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AFFINE PROCESSES ONRT x R" AND MULTIPARAMETER TIME
CHANGES

MA. EMILIA CABALLERO, JOSE LUIS PEREZ GARMENDIA, AND GERONIMO URIBE BRAVO

ABSTRACT. We presenta time change construction of affine processestate-space
RT x R". These processes were systematically studie®#5[3 since they contain
interesting classes of processes such as Lévy processéisuous branching processes
with immigration, and of the Ornstein-Uhlenbeck type. Tlastruction is based on
a (basically) continuous functional of a multidimensiohéby process which implies
that limit theorems for Lévy processes (both almost sui iardistribution) can be
inherited to affine processes. The construction can bepirgerd as a multiparameter
time change scheme or as a (random) ordinary differentisdaon driven by discontin-
uous functions. In particular, we propose approximatidresees for affine processes
based on the Euler method for solving the associated diseomts ODEs, which are
shown to converge.

1. INTRODUCTION

Affine processes on the state-space R x R" are a class of processes introduced in
[DFSO0J for two reasons. First, they contain important classes afkdv processes like
Lévy processes, (multi-type) continuous branching psees with immigration, and of
the Ornstein-Uhlenbeck type. That is, they contain the &meintal examples of models
in (stochastic) population dynamics (as lren0g) and mathematical finance (as has
been argued inJFS0J and [Kal06g]). Second, they are analytically tractable. Indeed,
they have been shown to be parametrized in a manner simila&wy processes and
one can access their finite dimensional distributions byisglan ordinary differential
equation of the Riccati type (cfDFS03).

To define them, lIeZ = (Z;,t > 0) denote a stochastic process on a measurable space
(Q,.#7) whose paths are cadlag functions frgdneo) to E. The canonical filtration of
Z will be denoted%,°. Suppose that the measurable space is equipped with a family
(sub)probability measurd®,,z € E) such that under eadh, the procesg starts atz.
Furthermore, we assume thats stochastically continuous unde;s for anyz € E and
that these measures constitute a Markov family:

Ez( f(Ziys) |- #s) =Rf(Zs) where Rf(z) =E;(f(Z)).
Definition. The Markov family(P,,z< E) is affine if
(1) E,(e"%) = o(t,u) e ¥tV
for all u e R™ x iR", whereR™ denotes the set of elements®f whose coordinates

are negative.
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These processes are part of a larger one of so-called afficegses on general state-
spaces and much recent work has been aimed at charactehesegMarkov processes,
for example by proving their Feller property and the preésen of their infinitesimal
generator. This work started iDFS0J for regular affine processes oB and was
later extended inHRST11]], [KRST13 and [CT13 by proving that regularity already
follows from stochastic continuity and also by consideringre general state-spaces
than we do here.

Our main result aims at giving a pathwise construction ohaffirocesses in terms of
a multiparameter time change of Lévy processes, which @msidered as more basic
building blocks.

Theorem 1.Let X!,.... XMand Y be independenéky processes dR™". We suppose
that the first m coordinates of Y are subordinators, thatxas no negative jumps and
that X"J is a subordinator forl <i, j < m and i# j. Furthermore, in the Gaussian part
of X', the i-th coordinate is assumed independent of coordimated up to n.

Let 3 be an nx n real matrix. Then, for any & E there exists a unique solution Z to

@ A-zeshixiedaw o 1<j<m
ZM =z T XM oG AT S L GG 1< <n
with
: t
ci= [ Zas
0
whose first m coordinates are non-negativePtdenotes the law of Z, theiP;,z€ E)

is an affine Markov family ot and every affine Markov familg is obtained by this
construction.

Note that the non-negative coordinates are more difficutiatadle. Indeed, the non-
negative coordinates alone constitute an affine procebswt0, which is then called a
multitype continuous-state branching process with imatign (CBI) introduced (with-
out immigration and withm = 2) in [Wat69. Once we analyze the case= 0, we will
then get the general case by solving a linear differentimb&gn driven by the solution
whenn = 0. These real-valued coordinates constitute the Orn&talenbeck part of
the process, which is now not only driven by a Lévy processatso by a sum of time
changed Lévy processes.

Equation @) represents a multiparameter time change equation prdpoggur80|
to generalize the classical time change construction okMaprocesses of Volkonskii
(cf. [Vol58], [Dyn65 Vol 1, Ch 10]). A multiparameter time change representatio
of affine processes was first proposed (in a weak sens&ildf]; in that paper, the
guestion of whether the affine process was adapted to thatibitr of the Lévy pro-
cess was left open. Recently, there have been a number dtkresncerning this time
change representation. For example, the PhD th&a® 14 (the relevant chapter is
found in [GT14]) proves existence (under additional but minor technisaluanptions)
for a time change representation as in Theoter discrete space version of Theorem
1 has also been recently studied. Indeed, a construction bdris@/atson processes
(without immigration) in terms of multiparameter time clgas of random walks is
found in [CL13] in discrete time and@hal4 in continuous time. More generally, the
connection between time changes and changes of measuresaayoiication to math-
ematical finance is explored iBNS1d. The main contribution of our work is that we
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prove uniqueness of the pathwise representatioR)irfas well as for an accompany-
ing inequality). Uniqueness is the main tool in the forthaogrstability analysis of the
pathwise representation.

