the use of this code is mainly for theoretical reason. Under a mild
conjecture on the existence of a code with universal decoding algorithm and linear complexity, we can further eliminate the
log log(N/K) factor. With this conjecture, our measurement cost for large fraction recovery becomes M = O(K log(N/K))
and computational complexity becomes T = O(K log(N/K)); and the measurement cost and computational complexity for
full support recovery become M = O(K log2(N/K)) and T = O(K log2(N/K)), respectively. For comparison, we list the
results for the continuous alphabet setting in Table II.

Recovery Measurement Complexity
Large fraction O(K log(N/K) log log(N/K)) O(K log1+r(N/K))

Large fraction with conjecture O(K log(N/K)) O(K log(N/K))

Full recovery O(K log2(N/K) log log(N/K)) O(K log2+r(N/K))

Full recovery with conjecture O(K log2(N/K)) O(K log2(N/K))

TABLE II: Measurement cost and computational complexity in the continuous alphabet setting, K = O(Nδ)

III. RELATED WORKS

In this section, we review the relevant works in the literature. It is worth noting that only with a few exceptions, most
of the existing compressed sensing and sparse recovery results have been predominantly developed for sparse approximation
under the `2/`1-norm or `1/`1-norm approximation error metrics6, with a relatively much lower coverage of support recovery
[8], [17]–[20]. Meanwhile, necessary and sufficient conditions for support recovery have been studied in different regimes
under various distortion measures using optimal decoders [9]–[11], [21], [22], `1-minimization methods [13], [23] and greedy
methods [24]. For example, it is shown in [10] that O(K log(N/K)) measurements are sufficient and necessary for support
recovery when the measurement matrix consists of independent identically distributed (i.i.d.) Gaussian entries under Gaussian
noise. Similar conditions under other signal and measurement models are also reported in [25]–[27]. Nonetheless, constructive
recovery schemes that specifically target support recovery are relatively scarce [26], [28], [29], especially those that come
with order-optimal measurement costs and low computational complexities (see [30]–[33]). In the following, we categorize
and briefly review the relevant works.

6`p/`q-norm guarantees refer to the error metrics measured with respect to the best K-term approximation error ‖xK − x‖ (i.e., the vector xK is the best K-
term approximation containing the K most significant entries in the sparse vector x), where the recovered sparse signal x̂ satisfies ‖x̂− x‖p ≤ κ ‖xK − x‖q
for some absolute constant κ > 0.
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A. Convex Relaxation Approach

The classic formulation for sparse recovery from linear measurements is through an `0-norm minimization, which is a non-
convex optimization problem. This problem has been known to be notoriously hard to solve. Convex optimization techniques
relax the original combinatorial problem to a convex `1-norm minimization problem, where computationally efficient algorithms
are designed to solve this relaxed problem. It has been shown that as long as the measurement matrices satisfy the Restricted
Isometry Property (RIP) or mutual coherence (MC) conditions, the `1-relaxation of the original problem has exactly the same
sparse solution as the original combinatorial problem. This class of methods is known to provide a high level of robustness
against the measurement noise, and furthermore, do not depend on the structure of measurement matrices. Popular algorithms in
this class include LASSO [34], Iterative Hard Thresholding (IHT) [35], fast iterative shrinkage-thresholding algorithm (FISTA)
[36], message passing [37], Dantzig selector [18] and so on. Most of the existing results along this line measurement matrices
that are characterized by a measurement cost of O(K log(N/K)) and a computational complexity O(poly(N)).

B. Greedy Methods

Another class of methods, referred to as greedy iterative algorithms, attempts to solve the original `0-minimization problem
directly using successive approximations of the sparse signal through various heuristics. Examples include Orthogonal Matching
Pursuit (OMP) [38], CoSaMP [39], Regularized OMP (ROMP) [40], Stagewise OMP (StOMP) [41] and so on. Similar to convex
relaxation approaches, this class also does not depend on the structure of the measurement. Although greedy algorithms are
generally faster in practical implementations than the techniques based on convex relaxations, the common computational
cost still scales as O(poly(N)) for both noiseless and noisy settings, with a few exceptions that incur near-linear run-time
O(N logN) (e.g., StOMP algorithm [41]). Besides, the measurement matrix is typically stated in terms of MC conditions7

which require O(K2) measurements. This phenomenon is commonly referred to as the square-root bottleneck, where the limit
of sparsity for successful recovery is on the order of K = O(

√
N) even if measurement matrices achieving the MC lower

bound are used (i.e. the Welch bound [43]).

C. Coding-theoretic Approach

This class of methods borrows the insights from modern coding theory to facilitate measurement designs and recovery
algorithms. Compressed sensing measurement designs have been extensively studied from a coding-theoretic lens. For instance,
[44], [45] exploit the algebraic properties of Reed-Muller codes and Delsarte Goethals codes, [46] uses a generalization of
Reed-Solomon codes, and [47] establishes the connection between the channel decoding problem and the convex relaxation
approach. Meanwhile, a multitude of work has emerged based on expander graphs [48], [49], a popular design element in
modern coding theory, which achieves near-linear time8 recovery O(N log(N/K)) using O(K log(N/K)) measurements in
the noiseless setting. Motivated by expander-based designs, researchers have proposed greedy approximation schemes that
achieve similar costs, such as Expander Matching Pursuit (EMP) [51] and Sparse Matching Pursuit (SMP) [52]. Last but
not least, there is a wide range of recovery algorithms using modern decoding principles such as list decoding [53], [54],
efficient error-correcting codes via message passing [30], [55], [56]. Recently, [57] uses spatially-coupled LDPC codes in the
measurement design and an approximate message passing decoding algorithm for recovery, which achieves the information-
theoretically optimal measurement cost O(K) given by [19] under a source coding setting. However, the decoding complexity
remains polynomial time in N . Particularly relevant to our work are those based on fast verification-based decoding [30], [58],
[59], where the sparse coefficients are solved by verifying and correcting each symbol iteratively. The Sudocodes design [30]
introduces a noiseless scheme with O(K logN) measurements and sub-linear time computations O(K logK logN) through
a two-part verification decoding procedure. Further, [58] proposes a general high rate LDPC design with applications in
compressed sensing, which provably provides guarantees for a broad class of measurement matrices under verification-based
decoding, where the Sudocodes [30] is mentioned as a special case therein. Further, [31] proposed an algorithm that achieves
a sample complexity of O(K logN log logN) and run-time O(poly(K logN)) using a well-designed measurement matrix
based on the proposed “summary-based” structure. Although our design shares certain elements in terms of the code properties
being used, our approach differs significantly in designing the verification decoding schemes to achieve sub-linear time both
in the absence and presence of noise, as well as the associated performance analysis.

D. Group Testing and Data Stream Computing

This class of methods exploit linear “sketches” of data for sparsity pattern recovery in group testing [60] and data stream
computing [61]. The major difference in this class of methods is that it mostly deals with noiseless measurements and that the
measurement matrix can be freely designed to facilitate recovery. In group testing, the common scenario is that we need to
devise a collection of tests to find K anomalous items from N total items, where the typical goal is to recover the support of the

7The measurement scaling of O(K log(N/K)) for greedy pursuit methods exists under relaxed settings (e.g. bounded noise scenarios or probabilistic
guarantees [42]). While there are some results on OMP based on the RIP, it is still ongoing work (see [20]).

8Using the same measurement design based on expanders, `1-minimziation can also be shown to achieve similar performance in polynomial time [50].
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Fig. 2: Example consisting of 5 left nodes with 2 edges randomly connected to the right nodes. Blue represents “zero-ton”, yellow represents
“single-ton” and red represents “multi-ton”.

underlying sparse vector and minimize the number of tests performed (measurements taken) [62]. In particular, [63] develops
a compressed sensing design using group testing principle with O(K log2N) measurements and O(K log2N) operations. On
the other hand, the goal of data stream computing is to maintain a short linear sketch of the network flows for approximating
the sparse vector with some distortion measure. Examples include the count-min/count-sketch methods [29] and so on. Typical
results in this bulk of literature require O(K log(N/K)) measurements and near-linear time O(N logN) (see [8]). While
there is a subset of sketching algorithms that achieve sub-linear time with O(K log(N/K)) and O(K logO(1)N) operations
[32], [33], [64], these results typically provide constant failure probability guarantees for noiseless9 measurements and sparse
approximation instead of support recovery.

IV. MAIN IDEA OF COMPRESSED SENSING USING SPARSE-GRAPH CODES

In this section, we present our design philosophy depicted in Fig. 1 with more details, and describe the main idea of our
measurement design and recovery algorithm through a simple example in the noiseless setting. We illustrate the principle of
our recovery algorithm by connecting support recovery with sparse-graph decoding using an “oracle” (described below). Then,
using the insights gathered from the oracle-based decoding algorithm, we explain how we can get rid of the “oracle” using
the same example.

A. Oracle-based Sparse-Graph Decoding

Consider a simple illustration consisting of a sparse signal x of length N = 16 with K = 5 non-zero coefficients x[1] = 1,
x[3] = 4, x[5] = 2, x[10] = 3 and x[13] = 7. To illustrate the principle of our recovery algorithm, we construct a bipartite
graph with 16 left nodes and 9 right nodes. The graph has the following properties:
• Each left node labeled with k is assigned a value x[k] for k ∈ [N ];
• Each left node is connected to the right nodes according to the sparse bipartite graph10 in Fig. 2;
• Each right node labeled with r is assigned a value yr equal to the complex sum of its left neighbors, similar to the

parity-check constraints of the LDPC codes.
Now we briefly introduce how this bipartite graph helps us recover the 20-length sparse signal x on the left nodes from the

9 measurements associated with the right nodes:

y1 = y7 = y9 = 0,

y2 = x[1] + x[5] + x[13],

y3 = x[10],

y4 = x[3],

y5 = x[5] + x[10],

y6 = x[1],

y8 = x[3] + x[13].

9Although sketching algorithms are not derived specifically to address noisy measurements, they could potentially be quite robust to various forms of noise.
10Since the values of the right nodes are not affected by the left nodes carrying zero coefficients, we show only the edges from the left nodes with non-zero

values x[k] 6= 0.
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Depending on the connectivity of the sparse bipartite graph, we categorize the measurements associated with the right nodes
into the following types:

1) Zero-ton: a right node is a zero-ton if it does not involve any non-zero coefficient (e.g., blue in Fig. 2).
2) Single-ton: a right node is a single-ton if it involves only one non-zero coefficient (e.g., yellow in Fig. 2). More specifically,

we refer to the index k of the non-zero coefficient x[k] and its associated value x[k] as the index-value pair (k, x[k])
for that single-ton.

3) Multi-ton: a right node is a multi-ton if contains more than one non-zero coefficient (e.g., red in Fig. 2).
To help illustrate our decoding algorithm, we assume that there exists an “oracle” that informs the decoder exactly which right

nodes are single-tons. More importantly, the oracle further provides the index-value pair for that single-ton. In this example,
the oracle informs the decoder that right nodes labeled 3, 4 and 6 are single-tons with index-value pairs (10, x[10]), (3, x[3])
and (1, x[1]) respectively. Then the decoder can subtract their contributions from other right nodes, forming new single-tons.
Therefore generally speaking, with the oracle information, the peeling decoder repeats the following steps similar to [59], [65]:
Step (1) select all the edges in the bipartite graph with right degree 1 (identify single-ton bins);
Step (2) remove (peel off) these edges and the corresponding pair of variable and right nodes on these edges.
Step (3) remove (peel off) all other edges connected to the left nodes that have been removed in Step (2).
Step (4) subtract the contributions of the left nodes from right nodes removed in Step (3).
Finally, decoding is successful if all the edges are removed from the graph.

B. Getting Rid of the Oracle

Since the oracle information is critical in the peeling process, we proceed with our example and explain briefly how to obtain
such information without an oracle. Clearly, we need more measurements to obtain such oracle information in its absence.
Therefore, instead of simply assigning the simple sum to each right node, we assign a vector-weighted sum to the right nodes,
where each left node (say k) is weighted by the k-th column of a bin detection matrix S. For example, we can choose the
bin detection matrix S as

S =

[
1 1 1 1 1 · · · 1
1 W W 2 W 3 W 4 · · · W 15

]
,

where W = ei 2π
N is the N -th root of unit with N = 16. Note that this is simply the first two rows of the 20 × 20 DFT

matrix. In this way, each right node (say r) is assigned a 2-dimensional vector yr = [yr[0], yr[1]]T and we call each vector a
measurement bin. For example, the measurements at right node 1, 2 and 3 become

y1 = 0,

y2 = x[1]×
[

1
W

]
+ x[5]×

[
1
W 5

]
+ x[13]×

[
1

W 13

]
,

y3 = x[10]×
[

1
W 10

]
.

Now with these bin measurements, one can effectively determine if a right node is a zero-ton, a single-ton or a multi-ton.
Although this procedure is formally stated in Section VII in our noiseless recovery results, here as an illustration, we go
through the procedures for right nodes 1, 2 and 3:
• zero-ton bin: consider the zero-ton right node 1. A zero-ton right node can be identified easily since the measurements

are all zero

y1 = 0. (3)

• single-ton bin: consider the single-ton right node 3. A single-ton can be verified by performing a simple “ratio test” of
the two dimensional vector:

k̂ =
∠y3[1]/y3[0]

2π/16
= 10,

x̂[k̂] = y3[0] = 3.

Another unique feature is that the measurements would have identical magnitudes |y3[0]| = |y3[1]|. Both the ratio test
and the magnitude constraints are easy to verify for all right nodes such that the index-value pair is obtained for peeling.

• multi-ton bin: consider the multi-ton right node 2. A multi-ton can be easily identified by the ratio test

k̂ =
∠y2[1]/y2[0]

2π/16
= 12.59.
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Furthermore, the magnitudes are not identical |y2[0]| 6= |y2[1]|. Therefore, if the ratio test does not produce a non-zero
integer and the magnitudes are not identical, we can conclude that this right node is a multi-ton.

Algorithm 1 Peeling Decoder

for i = 1 to I do
for r = 1 to R do

identify if y(i)
r is a single-ton bin;

if y(i)
r is a single-ton then

mark the index-value pair (k̂, x̂[k̂]);
for r′ = 1 to R do

locate right nodes r′ connected to k̂ in the graph;
peel off y(i+1)

r′ = y
(i)
r′ − x̂[k̂]sk̂, where sk̂ is the k̂-th column of the bin detection matrix S;

end for
else

continue to next bin r.
end if

end for
end for

This simple example shows how the problem of recovering the K-sparse signal x can be cast as an instance of sparse-graph
decoding, as briefly summarized in Algorithm 3. Note that the sparse bipartite graph in this example only shows the idea of
peeling decoding, but does not guarantee successful recovery for an arbitrary signal. Furthermore, this example also suggests
that it is possible to obtain the index-value pair of any single-ton without the help of an “oracle” through a properly chosen
bin detection matrix. We will address later how to construct sparse bipartite graphs to guarantee successful decoding (Section
VI) and how to choose appropriate bin detection matrices for different schemes. In the following, we first present our general
measurement design in Section V, which is the cornerstone of our compressed sensing framework.

V. MEASUREMENT MATRIX DESIGN

Before delving into specifics, we define the row-tensor operator � to help explain our measurement design. Given a matrix
S = [s0, · · · , sN−1] ∈ CM2×N and a matrix H = [h0, · · · ,hN−1] ∈ CM1×N , the row-tensor operation H� S is defined such
that each row of H is augmented element-wise by performing a tensor product with each corresponding column in the matrix
S. Mathematically, the row-tensor product is a M1M2 ×N matrix given as

H� S :=
[
h0 ⊗ s0 · · · hN−1 ⊗ sN−1

]
,

where ⊗ is the standard Kronecker product. For example, let H be a sparse matrix with random coding patterns of {0, 1} and
S be chosen as the first two rows of a DFT matrix as in the simple example

H =




1 1 0 1 0 1 0
0 1 0 1 0 0 1
1 0 0 1 1 1 1


 , S =

[
1 1 1 1 1 1 1
1 W W 2 W 3 W 4 W 5 W 6

]
(4)

with W = ei 2π
7 . Then the row-tensor product is given by

H� S =




1 1 0 1 0 1 0
1 W 0 W 3 0 W 5 0
0 1 0 1 0 0 1
0 W 0 W 3 0 0 W 6

1 0 0 1 1 1 1
1 0 0 W 3 W 4 W 5 W 6



. (5)

Since H has three rows of coding patterns, the product H � S contains three blocks of matrices, where each block is the
corresponding sparsified version of S by the coding pattern in each row of H.

Definition 1 (Measurement Matrix). Let M = RP for some positive integers R and P . Given a R ×N coding matrix H
and a P ×N bin detection matrix S, the M ×N measurement matrix A is designed as

A = H� S, (6)

where � is the row-tensor product, and the coding matrix and bin detection matrix are specified below.
• The coding matrix H = [Hr,n]R×N is the R × N adjacency matrix of a bipartite graph G consisting of N left nodes
V1 := [N ] and R right nodes V2 := [R] with an edge set E := V1 × V2;
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• The bin detection matrix S := [s0, · · · , sN−1] is a P ×N matrix explicitly given in Sections VII and VIII.

Proposition 1. The measurement y = Ax + w is divided into R measurement bins as y = [yT1 , · · · ,yTR]T with

yr = Szr + wr, r = 1, · · · , R (7)

where wr is the noise in the r-th measurement bin and zr = [zr[0], · · · , zr[N − 1]]T is a reduced sparse vector

zr[k] =

{
x[k], k ∈ N (r)

0, k /∈ N (r)
, (8)

and N (r) is the set of left nodes connected to right node r = 1, · · · , R in the graph G.

Proof. The proof is straightforward and hence omitted.

Since the vector x is by itself sparse on a support that may or may not overlap with the coding pattern given by the graph
G, the resulting equivalent sparse vector zr in each bin r is even sparser with a reduced support supp (x)∩N (r). If the coding
pattern happens to make zr a 1-sparse vector, we have a much easier problem to solve. Then we can use the recovered 1-sparse
coefficient to recover other coefficients iteratively. Therefore, we need to distinguish the type of each bin in order to determine
if zr is 1-sparse, which can be regarded as a separate hypothesis in the presence of noise wr:

1) yr is a zero-ton bin if supp (zr) = ∅, denoted by yr ∼ HZ;
2) yr is a single-ton bin with the index-value pair (k, x[k]) if supp (zr) = {k} for some k ∈ [N ] and zr[k] = x[k], denoted

by yr ∼ HS(k, x[k]);
3) yr is a multi-ton bin if |supp (zr)| ≥ 2, denoted by yr ∼ HM.
The spirit of divide-and-conquer is also manifested in this general design since the design of coding matrix ensures fast

decoding by peeling, while the bin detection matrix ensures the correct detection of various bin hypotheses. These two designs
are completely modular and can be designed independently depending on the applications. Now, given the above general
measurement design, the following questions are of particular interests:

1) Given N left nodes and R right nodes, how to construct a bipartite graph that guarantees a “friendly” distribution of
single-tons, zero-tons and multi-tons for successful peeling?

