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RECOVERING S1-INVARIANT METRICS ON S2 FROM THE

EQUIVARIANT SPECTRUM

EMILY B. DRYDEN, DIANA MACEDO, AND ROSA SENA-DIAS

Abstract. We prove an inverse spectral result for S1-invariant metrics on
S2 based on the so-called asymptotic equivariant spectrum. This is roughly
the spectrum together with large weights of the S1 action on the eigenspaces.
Our result generalizes an inverse spectral result from [DGS3] concerning S1-
invariant metrics on S2 which are invariant under the antipodal map. We use
higher order terms in the asymptotic expansion of a natural spectral measure
associated with the Laplacian and the S1 action.

1. Introduction

Does the spectrum of the Laplacian on a compact Riemannian manifold deter-
mine the Riemannian manifold? The answer is known to be no. John Milnor
[M] constructed the first such example, producing two metrics on flat tori of di-
mension 16 which have the same spectrum, but are not globally isometric. There
are now a plethora of examples of non-isometric isospectral manifolds, constructed
using sophisticated methods and tools. On the other hand, there are also many
spectral invariants, quantities associated with the Riemannian manifold that are
determined by the spectrum. Dimension and volume are perhaps the most famous
of these spectral invariants, but many more are known. Given these extremes of
examples and spectral invariants, it is natural to ask if there is a special class of Rie-
mannian manifolds for which the spectrum determines the Riemannian structure.
In this spirit, Miguel Abreu formulated the following question.

Question 1.1. Let X be a toric manifold endowed with a toric Kähler structure.

Does the spectrum of the Laplacian on the resulting Riemannian manifold determine

the underlying manifold?

Toric manifolds are rather manageable objects. They are classified by convex
polytopes of so-called Delzant type and the question above can be reformulated
in terms of recovering the Delzant polytope of a toric manifold from the spectrum
of a toric Kähler metric on it. (See [DGS1] for some basic background on toric
manifolds and Delzant polytopes; see [G] for a more complete account of the Kähler
geometry of toric manifolds.) In the setting of toric orbifolds, a partial answer to
Question 1.1 using the asymptotic equivariant spectrum is known; the asymptotic
equivariant spectrum adds information about the large weights of the T

n action on
the eigenspaces to the usual spectrum.
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Theorem 1.2. [DGS3] The asymptotic equivariant spectrum of a generic toric

orbifold endowed with a toric Kähler metric determines the toric orbifold up to

equivariant biholomorphism.

Since the asymptotic equivariant spectrum contains more information than the
spectrum, and toric orbifolds are more “flexible” than toric manifolds, the above
theorem does not answer Abreu’s question. However, it is also possible to obtain
spectral rigidity for the metric, at least in a simple case. Note that a toric Kähler
metric can be entirely described in terms of a function g known as its symplectic
potential. We will consider S2, suitably normalized so that its symplectic potential
is a function g defined on (−1, 1). Given the symplectic potential g, the metric can
be written as

g̈dx ⊗ dx+
dθ ⊗ dθ

g̈
. (1)

Theorem 1.3. [DGS3] The asymptotic equivariant spectrum of an S1-invariant

metric on S2 with symplectic potential g determines the metric if g̈ is even and

convex.

Our goal is to extend Theorem 1.3 to more general S1-invariant metrics on S2.
In particular, we will consider metrics for which g̈ is a single well. A single well
on (−1, 1) will mean a function v : (−1, 1) → R which is decreasing on (−1, 0)
and increasing on (0, 1). The unique minimum at 0 is the well. We will prove the
following theorem.

Theorem 1.4. The asymptotic equivariant spectrum of an S1-invariant metric on

S2 with symplectic potential g determines the metric if g̈ is a single well.

In other words, we show that the asymptotic equivariant spectrum determines
an S1-invariant metric on S2 within the class of metrics for which g̈ is a single well.
It would be interesting to know if the asymptotic equivariant spectrum determines
if an S1-invariant metric on S2 has such a symplectic potential.

Although this result concerns only S2, results on spectral rigidity for metrics are
known to be difficult to obtain. One of the reasons we are able to prove such a
result in this setting is the parametrization of S1-invariant metrics on S2 via the
symplectic potential. This framework was also used by Miguel Abreu and Pedro
Freitas [AF] to investigate upper bounds for the invariant eigenvalues of the Laplace
operator defined by these S1-invariant metrics on S2.

Related inverse spectral results for S1-invariant metrics on S2 were obtained by
Jochen Brüning and Ernst Heintze [BH] and by Steve Zelditch [Z]. Zelditch’s result
concerns S1-invariant metrics on S2 that can be obtained as metrics on surfaces of
revolution in R

3 with the euclidean metric. We refer to such metrics as metrics of
revolution. The main theorem in [Z] says that generic, “simple,” analytic metrics of
revolution are determined by their spectrum. Not all S1-invariant metrics on S2 are
metrics of revolution on R

3 (see [KW] for obstructions and [AF, §4] for discussion),
but for an S1-invariant metric on S2 that is a metric of revolution the “simple”
condition is implied by our single well condition. To be more precise, a surface
of revolution in R

3 can be obtained by rotating a curve (0, p(t), q(t))) around the
z-axis where we assume that t is the arc-length parameter. The metric of revolution
described above is given by dt2 + p(t)2dθ2, where θ is the angle of revolution. By
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comparing with (1) we see that

t(x) =

∫ x

−1

√

g̈(s)ds and p(t)2 =
1

g̈(x)
.