We now state some continuity properties of the system of teapg (). Consider
a sequence, indexed by> 1, of m+ 1 stochastic processe&- ..., X™ Y which
satisfy the upcoming hypothedtit of p. 6. Consider also any sequence of numbers
0 < gy — 0. The numbe; is interpreted as the discretization parameter to be used
in an Euler type scheme as follows. When> 0, letZ!! andC!', 1< j < m+n, be
defined recursively by means of

+

jl I | |
(3) ci' =0, Z)\ = and C o(ki1) = =chi+zh\a

m

i i il oyl
.Z\Z' X0 G+ Yok
i=

when 1< j < m, while for 1< j < nwe only change the definition @' to

(4) m+]|_z|+zlx|m+jl 0k+Ym+JI Zlcg?flﬁui

Whengj = 0, the forthcoming Lemma& asserts that?), when driven byX"-! yi,
admits a (global) solution (which could, in principle, eag€). In that case, we let
ZI' CI! be any such solution. We recall in Subsectiofithe definitions of the Skoro-
hod J; topology and of the unifornd; topology.

Theorem 2. Let X!,...,X™and Y be as in Theorem Let Z C be the unique processes
satisfying(2).

Suppose that X', ..., X™"! y"! are stochastic processes which satisfy hypotHésis
of p. 6 and such that X' converges to X (and Y! converges to Y) as+ «. (The
convergence can be weak or almost surely in the Skorohtmpdlogy wher{2) has no
explosion and in the uniformyJopology in case of explosion. ) Assume tiﬂat—zzj.

If z+!, C! are any processes satisfyifig) and (4) whenag; > 0 or (2) with respect
to the driving processes !, ..., X™" Y-l wheng; = 0 then ¢ — C (with respect
to the topology of uniform convergence on compact sets witene is no explosion
and pointwise in case of explosion) antf Zs Z' for 1 < i < m (with respect to the
Skorohod d topology when there is no explosion and in the unifogrtopology in case
of explosion) as I «. (The convergence will be either weak or strong depending on
the type of convergence of thé'Xand Y .)

Note that the above limit theorem is either weak or strong¢clviollows from con-
tinuity properties of the multiparameter time change eguatexplored in Sectiof.
Indeed, we believe this is one strength of the time changeeseptation versus, for
example, the SDE representation which is found in the onesdsional case irHL10]
and [Li14]. Indeed, even in the case of continuous sample paths, ok that solving
SDEs is a discontinuous operation of the driving proces8asanifestation of this is
found in Wong-Zakai type phenomena (discoveredW¥p5]) and depending on the
type of approximation to the driving processes one obtamgd to different SDES, as
has been argued irFrH14]. On the other hand, Theorefhdoes not depend on how
one approximates the driving processes. We are not adugcétiough, the use of one
representation over another. The constructioriLof4] is useful in the genealogical in-
terpretation of continuous branching processes, coristgudirectly some of the flows
in [BLGO3J].
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From Theoren? we deduce a limit theorem concerning multi-type Galtonatat
processes stated as Corolldryin the one-dimensional case, Corolldrincludes limit
theorems found inGri74], [LiI06] and [CPGUB13. The multidimensional case has of-
ten been studied in the literature when the limit proces®igiouous, as inJMa§q.
We state a version without immigration, just to illustrake tkind of statement one
can achieve as well as the technique. The technique can Ipedd® the case of
immigration as in Corollary 7 of fPGUB13. Let (X%!,1 <i < m) be independent
d-dimensional random walks. Suppose that! has jumps irZ greater than-1 and
that otherwise the coordinates have jumpNinLet k' = (ki,....K,) € N™ be a se-
quence of starting states and define recursively the sega@he= (Cl',1< j<m)
andZ' = (z,1< j <m) by

. m « . .
Co=0. =K. Zy;=K+3 XoGl and Chy=CriZyy
i=

It is easy to see that for eathZ' is a multitype Galton-Watson process such that the
quantity of descendants of tygeof an individual of typei has the same law ag"}!
wheni # j and the law ofX""!' +-1 in the remaining case. However)t is extended

by constancy on intervals of the form,n+ 1) with n € N, we see tha€' is the Euler
type approximation of span 1 applied X that we have just introduced a@d is the
right-hand derivative of',

Corollary 1. Let X4, 1 <i < m be independent d-dimensional random walks. Sup-
pose that X! has jumps inZ greater than—1 that otherwise the coordinates have
jumps inN. _

Assume that for each i ifil,...,m} there are scaling constants and { for | > 1

such that
Bl t>01<j<m
o} Mt

converges in Skorohod space (either almost surely or imidigton) to a Levy process
X! Furthermore, a— o, b{ /ay — o and K is such that kg /b} — Z.
Then, the scaled Galton-Watson processes

a il .
(EZ$JZQ1§J§WD
started from(k,j,l < j < m) converge in Skorohod space (either almost surely or in
distribution) to the uniqueCB process Z started from z and constructed from X and
Y =0in Theoreml.

We end this section with an application of Corolldry Note that the different pro-
cesses in Corollary have scalings that have to be adequately balanced in ordbtdm
a limit (with non-trivial reproduction and immigration cgronents). In order to exem-
plify how this could be done, let us start by considering tiaefework of Theorem 4.2.2
of [JM84, giving a limit theorem for nearly critical multitype Galh-Watson processes
under finite-variance assumptions. Indeed, consider aeseguof multitype Galton-
Watson process&s! such thap'! is the law of the offspring of an individual of type
We then define the mean matik by means of
M! = > K P (k).
keNm



AFFINE PROCESSES ORT x R" AND MULTIPARAMETER TIME CHANGES 5

Assume thaM' = Id +C; /I whereC; — C asl — «. Consider also the variance matrix
o' given by

ol — VRS v
] — Z(kl Ml,j) p (k) :