2) Given the sparsity K of the bipartite graph, what is the minimum number of right nodes R to guarantee successful
peeling?

3) How to choose the bin detection matrix S in general for providing the oracle information, especially when the measurements
are noisy?

In the following, we answer these questions in details and discuss the specific constructions for H and S. In Section VI, we
first present the peeling decoder analysis that guides the design of the bipartite graphs and the associated coding matrix H,
and then discuss the constructions of the bin detection matrix S for both noiseless and noisy scenarios in Section VII, VIII,
and Section IX.

VI. SPARSE GRAPH DESIGN AND PEELING DECODER

As mentioned above, the design of the coding matrix, or namely the sparse bipartite graph, is independent of the design of
the bin detection matrix since they target different architectural objectives of the decoding algorithm. Simply put, the coding
matrix (i.e. the sparse graph) can be designed assuming that there is an oracle present at decoding, while the bin detection
matrix helps replace the oracle, which can be designed independently. Therefore, in this section we focus on the design of the
coding matrix and study the sparse bipartite graphs that guarantee successful oracle-based decoding.

A. Sparse Graph Design for Compressed Sensing

The design of sparse bipartite graphs for peeling decoders has been studied extensively in the context of erasure-correcting
sparse-graph codes [65], [66]. In this section, for simplicity we consider the ensemble of left d-regular bipartite graphs
GNreg(R, d) consisting of N left nodes (unknown coefficients x[k] for k ∈ [N ]) and R right nodes (compressed measurements
yr for r = 1, · · · , R), where each left node k ∈ [N ] is connected to d right nodes r = 1, · · · , R uniformly at random and the
number of right nodes is linear in the sparsity R = ηK. We call η the redundancy parameter.

The coding matrix H constructed from the regular graph ensemble conforms with a random “balls-and-bins” model, where
each row of H corresponds to a “bin” (i.e., right node) and each column of H corresponds to a “ball” (i.e., left node). If the
(r, k)-th entry Hr,k = 1, then we say that the k-th ball is thrown into the r-th bin. In the “balls-and-bins” model associated with
the regular ensemble GNreg(R, d), each ball k ∈ [N ] is thrown uniformly at random to d bins. In the context of LDPC codes, the
k-th coefficient x[k] (variable node) appears in the parity check constraints in d right nodes (check nodes) chosen uniformly
at random. For example, consider a smaller example with N = 8 left nodes and R = 5 nodes, where x = [x[0], · · · , x[7]]T is
some generic signal vector. Then, an instance from the 2-regular ensemble G8

reg(5, 2) and the associated coding matrix H are
shown in Fig. 3.
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Fig. 3: An example of the bipartite graph from the regular graph ensemble with d = 2 left degrees, consisting of N = 8 left nodes and
R = 5 nodes, where the left nodes are labeled by the signal x = [x[0], · · · , x[7]]T .

In our compressed sensing design, the sparse bipartite graph for peeling is the “pruned” graph after removing the left nodes
with zero values. For example, if the signal is 4-sparse with non-zero coefficients x[1], x[4], x[5] and x[6], then the “pruned”
graph is reduced to that in Fig. 4 on the right from the full graph on the left. Another example of a “pruned” graph has been
shown in Fig. 2, which is associated with a 5-sparse signal and a left 2-regular graph with N = 20 left nodes and R = 9 right
nodes.
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Fig. 4: The “pruned” bipartite graph when the signal x = [x[0], · · · , x[7]]T is 4-sparse with non-zero coefficients x[1], x[4], x[5] and x[6].

Given some K-sparse signal x, the pruned graph in Fig. 4, instead of the full graph in Fig. 3, determines the peeling decoder
performance. However, the pruned graph depicted in Fig. 4 does not lead to successful decoding since the peeling is stuck
with all multi-tons after removing the single-ton from right node #1. The intuition is that there are 4 nodes on the left with
degree 2 but only 5 nodes on the right. Therefore there is a high probability for each right node to connect to more than one
left node (i.e., in this case only one right node has degree 1). In general, given the left degree d of the ensemble and the
sparsity K, the graph needs to contain a sufficient number of right nodes to guarantee the success of the peeling decoder by
choosing the redundancy parameter η properly. In the following, we study the peeling decoder performance over the pruned
graphs from the regular ensemble GNreg(R, d) and shed light on how to specify the parameter η appropriately.

B. Oracle-based Peeling Decoder Analysis using the Regular Ensemble GNreg(R, d)

In this section, we show that for the compressed sensing problem, if the redundancy parameter η = R/K and the left
regular degree d are chosen properly for the regular graph ensemble GNreg(R, d), then for an arbitrary K-sparse signal x, all
the edges of the pruned graph can be peeled off in O(K) peeling iterations with high probability. The formal statement is
given in Theorem 4. In other words, we show that as long as the full graph is chosen properly, the pruned graph can lead to
successful decoding with high probability for any given sparse signal. Our analysis is similar to the arguments in [65], [66]
using the density evolution analysis from modern coding theory, which tracks the average density11 of the remaining edges in
the pruned graph at each peeling iteration of the algorithm.

11The density here refers to fraction of the remaining edges, or namely, the number of remaining edges divided by the total number of edges in the graph.
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The proof techniques to analyze the peeling decoder in our framework are similar to those from [66] and [65], except that
the graph we have is the “pruned” version with a sub-linear fraction K left nodes given adversarially by the input. Hence, this
leads to some differences in the analysis from those in [65], [66], such as the degree distributions of the graphs (explained
later) and the expansion properties of the graphs. As a result, we present an independent analysis here for our peeling decoder.
In the following, we provide a brief outline of the proof elements highlighting the main technical components.
• Density evolution: We analyze the performance of our peeling decoder over a typical graph (i.e., cycle-free) of the

ensemble GNreg(R, d) for a fixed number of peeling iterations i. We assume that a local neighborhood of every edge in
the graph is cycle-free (tree-like) and derive a recursive equation that represents the average density of remaining edges
in the pruned graph at iteration i.

• Convergence to density evolution: Using a Doob martingale argument as in [65] and [67], we show that the local
neighborhood of most edges of a randomly chosen graph from the ensemble GNreg(R, d) is cycle-free with high probability.
This proves that with high probability, our peeling decoder removes all but an arbitrarily small fraction of the edges in the
pruned graph (i.e., the left nodes are removed at the same time after being decoded) in a constant number of iterations i.

• Graph expansion property for complete decoding: We show that if the sub-graph consisting of the remaining edges is an
“expander” (as will be defined later in this section), and if our peeling decoder successfully removes all but a sufficiently
small fraction of the left nodes from the pruned graph, then it removes all the remaining edges of the “pruned” graph
successfully. This completes the decoding of all the non-zero coefficients in x.

Density Evolution: Density evolution, a powerful tool in modern coding theory, tracks the average density of remaining
edges that are not decoded after a fixed number of peeling iteration i > 0. We describe the concept of directed neighborhood
of a certain edge in the pruned graph up to depth ` = 2i. This concept is important in the density evolution analysis since the
peeling of an edge in the i-th iteration depends solely on the removal of the edges from this neighborhood in the previous
i − 1 iterations. The directed neighborhood N `

e at depth ` of a certain edge e = (v, c) is defined as the induced sub-graph
containing all the edges and nodes on paths e1, · · · , e` starting at a variable node v (left node) such that e1 6= e. An example
of a directed neighborhood of depth ` = 2 is given in Fig. 5.
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Fig. 5: On the left sub-figure, we illustrate the directed neighborhood of depth 2 of an edge e = (v, c), namely N 2
e , while on the right we

show this neighborhood for our example depicted in Fig. 4. The dashed lines on the left correspond to nodes/edges removed at the end of
iteration i− 1. The edge between v and c can be potentially removed at iteration i as one of the check nodes (right nodes) c′ is a single-ton
(it has no more variable nodes remaining at the end of iteration i − 1). In our example, unlike the check node c′ on the left, the edge
e = (x[1], 3) cannot be removed since the check node is still a multi-ton (i.e., x[6] and x[1] are still attached).

To analyze the performance of the peeling decoder over the pruned graph, we need to understand the edge degree distributions
on the left and right for the pruned graph. Let ρj be the fraction of edges in the pruned graph connecting to right nodes with
degree j. Clearly, the total number of edges is Kd in the pruned graph since there are K left nodes in the pruned graph and
each left node has degree d. Therefore, since the expected number of edges connected to right nodes with degree j can be
obtained as Pr (a right node has degree j)Rj, the fraction ρj can be obtained as

ρj =
Pr (a right node has degree j)Rj

Kd
=
jη

d
Pr (a right node has degree j) , (9)

where we have used R = ηK and η is the redundancy parameter. According to the “balls-and-bins” model, the degree of
a right node follows the binomial distribution B(d/(ηK),K), and as K approaches infinity can be well approximated by a
Poisson variable as

Pr (a right node has degree j) ≈ (d/η)je−d/η

j!
. (10)

As a result, the fraction ρj of edges connected to right nodes having degree j is

ρj =
(d/η)j−1e−d/η

(j − 1)!
. (11)
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Now let us consider the local neighborhood N 2i
e of an arbitrary edge e = (v, c) with a left regular degree d and right degree

distribution given by {ρj}Kj=1. If the sub-graph corresponding to the neighborhood N 2i
e of the edge e = (v, c) is a tree or

namely cycle-free, then the peeling procedures over different bins in the first i iterations (see Section IV-A) are independent,
which can greatly simplify our analysis. Density evolution analysis is based on the assumption that this neighborhood is cycle-
free (tree-like), and we will prove later (in the next subsection) that all graphs in the regular ensemble behave like a tree when
N and K are large and hence the actual density evolution concentrates well around the density evolution result.

Let pi be the probability of this edge being present in the pruned graph after i > 0 peeling iterations. If the neighborhood
is a tree as in Fig. 6, the probability pi can be written with respect to the probability pi−1 recursively.

pi =


1−

∑

j

ρj(1− pi−1)j−1



d−1

, i = 1, 2, 3, · · · . (12)

The term
∑
j ρj(1− pi−1)j−1 can be simplified using the right degree generating polynomial

ρ(x) :=
∑

j

ρjx
j−1 = e−(1−x) dη , (13)

where we have used (11) to derive the second expression.

pi

pi�1

Fig. 6: The schematic of density evolution in a local tree-like neighborhood.

Therefore, the density evolution equation for our peeling decoder can be obtained as

pi = f(pi−1) =
(

1− e− dη pi−1

)d−1

, i = 1, 2, 3, · · · . (14)

An example of the density evolution with d = 3 and different values of η is given in Fig. 7. Clearly, the probability pi can
be made arbitrarily small for a sufficiently large but finite i > 0 as long as d and η are chosen properly. One can find the
minimum value η for a given d to guarantee pi < pi−1, which is shown in Table III. Due to lack of space we only show up
to d = 6.

Lemma 1 (Density evolution). Denote by Ti the event where the local 2i-neighorhood N 2i
e of every edge in the graph is

tree-like and let Zi be the total number of edges that are not decoded after i (an arbitrarily large but fixed) peeling iterations.
For any ε > 0, there exists a finite number of iteration i > 0 such that

E[Zi|Ti] = Kdε/4, (15)

where the expectation is taken with respect to the random graph ensemble GNreg(R, d) with the left regular degree d and the
redundancy parameter η = R/K chosen from Table III below.

d 2 3 4 5 6
minimum η 2.0000 1.2219 1.2948 1.4250 1.5696

TABLE III: Minimum value for η given the regular degree d according to density evolution.

Based on this lemma, we can see that if the pruned bipartite graph has a local neighborhood that is tree-like up to depth
2i for every edge, the peeling decoder on average peels off all but an arbitrarily small fraction of the edges in the graph. We
prove this lemma below.

Proof. Let Z(e)
i ∈ {0, 1} be the random variable denoting the presence of edge e after i iterations, thus

Zi =

Kd∑

e=1

Z
(e)
i . (16)
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Fig. 7: The density evolution f(pi) and the probability pi at each iteration i, where we have shown the case with d = 3 and η = 1.1,
η = 1.23, η = 1.5. In the density evolution figures (a)-(c)-(e), the red line is the line pi+1 = pi while the black line is the actual density
evolution recursion f(pi) against pi. The blue circles that “zig-zag” between the red line and the black line are the specific pi’s that are
achieved at each peeling iteration. It can be seen from (a) that when η is small (i.e. η = 1.1), the density evolution reaches a fixed point at
around pi ≈ 0.8. On the other hand, when η is greater than the threshold 1.23 given by Table III, the density pi reaches 0 very quickly in
(a) when η = 1.5. The values of pi marked by the blue circles in (a)-(c)-(e) are further plotted against the peeling iterations i in (b)-(d)-(f),
where in the case with η = 1.5 the density pi approaches 0 after less than 10 iterations.
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The expected number of remaining edges over cycle-free graphs can be obtained as

E [Zi|Ti] =

Kd∑

e=1

E
[
Z

(e)
i |Ti

]
= Kdpi, (17)

where by definition pi = Pr
(
Z

(e)
i = 1|Ti

)
is the conditional probability of an edge in the i-th peeling iteration conditioned

on the event Ti studied in the density evolution equation (14). We are interested in the evolution of such probability pi. In the
following, we prove that for any given ε > 0, there exists a finite number of iterations i > 0 such that pi ≤ ε/4, which leads
to our desired result in (15).

Convergence to Density Evolution: Given the mean performance analysis (in terms of the number of undecoded edges) over
cycle-free graphs through density evolution, now we provide a concentration analysis on the number of the undecoded edges
Zi for any graph from the regular ensemble at the i-th iteration, by showing that Zi converges to the density evolution result.

Lemma 2. Over the probability space of all graphs from GNreg(R, d), let pi be as given in the density evolution (14). Given
any ε > 0 and a sufficiently large K, there exists a constant c4 > 0 such that

(i) E[Zi] < Kdε/2 (18)

(ii) Pr (|Zi − E[Zi]| > Kdε/2) ≤ 2 exp
(
−c4ε2K

1
4i+1

)
(19)

(iii) Pr (|Zi −Kdε/2| > Kdε/2) ≤ 2 exp
(
−c4ε2K

1
4i+1

)
(20)

Proof. The details of the proof are given in Appendix B-A, but here we provide an outline of the proof. The concentration
analysis is performed with respect to the number of the remaining edges for an arbitrary graph from the ensemble by showing
that Zi converges to the mean analysis result. This proof is done in two steps:
• Mean analysis on general graphs from ensembles: first, we use a counting argument similar to [67] to show that any

random graph from the ensemble GNreg(R, d) behaves like a tree with high probability. Therefore, the expected number of
remaining edges over all graphs can be made arbitrarily close to the mean analysis |E[Zi]−E[Zi|Ti]| < Kdε/4 such that

E[Zi] < Kdε/2 (21)

as long as N and K are greater than some constants.
• Concentration to mean by large deviation analysis: we use a Doob martingale argument as in [65] to show that the

actual number of remaining edges Zi concentrates well around its mean E[Zi] with an exponential tail in K such that
Pr (|Zi − E[Zi]| > Kdε/2) ≤ 2 exp

(
−c4ε2K

1
4i+1

)
for some constant c4 > 0.

Then finally, it follows that Pr (|Zi −Kdε/2| > Kdε/2) ≤ 2 exp
(
−c4ε2K

1
4i+1

)
.

Graph Expansion for Complete Decoding: From previous analyses, it has already been established that with high probability,
our peeling decoder terminates with an arbitrarily small fraction of edges undecoded

Zi < Kdε, ∀ε > 0, (22)

where d is the left degree. In this section, we show that all the undecoded edges can be completely decoded if the sub-graph
consisting of the remaining undecoded edges is a “good-expander”. First, we introduce the concept of graph expanders.

Definition 2 (Expander Graph). A bipartite graph with K left nodes and regular left degree d is called a (ε, 1/2)-expander
if for all subsets S of left nodes with |S| ≤ εK, there exists a right neighborhood of S in the graph, denoted by N (S), that
satisfies |N (S)| > d|S|/2.

Lemma 3. For a sufficiently small constant ε > 0 and d ≥ 3, the pruned graph of GNreg(R, d) resulting from any given
K-sparse signal x is an (ε, 1/2)-expander with probability at least 1−O(1/K).

Proof. See Appendix B-B.

Without loss of generality, let the Zi undecoded edges be connected to a set of left nodes S. Since each left node has degree
d, it is obvious from (22) that |S| = Zi/d < Kε with high probability. Note that our peeling decoder fails to decode the set
S of left nodes if and only if there are no more single-ton right nodes in the neighborhood of S. A sufficient condition for all
the right nodes in N (S) to have at least one single-ton is that the average degree of the right nodes in the set N (S) is strictly
less than 2, which implies that |S|d/|N (S)| < 2 and hence |N (S)| > |S|d/2. Since we have shown in Lemma 3 that any
pruned graph from the regular ensemble GNreg(R, d) is a (ε, 1/2)-expander with high probability such that |N (S)| > d|S|/2,
there will be sufficient single-tons to peel off all the remaining edges.
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Theorem 4. Given the ensemble GNreg(ηK, d) with d ≥ 3 and η chosen based on Table III, the oracle-based peeling decoder
peels off all the edges in the pruned graph in O(K) iterations with probability at least 1−O(1/K).

Proof. The oracle-based peeling decoder fails when: (1) the number of remaining edges in the i-th iteration cannot be upper
bounded as Zi < Kdε as in (20), or (2) the number of remaining edges can be upper bounded by Zi < Kdε as in (22)
but the remaining sub-graph is not a (ε, 1/2)-expander. Event (1) occurs with an exponentially small probability so the total
error probability is dominated by event (2). From Lemma 3, we have that event (2) occurs with probability O(1/K), which
approaches 0 asymptotically. Last but not least, since there are a total of O(K) edges in the pruned graph, and there is at least
one edge being peeled off in each iteration with high probability, the total number of iterations required to peel of the graph
is O(K).

VII. NOISELESS RECOVERY

In the noiseless setting, we consider a different graph ensemble to construct the coding matrix H. If we use the regular graph
ensemble GNreg(R, d) mentioned earlier to construct the coding matrix H, the measurement cost is M = RP with R = ηK.
Since each node has at least P = 2 measurements from the bin detection matrix S, the measurement cost would be at least
2ηK. According to Table III, given sufficiently large N and K, the minimum achievable η for successful decoding is η = 1.23
when d = 3, and hence the minimum measurement cost is at least M ≥ 2.46K if the regular ensemble is used. In order to
achieve the minimum redundancy parameter η → 1, bipartite graphs with irregular left degrees need to be considered.