Therefore local minima of g̈ (at x) correspond to local maxima of p (at t(x)).
The “simple” condition corresponds to p having a single local maximum and the
claim follows. The main theorem in [Z] is proved using wave trace techniques.
Brüning and Heintze considered metrics of revolution that are also symmetric with
respect to reflection in the xy-plane. They showed that mirror symmetric surfaces
of revolution are determined by their spectra, or equivalently, by their S1-invariant
spectra.

The techniques we use to prove Theorem 1.4 are inspired by the techniques of
Victor Guillemin and Zuoqin Wang in [GW]. Namely, we give an explicit inductive
formula giving higher order semi-classical spectral invariants for toric manifolds
based on the asymptotic expansion of a spectral measure associated to the toric
metric. This spectral measure was introduced in [DGS3] but there only the highest
term in its asymptotic expansion was derived and used. The formula for higher
order invariants turns out to be surprisingly explicit in the context of toric manifolds
and is interesting in its own right. In the case of S2 it becomes even simpler and
we are able to derive some new spectral invariants which we use to prove Theorem
1.4.

One can’t help but wonder if semi-classical spectral invariants of even higher
order on S2 would help recover symplectic potentials with a finite number of wells
from the asymptotic equivariant spectrum. It would also be interesting to study
these invariants in higher dimensional toric manifolds.

The paper is organized as follows: in §2 we derive a general formula for the
asymptotic expansion of a spectral measure associated to the Laplacian of a toric
Kähler metric on a toric manifold. The formula simplifies in the case of S2 and we
give two non-trivial terms in the asymptotic expansion. The first term was given
and used in [DGS3]. Section 3 is devoted to the proof of Theorem 1.4. We use both
spectral invariants derived in §2.

Acknowledgements. We would like to thank Victor Guillemin for his encourage-
ment and interest in this project. Emily Dryden appreciates the hospitality of the
Mathematics Department at Instituto Superior Técnico during the preparation of
this paper. Diana Macedo and Rosa Sena-Dias would like to thank the Gulbenkian
Foundation and in particular the “Novos talentos em Matemática” program orga-
nizers for support and for creating a great environment for mathematical research.
We are grateful to the referees for carefully reading our manuscript and for their
helpful suggestions.

2. Asymptotic expansion of the spectral measure

Let X2n be a toric manifold with moment polytope P . Suppose X is endowed
with a toric Kähler metric defined by a symplectic potential g : Int(P ) → R, i.e., a
metric of the form

ds2 = g̈dx ⊗ dx+
dθ ⊗ dθ

g̈
,

(see [A] for the definition of symplectic potential and the associated metric). The
torus T

n acts on X by isometries, and we let ψ : Tn → Iso(X, ds2) denote the
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action. The metric on X has a Laplace operator associated to it. We are inter-
ested in the question: Does the spectrum of this Laplacian determine the metric,
or equivalently, the symplectic potential g? In fact, the torus action induces a rep-
resentation on each eigenspace that splits according to weights in the Lie algebra
of the torus, suitably identified with R

n. We will sometimes write ψ for the map
from R

n/(2πZ)n to Iso(X, ds2) where we identify T
n with R

n/(2πZ)
n
via the ex-

ponential map. The equivariant spectrum of (X, ds2) is the set of eigenvalues of the
Laplacian and, for each eigenvalue, the list of weights of the torus representation
on the corresponding eigenspace. The eigenvalues and weights are counted with
multiplicities. We say that a toric Kähler metric or any quantity associated with it
is espectrally determined if it is determined by its equivariant spectrum (see [DGS1]
for more details about the equivariant spectrum).

Definition 2.1. Let K > 0. The K-equivariant spectrum of a toric Kähler mani-

fold is the set of eigenvalues of its metric Laplacian and, for each eigenvalue, the list

of weights of the torus representation on the corresponding eigenspace whose norms

are larger than K. The eigenvalues and weights are counted with multiplicities.

We will say that a toric Kähler metric or any quantity associated with it is
aespectrally determined if there exists a K > 0, possibly very large, for which it is
determined by the K-equivariant spectrum.

Let α be a generic element in R
n, where “generic” means that α is a regular

value of the moment map Φ : T ∗X → R
n arising from the lift of ψ to a Hamiltonian

action on T ∗X . Moreover, let ~ ∈ R
+ be such that 1

~
∈ Z. We wish to define a

spectral measure that “counts” α
~
-equivariant eigenfunctions in a certain sense. Let

ρ ∈ C∞
0 (R) and consider the spectral measure µα

~
defined by

µα
~
(ρ) =

∫

Tn

e−
√−1θ·α

~ tr(ψ(θ)∗ρ(~
2△))dθ. (2)

Note that since 1
~
∈ Z, e−

√
−1θ·α
~ is well defined. Also, recall that given any pseudo-

differential semi-classical operator P~ on a manifold X and a diffeomorphism F of
X , tr(F∗P~) is defined using the Schwartz kernel K of P~ via the formula

tr(F∗P~) =

∫

X

K(F (x), x)dx,

when such an integral converges. It turns out that µα
~
may also be written as

µα
~
(ρ) =

∑

λ∈Eα,~

ρ(λ)n(λ, α),

where Eα,~ is the set of eigenvalues of ~2△ admitting an equivariant eigenfunction
of weight α

~
and n(λ, α) is the dimension of the subspace of α

~
-equivariant functions

of the λ-eigenspace of ~2△; this formulation of µα
~
shows why we may interpret our

spectral measure as “counting” equivariant eigenfunctions of weight α
~
. See [DGS3,