Supose thabi'J — 0ili—j asl — o« and that the following Lindeberg condition holds:

ol VPl
KM(K Ml;) P () = 0

as| — . Recall our construction of such a process in terms of randaiths X'

fori=1,...,m. From our hypotheses, it follows thxﬁz"j'/l converges t@;B' 4 C;1d
whereB' is a standard Brownian motion. Indeed, the convergence efdimensional
distributions is deduced from the Lindeberg-Feller cdrinait theorem. Because of
independence and stationarity of the increments this asphe convergence of finite-

dimensional distributions and tightness is easily deddiced the Aldous criterion. For

i # |, one sees thé(l'z’!"/l — Cj jld asl — . Indeed, it suffices again to establish con-
vergence of one-dimensional distributions which follownfr Chebyshev’s inequality.
Tightness again follows from the Aldous criterion. Hencer@lary 1 allows us to con-
clude that ifZ},/I — zthenZl',/I converges weakly to a continuous branching pro@ess
with continuous sample paths. One can then use the maresgakociated t&, as in
[Kur80Q], to see that the generator Bfis given by

m - ~2 52

i= 4 1<i,)<m J
This fact can also be deduced from the infinitesimal parammete that are introduced
in Section2 and from the proof of Theorem

Our work continues and extends the one-dimensional sttuabvered inCPGUB13.
There are however, important differences with that workstrof all, the discussion of
uniqueness toZ) now relies on the concept of (lack of) spontaneous germgrafl his
is to be contrasted to the previous analysis based on takwegses. The multiple time
changes make this one-dimensional approach unfeasiblehéaother hand, we also
take the point of view of multiparameter time changes frétarB(], providing a very
concrete (but general) example of its applicability. Ttas ked to several simplifications
when proving that solutions t@) are affine processes.

The paper is organized as follows. We first consider a detestic framework for
equation 2) whenn = 0 and analyze existence, unigueness, and basic measyrabili
guestions. This is done in SectiGn We then undertake the proof of Theorénwhen
n = 0, which reduces basically to establishing the Markov prigpand constructing
relevant martingales, in Sectich The case of general is taken up in Sectiofs.
Finally, we pass to the stability of equati@nwhich contains the proofs of Theorein
and Corollaryl in Section6.

2. PRELIMINARIES ON AFFINE PROCESSES

Let Z be an affine process with lawB,,z<€ E). Let ® andy be defined as in Equa-
tion (1); applying the Markov property, we get the semi-flow propert

(5) Yt+su)=yY(syYt,u) and P(t+su)=dt,u)d(s Y(t,u)).
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From Theorem 5.1 inHRST11]] or Theorem 3.3 iniKRST13, it is known that the
following derivatives exist and are continuous as a fumcabu:

17}
F(u)= Ed)(t u) L and R(u) = a5 (t,u) .
From the semi-flow property, we deduce the so called Riccaiagons
J 7}
(6) Eq)a?u) = qJ(t,U)F(LII(t,U)) and Ew(hu) = R(L,U(t,U))

with the initial conditions
®0,u)=1 and Y(O,u)=u.

If ® were non-zero ang were continuous and satisfiedd = ®, we would obtain the
more familiar equation

7}
St = F(y(t.u)
which gives

0.0 = [ Fps)ds

Furthermore, Theorem 2.7 iDFS0J asserts thaF andR have the following very
specific form: ifX,...,XMandY are Lévy processes satisfying the conditions of The-
orem1thenF andR= (Ry,...,Rnn) are the unique continuous functions such that

(7) W =E(M) and &Y= E(e”’q)

forlgigmwhileform-i—lgi<nweset

Rmyi(u Z Bi,jUmy |-

Furthermore, Section 6 oDfFS0J discusses the (global) existence and uniqueness
of the generalized Riccati equations 6J.(

3. PATHWISE ANALYSIS OF THE MULTIDIMENSIONAL TIME CHANGE EQUATION

Following [CPGUB13, we begin by considering a deterministic system of time
change equations appearing in Theoreimthe case of non-negative processes- Q).
Considerm(m+ 1) cadlag functions labeleif'J, 1 <i,j <m} and{g!,1< j <m}.
These functions satisfy the following reqwrements
H1: f''J has no negative jumpsiit= j and is non-decreasing otherwise.
H2: g is non-decreasing.
H3: g'(0)+3y™, f"1(0) >0for1< j<m.

The above hypotheses are collectively dendied

We seek a solution to the following system of equations feraadlag functior =
(ht,...,nM):

m . . t
8) hi(t)= Zlf' Jod(t)+gl(t) forl<j<m  where cl(t) :/ hi(s) ds
i= 0
This system can also be thought of as an ordinary differeetjaation forc when one
notes that! is the right-hand derivative afl. With this interpretation, we might want
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to use other initial conditions far rather than only zero. This amounts to shifting the
functionsf"!; note however, that the shifts must still satisfg.

3.1. A basic monotonicity lemma and existence Our approach to the study of)(is
based on its monotonicity properties. We begin with a sinaplé useful case of this
and postpone an elaboration of this idea which will be ugefobtain uniqueness.

Lemma 1. Suppose that we have two sets of functiors @', gi) andP = ("I, §)
satisfying hypothesill. Assume that'fl < fI:) and g < g/ and that additionally, for
every je {1,...,m}, either f) < f""J or g < §'. If h andh are non-negative functions
that satisfy(8) driven by P and® respectively then € €.

Proof. Let
P=(f\.gl,1<i,j<m) and P=(f") g 1<i,j<m)
be a system of functions satisfying the assumptions of eomie anch, hthe associated
non-negative solutions t@). For anye > 0 and anya > 1, definec! (t) = ¢l (e + at).
Hencet! has a cadlag right-hand derivatizbgiven byh! (t) = ahi (e + at). We then
define
T=inf{t>0:c(t) > () for somej}
as well as the set of indicesj € {1,...,m} such th.atcj exqeedfj strictly at some
point of any right neighbourhood at If j € J thenc!(t) =c!(1) while ¢'(1) <T'(1)
fori +# j, so that alsof"J oc'(1) < ") oT'(1) fori # j. We deduce the following for
jed:
0<hi(n)=5 flocd(r)+d (1)

<y flod(n)+d(1)

(Note that the right-hand side of the first strict inequatigyinot be zero, which justifies
the second strict inequality.) We deduce tbatemains belowe! in a right neighbour-
hood of T which contradicts the definitions afandJ. We deduce that! <¢T! and,
letting o go to 1, thatt! < ¢&/. O

We now tackle existence foB) in the case when onl§)},1 < j < mare not piece-
wise constant. The proof will be based on the observatiohuhder the piecewise
constant hypotheses, the systeh i one-dimensional on adequate intervals. The
piecewise constant case will allow us to prove existencédpm general through the
monotonicity proved in Lemma.