A. Measurement Design

For the noiseless setting particularly, we construct the coding matrix H using an irregular graph ensemble rather than the
regular graph ensemble GNreg(R, d) with better constants in our measurement costs. In the irregular graph ensemble GNirreg(R,D),
each left node has irregular left degrees j = 2, · · · , D+1, where D+1 is the maximum left degree. To describe the construction
of the irregular graph ensemble, we use the left degree sequence {λj}D+1

j=2 , where λj is the fraction of edges12 of degree j on
the left13. For instance, the left degree sequence for the regular ensemble GNreg(R, d) is λj = 1 for j = d and 0 if j 6= d.

Definition 3 (Irregular Graph Ensemble GNirreg(R,D) for Noiseless Recovery). Given N left nodes and R = (1 + ε)K right
nodes for an arbitrary ε > 0, the edge set in the irregular graph ensemble GNirreg(R,D) is characterized by the degree sequence

λj =
1

H(D)(j − 1)
, j = 2, · · · , D + 1 (23)

where D > 1/ε and H(D) =
∑D
j=1 1/j is chosen such that

∑
j≥2 λj = 1.

Theorem 5. Consider the ensemble GNirreg(R,D) for our construction. The oracle-based peeling decoder peels off all the edges
in the pruned graph in O(K) iterations with probability at least 1−O(1/K).

Proof. See Appendix C.

Given the coding matrix H constructed from the irregular ensemble, we choose the bin detection matrix S as

S :=

[
1 · · · 1 · · · 1
1 · · · Wn · · · WN−1

]
× diag [F0, F1, · · · , FN−1] , (24)

where W = ei 2π
N is the N -th root of unity and Fk for k ∈ [N ] is a random variable drawn from some continuous distribution.

The bin detection matrix is therefore the first 2 rows of the N ×N DFT matrix with each column scaled by a random variable.
This is similar to the example we used in Section IV-B, except for the random scaling on each column. We have briefly
shown in Section IV-B how to obtain the oracle information in the noiseless setting using a similar bin detection matrix. In
the following, we restate the procedures more formally to be self-contained.

Using the two measurements in each bin yr = [yr[0], yr[1]]T for r = 1, · · · , R, we perform the following tests to reliably
identify the single-ton bins and obtain the correct index-value pair for any single-ton:
• Zero-ton Test: since there is no noise, it is clear that the bin is a zero-ton if ‖yr‖2 = 0.
• Multi-ton Test: The measurement bin is a multi-ton as long as |yr[1]| 6= |yr[0]| and/or ∠yr[1]/yr[0] 6= 0 mod 2π/N .

The multi-ton test fails when the relative phase is a multiple of 2π/N , which corresponds to the following condition
according to the measurement model in (7)

yr[1]

yr[0]
=

∑
k∈[N ]Hr,kx[k]Fke

i 2πn
N

∑
k∈[N ]Hr,kx[k]Fk

= ei 2π`
N , for some ` ∈ [N ] (25)

12The graph is specified in terms of fractions of edges of each degree due to its notational convenience later on.
13An edge of degree j on the left (right) is an edge connecting to a left (right) node with degree j.
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where Hr,k is the (r, k)-th entry in the coding matrix H. Clearly, this event is measure zero under the continuous
distribution of Fk for k ∈ [N ].

• Single-ton Test: After the zero-ton and multi-ton tests, if |yr[1]| = |yr[0]| and ∠yr[1]/yr[0] = 0 mod 2π/N , the
measurement bin is detected as a single-ton with the index-value pair:

k̂r =
N

2π
∠
yr[1]

yr[0]
, x̂[k̂r] = yr[0]/Fk̂r . (26)

This gives us the index-value pair of the single-ton for peeling.

B. Some Numerical Examples
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Fig. 8: Probability of success against the redundancy parameter η for the regular ensemble GNreg(ηK, 3) with N = 0.1 million.

Density Evolution Threshold: We examine the density evolution result using the noiseless design in Section VII in the
absence of noise. We generate a sparse vector x with K = 500 and N = 105 for all the experiments. To understand the effects
of the graph ensemble on density evolution, we numerically trace the probability of success 1 − PF against the redundancy
parameter η = R/K of the regular graph ensemble GNreg(R, d). For simplicity, we fix the left node degree d = 3 and vary
the redundancy parameter η = R/K from 1 to 1.5. It can be seen that the threshold for R/K = η empirically matches with
the density evolution analysis for regular graphs in Section VI-B, where the algorithm succeeds with some probability from
η = 1.2 and reaches probability one after η = 1.3.

Illustration of Density Evolution: We demonstrate the density evolution process by showing the peeling iterations of
recovering a 280 × 280 grayscale “Cal” image consisting of pixels taking values within [0, 1]. In this setting, we have the
input dimension N = 280× 280 = 78400 and the sparsity K = 3600, and the image in Fig. 9a is free from noise. To recover
this Cal image using our framework, we exploit the noiseless design in Section VII. In particular, the coding matrix H is
constructed using the regular graph ensemble GNreg(R, d) with a regular degree d = 3 and a redundancy R = 1.5K, while
the bin detection is the first two rows of an N -point DFT matrix such that P = 2. Therefore, the total measurement cost
is M = RP = 3K = 10800 ≈ N × 13.7%. It can be seen from Fig. 9 that when the density evolution threshold is met
η = 1.5 > 1.23, the image is quickly recovered from a few iterations, where the first 3 iterations almost capture most of the
sparse coefficients while iteration 4 and 5 are cleaning up the very few remaining coefficients.

VIII. NOISY RECOVERY IN THE QUANTIZED ALPHABET SETTING

In this section, we extend the noiseless design to the noisy design in the quantized alphabet setting. More specifically,
we assume that all the sparse coefficients in x are elements in a finite set X = {±ρ,±2ρ, . . . ,±Bρ}. We first discuss the
construction of the coding matrix H. Note that we can certainly use the irregular graph ensemble as in the noiseless case to
design our coding matrix H for the noisy case as well, because it gives sharper measurement bounds. However, since we are
providing order-wise results for the measurement costs, we consider the regular graph ensemble GNreg(R, d) for constructing
H because of its simplicity. In the following, we discuss the constructions of the bin detection matrix S in the noisy setting.

Since the procedures are the same for any measurement bin at any iteration, we drop the bin index r in (7) and use the
italic font y to denote a generic bin measurement yr using the following model

y = Sz + w (27)
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Fig. 9: Illustration of density evolution through peeling iterations over the recovery of the “ Cal” image

for some bin detection matrix S = [s0, · · · , sN−1] and some sparse vector z. For example, in the first iteration at bin r, the
sparse vector equals z = zr given in (7). As the peeling iterations proceed, the non-zero coefficients in z will be peeled off
and potentially left with a 1-sparse coefficient. Therefore, at each iteration, we perform the bin detection routine to verify if
z has become a 1-sparse signal (i.e. resolve the bin hypothesis) and obtain the associated index-value pair (k̂, x̂[k̂]). In the
presence of noise, we propose the following robust detection scheme for each bin.

Definition 4 (Robust Bin Detection Algorithm). The detection is performed in a “guess-and-check” manner as:
Step 1) single-ton search ψ : y → (k̂, x̂[k̂]) estimates the index-value pair (k̂, x̂[k̂]) assuming that the underlying bin is a

single-ton. This procedure depends on the bin detection matrix S, and is explained in the next section.
Step 2) single-ton verification determines whether the single-ton assumption is valid using the estimates (k̂, x̂[k̂]):

y ∼ HS(k̂, x̂[k̂]) if
1

P

∥∥∥y − x̂[k̂]sk̂

∥∥∥
2

≤ (1 + γSNRmin)× σ2, (28)

where γ ∈ (0, 1) is some constant, and SNRmin = ρ2/σ2.

This “guess-and-check” procedure is already manifested in the noiseless design, where the bin detection matrix S leads to
a simple ratio test to accomplish both the single-ton search and verification. More specifically, the matrix S from the noiseless
design is a properly chosen codebook for encoding the unknown value and location of the 1-sparse coefficient, where each
column of S is a codeword. On one hand, the first row of both designs is an all-one vector, which captures directly the unknown
value (but not the index). On the other hand, the noiseless design encodes the index information into a single N -PSK symbol
(i.e. W k = e−i 2πk

N for k ∈ [N ]). The perspective of treating S as a codebook is very insightful for designing the single-ton
search for the noisy scenario, where the goal is to decode the index-value pair (i.e. the codeword transmitted sk) from its noisy
observation y through a Gaussian channel with an unknown channel gain x[k] (see Fig. 10).

To guarantee the success of peeling in the presence of noise, the codebook needs to be designed differently from the
noiseless case such that it can be robustly decoded. In the following, we first introduce a simple randomized construction
for this purpose with no computational constraints, and then explain how to derive a low complexity scheme based on the
randomized construction.
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Fig. 10: An illustration of the single-ton search.

A. A Simple Random Construction

In the presence of noise, the randomized design exploits fully randomized linear codes to resolve different bin hypotheses
and obtain the index-value pair.

Definition 5. The P ×N bin detection matrix S = [Si,j ]P×N consists of i.i.d. Gaussian entries N (0, 1).

Using this randomized construction, the single-ton search can be performed as follows. For each possible coefficient index
k, we obtain the maximum likelihood (ML) of the coefficient as:

αk =
sTk y

‖sk‖2
. (29)

Substituting the estimate of the coefficient αk into the likelihood of the single-ton hypothesis in Proposition 1, we choose the
index k that minimizes the residual energy:

k̂ = arg min
k∈N (r)

‖y − αksk‖2 . (30)

The search is over the coding pattern in the r-th bin k ∈ N (r), which is known a priori. With the estimated index k̂, the
coefficient is obtained by aligning it to the closest alphabet symbol in X

x̂[k̂] = min
x∈X

∥∥αk̂ − x
∥∥2
. (31)

Lemma 4. Using the P ×N bin detection matrix S in Definition 5, the algorithm in Definition 4 succeeds in identifying the
presence of a single-ton and its index-value pair correctly in time O((N/K) log(N/K)), with probability at least 1−O(1/K2)
as long as K = O(Nδ) for some δ ∈ (0, 1) and

{
P ≥ 16(1 + SNR−1

min) (1+2δ)
(1−δ) log

(
N
K

)
, SNRmin � 1

P ≥ 16SNR−2
min

(1+2δ)
(1−δ) log

(
N
K

)
, SNRmin � 1

. (32)

Proof. See Appendix D.

Since the detection scheme incurs an error with probability at most O(1/K2), the overall probability of making an error
throughout the peeling iterations across K bins is at most O(1/K), which is on par with the error probability of the oracle-
based peeling decoder. Therefore, our scheme achieves an overall failure probability of PF = O(1/K), which approaches
zero asymptotically. Now let us briefly comment on the measurement cost and computational complexity. There are a total of
R = ηK bins and each bin has P = O(log(N/K)) measurements, the randomized construction leads to a measurement cost of
M = ηKP = O(K log(N/K)). In terms of computations, this scheme requires an exhaustive search over the entire codebook
in each peeling iteration. The size of the codebook for some bin (say r) depends on the right node degree |N (r)|. Based on the
“balls-and-bins” construction, this means that |N (r)| is well concentrated around O(N/K) with an exponential tail. Since each
codeword imposes a search complexity of P = O(log(N/K)) by the maximum likelihood single-ton search, therefore across
all O(K) peeling iterations, this results in a total complexity of T = O(N/K)×O(log(N/K))×O(K) = O(N log(N/K)).

B. Noisy Bin Detection: Going below Linear Time

The randomized construction is slow because it does not optimize its choice of codebook to facilitate the decoding procedure
of Step (1) in Definition 4, which causes the high complexity. The question to ask is: is it possible to maintain similar
performances with a run-time complexity that is sub-linear in N? To reduce the complexity without compromising the
measurement cost, the spirit of divide-and-conquer also applies. We use two codebooks, where one uses the randomized
construction to deal with single-ton verifications, while the other codebook (introduced next) deals with the single-ton search,
which is the key to our fast algorithm.
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1) Motivating Example in the Noiseless Case: To motivate our noisy design, we consider another coding scheme in the
noiseless case, where the bin detection matrix is constructed as

S = (−1)B, (33)

where B =
[
b0 b1 · · · bN−1

]
is the binary expansion matrix with n = dlog2Ne such that each column bk is an n-bit

binary representation for all k ∈ [N ]. In our running example N = 16, the 4× 16 binary expansion matrix is

B =




0 0 0 0 0 0 0 0 · · · 1
0 0 0 0 1 1 1 1 · · · 1
0 0 1 1 0 0 1 1 · · · 1
0 1 0 1 0 1 0 1 · · · 1


 (34)

and the bin detection matrix is:

S =




(−1)0 (−1)0 (−1)0 (−1)0 · · · (−1)1

(−1)0 (−1)0 (−1)0 (−1)0 · · · (−1)1

(−1)0 (−1)0 (−1)1 (−1)1 · · · (−1)1

(−1)0 (−1)1 (−1)0 (−1)1 · · · (−1)1


 . (35)

For simplicity, we assume that the values are all known x[k] = 1 for k ∈ supp (x) but the locations k are unknown. Later
we explain how to get rid of this assumption. Given this bin detection matrix and that all x[k] = 1 by assumptions, right nodes
1, 2 and 3 are associated with measurements y1 = 0,

y2 =




(−1)0

(−1)0

(−1)0

(−1)1


+




(−1)0

(−1)1

(−1)0

(−1)1


+




(−1)1

(−1)1

(−1)0

(−1)1


 , y3 =




(−1)1

(−1)0

(−1)1

(−1)0


 .

Now, one can easily determine if a right node is a zero-ton, a single-ton or a multi-ton easily. Consider the right node 3. A
single-ton can be verified by checking if |y3[1]| = · · · = |y3[4]| and the unknown index can be obtained by taking the sign14

of each measurement sgn [y3[p]] such that

k̂ =

n∑

p=1

2p−1 × sgn [y3[p]] . (37)

On the other hand, consider the measurement y2 from right node 2. Since it does not satisfy the above criterion, it can be
concluded as a multi-ton.

In the general noiseless case where x[k] is unknown, we can easily modify the simple case by concatenating an extra
“all-one” row vector with the bin detection matrix S as

S =




1 1 1 1 · · · 1
(−1)0 (−1)0 (−1)0 (−1)0 · · · (−1)1

(−1)0 (−1)0 (−1)0 (−1)0 · · · (−1)1

(−1)0 (−1)0 (−1)1 (−1)1 · · · (−1)1

(−1)0 (−1)1 (−1)0 (−1)1 · · · (−1)1



. (38)

Using this bin detection matrix, for the single-ton right node 3, we would have

y3 = x[10]×
[
1, (−1)1, (−1)0, (−1)1, (−1)0

]
,

which gives us y3[0] = x[5] and the unknown index k can be obtained as:

k̂ =

n∑

p=1

2p−1 × sgn [y3[p]]⊕ sgn [y3[0]] . (39)

However, in the presence of noise, these tests no longer work as an oracle. Next we explain how to robustify this coding
scheme in the presence of noise.

2) General Design in the Noisy Case: In the noiseless case, each codeword in S is the bipolar {±1} image of the
corresponding binary code bk of the column index k, and hence it is not difficult to decode the transmitted message bk

14The sign function is defined slightly different from the usual case:

sgn [x] =

{
1, x < 0

0, x ≥ 0.
(36)
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and recover k. However, in the presence of noise, the codebook needs to be re-designed such that it can be robustly decoded.

Definition 6 (Bin Detection Matrix). Let B be the n×N binary expansion matrix in (34) with n = dlog2Ne, where the bin
detection matrix is constructed as S = [ST0 ,S

T
1 ,S

T
2 ]T , and

• S0 = 1P×N is an all-one codebook;
• S1 = (−1)C and C = [c0, · · · , cN−1] is a P×N linear channel codebook constructed as C = GB by a P×n generator

matrix with a block length P , as well as a decoding error probability of e−ζP for some error exponent ζ > 0;
• S2 = [s2,0, · · · , s2,N−1] is a P ×N random codebook consisting of i.i.d. Rademacher entries {±1}.
There exist many codes that satisfy the our requirement (strictly positive error exponent), but the challenge is the decoding

time. It is desirable to have a decoding time that is linear in the block length P = O(n) so that the sample complexity and
computational complexity can be maintained at O(n) for each bin, same as the noiseless case. Excellent examples include the
class of expander codes or (spatially coupled) LDPC codes that allow for linear time decoding. With this design, we obtain
three measurement sets in each bin y = [uT0 ,u

T
1 ,u

T
2 ]T :

ui = Siz + wi, i = 0, 1, 2. (40)

Each measurement set is used differently in the “guess-and-check” procedure mentioned in Definition 4.
The single-ton verification simply uses the measurement set u2 to confirm whether the bin is a single-ton, as summarized

in Algorithm 2, while the single-ton search uses u0 and u1 differently. The single-ton search uses the measurement set u0 for
obtaining the estimate α̂ of x[k], and the measurement set u1 for obtaining the estimate k̂ of the index k. If the underlying bin
is indeed a single-ton with an index-value pair (k, α), then the measurement u1 is the noisy version of some coded message
ck = Gbk

u1 = α(−1)Gbk + w1, (41)

where bk is the k-th column of the binary expansion matrix B.

Proposition 2. Given a single-ton bin with an index-value pair (k, α), the sign of the measurement set u1 satisfies

sgn [u1] = Gbk ⊕ sgn [α]⊕ e, (42)

where e is a binary vector containing P bit flips with a cross probability upper bounded as Pe = e−
|x[k]|2

2σ2 .

Proof. The proof can be obtained by Gaussian tail bounds, and hence we omit it here due to lack of space.

Algorithm 2 Robust Bin Detection Algorithm

Input : Observation y = [uT0 ,u
T
1 ,u

T
2 ]T , SNRmin and σ2.

Set : γ ∈ (0, 1) and generator matrix G.
Output : the index-value pair (k̂, x̂[k̂])
obtain the coefficient from u0:

α̂ = min
x∈X
‖u0 − x1P ‖2 (43)

estimate the index bk̂ via channel decoding over sgn [u1]⊕ sgn [α̂] = Gbk ⊕ e

obtain k̂ from bk̂ = [bk̂[1], · · · , bk̂[n]]T such that k̂ =
∑n
p=1 2p−1 × bk̂[p].

if ‖u2 − α̂s2,k̂‖2/P ≤ (1 + γSNRmin)σ2 then
return (k̂, x̂[k̂])

end if

Although α is unknown, it can be estimated using u0 using (43) and therefore, we have sgn [u1] ⊕ sgn [α̂] = Gbk ⊕ e.
Because the index k can be obtained from bk directly, we only need to decode bk reliably over a binary symmetric channel
(BSC) with a cross probability Pe.