§4] for more details.
As shown in [DGS3], the measure µα

~
has an asymptotic expansion in powers of

~ as ~ tends to zero, and the terms in that expansion are aespectrally determined;
the first term in the expansion is calculated explicitly. We will give an algorithm
to calculate terms in the expansion for toric manifolds. Our work is very much
in the spirit of [GW], in which the authors describe an analogous algorithm for
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semi-classical operators in R
n. Because toric manifolds admit an open dense set

with global coordinates, we will use essentially the same techniques as in [GW].
In particular, we will use this algorithm to calculate the second nontrivial term

in the asymptotic expansion for S2 with an S1-invariant metric. The first term of
the expansion was used in [DGS3] to show that, for S1-invariant metrics on S2,
when the symplectic potential is convex and even it is aespectrally determined.
Using the first and second terms, we are able to extend the result to single well
symplectic potentials. This is analogous to the situation in [GW], in which the
authors extended a result of Yves Colin de Verdière [CdV] on Schrödinger operators
to more general potentials.

We begin with the asymptotic expansion of µα
~
.

Theorem 2.2. Let X2n be a toric manifold with a T
n action ψ. Let X be endowed

with a toric Kähler metric whose symplectic potential is g. Let α ∈ R
n be generic.

Then the measure µα
~
defined in (2) has an asymptotic expansion in powers of ~

given by

~
−n
∑

k≥0

~
k
∑

l≤2k

∫

P×Rn

bαk,l(u, û)
1

(
√
−1)l

dlρ

dσl

(

ûtHess−1(g)û+ αt Hess(g)α
)

dudû;

the functions bαk,l are given by bαk (u, û, t) =
∑

l≤2k b
α
k,l(u, û)t

l where bαk (u, û, t) are

given recursively by bα0 (u, û, t) = 1 and

1√
−1

∂bα1
∂t

= 2t

n
∑

i,j=1

gij ûj

(

ût
∂Hess−1(g)

∂ui
û+ αt ∂Hess(g)

∂ui
α

)

,

1√
−1

∂bαk
∂t

=
2√
−1

n
∑

i,j=1

gij ûj

(

∂

∂ui
+
√
−1t

(

ût
∂Hess−1(g)

∂ui
û+ αt ∂Hess(g)

∂ui
α

))

bαk−1

−
n
∑

i,j=1

gij
(

∂

∂ui
+
√
−1t

(

ût
∂ Hess−1(g)

∂ui
û+ αt ∂ Hess(g)

∂ui
α

))

·

(

∂

∂uj
+
√
−1t

(

ût
∂Hess−1(g)

∂uj
û+ αt ∂Hess(g)

∂uj
α

))

bαk−2,

for all k > 1, and bαk (u, û, 0) = 0 for k ≥ 1. Here gij denote the entries of Hess(g)

and gij denote the entries of its inverse Hess−1(g).

The proof of this theorem is very similar to the proof of Theorem 5.1 in [DGS3].
Since we are treating the case of the Laplace operator for a toric Kähler metric,
rather than the more general case of a Riemannian metric on a manifold that admits
an isometric action of some torus as in [DGS3], we have global coordinates on an
open dense set and some simplifications occur. For the convenience of the reader
we will essentially give a complete proof. We need two main ingredients for this
proof.

Lemma 2.3 (Schwartz kernel asymptotic expansion). With the setup and notation

given above, ρ(~2△) is a semi-classical operator on X with Schwartz kernel Kρ,~.

In local coordinates Kρ,~ admits an asymptotic expansion in powers of ~:

Kρ,~(x,y) = (2π~)−2n
∑

k≥0

~
k
∑

l≤2k

∫

R2n

bk,l(y, ξ)
1

(
√
−1)l

dlρ

dσl
(|ξ|2g(x))e

√−1(x−y)·ξ
~ dξ,



6 EMILY B. DRYDEN, DIANA MACEDO, AND ROSA SENA-DIAS

where | · |2g(x) denotes the norm on the cotangent space over x given by the metric

associated to g and where bk,l are given as follows. Let bk be defined recursively by

b0(x, ξ, t) = 1, bk(x, ξ, 0) = 0 for k ≥ 1, and

1√
−1

∂bk
∂t

=
∑

a=(a1,...,a2n)∈(Z+)2n

|a|≥1

∑

j+|a|=k

Da
ξ (|ξ|2g)Qabj (3)

where

Da
ξ =

1

(
√
−1)|a|

∂|a|

∂ξa
and Qa =

1

a!

(

∂

∂x
+
√
−1t

∂|ξ|2g
∂x

)a

.

Then bk(y, ξ, t) =
∑

l≤2k bk,l(y, ξ)t
l.

See [GW] or [GS, Chap. 10] for more details and a proof of this expansion. The
other ingredient is a special case of the lemma of stationary phase.

Lemma 2.4 (Lemma of stationary quadratic phase). Let A be an n×n nonsingular

self-adjoint matrix, h ∈ R
+, and f ∈ C∞

0 (Rn). There is a complete asymptotic

expansion
∫

Rn

f(x)e
√

−1〈Ax,x〉
2h dx ∼ (2πh)

n
2 | detA|− 1

2 e
iπ
4 sgnA

(

exp

(

−
√
−1h

2
b(D)

)

f

)

(0)

where sgnA is the signature of A and b(D) = −∑ bij
∂

∂xi

∂
∂xj

with B = A−1.

We are now in a position to prove Theorem 2.2.