Lemma 2. Let { fl:} g}, 1 <i, j < m} satisfyH and suppose that'f and d are piece-
wise constantit <i, j <mand i# j. Then, there exists asolution:h{hJ 1< < m}
to (8). This solution exists on an intervl, 7) and ¢ _ = o for some j.

The timer is termed the explosion time of
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Remark 1. For the one-dimensional case, existence follows from Téradrin CPGUB13
which asserts that the problem IVR0,x) consisting of a finding a functioa with a
right-hand derivativé which satisfies

IVP(f,0,x): h=foc with ¢(0)=x

admits, for anyx > 0 and any cadlag functioh such thatf has no negative jumps, a
unique solution which lacks spontaneous generation. Wlien= 0, the only solution
lacking spontaneous generation is the funcgr) = x. When f(x) > 0, the unique
solution can be constructed by a Lamperti type transfoionaibtained by first making
zero absorbing afteg formally

T —inf{t>x:f(t)=0} and f”(t):{:)(t) EZ[Troo]‘

We then definé on [x, ) by means of

. y 1

i(y) . T dt.
Note that is strictly increasing oifix, T) and infinite on(T, ). Then, letc be the right-
continuous inverse af(in the sense of Lemma 0.4.8 d®Y99]). Note thatc is strictly
increasing orf0,i(T—)] and constant ofi (T—), ] and by definitionc(0) = x. Then,
since the right-hand derivative béxists and equals/X, thenc also admits a right-hand
derivative (on[0,i(T—))), sayh, and we havér = 1/(1/f oi~!) = f oc. The functionc
so constructed fronf is called the Lamperti transform dfabsorbed at its first zero after
x. Note thatc(e) = T. In the one-dimensional setting, wh¥nis a spectrally positive
Lévy process, Proposition 2 o£PGUB13 shows that there is a unique solutiGrio
IVP(x+ X,0,0) (with right-hand derivativ&) which has zero as an absorbing state; if
T denotes the hitting time of zero af+ X, X equalsX stopped afl, thenC is also
the unique solution IVEX+ X, 0,0), so thatC., = T. This one dimensional result is
important in our proof of uniqueness of solutions’tdSince stopping a cadlag process
at a stopping time and looking at a cadlag process at a maridloe are measurable
transformations, we see that the Lamperti transformasiomaasurable on the Skorohod
space of cadlag trajectories with tbefield generated by projections. This would hold
even if we take the initial valueto be random and measurable.

Proof. Suppose first that
fi,j:w i j:00 i1
k;Xk ! 16" 9 kzlyk [te_1.t0)’
Wherex:(’i1 < x:(‘ ifi#j,0= tg’j < til’j <-.--,the sequencl,%j,k > 0 has no accumula-
tion points (similar assumptions hold fg}) and additionally, for eacly
£14(0) + ;xil’j +y,>0
I#]
so that assumptiortd hold. LetT;; (resp. Tj) denote the set of change points of the
functionsf"! (resp.g'):

Ti,j:{t:(’jiogk} and Tj:{td:ogk}.
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Let 1o = 0 and, for anyj = 1,...,m, let 6{ be the unique solution of the problem
IVP(fll,O, O), where the functiorf; is given by
)=+ 90)+g/(0).
i#]
We now define the times
t=inf{t>0:teToré(t)cUjsT;} and 1= minr‘l.

Setcl equal toc! on (0,7} and recursively defing,; as the solution to IVéan, 0,c/ (rn)>

where the functlorf 11 Is given by
fr{H t) = fhit ;f'loc gl (1n).

We then define
T =inf{t>T:teToré(t—1) €UjsT;} and Thy1=ming, 4
|

and letcl(t) = &, ;(t — 1n) 0N [Tn, Tny1). We assert that = (cl,...,c™) solves B);
the proof is by induction. However, note that the startinqpof ¢, is chosen so that
c is continuous and has a cadlag right-hand derivative.[@n], f"! oc' andg’ are
constant and hence, equal to their value at zero. Hence, léntné stand for the right-
hand derivative o€!, we obtain the following equalities for amy 11

hi(t) =] ocl(t)
_ gl ocj(t)-l—; t1(0)+¢'(0)

£l oci(t)+; filod(t)+gi(t),

which allow us to conclude thatsolves g) on [0, ;). On the other hand, if we assume
thatc solves ) on [0, 7], then note that, by definitiorf,>) o ' andg! are constant on
[T, Tne1]- We deduce that fdre [1p, Thia):

h ( )— fl+1OCn+l(t—Tn)
= fJ’J OCIJ,]+1(t—Tn)+ ; fI’J OCJ(Tn)+gJOC](Tn)

N oci(t)+; filod(t)+g(t)

so thatc solves 8) on [0, T, 1].

Sincert, increases im, there are two possibilities: eitheg — o (in which case the
solution we have constructed is a global solutiom)!dr,) — o for somej by definition
of 1, 15, and the fact that the sets; and T have no accumulation points. In the latter
casec explodes. O

Remark 2. As in Remarkl, we note that if we apply the procedure of the above proof
in the case of cadlag stochastic processes (satisfyagdhditions of Lemma) then

the solutions are measurable. This follows because on atkedutervals (which are
obtained by stopping), the solutions are unidimensiondlaage constructed through the
Lamperti transformation.
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We now tackle existence foB.