Lemma 5. Using the bin detection matrix S in Definition 6, the algorithm in Definition 4 succeeds in identifying the presence
of a single-ton and its index-value pair correctly with probability at least 1 − O(1/K2) as long as K = O(Nδ) and P =
O(log(N/K)).

Proof. See Appendix E, where the big-O constant for P is analyzed.
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IX. NOISY RECOVERY IN THE CONTINUOUS ALPHABET SETTING

In this section, we provide details of the noisy recovery algorithm in the continuous alphabet setting. The major challenge
with continuous alphabet is that, since it is impossible to obtain the exact values of the sparse coefficients in the presence
of noise, the iterative decoding procedure may suffer from error propagation if we do not design and analyze the algorithm
carefully. The key idea of our algorithm in the continuous alphabet setting is to use a truncated peeling algorithm so that the
error propagation can be controlled. In the following, we first present the construction of the bin detection matrix, and then
the modified peeling decoding algorithm.

A. Bin Detection Matrix

Similar to the quantized alphabet setting, we still use the regular graph ensemble GNreg(R, d) for constructing the coding
matrix H. Meanwhile, the design of the bin detection matrix S ∈ {−1, 1}P×N is slightly modified in order to better fit the
continuous alphabet setting. The matrix S consists of two parts, the location matrix S0 ∈ {−1, 1}P0×N and the verification
matrix S1 ∈ {−1, 1}P1×N , i.e., S = [ST0 , ST1 ]T , and thus, the number of measurements in each bin detection matrix is
P = P0 + P1. We denote by sj , s0,j , and s1,j the j-th column (j ∈ [N ]) of S, S0, and S1, respectively. Similar to the
quantized alphabet setting, we have the following generative model on the measurements in a particular bin (the bin index is
omitted):

y = Sz + w. (44)

With the design of S, the measurement y consist of two parts, i.e., y = [uT0 ,u
T
1 ]T , where ui = Siz + wi, i = 0, 1.

Again, the bin detection matrix S is used to check whether a bin is a single-ton bin, and if it is, the bin detection matrix
S finds the index-value pair of the sparse coefficient. Suppose that a particular bin is a single-ton and the sparse coefficient
is located at j, j ∈ [N ], i.e., z = x[j]ej , where ej is the j-th vector of the standard basis. Then, the measurements of this
bin is y = x[j]sj + w. As mentioned above, we can divide the measurements into two parts, location measurements u0 and
verification measurements u1, which correspond to the location matrix and verification matrix, respectively. Namely, we have
u0 = x[j]s0,j + w0 and u1 = x[j]s1,j + w1.

The design of the verification matrix is relatively simple. The entries of the verification matrix S1 are i.i.d. Rademacher
distributed, i.e., all the entries are independent and equally likely to be either 1 or −1. The design of the location matrix S0

is more complicated. As we can see, if a bin is indeed a single-ton, then the location measurements u0 is a scaled version of
s0,j with additive Gaussian noise w0. Let ζ = Φ(−|x[j]|/σ), where Φ(·) is the CDF of standard Gaussian distribution. Taking
the sign15 of all the location measurements and considering the randomness of the Gaussian noise, we can see that for each
element u0,k in the location measurements, k ∈ [P0], we have

sgn [u0,k] =

{
sgn [x[j]] s0,k,j with probability 1− ζ
−sgn [x[j]] s0,k,j with probability ζ.

Now the problem becomes a channel coding problem in a symmetric channel with symbols {+1,−1}. The channel is similar to
the binary symmetric channel (BSC) except the fact that we are using {+1,−1} rather than {0, 1}. For simplicity we will still
call this channel a BSC in the following context. Consider the N possible locations of the sparse coefficient as N messages.
We encode the N messages by P0-bit codewords with symbols ±1, or equivalently, we design a map f : [N ] → {1,−1}P0 ,
and the columns of the location matrix are the codewords of all the messages, i.e., s0,j = f(j), j ∈ [N ]. If x[j] < 0, the
codeword gets a global sign flip and then we get the modified codeword sgn [x[j]] s0,j . Transmitting this modified codeword
through a BSC with bit flip probability ζ, we get the received sequence, sgn [u0]. Then we need a decoding algorithm to
decode the original codeword s0,j , up to a global sign flip, and then, there are at most two possible locations of the sparse
coefficient. Then, one can use the verification measurements to check whether the bin is indeed a single-ton, find the correct
location among the two possible choices, and estimate the value of the sparse coefficient.

Now we describe the encoding and decoding scheme of the location matrix. The code should satisfy four properties:
(i) The block length of the codewords should be as small as possible. Since we need at least O(log(N)) bits to encode N

messges, P0 should be as close to O(log(N)) as possible.
(ii) The decoding complexity should be as close to O(log(N)) as possible.

(iii) The decoding algorithm succeeds with high probability; specifically, when there are O(1) bits flipped, we need the
probability of successful decoding to be 1−O(1/poly(N)).

(iv) The decoding algorithm should be universal, i.e., it should not rely on the exact knowledge of the bit flipping probability.

15In this section, we use the standard definition of sign, i.e.,

sgn [x] =

{
1, x ≥ 0

−1, x < 0.
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Many of the state-of-the-art capacity achieving codes, such as LDPC codes and Polar codes, satisfy the first two properties.
However, in order to have 1−O(1/poly(N)) error probability, the decoding algorithms in these codes need exact knowledge
of the channel, meaning that these algorithms need the flip probability ζ as a known input parameter. However, in our problem,
ζ = Φ(−|x[j]|/σ), where |x[j]| is unknown. This is the reason that we need universal decoding algorithm. In practice, since
we have an upper bound of the bit flip probability, ζ ≤ Φ(−β/σ), it is reasonable to believe that if we use the upper bound as
the bit flip probability, the state-of-the-art capacity achieving codes still work well, although there is no theoretical guarantee.
For theoretical interests, here we propose a concatenated code which satisfies all the four properties provably. The results are
given in Lemma 6. This code is based on Justesen’s concatenation scheme [68], linear complexity expander codes [69], and
the Wozencraft’s ensemble [70].

Lemma 6. There exists a concatenated code
fc : [N ]→ {1,−1}P0

for BSC with block length P0 = O(log(N) log log(N)) and universal decoding algorithm, which can successfully decode with
probability 1−O(1/poly(N)). The decoding complexity is O(log1+r(N)), where r > 0 is an arbitrarily small constant.

Proof. See Appendix F.

With this concatenated code, we can construct the location matrix S0 by setting the j-th column as the codeword of j,
i.e., s0,j = fc(j). Meanwhile, we note that this concatenated code is designed mainly for theoretical purpose. In practice,
we can use LDPC codes and Polar codes in the location matrix, and in the decoding algorithm use Φ(−β/σ) as an estimate
of the bit flip probability of the BSC channel. In fact, if we make the conjecture that there exists a code with block length
P0 = O(log(N) and has uniform decoding algorithm, linear decoding complexity, and success probability 1−O(1/poly(N)),
then we can remove the log log(N) factor in the measurement cost, and reduce the log1+r(N) factor in the run-time to log(N).

B. Peeling Decoder with Truncation

Recall that the basic idea of the peeling decoder is to use the location matrix and verification matrix to identify single-ton
bins, and estimate the index-value pairs of the sparse coefficients in the single-ton bins. After identifying a single-ton bin, the
decoder peels the sparse coefficient (left node) from its neighborhood measurement bins (right nodes). Then, more bins become
single-tons. The decoder continues the peeling process iteratively until no single-ton bin can be found. The major challenge
in the continuous alphabet setting is that, the signal components are real-valued, and thus we cannot obtain the exact values
of the sparse coefficients. Therefore, error propagation in the peeling process is inevitable. We propose a truncation peeling
strategy in order to control the error propagation.

Here, we demonstrate the peeling algorithm with truncation strategy via a simple example in Figure 11. The main idea is
to fix the maximum number of sparse coefficients that can be peeled from a measurement bin. Denote this maximum number
by D, which is an input constant parameter of the algorithm. This means that when at least D sparse coefficients have been
peeled from a particular bin, we stop using this bin in following iterations, i.e., we “truncate” large multi-ton bins that are
connected to more than D sparse coefficients. We set D = 2 in the example in Figure 11.

We first assume that by the location measurements and verification measurements, we can perfectly identify whether a bin
is a single-ton and find the exact location of the sparse coefficient. As we can see, in Figure 11, the bins 1 and 7 are single-ton
bins and the corresponding sparse coefficients are x[0] and x[6], respectively. In the first iteration, the two sparse coefficients
are found and we let x̂[0] and x̂[6] be the estimated values. Then, we do peeling, meaning that we subtract the measurements
contributed by the two sparse coefficients from the measurements in other bins. We get the remaining measurements of bins
2, 3, 4, 5, and 6 after the first iteration:

y
(1)
2 = y2 − x̂[0]s0 − x̂[6]s6

y
(1)
3 = y3 − x̂[0]s0

y
(1)
4 = y4 − x̂[6]s6

y
(1)
5 = y5

y
(1)
6 = y6.

Here, we use yi to denote the measurement in the i-th bin, and y
(t)
i to denote the remaining measurement in the i-th bin after

the t-th iteration. Then we can see that bins 3 and 4 become single-ton bins, and the corresponding sparse coefficients are x[2]
and x[5], respectively. We should also notice that since two sparse coefficients have been peeled from bin 2, according to the
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Fig. 11: Peeling with truncation. The signal length is 7 and we design 7 measurement bins. In the bipartite graph, the left nodes and the right
nodes correspond to the sparse coefficients and measurement bins, respectively. The sparse coefficients are shown with color (if a sparse
coefficient is recovered, the left node is shown in blue, otherwise it is shown in green). (a) The bipartite graph. The support of the signal
is {0, 2, 4, 5, 6}. The bipartite graph is 3-left regular, and the connections between zero elements and the measurement bins are shown in
dashed lines. (b) Bin 1 and bin 7 are single-ton bins, and the corresponding signal components x[0] and x[6] are recovered. (c) Peel x[0] and
x[6] from the measurement bins. Since two sparse coefficients are peeled from bin 2, in the following iterations, we stop using bin 2. Bin 3
and bin 4 become single-ton bins, and the corresponding sparse coefficients are x[2] and x[5]. (d) Peel x[2] and x[5] from the measurement
bins, and bin 5 and bin 6 become single-ton bins. Then, x[4] is recovered.

truncated peeling strategy, we should stop using bin 2 in the following iterations. Let x̂[2] and x̂[5] be the estimated values of
the sparse coefficients. Then, the remaining measurements of bins 5 and 6 after the second iteration are:

y
(2)
5 = y

(1)
5 − x̂[2]s2

y
(2)
6 = y

(1)
6 − x̂[5]s5.

Then, bins 5 and 6 become single-ton bins and the corresponding sparse coefficient is x[4]. We can estimate the value of x[4]
and get x̂[4]. So far, all the balls have been found, meaning that the all the sparse coefficients are found. We summarize the
detailed procedure of peeling decoding algorithm with truncation strategy in Algorithm 3.

The following result of the peeling procedure guarantees that when the peeling process stops, an arbitrarily large fraction
of sparse coefficients are found. Similar to the results in the noiseless setting and quantized alphabet setting, the proof of
Lemma 7 is based on density evolution, and the only difference is in the truncation strategy.

Lemma 7. Assume that we can always find the correct location of the sparse coefficients in single-ton bins. For any p > 0,
when K is large enough, there exist proper parameters d = O(1) and R = O(log(1/p)K), such that using a random left
regular graph GNreg(R, d), after np iterations of truncated peeling, with probability 1 − O(exp{−c1(p)Kc2(p)}), the fraction
of non-zero signal elements that are not detected is less than p. Here, c1(p), c2(p) > 0 are two quantities determined by p.

Proof. See Appendix G.

C. Single-ton Detection and Signal Estimation

In Section IX-B, we have shown that if the single-ton bins are always perfectly detected, and the exact location of the
sparse coefficients can always be found, an arbitrarily large fraction of non-zero signal elements can be recovered. Then, the
remaining issue is to guarantee correct single-ton detection and accurate value estimation.

Recall that in the first iteration, if a bin is indeed a single-ton bin, from the location measurements, one can decode the
modified codeword corresponding to the location index of the sparse coefficient. Due to the sign ambiguity, there may be
two possible locations and the true location is guaranteed to be one of them with high probability. We still need to find the
correct location and estimate the values of the sparse coefficient. On the other hand, if the bin is not a single-ton, the decoding
algorithm of the concatenated code still returns at most two possible locations and we have to make sure that these bins are
not considered as single-ton bins. These problems are addressed by energy tests using the verification measurements, based on
the same idea as in [71].

1) Signal Value Estimation: Consider a particular bin at a particular iteration. For simplicity, in this part, we resume the
notation in Section IX-A; more specifically, we omit the index of the bin and the iteration counter, and use u1 to denote the
remaining verification measurement at a particular iteration (this means that the contribution of the recovered sparse coefficients
are already subtracted). Let j be a possible location of the sparse coefficient that the decoding algorithm of the concatenated
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Algorithm 3 Peeling decoding with truncation strategy

Input : Observation yi, i ∈ [R], bin detection matrix S, coding matrix H, and truncation threshold D
Output : Estimated signal x̂
x̂← 0,
number of peeled sparse coefficients in each bin: Bi ← 0, i ∈ [R],
Indicator of utilizability of bins: Ui ← true, i ∈ [R],
y

(0)
i ← yi, i ∈ [R], stop← false, t← 1

while stop = false do
Find sparse coefficients in single-ton bins.
It ← {indices of all single-ton bins found in the iteration t}.
Ui ← false, for all i ∈ It.
Jt ← {locations of sparse coefficient in single-tons found in iteration t}.
y

(t)
i ← y

(t−1)
i , i ∈ [R].

if Jt 6= ∅ then
for all j ∈ Jt do

Estimate x̂[j].
for all i ∈ [R] such that Ui = true and hi,j = 1 do
y

(t)
i ← y

(t)
i − x̂[j]sj .

Bi ← Bi + 1.
if Bi = D then
Ui ← false

end if
end for

end for
else

stop← true
end if
t← t+ 1

end while
return x̂

code suggests. We assume that the bin is indeed a single-ton with the single-ton ball located at j, and estimate x[j] by the
remaining verification measurements, i.e.,

x̂[j] =
1

P1

P1∑

k=1

s1,k,ju1,k. (45)

Here, s1,k,j is the element at the k-th row and the j-th column of the verification matrix S1, and u1,k is the k-th element
in u1. Intuitively, this estimation method is simply averaging over the measurements with corrected sign, meaning that we
flip the sign if the corresponding entry in the verification matrix is −1. The theoretical guarantee of single-ton detection and
estimation is presented in Lemma 8.

Lemma 8. For any ε > 0, with P1 = O(σ
2

ε2 log(N)) verification measurements in each bin, when β > cε for some constant
c > 0, we can accurately detect any single-ton bin within a constant number of iterations. More specifically, we have:

(i) the location measurements can find the correct location of the sparse coefficient in the single-ton bin with probability
1−O(1/poly(N)),

(ii) the estimated value of sparse coefficient x̂[j] satisfies |x̂[j] − x[j]| ≤ Cjε for some constant Cj > 0 with probability
1−O(1/poly(N)).

Proof. See Appendix H.

We note that result (i) is a simple extension of the conclusion that we get in Section IX-A, where we focused on the
first iteration, and result (ii) shows that for any target accuracy level ε > 0, if the number of verification measurements is
P1 = O(σ

2

ε2 log(N)), we can estimate the signal value within constant factor of ε with high probability.
2) Energy Test: So far, we have seen that if a bin is indeed a single-ton, the location measurements can find the correct

location of the sparse coefficient and the verification measurements can give accurate estimation of the value. However, there
are still several things left. As we have mentioned, we need to clarify sign ambiguity, and rule out measurement bins that are
not single-tons. These operations can be done by energy tests.
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Consider the i-th bin in the t-th iteration. Let u1 be the remaining verification measurements, and B be the set of location
indices of sparse coefficients in the i-th bin that have been found before this iteration. Before using the location measurements
to find the location of new sparse coefficients, we use an energy test to check if this bin is a zero-ton bin, i.e., check if
supp (z) = B. If it is, there is no need to run the decoding algorithm of the concatenated code. More specifically, we construct
û1 =

∑
g∈B x̂[g]s1,g and conduct the zero-ton energy test with threshold τ > 0:

if
1

P1
‖u1 − û1‖22 < τ, bin i is a zero-ton bin;

else bin i is not a zero-ton bin.

If the bin is not a zero-ton bin, we use the location measurements to find a possible single-ton location j and get the
estimated the value x̂[j]. We need to verify if there is indeed supp (z) = B ∪ {j}. Similar to the zero-ton test, we construct
û1 =

∑
g∈B∪{j} x̂[g]s1,g and conduct the single-ton energy test with threshold τ > 0:

if
1

P1
‖u1 − û1‖22 < τ,

bin i is a single-ton bin with sparse coefficient located at j;
else

bin i is not a single-ton bin with sparse coefficient located at j.

The intuition behind both energy tests is simple. We actually make a hypothesis that the true signal of a bin is ẑ and construct
the corresponding verification measurements û1 = S1ẑ. If the support of ẑ and z are the same and the values are accurately
estimated, i.e., ‖ẑ−z‖∞ < C0ε, for some constant C0 > 0, then the energy of the difference between the actual measurements
and the constructed measurements should be small; otherwise, the energy should be large. The theoretical guarantees of both
energy tests are provided in Lemma 9.

Lemma 9. When β = Ω((σ + ε)2), there exists a proper threshold τ > 0 such that any energy test succeeds with probability
1−O(1/poly(N)), when P1 = O(max{σ2/ε2, 1} log(N)).

Proof. See Appendix I.

With all these ingredients above, we are now ready to prove Theorem 3, which is our main result in the continuous
alphabet setting with noise. The proof is a simple application of the total law of probability, similar to the ideas that we use in
Appendix A. We relegate the brief proof to Appendix J. We also mention that, since we use random left regular bipartite graph,
the recovered 1− p fraction of the support is uniformly distributed over the full support of the unknown signal. Therefore, by
running the algorithm log(K) times independently, each sparse coefficient can be recovered with high probability, and thus
we can get the full support recovery guarantee.

X. NUMERICAL EXPERIMENTS

In this section, we provide the empirical performance of our design in the noiseless and noisy settings. Each data point in
the simulation is generated by averaging over 200 experiments, where the signals x are generated once and kept fixed for all
the subsequent experiments. In particular, the support of x are generated uniformly random from [N ]. In the presence of noise,
the signal-to-noise ratio (SNR) is defined as

SNR =
E
[
‖Ax‖2

]

E
[
‖w‖2

] =
‖x‖2
σ2

d̄

R
(46)

where d̄ is the average left node degree of the bipartite graph, R is the number of right nodes in the graph, and the expectation
is taken with respect to the noise, random bipartite graph and bin detection matrix. Then in noisy settings, we generate i.i.d.
Gaussian noise with variance σ2 according to the specified SNR.