Proof. Let x = (u, v) be action-angle coordinates for X , i.e., u ∈ P is the moment
map image of x and v ∈ R

n/(2πZ)
n
= T

n. Let ξ = (û, v̂) be fiber coordinates on
T ∗
(u,v)X . We can write µα

~
(ρ) in terms of its Schwartz kernel as

µα
~
(ρ) =

∫

Tn

e−
√−1θ·α

~ tr(ψ(θ)∗ρ(~
2△))dθ

=

∫

Tn

e−
√

−1θ·α
~

∫

P×Tn

Kρ,~(ψ(θ)(u, v), (u, v))dudvdθ

=

∫

Tn

e−
√−1θ·α

~

∫

P×Tn

Kρ,~((u, v + θ), (u, v))dudvdθ.

By the Schwartz kernel asymptotic expansion, this expression is (2π~)−2n times

∑

k≥0

~
k
∑

l≤2k

∫

Tn×P×Tn×R2n

bk,l(u, v, û, v̂)
1

(
√
−1)l

dlρ

dσl
(|ξ|2g)e

√−1(v̂−α)·θ
~ dûdv̂dudvdθ

where bk,l are given by Lemma 2.3. Because the metric is torus invariant, the
Laplace operator is as well and this implies that the bk,l do not depend on v. By
changing variables so that ξ = (û, v̂ + α), our expression becomes (2π~)−2n times

∑

k≥0

~
k
∑

l≤2k

∫

Tn×P×Tn×R2n

bk,l(u, û, v̂ + α)
1

(
√
−1)l

dlρ

dσl
(|ξ|2g)e

√−1v̂·θ
~ dûdv̂dudvdθ.

For each (u, û, v), we are going to apply Lemma 2.4 to the above integral in (v̂, θ)
exactly as in [DGS3, Thm. 5.1]. We can take the matrix A in Lemma 2.4 to be

the 2n× 2n matrix given by A =

[

0 I
I 0

]

. We have | detA|− 1
2 = 1, sgnA = 0, and
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B =

[

0 I
I 0

]

. Although θ takes values in T
n and not in R

n as in Lemma 2.4, the

above integral will concentrate on the set where θ and v̂ are zero so that the θ’s
outside a square will not contribute mod O(~∞). Since the functions bk,l(u, û, v̂+α)
do not depend on θ, we see that applying b(D) to them gives 0. Thus we see that
µα

~
(ρ) is given mod O(~∞) by

µα
~
(ρ) = (2π~)−n

∑

k≥0

~
k
∑

l≤2k

∫

P×Tn×Rn

bk,l(u, û, α)
1

(
√
−1)l

dlρ

dσl
(|ξ|2g)dûdudv

where |ξ|2g is taken at points where ξ has coordinates (û, α). Since bk,l does not
depend on v and we may take the volume of Tn = R

n/(2πZ)n to be (2π)n, we write
this as

~
−n
∑

k≥0

~
k
∑

l≤2k

∫

P×Rn

bk,l(u, û, α)
1

(
√
−1)l

dlρ

dσl
(|ξ|2g)dudû.

At a point (u, v) the norm of the cotangent vector ξ = (û, v̂) is

|ξ|2g = |(û, v̂)|2g = ût Hess−1(g)û+ v̂t Hess(g)v̂,

and therefore when restricted to the set where v̂ = α this gives

|ξ|2g = ût Hess−1(g)û+ αt Hess(g)α. (4)

Set bα· (u, û) = b·(u, û, α). Because the functions bk(u, û, α) do not depend on v
or v̂, the formula for bk(u, û, α) gives

1√
−1

∂bαk
∂t

=
∑

a=(a1,...,an)∈(Z+)n

|a|≥1

∑

j+|a|=k

Da
û(|ξ|2g)Qabj (5)

where

Qa =
1

a!

(

∂

∂u
+
√
−1t

∂|ξ|2g
∂u

)a

and bαk (u, û, t) =
∑

l≤2k b
α
k,l(u, û)t

l. From formula (4) for |ξ|2g we see thatDa
û(|ξ|2g) =

Da
û(û

t Hess−1(g)û) is zero whenever |a| > 2 and

Da
û(|ξ|2g) =

{

2√
−1

∑n
j=1 g

ij ûj , if a has a 1 in position i and 0 elsewhere;

−2gij, if a has a 1 in positions i and j and 0 elsewhere.

Note also that if a has a 1 in position i and 0 elsewhere then

Qa =

(

∂

∂ui
+
√
−1t

(

ût
∂Hess−1(g)

∂ui
û+ αt ∂ Hess(g)

∂ui
α

))

,

and if a has a 1 in positions i and j and 0 elsewhere then

Qa =
1

2

(

∂

∂ui
+
√
−1t

(

ût
∂Hess−1(g)

∂ui
û+ αt ∂ Hess(g)

∂ui
α

))

·
(

∂

∂uj
+
√
−1t

(

ût
∂Hess−1(g)

∂uj
û+ αt ∂Hess(g)

∂uj
α

))

Substituting these expressions into (5) gives the expansion in Theorem 2.2. �

We now make Theorem 2.2 precise in the case of S2.
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Theorem 2.5. Let S2 be equipped with action-angle coordinates (x, θ), normal-

ized so that x ∈ (−1, 1). Consider an S1-invariant metric on S2 given in these

coordinates by

g̈dx ⊗ dx+
dθ ⊗ dθ

g̈
.