Lemma 3. Let { f") g}, 1 <i,j < m} satisfyH. Then, there exists > 0 such that a
non-negative solution h t() exists on0, 7). Furthermore this solution explodes at
and is maximal:
(1) lfcl(t) = [hi(s) ds then &(1—) = oo for some j.
(2) If h is another solution t@3) (with its corresponding) then¢ < c on the interval
of existence df.

Proof. For 1< i, j < mwith i # j consider a sequence of cadlag functidhs andg},
which are piecewise constant, are strictly bigger tharandg!, and decrease ais— o
towards f") andgl respectively. We then sdi”! = fl:J. Using Lemma2, we can
consider for any a solutiorh, = (hl,....h™ to (8) driven by{ fy’. g/} . By Lemmal,
we see that the cumulative populationtpfexceeds the cumulative population of any
solution to g).

Fix anyK > 0 and use it to stop, at the instant,, x that any one of its coordinates
reachK. Call the resulting functiom,” Sincean < Chthenthk < Thy1k; Settk =
limn 7o k. Note thatcy has a cadlag derivatié given by

ML) = Le<r, ().

Hence,ﬁr‘} can be bounded on any inter\,{ﬁL.t] by mmax, j infy<k frifj(x) +grj1(t), and
can then be bounded by construction offy’ andg}. By the Arzela-Ascoli theorem
(which applies since\[0) = 0), ¢, is sequentially compact. We now show that every

subsequential limit coincides. Indeedgithe (uniform) limit (on compact sets) of,~
ask — o, then the bounded convergence theorem implies that fot any :

()_Ilmck _Ilm/Zf'Joc s) +gi(s) ds= /Zf'loc g'(s)ds

We conclude that admits a right-hand derivativie on [0, Tx) which satisfies§) on

[0, Tk ). Howeverclis the maximal solution by construction (since we can apggnina

1 to the approximationsy), so that all subsequential limits agree [@ntk]. Finally,
note that beforak the coordinates of Rave to be smaller thak and that atrx some
coordinate equalK. Hencetk coincides with the instant in which some coordinate of
€ reacheK. By uniqueness, one can construct a functamhich coincides withcon

[0, 7k ), SO thatc is defined and solve§) on [0, T) wheret = limk 1«. By construction,

c explodes at and is maximal in the class of solutions &).( O

Remark 3. Recall that the approximations of the above proof are maaseim the case
of applying them to cadlag stochastic processes thanRemeark?. Then, applying the
construction to a cadlag stochastic proc¥ssatisfying hypotheseld, we get another
pair of stochastic process&sandC. SinceZ andC are cadlag, theX"! oC' is also a

stochastic process.

3.2. Spontaneous generation and minimal solutionsAn interpretation for the one-
dimensional case oB} was proposed infPGUB13 by noting that if {1 represents
the breadth-first walk on a (combinatorial) forest représgrthe genealogy of a pop-
ulation with immigrants along each generation ajtdcodes the immigration to the
population therh! is the population profile (that is, the sequence of generatipes),

while ¢! is the cumulative population. The multidimensional casthaf discrete cod-
ing can be found in Subsection 2.2 &fl[13], wheng! = 0 for all j, and it shows that
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the one-dimensional interpretation still holds. In parée, the discrete interpretation
gives sense to the following definition of lack of spontareegaeneration: in the one
dimensional case, a solutibn= f o c+ g lacks spontaneous generatiom(s) = 0 (the
population is zero at timg) andg is constant ors, t| (there is no immigration ofs, t])
implies thath = 0 on|[s,t] (the population remains at zero). Perhaps it is then sumgris
that there are solutions featuring spontaneous generatiomwhenf is the typical path
of a normalized Brownian excursion then they do exist (CP{ZUB13 Sect. 2]).

Definition. Let ('}, g) satisfyH. We say that a solution= (h') to (8) has no spon-
taneous generation if whenewe(s) = 0 for somes> 0 and for allj in J c {1,...,m},
we have that the strict increasedfat s for somej € J implies that eitheg! increases
strictly atsor there exist$ ¢ J such thatf'") o ¢' increases strictly to the right of

As a remark, we mention thaétlacks spontaneous generation if and only if at any
s> 0 such that the seX(s) = {j : h!(s) = 0} is nonempty, the strict increase dfats
for somej € J(s) implies that eitheg! increases strictly to the right afor there exists
i ¢ J(s) such thatf"! increases strictly to the right af(s).

The definition works very well with induction on the dimensjan the sense that
if h= (h',i <m) is a non-negative solution t&) driven by (f:/,1 <i,j <m) and
(gj, | < m) without spontaneous generation ang< m, we can then considét, ..., h™
as a solution, which will lack spontaneous generation,8)ob(it driven by f:J and
g+ Sism floc for 1< j <m.

The importance of solutions lacking spontaneous generaithat they have mono-
tonicity properties (see Lemnmabelow) and, consequently, they are minimal solutions
to (8) as well as unique. In particular, if all solutions @f) can be shown to have no
spontaneous generation, then there is at most one sol(flwre are two cases when
we can actually apply this technique. First, whigns strictly increasing for alj since
then solutions trivially have no spontaneous generatiomotAer example is whers)
is driven by Lévy processes satisfying the hypotheses ebidm1: we will show in
Lemmasb that solutions have no spontaneous generation, which golreruniqueness
statement in Theorerh
Lemma 4. Suppose that we have two sets of functions {'/,gl) andP = (1, §))
satisfying hypothesid. Assume that'f < f-l and g < §!. If h andh are non-negative
functions that satisfy8) driven by P and® respectively and h lacks spontaneous gen-
eration, then c< €. Hence,(8) admits at most one solution h whose coordinates are
non-negative and have no spontaneous generation.