A. Scalability of Measurement and Computational Costs for Noiseless Recovery

In this case, we examine the measurement cost and run-time of our noiseless recovery algorithm. The measurement matrix
A is constructed using the coding matrix H from the irregular graph ensemble GNirreg(R,D) by fixing R = 1.1K and D = 100.
We show experiments with different sparsities where K = 200, 400 and 600 and for each of the sparsity settings, we simulate
our noiseless recovery algorithm for recovering sparse signals of dimension N = 104 to N = 7× 104. It can be seen in Fig.
12 that the measurement and computational costs remain constant irrespective of the growth in N .
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Fig. 12: Measurement and computational costs as functions of the signal dimension N for noiseless recovery. It can be seen that the
measurement and computational costs remain constant irrespective of the growth in N .

B. Noise Robustness and Scalabilty in the Quantized Alphabet Setting

In this subsection, we showcase the robustness and scalability of the noisy design in the quantized alphabet setting. The
sparse coefficient are chosen from {−1, 1} uniformly at random. The measurement matrix A is constructed as follows:
• the coding matrix H is constructed using the regular graph ensemble GNreg(R, d) with a regular degree d = 3 and a

redundancy R = 2K;
• we choose a P1 × N random Rademacher matrix for the zero-ton and single-ton verifications with P1 = logN , and a
P2×N coded binary matrix for the single-ton search with P2 = 2 log2N . In particular, the coded binary matrix C = GB
is chosen based on the P2 × log2N generator matrix G associated with a (3, 6)-regular LDPC code, and the single-ton
search utilizes the Gallager’s bit flipping algorithm for decoding.

To demonstrate the noise robustness, the probability of success is plotted against a range of SNR from 0dB to 16dB for
both designs. In each experiment, 50-sparse signals x (i.e., K = 50) with N = 105 are generated. It is seen in Fig. 13 that for
a given measurement cost, there exists a threshold of SNR, above which our noisy recovery schemes succeed with probability
1. It is also observed that the thresholds increase gracefully when the measurement cost is reduced.
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Fig. 13: Probability of success of near-linear time noisy recovery and sub-linear time noisy recovery against SNR for N = 0.1 million and
K = 50. We can see that for a given measurement cost, there exists a threshold of SNR, above which our noisy recovery schemes succeed
with probability 1. It is also observed that the thresholds increase gracefully when the measurement cost is reduced.

To showcase the scalability, we trace the average measurement cost and run-time for both designs. In each experiment, the
sparsity of the K-sparse signals x is chosen as K = Nδ under different sparsity regimes δ = 1/6, 1/3 and 1/2, while the
ambient dimensions of the signals for each sparsity regime ranges from N = 102 to N = 107 ≈ 10 million. The measurements
are obtained under SNR = 20dB. As we can see, for both the near-linear time recovery algorithm and the sub-linear time
recovery algorithm, the measurement costs scale sub-linearly in the signal dimension N . As for the time complexity, the
sub-linear algorithm scales as O(Nδ), i.e., sub-linear in N .
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(a) Measurement cost for near-linear time noisy recovery
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(b) Average run-time for near-linear time noisy recovery
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(c) Measurement cost for sub-linear time noisy recovery
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(d) Average run-time for sub-linear time noisy recovery

Fig. 14: Measurement and computational costs as functions of the signal dimension N for noisy recovery in the quantized alphabet setting. It
can be seen that the measurement cost of the near-linear time and sub-linear time designs scale sub-linearly with respect to N . For instance,
when N = 10 million and K =

√
N (the green curves on both plots), the measurement costs for both schemes are approximately 106.

We can also see that the run-time for the sub-linear time recovery algorithm indeed scales sub-linearly in N . For example, when choosing
K = N1/6, the red curve in (d) scales as O(N1/6).

C. Noise Robustness and Scalabilty in the Continuous Alphabet Setting

For the noisy recovery algorithm in the continuous alphabet setting, we conduct two experiments to test the measurement
cost and time complexity.
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(b) Time complexity in the continuous alphabet setting

Fig. 15: Measurement cost and time complexity of our noisy recovery algorithm in the continuous alphabet setting. It can be seen that when
we have enough measurements, we can successfully recover the unknown signal with the `∞ norm guarantee. We can also see that the time
complexity of the algorithm increases linear in K but does not have significant dependence on N .

In the both experiments, we set the left degree of the random bipartite graph to be d = 10, and the number of bins to
be R = 10K. The maximum number of sparse coefficients that can be peeled from a bin is set to be D = 5. The sparse
coefficients of the signal are generated from a uniform distribution in [−10,−3] ∪ [3, 10], and the locations of the sparse
coefficients are uniformly chosen from the N coordinates. The additive noise is i.i.d. Gaussian distributed with zero mean.
The inner code that we use for the single-ton detection is a (3, 6) regular LDPC code with rate 0.5.
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In the first experiment, we choose N = 4096,K = 10, and test the measurement cost of our algorithm. More specifically, we
test how the empirical probability of successful recovery changes when we increase the number of verification measurements in
each bin. We define the event of successful recovery as the cases when the supports of x and x̂ are the same and ‖x̂−x‖∞ ≤ 0.1.
The phase transition behavior under different noise power is shown in Fig. 15 (a).

In the second experiment, we fix the variance of the noise to be 0.1, and the number of verification measurements in each
bin to be 2 log2N . We test the average running time with different (N,K) pairs. As we can see in Fig. 15 (b), the time cost
of our algorithm is linear in K and do not have significant dependence on N , and this behavior justifies our theory.

XI. CONCLUSIONS

In this paper, we have addressed the support recovery problem for compressed sensing using sparse-graph codes. We
have proposed a compressed sensing design framework for sub-linear time support recovery, by introducing a new family of
measurement matrices and fast recovery algorithms. In the noiseless setting, our framework can recover any arbitrary K-sparse
signal in O(K) time using 2K measurements asymptotically with a vanishing error probability. In the noisy setting, when
the sparse coefficients take values in a finite and quantized alphabet and the sparsity K is sub-linear in the signal dimension
K = O(Nδ) for some 0 < δ < 1, our framework can achieve the same goal in time O(K log(N/K)) using O(K log(N/K))
measurements obtained from measurement matrix with elements {−1, 0, 1}. In this setting, our results are order-optimal in
terms of measurement costs and run-time. For continuous-valued sparse coefficients, our algorithm can recover an arbitrarily
large fraction of the support of the sparse signal using O(K log(N/K) log log(N/K)) measurements, and O(K log1+r(N/K))
run-time, where r is an arbitrarily small constant. We also obtain recovery guarantees in the `∞ and `1 norms. We note that
our algorithm is the first algorithm that can achieve both sub-linear measurement cost and time complexity for compressed
sensing problems. We also provide simulation results to corroborate our theoretical findings. Our theoretical and experimental
results justify that our framework can potentially enable real-time or near-real-time processing for massive datasets featuring
sparsity, which are relevant to a multitude of practical applications.
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[46] M. Akçakaya and V. Tarokh, “A frame construction and a universal distortion bound for sparse representations,” Signal Processing, IEEE Transactions

on, vol. 56, no. 6, pp. 2443–2450, 2008.
[47] A. G. Dimakis, R. Smarandache, and P. O. Vontobel, “Ldpc codes for compressed sensing,” Information Theory, IEEE Transactions on, vol. 58, no. 5,

pp. 3093–3114, 2012.
[48] W. Xu and B. Hassibi, “Efficient compressive sensing with deterministic guarantees using expander graphs,” in Information Theory Workshop, 2007.

ITW’07. IEEE, pp. 414–419, IEEE, 2007.
[49] S. Jafarpour, W. Xu, B. Hassibi, and R. Calderbank, “Efficient and robust compressed sensing using optimized expander graphs,” IEEE Trans. on

Information Theory, vol. 55, no. 9, pp. 4299–4308, 2009.
[50] R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, and M. J. Strauss, “Combining geometry and combinatorics: A unified approach to sparse signal recovery,”

in Communication, Control, and Computing, 2008 46th Annual Allerton Conference on, pp. 798–805, IEEE, 2008.
[51] P. Indyk and M. Ruzic, “Near-optimal sparse recovery in the l1 norm,” in Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE

Symposium on, pp. 199–207, IEEE, 2008.
[52] R. Berinde, P. Indyk, and M. Ruzic, “Practical near-optimal sparse recovery in the l1 norm,” in Communication, Control, and Computing, 2008 46th

Annual Allerton Conference on, pp. 198–205, IEEE, 2008.
[53] F. Parvaresh and B. Hassibi, “Explicit measurements with almost optimal thresholds for compressed sensing,” in Acoustics, Speech and Signal Processing,

2008. ICASSP 2008. IEEE International Conference on, pp. 3853–3856, IEEE, 2008.
[54] H. V. Pham, W. Dai, and O. Milenkovic, “Sublinear compressive sensing reconstruction via belief propagation decoding,” in Information Theory, 2009.

ISIT 2009. IEEE International Symposium on, pp. 674–678, IEEE, 2009.
[55] M. Bakshi, S. Jaggi, S. Cai, and M. Chen, “Sho-fa: Robust compressive sensing with order-optimal complexity, measurements, and bits,” in

Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on, pp. 786–793, IEEE, 2012.
[56] F. Zhang and H. D. Pfister, “Compressed sensing and linear codes over real numbers,” in Information Theory and Applications Workshop, 2008,

pp. 558–561, IEEE, 2008.
[57] D. L. Donoho, A. Javanmard, and A. Montanari, “Information-theoretically optimal compressed sensing via spatial coupling and approximate message

passing,” in Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on, pp. 1231–1235, IEEE, 2012.
[58] F. Zhang and H. D. Pfister, “Verification decoding of high-rate ldpc codes with applications in compressed sensing,” Information Theory, IEEE Transactions

on, vol. 58, no. 8, pp. 5042–5058, 2012.
[59] M. Finiasz and K. Ramchandran, “Private stream search at the same communication cost as a regular search: Role of ldpc codes,” in Information Theory

Proceedings (ISIT), 2012 IEEE International Symposium on, pp. 2556–2560, IEEE, 2012.
[60] D.-Z. Du and F. K. Hwang, Combinatorial group testing and its applications. World Scientific, 1993.
[61] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items in data streams,” Theoretical Computer Science, vol. 312, no. 1, pp. 3–15, 2004.
[62] P. Indyk, H. Q. Ngo, and A. Rudra, “Efficiently decodable non-adaptive group testing,” in Proceedings of the Twenty-First Annual ACM-SIAM Symposium

on Discrete Algorithms, pp. 1126–1142, Society for Industrial and Applied Mathematics, 2010.
[63] G. Cormode and S. Muthukrishnan, “Combinatorial algorithms for compressed sensing,” in Structural Information and Communication Complexity,

pp. 280–294, Springer, 2006.
[64] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin, “One sketch for all: fast algorithms for compressed sensing,” in Proceedings of the thirty-ninth

annual ACM symposium on Theory of computing, pp. 237–246, ACM, 2007.
[65] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes under message-passing decoding,” IEEE Trans. on Information

Theory, vol. 47, no. 2, pp. 599–618, 2001.
[66] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Efficient erasure correcting codes,” IEEE Trans. on Information Theory, vol. 47,

no. 2, pp. 569–584, 2001.



31

[67] R. Pedarsani, D. Yin, K. Lee, and K. Ramchandran, “Phasecode: Fast and efficient compressive phase retrieval based on sparse-graph codes,” IEEE
Transactions on Information Theory, 2017.

[68] J. Justesen, “Class of constructive asymptotically good algebraic codes,” IEEE Transactions on Information Theory, vol. 18, no. 5, pp. 652–656, 1972.
[69] D. A. Spielman, “Linear-time encodable and decodable error-correcting codes,” in Proceedings of the twenty-seventh annual ACM symposium on Theory

of computing, pp. 388–397, ACM, 1995.
[70] J. L. Massey, “Threshold decoding,” tech. rep., DTIC Document, 1963.
[71] D. Yin, K. Lee, R. Pedarsani, and K. Ramchandran, “Fast and robust compressive phase retrieval with sparse-graph codes,” in Information Theory (ISIT),

2015 IEEE International Symposium on, pp. 2583–2587, IEEE, 2015.
[72] M. Cheraghchi, “Capacity achieving codes from randomness conductors,” in IEEE International Symposium on Information Theory (ISIT), pp. 2639–2643,

IEEE, 2009.
[73] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings into a hilbert space,” Contemporary mathematics, vol. 26, no. 189-206, p. 1,

1984.
[74] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry property for random matrices,” Constructive

Approximation, vol. 28, no. 3, pp. 253–263, 2008.
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APPENDIX A
PEELING DECODER IN THE PRESENCE OF NOISE

Let Ebin be the event where our “guess-and-check” bin detection scheme makes a mistake. From the law of total probability,
we have

PF = Pr
(
supp (x̂) 6= supp (x)

∣∣Ecbin

)
Pr (Ecbin) + Pr

(
supp (x̂) 6= supp (x)

∣∣Ebin

)
Pr (Ebin)

≤ Pr
(
supp (x̂) 6= supp (x)

∣∣Ecbin

)
+ Pr (Ebin) .

Since it is known from Theorem 4 that Pr
(
supp (x̂) 6= supp (x)

∣∣Ecbin

)
= O(1/K), then if further we have

Pr (Ebin) = O

(
1

K

)
, (47)

the overall failure probability can be upper bounded as

PF = O

(
1

K

)
.

Now it remains to show that (47) holds. The main idea is to analyze the error probability of making at least an error on any
bin measurement, followed by a union bound on all the R = O(K) bins. Denote the error event in any bin j as Ej , then we
have the following union bound across R = ηK measurement bins

Pr (Ebin) ≤
ηK⋃

j=1

Pr (Ej) , (48)

where d̄ is the average left degree of the bipartite graph. Without loss of generality, we drop the bin index such that

Pr (Ebin) ≤ ηKPr (E) , (49)

where Pr (E) is the error probability for an arbitrary bin. According to Lemma 4 and 5, the error probability per bin is at
most Pr (E) = O(1/K2), and therefore the overall probability of error is Pr (Ebin) = O(1/K).

APPENDIX B
ORACLE-BASED PEELING DECODER USING THE REGULAR ENSEMBLE GNreg(R, d)

A. Concentration Analysis
1) Proof of Mean Analysis on General Graphs: From (16), we have

E [Zi] =

Kd∑

e=1

E
[
Z

(e)
i

]
= KdE

[
Z

(e)
i

]
. (50)

From basic probability laws on conditional expectations

E
[
Z

(e)
i

]
= E

[
Z

(e)
i |Ti

]
Pr (Ti) + E

[
Z

(e)
i |T ci

]
Pr (T ci ) .

Recall from the density evolution analysis that E
[
Z

(e)
i |Ti

]
= pi, we have

Pr (Ti) ≤ 1, E [Ze|T ci ] ≤ 1 (51)



32

and therefore the following holds:

pi − Pr (T ci ) ≤ E
[
Z

(e)
i

]
≤ pi + Pr (T ci ) . (52)

If the probability of a general graph not behaving like a tree can be made arbitrarily small for any ε > 0,

Pr (T ci ) <
ε

4
, (53)

then we can obtain the result in (21) by letting pi = ε/4 in the density evolution analysis. Next, we show that (53) holds for
sufficiently large K.

Lemma 10. For any given constant ε > 0 and iteration i > 0, there exists some absolute constant K0 > 0 such that

Pr (T ci ) < c0
logiK

K
(54)

for some constant c0 > 0 as long as K > K0.

From this lemma, we can see that for an arbitrary ε > 0, the result follows as long as K > K0 where K0 is the smallest
constant that satisfies K0/ logiK0 > 4c0/ε given ε and i. In the following we give the proof of the lemma.

Proof. Let Cj be the number of check nodes and Vj be the number of variable nodes in the neighborhood N 2j
e . In [65], it

has been shown that the directed neighborhood N 2i
e at depth i is not a tree with probability at most O(1/K). However, the

proof therein largely rests on the regular degrees for the left and right nodes in the graph. Now, because the graph ensemble
GNreg(R, d) follows Poisson distributions on the right, the results in [65] are not immediately applicable here. In this setting,
the key idea is to prove that the size of the directed neighborhood N 2i

e unfolded up to depth 2i is bounded by O(logiK) with
high probability, and this neighborhood is not a tree with probability at most O(logiK/K).

To show this, we unfold the neighborhood of an edge e up to level i. Fix some constant κ1, then at each level j ≤ i we
upper bound the probability of a tree having more than O(logj K) left nodes Vj > κ1 logj K and right nodes Cj > κ1 logj K.
Specifically, from the law of total probability, we upper bound the probability for some constant κ1 > 0

Pr (T ci ) ≤ Pr
(
Vj > κ1 logj K

)
+ Pr

(
Cj > κ1 logj K

)
(55)

+ Pr
(
T ci |Vj < κ1 logj K,Cj < κ1 logj K

)
. (56)

Denoting the first term in (55) as aj = Pr
(
Vj > κ1 logj K

)
, we bound aj using the total law of probability as follows

aj ≤ aj−1 + Pr
(
Vj > κ1 logj K|Vj−1 < κ1 logj−1K

)
. (57)

Since the left degree from the regular and irregular ensembles is upper bounded by constants d and (D + 1) respectively,
thus given Vj−1 < κ1 logj−1K at depth (j − 1), the number of right neighbors is bounded by Cj−1 < κ2 logj−1K for some
κ2 > 0. Therefore, the second term in (57) can be bounded as

Pr
(
Vj > κ1 logj K|Vj−1 < κ1 logj−1K

)
≤ Pr

(
Vj > κ1 logj K|Cj−1 < κ2 logj−1K

)
. (58)

Now let the number of check nodes at exactly depth (j − 1) be C ′j−1 such that Cj−1 = C ′j−1 + Cj−2, and further let d` be
the degree of each check node at this depth ` = 1, · · · , C ′j−1, then the right hand side can be evaluated as

Pr
(
Vj > κ1 logj K|Cj−1 < κ2 logj−1K

)
≤ Pr



C′j−1∑

`=1

d` ≥ κ3 logj K


 (59)

for some κ3 > 0. Since each check node degree d` is an independent Poisson variable with rate 1/η, the sum of d` over
` = 1, · · · , C ′j−1 remains a Poisson variable with rate C ′j−1/η. Since obviously C ′j−1 < Cj−1 < κ1 logj−1K such that the
sum rate is C ′j−1/η = O(logj−1K). With this sum rate, the probability in (59) can be upper bounded with the tail bound of
a Possible variable X with rate λ as Pr (X ≥ x) ≤ (λe/x)x:

Pr



C′j−1∑

`=1

d` ≥ κ3 logj K


 ≤

(
eC ′j−1/η

κ3 logj K

)κ3 logj K

=

(
e×O(logj−1K)

κ3 logj K

)κ3 logj K

≤
(

κ4

logK

)κ3 logj K

≤ κ5

K

for some sufficiently large constants κ4 > 0 and κ5 > 0. Therefore we have

αj ≤ αj−1 +
κ5

K
(60)
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and thus the number of variable nodes exposed until the i-th iteration can be bounded by logj K with high probability

Pr
(
Vj > κ1 logj K

)
= O

(
1

K

)
. (61)

Similar technique can be used to show that the tail bound for the check nodes is

Pr
(
Cj > κ1 logj K

)
= O

(
1

K

)
. (62)

Now that it has been shown that the number of nodes is well bounded by O(logj K), we can proceed to bound the second
term in (55) by induction. Assuming that the neighborhood N 2j

e at the j-th iteration (j < i) is tree-like, we prove that N 2(j+1)
e

is tree-like with high probability. First of all, we examine the neighborhood N 2j+1
e . The probability that a certain edge from

a variable node does not create a cycle in N 2j+1
e is the probability that it is connected to one of the check nodes that are

not already included in the tree in N 2j
e , which is lower bound by 1 − Cj/(ηK). Therefore, given that N 2j

e is tree-like, the
probability that N 2j+1

e is tree-like is lower bounded by
(

1− Cj
ηK

)Cj+1−Cj
>

(
1− Ci

ηK

)Cj+1−Cj
. (63)

Similarly, given that N 2j+1
e is tree-like, the probability that N 2(j+1)

e is tree-like is lower bounded by
(

1− Vj
K

)Vj+1−Vj
>

(
1− Vi

K

)Vj+1−Vj
. (64)

Therefore, the probability that N 2(j+1)
e is tree-like is lower bounded by

(
1− Ci

ηK

)Cj (
1− Vi

K

)Vj
≥
(

1− Ci
ηK

)Ci (
1− Vi

K

)Vi
≥ 1−

(
V 2
i

K
+
C2
i

ηK

)
≥ 1−O

(
logiK

K

)
.