Let α 6= 0 be a real number. Then, for any compactly supported smooth function ρ
on R,

∫

[−1,1]×R

ρ(τ)dxdξ (6)

and

1

2

∫

[−1,1]×R

1

v

[

ξ2
(

v(2)

v2
− 2(v′)2

v3

)

− α2v(2)
]

ρ(2)(τ)dxdξ

−2

3

∫

[−1,1]×R

ξ2

v

[

ξ2
(

3(v′)2

v4
− v(2)

v3

)

+ α2

(

v(2)

v
− (v′)2

v2

)]

ρ(3)(τ)dxdξ

−1

3

∫

[−1,1]×R

(v′)2

v

(

− ξ
2

v2
+ α2

)2

ρ(3)(τ)dxdξ

−1

2

∫

[−1,1]×R

ξ2(v′)2

v2

(

− ξ
2

v2
+ α2

)2

ρ(4)(τ)dxdξ (7)

are aespectrally determined, where v = g̈ and τ = ξ2

v
+ α2v.

In [DGS3], the expression in (6) is shown to be aespectrally determined. Note
that the metric defined by v = g̈ is smooth at the poles if and only if v − 1

1−x2 is

smooth on [−1, 1].

Proof. We will show that the above quantities are the first two nonzero coefficients
in the asymptotic expansion of µα

~
(ρ). The result will follow from the fact that

the asymptotic expansion of µα
~
is aespectrally determined. By Theorem 2.2, the

spectral measure µα
~
can be expanded in powers of ~ as

~
−1
∑

k≥0

~
k
∑

l≤2k

∫

[−1,1]×R

bαk,l(x, ξ)
1

(
√
−1)l

dlρ

dσl

(

ξ2

v
+ α2v

)

dxdξ

with the functions bαk,l defined as in the theorem. Since bα0 (x, ξ, t) = 1 we see that
the leading order term above is simply

~
−1

∫

[−1,1]×R

ρ

(

α2v +
ξ2

v

)

dxdξ.

In our current setting, we note that

ût
∂Hess−1(g)

∂ui
û+ αt ∂Hess(g)

∂ui
α = v′

(

α2 − ξ2

v2

)

. (8)

Thus
∂bα1
∂t

= − 2tv′ξ

v
√
−1

(

α2 − ξ2

v2

)

,

so that

bα1,0 = bα1,1 = 0, bα1,2 = − v′ξ

v
√
−1

(

α2 − ξ2

v2

)

.
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We see that the 0th order term in the expansion of µα
~
is zero because

∫

R

v′ξ

v

(

α2 − ξ2

v2

)

d2ρ

dσ2

(

ξ2

v
+ α2v

)

dξ = 0 for all x ∈ (−1, 1).

Next we calculate b2. It follows from Theorem 3 and (8) that

1√
−1

∂bα2
∂t

=
2ξ√
−1v

(

∂

∂x
+
√
−1tv′

(

α2 − ξ2

v2

))

bα1

− 1

v

(

∂

∂x
+
√
−1tv′

(

α2 − ξ2

v2

))2

1

This gives

bα2 =
t2

2v

(

v′
(

α2 − ξ2

v2

))′

+

√
−1t3

3

(

(v′)2

v

(

α2 − ξ2

v2

)2

+
2ξ2

v

(

v′

v

(

α2 − ξ2

v2

))′)

− t4(v′)2ξ2

2v2

(

α2 − ξ2

v2

)2

Therefore the coefficient of ~ in the expansion of µα
~
is

∫

[−1,1]×R

[

1

2v

(

ξ2
(

v(2)

v2
− 2(v′)2

v3

)

− α2v(2)
)

d2ρ

dσ2

(

ξ2

v
+ α2v

)

− (v′)2

3v

(

α2 − ξ2

v2

)2
d3ρ

dσ3

(

ξ2

v
+ α2v

)

−2ξ2

3v

(

ξ2
(

−v
(2)

v3
+

3(v′)2

v4

)

+ α2

(

v(2)

v
− (v′)2

v2

))

d3ρ

dσ3

(

ξ2

v
+ α2v

)

− (v′)2ξ2

2v2

(

α2 − ξ2

v2

)2
d4ρ

dσ4

(

ξ2

v
+ α2v

)

]

dxdξ

and the result follows. �

3. Inverse spectral results for S1-invariant metrics on S2

In this section we prove Theorem 1.4. In [DGS3, Thm. 6.15], the first invariant
in Theorem 2.5 was used to show that when v is even and convex, the corresponding
S1-invariant metric on S2 is determined by the asymptotic equivariant spectrum.
Colin de Verdière [CdV] has shown that the spectrum of a Schrödinger operator
on R

2 with a single well potential essentially determines the potential. In [GW]
Guillemin and Wang use higher order semi-classical spectral invariants to generalize
this result to double wells. Our approach is analogous to the Guillemin-Wang
generalization of Colin de Verdière’s result. Using the new spectral invariant in
Theorem 2.5, we generalize Theorem 6.15 in [DGS3] to show that when v is a
single well, the asymptotic equivariant spectrum determines v and hence the metric.
Functions that are even and convex are clearly very special cases of single wells.