The above lemma also tells us that solutions without sp@utasigeneration are min-
imal in the sense that their primitive is a lower bound for gramitive of any other
solution.

Proof. This proof is an elaboration of the proof of Lemmawe proceed by induction.
Letm=1, letP = (f,g) andP = (f,§) satisfy hypothesis$i and leth andh be non-
negative solutions tog] driven by P and P and lacking spontaneous generation. Let
€ > 0 anda > 1 and use them to defireby means of(t) = €(e + at). Let

T=inf{t>0:c(t) >T(t)}.
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Note thatt has a cadlag right-hand derivativgiven byh(t) = ah(s + at). If h(t) >
0, sincec(1) =T(T), our assumptions give
h(t) = foc(1)+9(1)
< fot(r)+9g(1)
<a[foc(n)+g§(e+at)] =h(1).

Hence,c < T on a right neighbourhood af contradicting its definition. On the other
hand, ifh(t) = 0, then we can only infer, as in the previous display, that

0<h(t)=foc(t)+9(1)
< foc(r)+g(e+ar)
< fol(1)+§(e+ar)=0.
We conclude thag is constant oiit, € + a 1| which, by lack of spontaneous generation,
shows thah = 0 on the same interval so thatcannot exceed ih any small enough
right neighbourhood of. We conclude that(t) < &+ aT) for anyt > 0, anye >0
and anya > 1. Hencec < C.

Letm> 2. Suppose now that the monotonicity statemert € is true for any so-
lution to (8) of dimension strictly less tham. Let P = (f",g!,1<i,j<m) and

P=(f,gl,1<i,j <m) be a system of functions satisfying the assumptions of our
lemma in dimensiom andh andh the associated non-negative solutions3joxithout
spontaneous generation. We proceed as in the one dimehsasea for anye > 0 and

any a > 1, definet! (t) = & (e + at). Hencet! has a cadlag right-hand derivatibe
given byh' (t) = ahi(e + at). We then define

T=inf{t>0:c(t) > () for somej}

as well as the set of indicesj € {1,...,m} such th.atcj exqeeds&‘:j strictly at some
point of any right neighbourhood at If j € J thenc!(t) =¢/(1) while ¢'(1) <T(T)
fori# j. If ' (1) > 0 for somej € J, we infer that

hj(r):f“ocj(r)+;fi’joci(r)+gj(r)
i)
<a[fj’jof:j('[)—l—;fi’joCi(T)+gj($+aT) =R ().
i)

We deduce that! remains belove! in a right neighbourhood af which contradicts the

definitions ofr andJ. Hence, we can assume tHTé(r) = 0 for everyj € J. Note that
if J={1,...,m} then

0<hi(t) =5 floc(t)+d (1)
<y flod(t)+¢/ (e +ar)
<y flo?(r)+d (e +ar)=0.

We conclude not only thdt! (1) = 0, but also thag! is constant orft, & + 7], which
implies, by lack of spontaneous generation, thfats constant orjt, e + a 1|, which
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contradicts the definition of. Hence, we can assume tilag {1,...,m} and by rela-
belling, we writeJ = {1,...,m;} wherem; < m. For everyj > my, ¢! <cl in a right
neighbourhood of. Also, note that’, j < my solves systenmg] in dimensionm, when
driven by (f'),i, j < m) andg! + Y., "1 ocl. The same remark holds fof, j < my.
Since this system have dimension strictly less timand the reduced systemy, ..., h™M
has no spontaneous generation, monotonicity holds for trnwve can conclude that
c/ <tl,j <myinaright neighbourhood af, which again contradicts the definition of
T. As before, we conclude that< C.

Finally, suppose thdt andh are two non-negative solutions t8) (which lack spon-
taneous generation and are driven by the same funddoAgplying our monotonicity
statement, we see that= € which then implieh = h. U

3.3. Further consequences in the stochastic settingiVe now show that the process
C is a multiparameter random time change in the sens&iéBf, Ch. 6]. For this,
consider theo-field

9) T,

tmt = PNV TV T
Lemmab. Let X1,...,XM™and Y be a stochastic process satisfying hypothedsést Z
be the solution t@2) (with n= 0) such that its primitive C is maximal. Then

o(Z,CLY X oCl:0<s<t,0<i,j<m)n{C <t,1<i<m}C.Z_ .

Recall that the solution constructed in Lemfhaas a maximal primitive. The proof
will be based on a Galmarino type test in the multiparamedtting. (Cf. [Gal63 and
[RY99, Ex. 1.4.21].)

Proof. Let Z, C be as in the statement. Consider also the soluitm(2) (with m= 0),
but now driven byX' stopped at (denotedX') for 1 < i < m, byY stopped at (denoted
Y) and such that its primitiv€ is maximal. Analysing the construction 6f Z, € and
Z we note that |Q <tjfor1<i<mthenZ = Z, X oCl =X o€l andC=Con|0,t].
SinceZ;, X1 oC' andC' are measurable functions ¥f/, the statement follows. [

We now study the uniqueness @} (vhenn = 0.

Lemma6. Let X!,...,XMand Y be Evy processes satisfying the assumptions of Theo-
rem1 when n= 0. Then, almost surely, solutions Z ({®) have no spontaneous genera-
tion.

Proof. Let Z (equivalentlyC) be a solution to%). Let t be the first instant such that
Z admits spontaneous generation. We argue thateo by contradiction. Indeed, we
first show thatr > 0 almost surely and then we apply arguments related to thagstr
Markov property to deduce that< 7 on the setr < co.