Therefore the probability of not being tree-like is upper bounded by

Pr (T ci ) < c0
logiK

K
(65)

for some absolute constant c0 > 0.

2) Proof of Concentration to Mean by Large Deviation Analysis: Now it remains to show the concentration of Zi
around its mean E[Zi]. According to (16), the number of remaining edges is a sum of random variables Zi =

∑Kd
e=1 Z

e
i

while summands Ze
i are not independent with each other. Therefore, to show the concentration, we use a standard martingale

argument and Azuma’s inequality provided in [65] with some modifications to account for the irregular degrees of the right
nodes.

Suppose that we expose the whole set of E = Kd edges of the graph one at a time. We let

Y` = E
[
Zi|Z1

i , · · · , Z`i
]
, ` = 1, · · · ,Kd. (66)

By definition, Y0, Y1, · · · , YKd are a Doob’s martingale process, where Y0 = E[Zi] and YKd = Zi. To use Azuma’s inequality,
it is required that |Y`+1 − Y`| ≤ ∆` for some ∆` > 0. If the variable node has a regular degree d and the check node has
a regular degree dC , then [65] shows that ∆` = 8(ddC)i with i being the number of peeling iterations. However, the check
node degree is not regular with degree dC and therefore requires further analysis.

Proof of Finite Difference ∆`: To prove that the difference ∆` is finite for check node degrees with Poisson distributions,
we first prove that the degree of all the check nodes can be upper bounded by dC ≤ O(K

2
4i+1 ) with probability16 at least

c1K exp
(
−c2K

2
4i+1

)

16Let X be a Poisson variable with parameter λ, then the following holds

Pr
(
X > cK

2
4i+1

)
≤
(

eλ

cK
2

4i+1

)cK 2
4i+1

≤ c1 exp
(
−c2K

2
4i+1

)
for some c1 and c2.
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for some constants c1 and c2. Let B be the event that at least one check node has more than O
(
K

2
4i+1

)
edges, then for some

c3 > 0 we have

Pr (B) < c3K exp
(
−c2K

2
4i+1

)
. (67)

by applying a union bound on all the R = ηK check nodes of the graphs from GNreg(R, d). As a result, under the complement
event Bc, we have

∆2
` = O

(
K

4i
4i+1

)
. (68)

Large Deviation by Azuma’s Inequality: For any given ε > 0, the tail probability of the event Zi > Kdε can be computed
as

Pr

(
|Zi − E[Zi]| >

Kdε

2

)
≤ Pr

(
|Zi − E[Zi]| >

Kdε

2

∣∣∣Bc
)

+ Pr (B)

≤ 2 exp

(
− K

2d̄2ε2/4

2
∑Kd
`=1 ∆2

`

)
+ c3K exp

(
−c2K

2
4i+1

)

≤ 2 exp
(
−c4ε2K

1
4i+1

)
,

where c4 is some constant depending on d, η and all the other constants c1, c2, c3. This concludes our proof for (20).

B. Proof of Graph Expansion Properties in Lemma 3
Let Sv denote the event that a variable node subset of size v with at most d̄|Sv|/2 neighbors, whose probability can be

obtained readily for any size |Sv| = v as

Pr (Sv) ≤
(
K

v

)(
ηK

d̄v/2

)(
vd̄

2ηK

)d̄v
, (69)

where we have used the fact that the number of check nodes is ηK. Using the inequality
(
a
b

)
≤ (ae/b)b, we have

Pr (Sv) ≤
( v
K

)(d̄/2−1)v

cv ≤
(
vc2

K

)v/2
, (70)

where c = e(d̄/2η)d̄/2 is some constant. Then a union bound is applied over all possible values v up to the remaining variable
nodes ε?K. Choosing ε? < 1/(2c2) yields

ε?K∑

v=2

Pr (Sv) ≤
ε?K∑

v=2

(
vc2

K

)v/2
= O

(
1

K

)
. (71)

Therefore, asymptotically in K, the random graphs from both the regular and irregular ensembles are good expanders on small
sets of variable nodes.

APPENDIX C
ORACLE-BASED PEELING DECODER USING THE IRREGULAR ENSEMBLE GNirreg(R,D)

Based on the peeling decoder analysis in Section VI-B, it can be easily shown that the concentration analysis and graph
expansion property carry over to the irregular graph ensemble. Hence, we focus on the density evolution for the oracle-based
peeling decoder over irregular ensemble.

To study the probability pi of an edge being present in the pruned graph from the irregular ensemble after i iterations, we
need to first understand the right edge degree distributions ρj of the graph. Using the degree sequence λj of the irregular
graph ensemble GNirreg(R,D) in Definition 3, it can be shown that the right degree sequence ρj follows a Poisson distribution
similar to (11)

ρj ≈
(
d̄/(1 + ε)

)j−1
e−d̄/(1+ε)

(j − 1)!
,

where we have used R = (1 + ε)K and d̄ is the average degree of a left node in the irregular graph ensemble

d̄ =
1

∑D+1
j=2 λj/j

= H(D)

(
1 +

1

D

)
. (72)
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Using the left and right degree sequence (λj , ρj), we can readily obtain the left and right degree generating polynomials
λ(x) =

∑∞
d=1 λjx

j−1 and ρ(x) =
∑∞
j=1 ρjx

j−1

λ(x) =
1

H(D)

D+1∑

j=2

1

(j − 1)
xj−1, ρ(x) = e−

d̄
1+ε (1−x).

As a result, the associated density evolution equation can be written using the degree generating polynomials similar to that
in (14)

pi = f(pi−1) = λ(1− ρ(1− pi−1)), i = 1, 2, 3, · · · . (73)

The density evolution analysis suggests that if the fraction pi in (73) can be made arbitrarily small if the density evolution
recursion is contracting

λ(1− ρ(1− x)) < x, ∀ x ∈ [0, 1]. (74)

Examples of this density evolution using different values of D and ε are given in Fig. 16. Clearly, when ε = 0.1, the density
evolution equation becomes a contraction mapping when D = 100 but not when D = 10. Now we study how to choose D
for any given ε > 0. Since λ(x) is a non-decreasing function, we can apply x = λ−1(pi−1) on both sides of (74), then the
contraction condition is equivalent to

ρ(1− λ(x)) > 1− x, ∀x ∈ [0, 1]. (75)

By substituting the right generating polynomial ρ(x) into the above recursion, we have

ρ(1− λ(x)) = e−
d̄

(1+ε)
λ(x). (76)

To simplify our expressions, we further bound λ(x) for the irregular graph ensemble GNirreg(R,D) as λ(x) > − 1
H(D) log(1−x).

This is because λ(x) is a D-term approximation of the Taylor expansion for log(1− x), scaled by the normalization constant
H(D). By substituting this bound into (76), we have

ρ(1− λ(x)) > e
d̄

(1+ε)
1

H(D)
log(1−x) = (1− x)

d̄
(1+ε)H(D) .

It can be seen that the right hand side is no less than 1− x as long as H(D) ≥ d̄
(1+ε) . Substituting the average degree d̄ from

(72) back to this condition, then for any ε > 0, we can choose D > 1/ε as in Definition 3 to render the recursion a contracting
mapping.

Finally, together with the concentration analysis and graph expansion properties of the irregular graphs, the oracle-based
peeling decoder successfully decodes all the edges in the graph with probability at least 1−O(1/K).

APPENDIX D
PROOF OF LEMMA 4

Definition 7. Denoting by Pr (E) the error probability of the robust bin detection algorithm for an arbitrary bin, we can
bound Pr (E) as

Pr (E) ≤ Pr (HS(k, x[k])) +
∑

F∈{HZ,HM}
Pr (HS(k, x[k])← F) (77)

where F is either a zero-ton HZ or a multi-ton HM and
1) Pr (HS(k, x[k])) is called the missed verification rate in which the single-ton verification fails even when the underlying

bin is a single-ton y ∼ HS(k, x[k]) for some k ∈ [N ] and x[k].
2) Pr (HS(k, x[k])← F) is called the false verification rate in which the single-ton verification is passed for some single-ton
HS(k̂, x̂[k̂]) with an index-value pair (k̂, x̂[k̂]) when the ground truth is F ∈ {HZ,HM}.

Now we compute the probability mentioned above in the following propositions.

Proposition 3 (False Verification Rate). For some constant γ ∈ (0, 1), the false verification rate can be upper bounded as

Pr
(
HS(k̂, x̂[k̂])← HZ

)
< e
−P4 (1−γ)2

(
SNRmin

1+SNRmin

)2

Pr
(
HS(k̂, x̂[k̂])← HM

)
< e
−P4 (3−γ)2

(
SNRmin

1+3SNRmin

)2

.

Proof. See Appendix D-A.
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(d) ε = 0.1 and D = 100
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(e) ε = 0.3 and D = 100
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Fig. 16: The density evolution f(pi) and the probability pi at each iteration i, where we have shown cases with ε = 0.1 and D = 10 and
D = 100, as well as the case with ε = 0.3 and D = 100. In the density evolution figures (a)-(c)-(e), the red line is the line pi+1 = pi
while the black line is the density evolution f(pi) against pi. The blue circles that “zig-zag” between the red line and the black line are the
specific pi’s at each peeling iteration. It can be seen from (a) and (c) that when ε is small (i.e. ε = 0.1), the density evolution requires a
large maximum left degree D to reach density 0. On the other hand, when ε is large (i.e. ε = 0.3), the density pi reaches 0 very quickly in
(e) with the same maximum left degree D = 100. The values of pi marked by the blue circles in (a)-(c)-(e) are further plotted against the
peeling iterations i in (b)-(d)-(f), where in the case with ε = 0.3 and D = 100 the density pi approaches 0 after less than 20 iterations.



37

Proposition 4 (Missed Verification Rate). For some constant γ ∈ (0, 1), the missed verification rate can be upper bounded as

Pr (HS(k, x[k])) < e−
P
4 (
√

1+2γSNRmin−1)
2

+ 2(N − 1)
(
e−

P
4 SNRmin + e−

P
16

)
.

Proof. See Appendix D-B.

Without loss of generality, let us choose γ = 1/2 and thus all the error probabilities vanish at a rate O(1/N c) as long as
P ≥ α logN , where α satisfies:





α ≥ 16c
(

1 + 1
SNRmin

)2

α ≥ 16c
9

(
1 + 3

SNRmin

)2

α ≥ 4c

(
√

1+SNRmin−1)
2

α ≥ 16(c+1)
SNRmin

α ≥ 16(c+ 1)

. (78)

Therefore, it is sufficient to have α ≥ 16(c+1)(1+SNR−1
min) at high SNR regime (i.e. SNRmin � 1) and α ≥ 16(c+1)/SNR2

min

at low SNR regime (i.e. SNRmin � 1). Letting c = 2δ such that O(1/N c) = O(1/K2), we have the claimed result.

A. Proof of False Verification Rates in Proposition 3

The false verification events occur if the zero-ton or single-ton verifications fail when the ground truth is either a zero-ton
or a multi-ton

y = Sz + w (79)

with z being a zero-ton z = 0 or a multi-ton |supp (z)| > 1.
1) Detecting a Zero-ton as a Single-ton: This event happens when a zero-ton y = w passes the single-ton verification:

Pr
(
HS(k̂, x̂[k̂])← HZ

)
= Pr

(
1

P

∥∥y − x̂[k]sk̂
∥∥2 ≤ (1 + γSNRmin)σ2

)
(80)

Substituting y = w ∼ N (0, σ2I), clearly we have

y − x̂[k̂]sk̂ ∼ N (0, (ρ2 + σ2)I). (81)

Therefore, the probability can be bounded by a chi-squared tail:

Pr
(
HS(k̂, x̂[k̂])← HZ

)
= Pr

(
1

P
χ2
P ≤ (1 + γSNRmin)

σ2

ρ2 + σ2

)
≤ e−

(1−γ)2

4

(
SNRmin

1+SNRmin

)2
×P
. (82)

2) Detecting a Multi-ton as a Single-ton: By definition, the error probability can be evaluated under the multi-ton model

y = Sz + w (83)

when it passes the single-ton verification step for some index-value pair (k̂, x̂[k̂])

Pr
(
HS(k̂, x̂[k̂])← HM

)
= Pr

(
1

P

∥∥∥y − x̂[k̂]sk̂

∥∥∥
2

≤ (1 + γSNRmin)σ2

)

for some k̂ and x̂[k̂]. Clearly, according to the bin detection matrix given in Definition 5, we have

y − x̂[k̂]sk̂ ∼ N (0P×1, σ
2
uIP×P ), σ2

u =
∥∥∥z− x̂[k̂]ek̂

∥∥∥
2

+ σ2. (84)

Therefore, the probability can be bounded by a chi-squared tail:

Pr
(
HS(k̂, x̂[k̂])← HM

)
= Pr

(
1

P
χ2
P ≤ (1 + γSNRmin)

σ2

σ2
u

)
. (85)

As long as γSNRmin < σ2
u/σ

2, this tail can be obtained from Lemma 14 as:

Pr
(
HS(k̂, x̂[k̂])← HM

)
≤ exp

(
−P

4

(
1− (1 + γSNRmin)

σ2

σ2
u

)2
)
. (86)
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We further bound this quantity with the worst case where the underlying multi-ton consists of two coefficients. Thus, we have∥∥∥z− x̂[k̂]ek̂

∥∥∥
2

= 3ρ2 and σ2
u = 3ρ2 + σ2. As a result, we have

Pr
(
HS(k̂, x̂[k̂])← HM

)
≤ e−

(3−γ)2

4

(
SNRmin

1+3SNRmin

)2
×P
. (87)

B. Proof of Missed Verification Rates in Proposition 4

The missed verification events occur if the zero-ton or single-ton verifications pass when the ground truth is a single-ton
HS(k, x[k]) for some k ∈ [N ]:

y = Sz + w = skx[k] + w. (88)

This event occurs when the ground truth is a single-ton HS(k, x[k]) with an index-value pair (k, x[k]), but the single-ton
verification fails for some index-value pair (k̂, x̂[k̂]) obtained from the single-ton search:

Pr (HS(k, x[k])) = Pr

(
1

P

∥∥∥y − x̂[k̂]sk̂

∥∥∥
2

≥ (1 + γSNRmin)σ2

)
.

Since the single-ton search may or may not return the correct index-value pair, this probability is obtained by the total law of
probability as

Pr

(
1

P

∥∥∥y − x̂[k̂]sk̂

∥∥∥
2

≥ (1 + γSNRmin)σ2

)

= Pr

(
1

P

∥∥∥y − x̂[k̂]sk̂

∥∥∥
2

≥ (1 + γSNRmin)σ2
∣∣∣k̂ 6= k or x̂[k̂] 6= x[k]

)
× Pr

(
k̂ 6= k or x̂[k̂] 6= x[k]

)

+ Pr

(
1

P

∥∥∥y − x̂[k̂]sk̂

∥∥∥
2

≥ (1 + γSNRmin)σ2
∣∣∣k̂ = k and x̂[k̂] = x[k]

)
× Pr

(
k̂ = k and x̂[k̂] = x[k]

)

≤ Pr
(
k̂ 6= k or x̂[k̂] 6= x[k]

)
+ Pr

(
1

P

∥∥∥y − x̂[k̂]sk̂

∥∥∥
2

≥ (1 + γSNRmin)σ2
∣∣∣k̂ = k and x̂[k̂] = x[k]

)
.

Note that the second term is the probability of some noise samples w exceeding the single-ton verification threshold (1 +
γSNRmin)σ2, which can be easily bounded by a chi-squared tail:

Pr

(
1

P

∥∥∥y − x̂[k̂]sk̂

∥∥∥
2

≥ (1 + γSNRmin)σ2
∣∣∣k̂ = k and x̂[k̂] = x[k]

)
≤ e−P4 (

√
1+2γSNRmin−1)

2

(89)

Now we focus on obtaining a tail bound for the single-ton search error Pr
(
k̂ 6= k or x̂[k̂] 6= x[k]

)
. Since in the randomized

design, we exploit a maximum likelihood estimator, the error probability can be obtained as:

Pr
(
k̂ 6= k or x̂[k] 6= x[k]

)
≤ (N − 1)Pr

(∥∥y − x̂[k]sk̂
∥∥2
< ‖y − x[k]sk‖2

)
, (90)

where a union bound over all the N − 1 codewords. Next, we bound the pair-wise error probability:

Pr
(∥∥y − x̂[k]sk̂

∥∥2
< ‖y − x[k]sk‖2

)
= Pr


(x[k]sTk − x̂[k̂]sT

k̂
)w < −

∥∥∥x[k]sk − x̂[k̂]sk̂

∥∥∥
2

2




= Pr


N (0, 1) >

∥∥∥x[k]sk − x̂[k̂]sk̂

∥∥∥
2σ


 .