Suppose now that v is a single well, i.e., suppose it has a unique nondegenerate
minimum at x = 0, and that v is increasing for x positive and decreasing for x
negative. Let c 6= 0 be the minimum value of v at the point x = 0. Let α 6= 0 be a
fixed real number. We will show how to use invariants (6) and (7) to recover the
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function v(x) on the interval |x| < 1. Note that these invariants involve integrals

of the function ρ(τ) = ρ
(

ξ2

v(x) + α2v(x)
)

and its derivatives. To evaluate such an

integral using Fubini’s theorem over the region

{(x, ξ) : x ∈ [−1, 1],
ξ2

v(x)
+ α2v(x) < λ},

one needs to break up the integral into several integrals corresponding to regions

where the condition ξ2

v(x) +α2v(x) = λ defines ξ as a function of x. The single well

condition ensures that we only need to consider two regions; this is the only way
in which we use this condition. For 0 < λ < 1, we denote by Aλ

1 the region in the

first quadrant bounded by the curve ξ2

v(x) +α2v(x) = λ and by Aλ
2 the region in the

second quadrant bounded by the same curve. Thus Aλ
1 can be described as

Aλ
1 = {(x, ξ) : x ∈ [0, 1], v(x) <

λ

α2
, 0 < ξ <

√

λv(x) − α2v(x)2}

and Aλ
2 can be described as

Aλ
2 = {(x, ξ) : x ∈ [−1, 0], v(x) <

λ

α2
, 0 < ξ <

√

λv(x) − α2v(x)2}.
Note that both sets can be empty for a given λ. Since v is a single well with
minimum at 0, the regions Aλ

1 and Aλ
2 are, indeed, bounded. If we could choose ρλ

to be the characteristic function of [0, λ], we would see from invariant (6) that the
sum

∫

Aλ
1

dxdξ +

∫

Aλ
2

dxdξ (9)

would be aespectrally determined. However, such a ρλ is not smooth, so to make
this precise we must consider ρλ as the limit of an appropriate sequence of functions
that equal the characteristic function of [0, λ] on larger and larger subsets of [0, λ].

Let x = f1(s) be the inverse function of s = v(x), for x ∈ (0, 1). Then
∫

Aλ
1

dxdξ =

∫ f1( λ

α2 )

0

∫

√
λv−α2v2

0

dξdx

=

∫ f1( λ

α2 )

0

√

λv(x) − α2v(x)2dx

=

∫ λ

α2

c

√

λs− α2s2
df1
ds

ds. (10)

Analogously, we define x = f2(s) to be the inverse function of s = v(−x), for
x ∈ (0, 1). Then the same calculations give

∫

Aλ
2

dxdξ =

∫ λ

α2

c

√

λs− α2s2
df2
ds

ds. (11)

This implies in particular that c is aespectrally determined: if λ/α2 < c, then
integral (9) is zero, whereas it is non-zero if λ/α2 > c.

Now set S = s− c and β = λ
α2 − c. Substituting the expressions in (10) and (11)

into (9), we see that the following quantity is aespectrally determined for all β:
∫ β

0

√

β − S
√
S + c

(

(

df1
dS

+
df2
dS

) ∣

∣

∣

∣

S+c

)

dS. (12)
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The function in (12) can be viewed as the Abel transform of another function, as we
now explain. Recalling that the fractional integration operation of Abel is defined
as

Jag(s) =
1

Γ(a)

∫ s

0

(s− ν)a−1g(ν)dν,

for a > 0, we observe that (12) corresponds to

Γ

(

3

2

)

J
3
2

(

√
S + c

(

(

df1
dS

+
df2
dS

) ∣

∣

∣

∣

S+c

))

(β).

As the Abel transform of a function determines the function, we may recover the

quantity
√
S + c

(

(

df1
dS

+ df2
dS

)

∣

∣

∣

∣

S+c

)

and hence df1
dS

+ df2
dS

as a function of s. For

more on the Abel transform and its invertibility see [GS, §10.6].
Next we integrate the first and last terms of invariant (7). Integration by parts

with respect to ξ gives

1

2

∫

[−1,1]×R

1

v

[

ξ2
(

v(2)

v2
− 2(v′)2

v3

)

− α2v(2)
]

ρ(2)(τ)dxdξ

=
1

2

∫

[−1,1]×R

1

v

∂

∂ξ

[

ξ3

3

(

v(2)

v2
− 2(v′)2

v3

)

− ξα2v(2)
]

ρ(2)(τ)dxdξ

= −1

2

∫

[−1,1]×R

[

2ξ4

3v2

(

v(2)

v2
− 2(v′)2

v3

)

− 2ξ2α2v(2)

v2

]

ρ(3)(τ)dxdξ,

and

−1

2

∫

[−1,1]×R

ξ2(v′)2

v2

(

− ξ
2

v2
+ α2

)2

ρ(4)(τ)dxdξ

= −1

2

∫

[−1,1]×R

ξ(v′)2

2v

(

− ξ
2

v2
+ α2

)2
∂(ρ(3)(τ))

∂ξ
dxdξ

=
1

2

∫

[−1,1]×R

[

5ξ4(v′)2

2v5
− 3ξ2α2(v′)2

v3
+
α4(v′)2

2v

]

ρ(3)(τ)dxdξ.

Note that we do not pick up boundary terms because ρ is compactly supported.
Combining these new expressions for the first and last terms of (7) with the middle
terms of (7), we conclude that

∫

[−1,1]×R

[

−1

2

(

2ξ4

3v2

(

v(2)

v2
− 2(v′)2

v3

)

− 2α2v(2)ξ2

v2

)

−2ξ2

3v

(

ξ2
(

3(v′)2

v4
− v(2)

v3

)

+ α2

(

v(2)

v
− (v′)2

v2

))

− (v′)2

3v

(

− ξ
2

v2
+ α2

)2

+
(v′)2

2v

(

5ξ4

2v4
− 3ξ2α2

v2
+
α4

2

)]

ρ(3)(τ)dxdξ (13)

is aespectrally determined for all α and all compactly supported ρ.