Let us now show that > 0. Note thatr > 0 means that il = {j <m:z =0}
then the assumption th¥f = 0 on a right neighbourhood of 0 for evejye J and that
X"} =0 on aright neighbourhood of zero for evgrg J andi ¢ J implies thatz! = 0 for
everyj € J on aright neighbourhood of zero. Hence, the problem is redit@ proving
that if z; = 0 andY! = O for everyj thenZ = 0. (This corresponds to analyzing the case

of multitype CB processes without immigration. ) LBt> 0 be such tha@{ < oo for

every|j. SinceX"! is a subordinator for aniy+ j then IirnHoXJ;"/h exists and equals
the dr.if.t coefficient ofX (cf. [Ber96 Prop 8, Ch Ill]). Hence, there exisﬂ&& > 0 such
thatX") < MId on[0,C4] for all i # j. If j is any coordinate such thxt-l is a finite
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variation Lévy process (that is, the difference of two sulimators), the same argument

implies that (for a possibly differemi!) X1-J < M1d on [O,CH. For this coordinate we
see that

ostMd+M;q.
iZ]

From Gronwall's inequality, we see thatequals zero until there exists~ | such that
C' grows. Hence, coordinatésuch thaiX ) have finite variation cannot be responsible
for spontaneous generation. To analyze coordinates Withitevariation, recall from
[Rog6q that if X1+ has infinite variation then limigf,o X" /h = —«. We consider
m> 2 since the cas@e= 1 has been handled iGPGUB13. In particular, forA>m-—1,

we can choose a sequer(tg decreasing to zero and such tidt’ < —MAt,. We then
chooseg, in the interval(Mty, MAt,/(m—1)). Now, defineX1:" = g,V (M1d) for i # |
and consider a solutiafi to

ztj — XJ7J oétj + Z)’Zi7j7noég.
I#]

A modification of the proof of Lemma shows thaC! < €l on [0, T]. However, note
that while evenC! is belowg, /M, C! behaves as the solution to

7 = XVio@l + (m=-1)en.

It follows that if ZJ reaches zero before a@/ exceeds,/M thenZ) re~r_nains at zero
afterwards (since this happens for the one-dimensional@nodefiningZ!). However,
recall from Remarki, that in the one-dimensional case the total populaﬂir) equals
the time the reproduction function reaches zero{(ixf0 : (m—1)&,+X/*! = 0}). Since
(m—1)en+X! < (M- 1) & — MAt, < 0 andt, < &,/M, it follows thatZ! reaches zero
beforeC! reachess,/M. Hence,Cl < &,/M and soC = 0 on [0, T]. We have hence
shown thatr > 0.

We now the following identity in law:
(10)
(XL(CL 4 ) = XH(CY) ..., XM(CP+ ) = X™CM), Ye o — Ye) [T <o L (XL, ... XM Y).

The identity in law (0) implies a contradiction since 7 satisfies §) but driven by
the left-hand side of1(0) with initial value Z; thenZ should, by definition ofr, have
spontaneous generation at time 0, which is impossible.

To prove the identity in law of(0), we first prove that for any 8 ty,...,tn we have
(11) A={Cl<ty,...Cl<tmT>t}eF . .

m,

Indeed, the above will follow from proving that
{t<t}eo(Clz, Y, X"oCl:0<s<t,1<i,j<m).

thanks to Lemma. However, note that <t is and only if there exist§ C [m] =
{1,...,m} andj € J such thaZ! presents spontaneous generation over a common in-
terval of constancy of! andX"! o C' of length greater thaa. This can be discretized
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as follows:

{r<t}—UUU Un unn

m| j€J s>0 ge[0t] >0 P<g—E€iglj'ed
€€Q geQ 0€Q peQ

{Zq >0,0< zqu],z < 5} n{x"1oC' Y are constant ofp,q]},

where;€p7q] = inf{Zsj :SE[p, q]}. |
We now consider the random timgsandC;, where
Thn=(k+1)/2"if k/2" <1< (k+1)/2"
and _
=(k+1)/2"if k/2" <Cp < (k+1)/2".
Then, thanks tol(1)
{1=(k+1)/2",Cl = (k +1)/2"}
= {k/2" < T < (k4 2)/2°K/2" < Cly gy a0 < (+1)/2")

€ F (g4 1)/20,....(km+1) /20, (k1) /20

Also, note thatr, andC!, decrease to andC! respectively.
Consider now the processxé andVY Wherex,cI XC it XCn andV; = Yi,+t — Yr,-

We assert now that the joint law &, ..., XM andY equals the law oX?,...,X™ and
Y. To prove this, we focus on the one-dimensional distrimgisince the computation
of the finite-dimensional distributions is just notatidgahore cumbersome.

P(X <x,1<i<m¥% <xTh< )
— ZW P(1h = (k+1)/2",Ch = (k+1)/2" X <x,1 <i <m¥' <x)
kq k

_ ZW i (k/zn <1< (k+1)/2%k /2" < Cly, gy jn < (ki +1)/2"
Ke, .o km.k

X/ M yon 61T MYy Y0 < %)

- ZMP(k/Zn <1< (k+1)/2"k/2" STl gy on < (ki +1)/2"1 < < m)
1, Km,

xP(X <x,1<i<mY; <X)
=P(Th<®)P(X <x,1<i<mY% <x).

As n — oo, the procesX' converges to(iCi L X(‘:i . We conclude0). O

4. CONSTRUCTION OF AFFINE PROCESSES ORT

In this section we aim at completing the proof of Theorérnm the case where the
process takes valuesRRi; that is, whem = 0.