Since sk and sk̂ are also random, we calculate the above probability as follows:

Pr


N (0, 1) >

∥∥∥x[k]sk − x̂[k̂]sk̂

∥∥∥
2σ


 ≤ Pr


N (0, 1) >

∥∥∥x[k]sk − x̂[k̂]sk̂

∥∥∥
2σ

∣∣∣
∥∥∥x[k]sk − x̂[k̂]sk̂

∥∥∥
2

≥ Pρ2




+ Pr

(∥∥∥x[k]sk − x̂[k̂]sk̂

∥∥∥
2

< Pρ2

)

≤ 2e−
Pρ2

4σ2 + e−
P
16 = 2e−

SNRmin
4 ×P + +e−

1
16×P ,

where we have used the fact that x[k]sk − x̂[k̂]sk̂ ∼ N (0, 2ρ2I). Together with (102), the result follows.
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APPENDIX E
PROOF OF LEMMA 5

The analysis of the noisy design in Definition 6 is structurally similar to that of Lemma 4, except that the bounding techniques
are slightly different. In the following, we provide the false verification and missed verification rate for this design.

Proposition 5 (False Verification Rate). For some constant γ ∈ (0, 1), the false verification rate can be upper bounded as

Pr
(
HS(k̂, x̂[k̂])← HZ

)
< e
−P4

(1−γ)2SNR2
min

1+2SNRmin

Pr
(
HS(k̂, x̂[k̂])← HM

)
< e
−P4

( 1
2
−γ)2SNR2

min
1+SNRmin + 2e−cP

with some constant c.

Proof. See Appendix E-A.

Proposition 6 (Missed Verification Rate). For some constant γ ∈ (0, 1), the missed verification rate can be upper bounded as

Pr (HS(k, x[k])) < e−
P
4 (
√

1+2γSNRmin−1)
2

+ e−ζP + 2e−2SNRminP

for some constant ζ > 0 associated with the error exponent of the channel code C used in the single-ton search.

Proof. See Appendix E-B.

Without loss of generality, let us choose γ = 1/4 and thus all the error probabilities vanish at a rate O(1/Nq) as long as
P ≥ α logN , where α satisfies:





α ≥ 64q
9 × 1+2SNRmin

SNR2
min

α ≥ max
{

64q × 1+SNRmin

SNR2
min

, qc

}

α ≥ max

{
4q(√

1+SNRmin/2−1
)2 ,

q
ζ ,

q
2SNRmin

} . (91)

Therefore, we have some sufficiently large constant α that satisfies all the above requirements. Since K = O(Nδ) for some
δ ∈ (0, 1), we have P = (α/(1− δ)) log(N/K). Finally, letting q = 2δ such that O(1/Nq) = O(1/K2), we have the claimed
result. It can be seen that as SNRmin → ∞, the bottleneck in determining the error probability is the error exponent of the
channel code ζ > 0, which approaches zero when the code rate approaches the channel capacity.

A. Proof of False Verification Rates in Proposition 5

The false verification events occur if the zero-ton or single-ton verifications fail when the ground truth is either a zero-ton
or a multi-ton

y = Sz + w (92)

with z being a zero-ton z = 0 or a multi-ton |supp (z)| > 1.
1) Detecting a Zero-ton as a Single-ton: This event happens when a zero-ton y = w passes the single-ton verification:

Pr
(
HS(k̂, x̂[k̂])← HZ

)
= Pr

(
1

P

∥∥y − x̂[k]sk̂
∥∥2 ≤ (1 + γSNRmin)σ2

)
. (93)

Since y = w and ‖x̂[k̂]sk̂‖2 = Pρ2, it can be easily bounded by Lemma 14 as:

Pr
(
HS(k̂, x̂[k̂])← HZ

)
≤ e−

P
4

(1−γ)2SNR2
min

1+2SNRmin (94)

2) Detecting a Multi-ton as a Single-ton: By definition, the error probability can be evaluated under the multi-ton model
for some L-sparse vector z:

y = Sz + w (95)

when it passes the single-ton verification step for some index-value pair (k̂, x̂[k̂])

Pr
(
HS(k̂, x̂[k̂])← HM

)
= Pr

(
1

P

∥∥∥y − x̂[k̂]sk̂

∥∥∥
2

≤ (1 + γSNRmin)σ2

)
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for some k̂ and x̂[k̂]. Since sk̂ is not Gaussian, and thus we bound this probability with respect to sk̂ and w separately.
Substituting y = Sz + w and replacing u = Sz− x̂[k̂]sk̂, we have:

Pr

(
1

P
‖u + w‖2 ≤ (1 + γSNRmin)σ2

)

= Pr

(
1

P
‖u + w‖2 ≤ (1 + γSNRmin)σ2

∣∣∣ 1

P
‖u‖2 ≥ SNRmin

2
σ2

)
× Pr

(
1

P
‖u‖2 ≥ SNRmin

2
σ2

)

+ Pr

(
1

P

∥∥∥y − x̂[k̂]sk̂

∥∥∥
2

≤ (1 + γSNRmin)σ2
∣∣∣ 1

P
‖u‖2 ≤ SNRmin

2
σ2

)
× Pr

(
1

P
‖u‖2 ≤ SNRmin

2
σ2

)

≤ Pr

(
1

P
‖u + w‖2 ≤ (1 + γSNRmin)σ2

∣∣∣ 1

P
‖u‖2 ≥ SNRmin

2
σ2

)
+ Pr

(
1

P
‖u‖2 ≤ SNRmin

2
σ2

)
.

The first term can be bounded easily by Lemma 14 as:

Pr

(
1

P
‖u + w‖2 ≤ (1 + γSNRmin)σ2

∣∣∣ 1

P
‖u‖2 ≥ SNRmin

2
σ2

)
≤ e−

P
4

( 1
2
−γ)2SNR2

min
1+SNRmin . (96)

Now it remains to bound Pr
(

1
P ‖u‖

2 ≤ SNRmin

2 σ2
)

, where u = Sz̃ and z̃ = z− x̂[k̂]ek̂.

Lemma 11. Given φp := ST(p,:) and z̃, the variable ξp = |U [p]|2 = |φTp z̃|2 is sub-exponential with mean ξ̄ = ‖z̃‖2 and an
Orlicz-norm (i.e. the ψ1-norm of sub-exponential variables) for some absolute constant c5 > 0

ξψ1
= c5ξ̄. (97)

Proof. Note that one can re-write the variable as ξp = φHp Qφp with Q = z̃∗z̃T . It is clear that ξp is bounded and hence it is
sub-exponential with mean

ξ̄ = E
[
φHp Qφp

]
= Tr(Q) = ‖z̃‖2 . (98)

To compute its Orlicz-norm, we only need to find the constant ξψ1 such that the following holds:

Pr
(
|ξp − ξ̄| > t

)
< 2 exp

(
− t

ξψ1

)
.

Since ‖Q‖F = ‖z̃‖2, we can readily obtain the Orlicz-norm of the variable ξψ1
= c5ξ̄. Since φp contains i.i.d. sub-gaussian

variables, we can apply the Hanson-Wright inequality to obtain

Pr
(
|ξp − ξ̄| > t

)
= Pr

(∣∣∣φHp Qφp − E
[
φHp Qφp

]∣∣∣ > t
)
≤ 2 exp

(
− t

c5 ‖Q‖F

)

for some c5 > 0.

By Lemma 11, the variable ξp = |U [p]|2 is sub-exponential with mean ξ̄ = ‖z̃‖2 and an Orlicz-norm ξψ1
= c5ξ̄. Using the

Bernstein-type inequality, then for any t > 0 we have

Pr



∣∣∣∣∣∣

1

P

∑

p∈[P ]

(ξp − ξ̄)

∣∣∣∣∣∣
≥ t


 ≤ 2 exp

(
−c6

Pt

ξ̄

)

for some constant c6. By taking t = ξ̄ − SNRminσ
2/2, we have

Pr


 1

P

∑

p∈[P ]

(ξp − ξ̄) ≤ −(ξ̄ − SNRminσ
2/2)


 ≤ 2 exp

(
−c6P

(ξ̄ − SNRminσ
2/2)

ξ̄

)
(99)

= 2 exp

[
−c6P

(
1− SNRminσ

2

2ξ̄

)]
. (100)

Since the probability is monotonically decreasing with respect to ξ̄, we can substitute the minimum ξ̄ = ‖z̃‖2 ≥ 3ρ2 for any
multi-ton into the above tail bound and obtain

Pr


 1

P

∑

p∈[P ]

ξp ≤
SNRmin

2
σ2


 ≤ 2e−cP

for some c.
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B. Proof of Missed Verification Rates in Proposition 6

The missed verification events occur if the zero-ton or single-ton verifications pass when the ground truth is a single-ton
HS(k, x[k]) for some k ∈ [N ]:

u2 = Sz + w = x[k]sk + w. (101)

This event occurs when the ground truth is a single-ton HS(k, x[k]) with an index-value pair (k, x[k]), but the single-ton
verification fails for some index-value pair (k̂, x̂[k̂]) obtained from the single-ton search:

Pr (HS(k, x[k])) = Pr

(
1

P

∥∥∥u2 − x̂[k̂]sk̂

∥∥∥
2

≥ (1 + γSNRmin)σ2

)
.

Since the single-ton search may or may not return the correct index-value pair, this probability is obtained by the total law of
probability as

Pr

(
1

P

∥∥∥u2 − x̂[k̂]sk̂

∥∥∥
2

≥ (1 + γSNRmin)σ2

)

= Pr

(
1

P

∥∥∥u2 − x̂[k̂]sk̂

∥∥∥
2

≥ (1 + γSNRmin)σ2
∣∣∣k̂ 6= k or x̂[k̂] 6= x[k]

)
× Pr

(
k̂ 6= k or x̂[k̂] 6= x[k]

)

+ Pr

(
1

P

∥∥∥u2 − x̂[k̂]sk̂

∥∥∥
2

≥ (1 + γSNRmin)σ2
∣∣∣k̂ = k and x̂[k̂] = x[k]

)
× Pr

(
k̂ = k and x̂[k̂] = x[k]

)

≤ Pr
(
k̂ 6= k or x̂[k̂] 6= x[k]

)
+ Pr

(
1

P

∥∥∥u2 − x̂[k̂]sk̂

∥∥∥
2

≥ (1 + γSNRmin)σ2
∣∣∣k̂ = k and x̂[k̂] = x[k]

)
.

Note that the second term is the probability of some noise samples w exceeding the single-ton verification threshold (1 +
γSNRmin)σ2, which can be easily bounded by a chi-squared tail:

Pr

(
1

P

∥∥∥u2 − x̂[k̂]sk̂

∥∥∥
2

≥ (1 + γSNRmin)σ2
∣∣∣k̂ = k and x̂[k̂] = x[k]

)
≤ e−P4 (

√
1+2γSNRmin−1)

2

(102)

Now we focus on obtaining a tail bound for the single-ton search error Pr
(
k̂ 6= k or x̂[k̂] 6= x[k]

)
. Since we obtain the

coefficient and index using u0 and u1 separately, the error probability can be obtained as:

Pr
(
k̂ 6= k or x̂[k] 6= x[k]

)
≤ Pr

(
k̂ 6= k

)
+ Pr (x̂[k] 6= x[k]) . (103)

Clearly, the first term is equivalent to the decoding error probability of the channel code C, which is Pr
(
k̂ 6= k

)
= e−ζP . On

the other hand, given u0 = x[k]1P +w0 and x[k] ∈ {±ρ}, the probability of wrongly estimating the coefficient when the bin
is a single-ton can be upper bounded easily as

Pr (x̂[k] 6= x[k]) = Pr
(
‖u0 + x[k]1P ‖2 ≤ ‖u0 − x[k]1P ‖2

)
(104)

≤ Pr
(
‖2x[k]1P + w0‖2 ≤ ‖w0‖2

)
(105)

= Pr

(
N (0, 1) ≥ 2ρ

√
P

σ

)
≤ 2e−2SNRminP . (106)

APPENDIX F
PROOF OF LEMMA 6

In this section, we prove Lemma 6. The construction of the concatenated code in Lemma 6 is based on Justesen’s
concatenation scheme [68] and similar method is also analyzed in [72]. The concatenated code consists of an outer code
fout and an ensemble of inner codes I. For the outer codes, we use an expander-based code proposed in [69]. The outer code
maps the message to a codeword with length p on an alphabet with size 2k, i.e., fout : [N ]→ [2k]p. Recall that by definition,
the rate of the outer code is Rout = dlog(N)e/p. We make essential use of the Theorem in [69].

Theorem 6. For every integer k > 0 and every absolute constant R′ < 1, there is an explicit family of expander-based linear
codes with alphabet [2k] and rate Rout = R′ that is error-correcting for a O(1) fraction of errors. The running time of the
encoder and the decoder is linear in the block length of the codewords.

Note that here, the O(1) fraction of error can be adversarially chosen, and that the decoding algorithm of the outer code
does not rely on the knowledge of the channel. Now let (c1, c2, . . . , cp) ∈ [2k]p be the codeword that we obtained from the
outer code, and we call it the outer codeword. As we have mentioned, we use an ensemble of inner codes I, which means
that I = {g1, . . . , gp} is a collection of p codes which encode the symbols in the outer codeword as a new q-bit codeword
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with alphabet {1,−1}. Specifically, each code gi in I is a map gi : [2k] → {1,−1}q , and we encode the i-th symbol in the
outer codeword by the i-th code in I. This gives us the final codeword (g1(c1), g2(c2), . . . , gp(cp)) ∈ {1,−1}qp, which also
implies that the block length of the concatenated code is P0 = qp.

Then we show the details of the inner code ensemble. We choose the inner code ensemble to be the Wozencraft’s ensemble
[70]. The Wozencraft’s ensemble satisfies the property that all but a o(1) fraction of the codes in the ensemble are capacity
achieving, where the asymptotic is with respect to the block length q. Specifically, for the capacity achieving codes in the
ensemble, the probability of decoding error is exponentially small in the block length q, i.e., e−αq for some constant α > 0,
as long as the rate of the codes Rin = k/q is below the capacity of the BCS. Here, we should notice that we do need an upper
bound of the bit flip probability in the design of the inner code since we need to get a lower bound of the capacity of the BSC,
however, we do not need the exact value of the bit flip probability. Then, it is shown in [72] that using brute force maximum
likelihood decoder for the inner code and the decoding algorithm of the expander-based outer code, the error probability is
exponentially small in the block length of the concatenated code, i.e., e−α

′P0 for some constant α′ > 0.
Now we analyze the block length and decoding complexity of the concatenated code. The number of codes in the Wozencraft’s

ensemble is 2q , meaning that p = 2q . Since rate of the outer code is a constant Rout = dlog(N)e/p which can be arbitrarily
close to 1, we know that p = O(log(N)). Then q = O(log log(N)) and the block length of the concatenated code is
P0 = qp = O(log(N) log log(N)). Consequently the error probability is e−α

′P0 = O( 1
poly(N) ), where poly(N) is a polynomial

of N which can have arbitrarily large degree. Consider the decoding complexity. For the inner code, the complexity of testing
each possible message is O(q) and there are 2k = 2qRin messages. Therefore, for each inner code, the computational complexity
of the brute force maximum likelihood decoding is O(2qRinq). Since there are p inner codes, the complexity of decoding all the
inner codes is O(2qRinqp) = O(p1+Rinq) = O(log1+Rin(N) log log(N)). Since we do not require the inner code to be capacity
achieving, Rin can be arbitrarily close to 0, we can conclude that complexity of decoding all the inner codes is O(log1+r(N)),
where r > 0 can be arbitrarily small. Since the complexity of decoding the outer code is linear in its block length, which is
O(p) = O(log(N)), we know that the decoding complexity of the concatenated code is O(log1+r(N)).

APPENDIX G
PROOF OF LEMMA 7

The proof of Lemma 7 is based on density evolution, and the basic idea is to get a recursive equation to analyze the fraction
of sparse coefficients that are not recovered in a particular iteration. We provide a brief proof here and focus on the truncation
peeling strategy, which is main difference from the previous results.

We do not consider the connection between the zero elements and the measurement bins, meaning that we only focus on
the d-left regular random bipartite graph with K left nodes and R right nodes. We let R = ηK for some constant η > 0.
Using Poisson approximation, we get the expected fraction of edges which are connected to right nodes with degree i is

ρi ≈
(d/η)i−1e−d/η

(i− 1)!
.

We then consider the peeling process as a message passing process on the bipartite graph. According to our peeling decoding
algorithm, a single-ton can send a “peeling” message to a left node connected to it, and a peeled left node sends “peeled”
message to all the bins that are connected to it. In a particular iteration, a bin sends a “peeling” message to a left node through
an edge if other edges connected to this bin all send “peeled” messages in the previous iteration and a left node sends a
“peeled” message to a bin through an edge if if at least one of the bins that is connected to it sends a “peeling” message to
it. We should also notice that the bins with degree greater than D never send “peeling” message to the left nodes due to the
truncation strategy.

As in previous proofs, we still need to first assume that the neighborhood of each edge with a constant depth is a tree
(tree-like assumption). Let pj be the probability that in the j-th iteration, a randomly chosen edge is not peeled, i.e., sending
a “not peeled” message. Then, under the tree-like assumption, we have the density evolution equation:

pj+1 = F (pj) =

(
1−

D∑

i=1

ρi(1− pj)i−1

)d−1

.

Similar to the analysis in [67], we need to consider the fix point of F (t), i.e., the point such that F (t) = t, and show that the
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fix point can be arbitrarily small by choosing proper parameters. We have

F (t) =

(
1−

D∑

i=1

(d/η(1− t))i−1e−d/η

(i− 1)!

)d−1

=

(
1−

D−1∑

i=0

(d/η(1− t))ie−d/η
i!

)d−1

=

(
1− e−d/η(ed(1−t)/η − eξ(d(1− t)/η)D

D!
)

)d−1

,

where 0 < ξ < d(1− t)/η. We can choose D to be large enough such that (d(1−t)/η)D

D! < 1
2 . Then we have

F (t) <

(
1− 1

2
e−dt/η

)d−1

:= G(t).

Then we know that the fix point of F (t) should be upper bounded by that of G(t). Further, if we keep d/η to be a constant and
enlarge d, the fix point of G(t) can be arbitrarily small, and consequently, the fix point of F (t) can be arbitrarily small. More
specifically, let p? ∈ (0, 1) be the fix point of F (t), then for any p > 0, there exist parameters d and η such that p? < p. Here,
we briefly analyze the relationship between η and the fix point of G(t), denoted by t?. Since t? = G(t?) = (1− 1

2e
−dt?/η)d−1,

and t? is close to 0, we have e−dt
?/η ≈ 1 and thus t? ≈ ( 1

2 )d−1. Therefore, d = O(log(1/t?)), and further, since we keep
d/η as a constant, η = O(log(1/t?)). Since the fix point of F (t), p? is upper bounded by t?, we have η = O(log(1/p?)). We
can choose parameters such that p? = O(p) and then, η = O(log(1/p)). Using the same argument as in [67], we can show
that for any p > 0, there exist a constant n and proper parameters d and η such that pn < p.