12 EMILY B. DRYDEN, DIANA MACEDO, AND ROSA SENA-DIAS

By taking the limit of an appropriate sequence of functions that equal ρ on larger
and larger sets, we see that we can make ρΛ(τ) = e−Λτ in (13). It follows that

∫

[−1,1]×R

[

−1

2

(

2ξ4

3v2

(

v(2)

v2
− 2(v′)2

v3

)

− 2α2v(2)ξ2

v2

)

−2ξ2

3v

(

ξ2
(

3(v′)2

v4
− v(2)

v3

)

+ α2

(

v(2)

v
− (v′)2

v2

))

− (v′)2

3v

(

− ξ
2

v2
+ α2

)2

+
(v′)2

2v

(

5ξ4

2v4
− 3ξ2α2

v2
+
α4

2

)]

Λ3e−Λτdxdξ

is aespectrally determined for all α and Λ; thus

∫

[−1,1]×R

[

−1

2

(

2ξ4

3v2

(

v(2)

v2
− 2(v′)2

v3

)

− 2α2v(2)ξ2

v2

)

−2ξ2

3v

(

ξ2
(

3(v′)2

v4
− v(2)

v3

)

+ α2

(

v(2)

v
− (v′)2

v2

))

− (v′)2

3v

(

− ξ
2

v2
+ α2

)2

+
(v′)2

2v

(

5ξ4

2v4
− 3ξ2α2

v2
+
α4

2

)]

e−Λτdxdξ

is aespectrally determined for all α and Λ. We may approximate the characteristic
function of [0, λ] by a linear combination of functions of the form e−Λτ where Λ
may be complex, implying that

∫

Aλ
1+Aλ

2

[

−1

2

(

2ξ4

3v2

(

v(2)

v2
− 2(v′)2

v3

)

− 2α2v(2)ξ2

v2

)

−2ξ2

3v

(

ξ2
(

3(v′)2

v4
− v(2)

v3

)

+ α2

(

v(2)

v
− (v′)2

v2

))

− (v′)2

3v

(

− ξ
2

v2
+ α2

)2

+
(v′)2

2v

(

5ξ4

2v4
− 3ξ2α2

v2
+
α4

2

)]

dxdξ (14)

is aespectrally determined for all α and λ.
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We will treat the integral over Aλ
1 first. By integrating the part of expression

(14) concerning the region Aλ
1 with respect to ξ, we obtain

−
∫ f1( λ

α2 )

0

1

2

[

2ξ5

15v2

(

v(2)

v2
− 2(v′)2

v3

)

− 2α2v(2)ξ3

3v2

]

√
λv−α2v2

0

dx

−
∫ f1( λ

α2 )

0

2

3

[

ξ5

5v

(

3(v′)2

v4
− v(2)

v3

)

+
ξ3α2

3v

(

v(2)

v
− (v′)2

v2

)]

√
λv−α2v2

0

dx

−
∫ f1( λ

α2 )

0

1

3

[

ξ5(v′)2

5v5
− 2ξ3α2(v′)2

3v3
+

(v′)2α4ξ

v

]

√
λv−α2v2

0

dx

+

∫ f1( λ

α2 )

0

1

2

[

ξ5(v′)2

2v5
− ξ3α2(v′)2

v3
+
α4(v′)2ξ

2v

]

√
λv−α2v2

0

dx.

After rearranging terms, we get

∫ f1( λ

α2 )

0

[

−α
4

12

(v′)2ξ

v
+
α2

9

ξ3v(2)

v2
− α2

18

ξ3(v′)2

v3
+

1

15

ξ5v(2)

v4
− 1

12

ξ5(v′)2

v5

]

√
λv−α2v2

0

dx,

or equivalently,

∫ f1( λ

α2 )

0

√

λv − α2v2
(

−α
4

9

(v′)2

v
− λα2

45

v(2)

v
+
λα2

9

(v′)2

v2

+
λ2

15

v(2)

v2
− 2α4v(2)

45
− λ2

12

(v′)2

v3

)

dx. (15)

Recalling that x = f1(s) is the inverse function of s = v(x) for x ∈ (0, 1), we
have

v′(f1(s)) =
1

f ′
1(s)

,

v′′(f1(s)) = − f ′′
1 (s)

(f ′
1(s))

3
.

Expression (15) can now be rewritten as

∫ λ

α2

c

√

λ− α2s






−α

4

9

1√
s

1
df1
ds

+
λα2

45

1√
s

d2f1
ds2

(

df1
ds

)2 +
λα2

9

1

s
√
s

1
df1
ds

−λ
2

15

1

s
√
s

d2f1
ds2

(

df1
ds

)2 +
2α4

45

√
s

d2f1
ds2

(

df1
ds

)2 − λ2

12

1

s2
√
s

1
df1
ds






ds

=

∫ λ

α2

c

√

λ− α2s

[

(

−α
4

9

1√
s
+
λα2

9

1

s
√
s
− λ2

12

1

s2
√
s

)

1
df1
ds

+

(

λα2

45

1√
s
− λ2

15

1

s
√
s
+

2α4

45

√
s

) d2f1
ds2

(

df1
ds

)2






ds. (16)
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Next we make a change of variable, setting β = λ
α2 − c and S = s − c, so that

(16) can be rewritten as

α5

∫ β

0

√

β − S

[

(

− 1

9
√
S + c

+
β + c

9(S + c)
√
S + c

− (β + c)2

12(S + c)2
√
S + c

)

(

1
df1
dS

)

∣

∣

∣

∣

S+c

+

(

β + c

45
√
S + c

− (β + c)2

15(S + c)
√
S + c

+
2
√
S + c

45

)







d2f1
dS2

(

df1
dS

)2







∣

∣

∣

∣

S+c






dS.

We repeat this calculation for Aλ
2 and we conclude that the second order spectral

invariant (14) is given by

α5

∫ β

0

√

β − S

[(

− 1

9
√
S + c

+
β + c

9(S + c)
√
S + c

− (β + c)2

12(S + c)2
√
S + c

)

(

1
df1
dS

+
1
df2
dS

)

∣

∣

∣

∣

S+c

+

(

β + c

45
√
S + c

− (β + c)2

15(S + c)
√
S + c

+
2
√
S + c

45

)







d2f1
dS2

(

df1
dS

)2 +
d2f2
dS2

(

df2
dS

)2







∣

∣

∣

∣

S+c






dS.

Using Abel’s fractional integration, we observe that the preceding expression cor-
responds to

Γ

(

3

2

)

J
3
2

[(

− 1

9
√
S + c

+
β + c

9(S + c)
√
S + c

− (β + c)2

12(S + c)2
√
S + c

)

(

1
df1
dS

+
1
df2
dS

)

∣

∣

∣

∣

S+c

+

(

β + c

45
√
S + c

− (β + c)2

15(S + c)
√
S + c

+
2
√
S + c

45

)







d2f1
dS2

(

df1
dS

)2 +
d2f2
dS2

(

df2
dS

)2







∣

∣

∣

∣

S+c






(β).

As a function is uniquely determined by its Abel transform, we recover the quantity
[

(

− 1

9
√
S + c

+
β + c

9(S + c)
√
S + c

− (β + c)2

12(S + c)2
√
S + c

)

(

1
df1
dS

+
1
df2
dS

)

∣

∣

∣

∣

S+c

+

(

β + c

45
√
S + c

− (β + c)2

15(S + c)
√
S + c

+
2
√
S + c

45

)







d2f1
dS2

(

df1
dS

)2 +
d2f2
dS2

(

df2
dS

)2







∣

∣

∣

∣

S+c






.

We rewrite this quantity as

Aβ,c(S)

(

1
df1
dS

+
1
df2
dS

)

+Bβ,c(S)
d

dS

(

1
df1
dS

+
1
df2
dS

)

, (17)

where we set

Aβ,c(S) = − 1

9
√
S + c

+
β + c

9(S + c)
√
S + c

− (β + c)2

12(S + c)2
√
S + c
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and

Bβ,c(S) = − β + c

45
√
S + c

+
(β + c)2

15(S + c)
√
S + c

− 2
√
S + c

45
.

Our goal is to show that the function (17) completely determines

(

1
df1
dS

+ 1
df2
dS

) ∣

∣

∣

∣

S+c

as this will imply that 1
df1
dS

+ 1
df2
dS

itself is determined. Since v has a minimum at 0,

we have v′(0) = 0 and the derivatives of f1 and f2 tend to +∞ as s tends to c, i.e.,
as S tends to 0. This implies that

(

1
df1
dS

+
1
df2
dS

)

∣

∣

∣

∣

S+c

(0) =

(

1
df1
dS

+
1
df2
dS

)

∣

∣

∣

∣

s=c

= 0.

We want to show that the initial value ODE
{

Aβ,c(S)F (S) +Bβ,c(S)F
′(S) = K(S), S ∈ [0, β]

F (0) = 0

has at most one solution, for any given function K. LetM and N be two solutions.
Then M −N = f satisfies

{

Aβ,c(S)f(S) +Bβ,c(S)f
′(S) = 0, S ∈ [0, β]

f(0) = 0.

We show that f vanishes identically. Explicit integration of this first-order linear
equation gives

f(S) = Ce
−

∫
S

0

Aβ,c(τ)

Bβ,c(τ)
dτ
,

for some constant C. One can check that

Aβ,c(S) = − (S + c)2 − (S + c)(β + c) + 3
4 (β + c)2

9(S + c)2
√
S + c

and

Bβ,c(S) =
(β − S)(2S + 3β + 5c)

45(S + c)
√
S + c

so that
A

B
= −5

(

(S + c)2 − (S + c)(β + c) + 3
4 (β + c)2

)

(S + c)(β − S)(2S + 3β + 5c)
,

which we can rewrite as

A

B
=

q1
S + c

+
q2

β − S
+

q3
2S + 3β + 5c

for some constants q1, q2, q3. Thus
∫ S

0

Aβ,c(τ)

Bβ,c(τ)
dτ = q1 log(S + c)−q2 log(β − S) +

q3
2
log(2S + 3β + 5c),

and hence

f(S) = C(S + c)−q1(β − S)q2(2S + 3β + 5c)−
q3
2 .

Because f(0) = 0, this forces C = 0 and therefore f is identically zero as claimed.
We conclude that

1
df1
dS

+
1
df2
dS
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is aespectrally determined. Recall that we used a straightforward Abel transform
argument to show that

df1
dS

+
df2
dS

is aespectrally determined. But if we know 1
p
+ 1

q
= p+q

pq
and we know p+ q, then

we clearly know pq. This in turn implies that we know |p − q|, since (p − q)2 =

(p+ q)2−4pq. Thus we know p and q, up to order. Hence the functions df1
dS

and df2
dS

are aespectrally determined, and we recover the functions f1 and f2 up to order,
i.e., up to knowing which function is the inverse of v in which quadrant. Therefore
the function v(x) on the interval |x| < 1 is aespectrally determined up to reversing
the x-coordinate on [−1, 1]. Note that this reversal gives rise to an isometric metric
on S2, so that we have proved Theorem 1.4.
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