By the same martingale argument as in previous analysis, and taking the event that the tree-like assumption does not hold
into consideration, we can show that the fraction of sparse coefficients which are not peeled is highly concentrated around pn.
Let Z be the fraction of sparse coefficients which are not peeled after n-th iteration, when K is large enough, we have for
any δ > 0,

Pr (|Z − pn| > δ) < 2 exp{−Cδ2K1/(4n+1)},
where C > 0 is a universal constant. The proof of Lemma 7 is completed by choosing n such that pn < p.

APPENDIX H
PROOF OF LEMMA 8

Without loss of generality, we omit the bin index, but we still keep an iteration counter in the notation. More specifically,
we use u

(t)
0 and u

(t)
1 to denote the remaining location and verification measurements in a particular bin (say bin i) at the t-th

iteration, respectively. We also use z to denote the signal that has actual contribution to the measurements, and w0 and w1 to
denote the noise in the location and verification measurements, respectively.

Consider t = 1. In the first iteration, we know that u(1)
0 and u

(1)
1 are exactly the original measurements, i.e.,

u
(1)
0 = S0z + w0

u
(1)
1 = S1z + w1.

In Lemma 6, we have shown that if a bin is indeed a single-ton and the sparse coefficient is located at j, the concatenated
code that we designed in the location matrix can find the location17 j with probability 1 − O(1/poly(N)). According to the
estimation method in (45), we have

x̂[j] =
1

P1

P1∑

k=1

s1,k,ju
(1)
1,k =

1

P1

P1∑

k=1

x[j] + w̃1,k,

where w̃1,k = s1,k,jw1,k. Then we have w̃1 = {s1,k,jw1,k}P1

k=1 ∼ N (0, σ2I). By Chernoff bound, we have for any ε > 0,

Pr (|x̂[j]− x[j]| ≥ ε) ≤ exp{−P1ε
2

2σ2
},

therefore, by choosing P1 = O(σ
2

ε2 log(N)), we can get x̂[j] such that |x̂[j]− x[j]| < ε with probability 1−O(1/poly(N)).
Consider the t-th iteration, t > 1. Since t > 1, bin i is not a single-ton bin in the first iteration, and thus, |supp (z) | > 1.

Let B = supp (z) \ {j}, i.e., B is the set of location indices of the sparse coefficients which are peeled off from bin i before

17As we have mentioned, due to sign ambiguity, the decoding algorithm can return up to two locations, but one of them is guaranteed to be j with high
probability.
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the t-th iteration. According to the truncation peeling strategy, we have |B| ≤ D − 1. Assume that for any g ∈ B, we have
|x̂[g]− x[g]| < Cgε with probability 1−O(1/poly(N)) for some constant Cg > 0. We let CB =

∑
g∈B Cg .

Now we show that if there exists appropriate constant C such that β ≥ Cε, then the decoding algorithm can find the
location of the sparse coefficient at j with probability 1 − O(1/poly(N)). Recall that to conduct the decoding algorithm of
the concatenated code, we need to take the sign of the remaining location measurements, i.e., getting sgn[u

(t)
0 ]. According to

the peeling algorithm, we have
u

(t)
0 = u

(1)
0 −

∑

g∈B
x̂[g]s0,g,

which yields
u

(t)
0 =

∑

g∈B
(x[g]− x̂[g])s0,g + x[j]s0,j + w0.

Let s̃ =
∑
g∈B(x[g]−x̂[g])s0,g+x[j]s0,j . We assume that β is large enough such that in any constant iteration β ≥ 2CBε. Then,

for each entry in s̃, we have sgn[s̃k] = sgn[x[j]s0,k,j ], and we can think of sgn[u
(t)
0,k] as a received symbol by transmitting

sgn[x[j]s0,k,j ] through a BSC with bit flip probability upper bounded by Φ(− β
2σ ). Then, the decoding algorithm of the

concatenated code still works since we have a constant upper bound of the bit flip probability.
Then, we show that the value estimation method still works in the t-th iteration. Since

s1,k,ju
(t)
1,k = x[j] +

∑

g∈B
(x[g]− x̂[g])s1,k,js1,k,g + s1,k,jw

(t)
1,k,

and x̂[j] = 1
P1

∑P1

k=1 s1,k,ju
(t)
1,k, we know that conditioned on S1, x̂[g] and the event that |x̂[g] − x[g]| < Cgε for all g ∈ B,

x̂[j] ∼ N (x[j] + x̄, σ
2

P1
), where x̄ = 1

P1

∑P1

k=1

∑
g∈B(x[g] − x̂[g])s1,k,js1,k,g . We can see that |x̄| < CBε, and by Chernoff

bound,

Pr
(
|x̂[j]− x[j]− x̄| ≥ ε

∣∣ S1, |x̂[g]− x[g]| < Cgε
)
≤ exp{−P1ε

2

2σ2
}. (107)

Since (107) is true for all S1, we can remove the condition on S1. Considering the fact that |x̄| < CBε, we get

Pr
(
|x̂[j]− x[j]| ≥ (CB + 1)ε

∣∣ |x̂[g]− x[g]| < Cgε
)
≤ exp{−P1ε

2

2σ2
}.

Then, by law of total probability and union bound, we get

Pr (|x̂[j]− x[j]| ≥ (CB + 1)ε) ≤ exp{−P1ε
2

2σ2
}+

∑

g∈B
Pr (|x̂[g]− x[g]| ≥ Cgε) ≤ O(

1

poly(N)
),

when P1 = O(σ
2

ε2 log(N)), which completes the proof.

APPENDIX I
PROOF OF LEMMA 9

We make essential use of the Johnson-Lindenstrauss Lemma [73]; more specifically, we use the form stated in [74].

Lemma 12. [74] Let S1 ∈ {−1, 1}P1×N be a matrix with i.i.d. Rademacher entries. For any θ ∈ (0, 1) and any v ∈ RN ,
we have

Pr

(∣∣∣∣
1

P1
‖S1v‖22 − ‖v‖22

∣∣∣∣ ≥ θ‖v‖22
)
≤ 2 exp{−P1(

θ2

4
− θ3

6
)}.

In the following, we omit the bin index and iteration counter, and let u1 be the actual verification measurements of bin i
and w1 be the corresponding noise. Let z be the signal that has actual contribution to the measurements in this bin, i.e.,

u1 = S1z + w1,

and ẑ be the hypothesis signal. Then, we have u1 − S1ẑ = S1z̃ + w1, where z̃ = z− ẑ. By Lemma 12, we have

Pr

(√
1− θ‖z̃‖2 ≤

1√
P1

‖S1z̃‖2 ≤
√

1 + θ‖z̃‖2
)
≥ 1− 2 exp{−P1(

θ2

4
− θ3

6
)}.

By triangle inequality, ‖S1z̃‖2 − ‖w1‖2 ≤ ‖u1 − S1z̃‖2 ≤ ‖S1z̃‖2 + ‖w1‖2.
Then, on the one hand, we have

Pr

(
1√
P1

‖u1 − S1z̃‖2 ≥
√

1− θ‖z̃‖2 −
1√
P1

‖w1‖2
)
≥ 1− 2 exp{−P1(

θ2

4
− θ3

6
)}.
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By the concentration inequality of χ2 distribution, for any φ ∈ (0, 3), we have

Pr

(
1

P1
‖w1‖22 ≥ σ2(1 + φ)

)
≤ exp{−P1

φ2

18
}.

By union bound, we get

Pr

(
1√
P1

‖u1 − S1z̃‖2 ≥
√

1− θ‖z̃‖2 − σ
√

1 + φ

)
≥ 1− 2 exp{−P1(

θ2

4
− θ3

6
)} − exp{−P1

φ2

18
}.

Suppose that the supports of the hypothesis signal and the true signal are different, i.e., supp (ẑ) 6= supp (z), then by our
assumption of the signal, ‖z̃‖2 ≥

√
β. If

√
1− θ√β − σ

√
1 + φ > 0, we can get a valid threshold, which means that if

β > σ2( 1+φ
1−θ ), when P1 = O(log(N)),

Pr

(
1

P1
‖u1 − S1z̃‖22 ≥ τ

)
≥ 1−O(

1

poly(N)
), (108)

for any τ ∈ (0, (
√

1− θ√β − σ√1 + φ)2).
On the other hand, we also have

Pr

(
1√
P1

‖u1 − S1z̃‖2 ≤
√

1 + θ‖z̃‖2 +
1√
P1

‖w1‖2
)
≥ 1− 2 exp{−P1(

θ2

4
− θ3

6
)}.

Consider the case when supp (ẑ) = supp (z). In this case, we have found the correct support, or equivalently, all the locations of
the singleton balls are found. By Lemma 8, we know that ‖z̃‖∞ < C̃ε for some constant C̃ with probability 1−O(1/poly(N)),
when P1 = O(σ

2

ε2 log(N)). According to the truncation strategy, we also have |supp (z̃) | ≤ D, and thus ‖z̃‖2 ≤
√
DC̃ε := C ′ε.

Using this fact and union bound, we get

Pr

(
1√
P1

‖u1 − S1z̃‖2 ≤
√

1 + θC ′ε+ σ
√

1 + φ

)
≥ 1−O(

1

poly(N)
),

and thus, for any τ > (
√

1 + θC ′ε+ σ
√

1 + φ)2,

Pr

(
1

P1
‖u1 − S1z̃‖2 ≤ τ

)
≥ 1−O(

1

poly(N)
). (109)

We can see that to get a valid threshold for both tests (108) and (109), we need
√

1− θ
√
β − σ

√
1 + φ >

√
1 + θC ′ε+ σ

√
1 + φ,

and since θ and φ are constants, the proof is completed.

APPENDIX J
PROOF OF THEOREM 3

We provide the brief final proof of Theorem 3. First, we analyze the error probability. There are three possible error events,
(i) E1: the peeling algorithm does not find at least 1− p fraction of sparse coefficients.

(ii) E2: error in decoding algorithm of concatenated code (location decoding).
(iii) E3: error in value estimation or energy test.
Here, by error in value estimation, we mean there exists a sparse coefficient x[j] and its estimate x̂[j] such that |x[j]− x̂[j]| ≥
O(ε). We have shown that Pr (E1|Ec2, Ec3) = O(exp{−c1(p)K−c2(p)}). Since we need to conduct O(K) times of location
decoding and energy tests, using union bound, we know that Pr (E2) = O(1/poly(N)) and Pr (E3) = O(1/poly(N)). Then
by union bound and law of total probability, we get the error probability

Pr (E1 ∪ E2 ∪ E3) ≤ Pr (E1) + Pr (E2) + Pr (E3)

= Pr (E1|Ec2, Ec3)Pr (Ec2, E
c
3) + Pr (E1|E2 ∪ E3)Pr (E2 ∪ E3) + Pr (E2) + Pr (E3)

≤ Pr (E1|Ec2, Ec3) + 2(Pr (E2) + Pr (E3))

≤ O(exp{−c1(p)K−c2(p)}) +O(1/poly(N))

= O(1/poly(N)),

where the last inequality is due to the fact that K = O(Nδ) for some constant δ ∈ (0, 1). The time complexity of the algorithm
can be analyzed by the same method as in the quantized alphabet setting, and we omit the analysis here.
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Then, we turn to the `1 norm recovery guarantee. Let |x(1)|, |x(2)|, . . . , |x(K)| be the magnitudes of the K sparse coefficients,
ordered increasingly. Recall that we assume |x(K)| ≤ O(Kc) for some c ∈ (0, 1). Partition the K sparse coefficients to
g = K(1+c)/2 subgroups as follows18:

(|x(1)|, . . . , |x(K/g)|), (|x(K/g+1)|, . . . , x(2K/g)), . . . , (|x(K−K/g+1)|, . . . , |x(K)|).
Let bi be the largest number in subgroup i. By Hoeffding’s inequality, the probability that more than (p+ t)K/g elements are
missed in a subgroup is upper bounded by 2e−2t2K/g. Taking t = 1/ log(K) and using union bound, we have

‖x̂− x‖1 ≤
g∑

i=1

[bi(p+ 1/ log(K))K/g +O(Kε/g)] = O(Kε) +

g∑

i=1

bi(p+ 1/ log(K))K/g, (110)

with probability 1−O(ge
− 2K
g log2(K) + 1

poly(N) ). Further,

g∑

i=1

biK/g ≤ (|x(1)|+
g∑

i=1

bi)K/g

≤ ‖x‖1 + bgK/g

≤ ‖x‖1(1 +O(
Kc

g
))

= ‖x‖1(1 +O(K−
1−c

2 )).

(111)

Then, combining (110) and (111), we can see that with probability at least 1−O(K
1+c

2 e
− 2K(1−γ)/2

log2(K) + 1
poly(N) ),

‖x̂− x‖1 ≤ ‖x‖1(p+ 1/ log(K))(1 +O(K−
1−c

2 )) +O(Kε) = p‖x‖1(1 + o(1)) +O(Kε).

Since K = O(Nδ), 1
poly(N) is the dominant term in the error probability. In addition, since ‖x‖1 ≥ Kβ, we obtain

‖x̂− x‖1 ≤ p‖x‖1(1 + o(1)) +O(
ε

β
‖x‖1) := κ‖x‖1.

Here, κ can be arbitrarily small since p and ε can be arbitrarily small. Thus, we conclude that with probability at least
1−O( 1

poly(N) ), we have ‖x̂− x‖1 ≤ κ‖x‖1.

APPENDIX K
TAIL BOUNDS

Here we derive some tail bounds that are useful in our analysis.

Lemma 13 (Non-central Chi-Square Tail Bounds in [75]). Let Z ∼ χ2
D be a non-central chi square variable with D degrees

of freedom and non-centrality parameter ν ≥ 0. Then for all z ≥ 0, the following tail bounds hold:

Pr
(
Z ≥ (D + ν) + 2

√
(D + 2ν)z + 2z

)
≤ exp(−z)

Pr
(
Z ≤ (D + ν)− 2

√
(D + 2ν)z

)
≤ exp(−z)

Lemma 14. Given u = [u[0], · · · , u[P − 1]]T and a vector w = [w[0], · · · , w[P − 1]]T with i.i.d. Gaussian variables
w[p] ∼ N (0, θ2) for all p ∈ [P ], the following tail bound holds:

Pr

(
1

P
‖u + w‖2 ≥ τ1

)
≤ e−

P
4

(√
2τ1/θ2−1−√1+2ν0

)2

(112)

Pr

(
1

P
‖u + w‖2 ≤ τ2

)
≤ e−P4

(1+ν0−τ2/θ
2)

2

1+2ν0 (113)

for any τ1 and τ2 that satisfy

τ1 ≥ θ2(1 + ν0), τ2 ≤ θ2(1 + ν0), (114)

where ν0 is the normalized non-centrality parameter given by

ν0 :=
‖u‖2
Pθ2

. (115)

18Here, we simply assume that K is an integer multiple of g.
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Proof. The quantity ‖u + w‖2 can be written element-wise as

‖u + w‖2 =

P−1∑

p=0

(u[p] + w[p])
2 (116)

where each summand is a normal random variable with mean u[p] and variance θ2. Therefore, according to the definition of
non-central chi-square variables, the quantity

‖u + w‖2
θ2

∼ χ2
P (117)

is a non-central χ2 random variable of P degrees of freedom with a non-centrality parameter

ν =

P−1∑

p=0

|u[p]|2
θ2

=
‖u‖2
θ2

. (118)

For notational convenience, we use the normalized non-centrality parameter ν0 in (115) such that ν = Pν0. Without loss of
generality, let the thresholds τ1 and τ2 take the following form with respect to z1 and z2:

τ1 =
θ2

P

[
(P + Pν0) + 2

√
(P + 2Pν0)z1 + 2z1

]

τ2 =
θ2

P

[
(P + Pν0)− 2

√
(P + 2Pν0)z2

]
,

then the tail bounds in Lemma 13 can be obtained easily with respect to z1 and z2. Using (118), the corresponding z1 and z2

can be solved as

z1 =
P

4

(√
2τ1/θ2 − 1−

√
1 + 2ν0

)2

z2 =
P

4

(
1 + ν0 − τ2/θ2

)2

1 + 2ν0

as long as the thresholds τ1 and τ2 satisfy (114). Thus according to Lemma 13, we have the tail bounds in (112).

Corollary 1. Suppose that the normalized non-centrality parameter ν0 in Lemma 14 is bounded between

0 ≤ νmin ≤ ν0 ≤ νmax, (119)

then the following worst case tail bounds hold:

Pr

(
1

P
‖u + w‖2 ≥ τ1

)
≤ e−

P
4

(√
2τ1/θ2−1−√1+2νmax

)2

Pr

(
1

P
‖u + w‖2 ≤ τ2

)
≤ e−

P
4

(1+νmin−τ2/θ
2)

2

1+2νmin

for any τ1 and τ2 that satisfy

τ1 ≥ θ2(1 + νmax), τ2 ≤ θ2(1 + νmin). (120)

Proof. The first tail bound can be easily obtained since τ1 ≥ θ2(1 + νmax), the exponent is monotonically decreasing with
respect to ν0, and therefore substituting it with νmax leads to an upper bound.

The second tail bound depends on the monotonicity with respect to ν0. The tail bound is monotonic with respect to the
exponent, so in the following we examine the monotonicity of the exponent with respect to ν0. The exponent can be re-written
as a form of the x+ 1/x function:

(
1 + ν0 − τ2/θ2

)2

1 + 2ν0
=

(
ν0 +

1

2

)
+

(
1
2 − τ2

θ2

)2
(
ν0 + 1

2

) + 2

(
1

2
− τ2
θ2

)
, (121)

which has a minimum at

ν?0 =

∣∣∣∣
1

2
− τ2
θ2

∣∣∣∣−
1

2
, (122)

and monotonically increasing for any ν0 > ν?0 . Now it remains to see whether ν?0 is within the interval [νmin, νmax], which
needs to be discussed separately depending on the choice of τ2:
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1) θ2/2 ≤ τ2 ≤ θ2(1 + νmin): in this case, we have

ν?0 =
τ2
θ2
− 1 ≤ νmin. (123)

2) 0 < τ2 < θ2/2: in this case, we have

ν?0 = − τ2
θ2
≤ 0 ≤ νmin. (124)

Therefore, it has been shown that as long as τ2 satisfies (120), the exponent is monotonically increasing with respect to
ν0 ∈ [νmin, νmax] and therefore the minimum exponent is achieved by substituting ν0 with νmin.
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