Let X1,...,X™MY be Lévy processes satisfying the conditions of Theotewhen
n=0. Letze RT have non-negative coordinates, febe the unique solution td’f
(when there is uniqueness andZdbe zero otherwise) and |€tbe the (coordinatewise)
primitive of Z which starts at zero. (The solution exists thanks to Lerfimad is unique
by Lemmas! and6).
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givenin ©). Let.# be the null sets of and define
(12) Py, VA

...,tm,

__ or°
SAmt = Fyy,

Since the processe¢!, ..., XM Y are independent and the completed filtrations of
any one of the Lévy processes are right-continuous @&r§6 Prop. 4, Ch. 1]) then
one can useJ Y03, Ex. 2.5] to see that

or _ a7
FS,SmS = ﬂ P, tmit -
ti>s t>s

Lemma 7 (Measurability details and the Markov property)
(1) Forany t> 0, G is a multidimensional stopping time:
{Ctl < t17 s 7C[m < tm} S L%l,...,tm,b
(2) The class

(13) % ={AcZ AN{Cl<ty,....Q"<tm} € Pty tnt}
is a o-field and the collectiori%,t > 0) is a filtration satisfying the usual hy-
potheses.

(3) The following strong Markov property holds: for any>t0, conditionally on
Cl<oforl<i<m

d
(Xél+. - >%1(17 ce 7>€:m+. - >(Cn:m7Yt+~ _Yt> = (x17 ce 7Xm7Y)
and the process on the left-hand side is independe#t. of
(4) Zis aa(%4,t > 0)-Markov process.

Proof. (1) The fact tha€C is a multidimensional stopping time follows from Lemma
5 once we note that is almost surely equal to the maximal solution &) (
constructed in Lemma& thanks to the fact that solutions have almost surely
no spontaneous generation (Lemf&)and the uniqueness of solutions without
spontaneous generation of Lemrha

(2) It is easy to prove tha¥; is a o-field. % also contains the null set9” since
every.#, it contains them by definition. Also, SinC&, _ t,s C Ft,.. tnt if
s<t, then(4,t > 0) is a filtration. To see tha# is right continuous, we only
need to prove thaty~<% = %. LetA € Ni~s%. Then fort’ >t > swe have

AN{CI<ty,....C"<tm} € Ty _tor-
SinceC! — Clast | s, we see that
AN{Ct <ty,....Q"<tm} TAN{CI<ty,...,.CI <tm}
ast | sand we conclude that
AN{CI<ty,....CO<tm} € B, s

for s<t’. Finally, we have already remarked th@{, ;. v | %,  tnsast’']s,
proving thatA € %.

(3) The proof of the Markov type property follows the sametgrat as the one in
Lemmas. In fact, it is basically the same proof as the strong Markepprty
for Lévy processes at a stopping time.
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(4) First, from Lemmab we deduce the existence of a measurable faphich
applied to functiong f!, g') satisfyingH returns the value atof the (maximal)
solutionh to (8) (which is the unique one when inputting Lévy processes plu

an initial value). Note also thdt— étj = Ctj+S—C§ has a cadlag derivative
t— Z! =27} ; and satisfies

Z) =71+ .ZX‘I%J +V
where N N N
X = Ijrjcis_xlcl] and Y =Yis—Ye
HenceZ s = R(X%,...,X™ Zs+Y). SinceX!,...,X™Y are independent of

ZL.Cl (which are&s-measurable), we see that the conditional la;qf; given
s equals the law OZ started az0n the se¥Zs=Z O

We now consider a martingale which is fundamental to thefpspb®heoremd.

Lemma 8 (An exponential martingaleor any uc R™, the stochastic process M given
by
t
My = "% — / &% [F (u) + R(u) - Z ds
0
is a martingale.

Proof. SinceM has bounded paths df,t] for anyt > 0, sinceu € R™,it suffices to
prove thatM is a local martingale. Consider the exponential martingakociated to
any X' and toY: since

E(e”'xi) =R and E(e"M) =W,
and sincex— € is bounded ore = R x R" if ue R™, the stochastic processes
"y T : t
V=X~ [ R ds and N—e - [ Fueds
0 0

are martingales. (Note that the above assertion is trueiéfért oo for somet andi.)
They are independent sinkg, ..., X™ andY are independent.

ceny

C:. Hence, they constitute a multiparameter time change irséimse of Chapter 6 of
[EK86]. Consider then the time changed processes
. - . o t . )
M| =M oCl = e+X°G —/ "X CR;(u) ZLds
0

Problem 19 in EK86, Ch. 2] tells us that the (multiparameter) time change of the
m-+ 1 independent martingaldg®, ..., M™ N gives rise to then+ 1 orthogonal local
martingalesvi!,...,M",N. Hence

M MI] = 0= [M|,N]

foralli,jwithi # j.
Note that

Uz _ u-zd uj-Y, up-XbioCl U u-XioCl
€ = et = et S =€ € .
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Sincee"X'°C" ande"Y are semimartingales whose local martingale parts are gotre,
and whose finite variation parts are continuous, we can usgration by parts, the fact
that covariation is bilinear and that the covariation witleantinuous finite-variation
process is zero (cf. Theorem 26.6.viii iK4102]) to obtain

uZt_LOC Mart+z/ UYsl_I UXOCJ uZSR sts+/ |_| UXOC[eUYsF )du
I#]

= Loc. Mart.+/ e"%[R(u) - Zs+F(u)] ds
0
We conclude tha¥ is a local martingale. O

We deduce the following result, which is important in our gfrof stability of the
multiparameter time change equation. Indeed, it is impmbtance addition is not con-
tinuous on the space of cadlag functions (with the Skodohotopology), but it is
continuous when the summands do not have common discaigsuas is discussed
for example in Theorem 4.1 of\{hi8Q].

Corollary 2. Almost surely, for each ¢ {1,...,m} the processesXoC',1<i<m
and Y! do not jump at the same time.

Proof. As shown in the proof of Lemma, the processeg**'°¢' 1 <i < mande"Y
are semimartingales for € i < m with zero covariation. Considering a vectomll
of whose coordinates are zero except fhd which equals-1, we deduce that the
semimartingales<"’°¢' |1 < i < mandeY' have zero covariation. SineY' is of
finite variation, we see that

0=[eX"C e} = ZAe‘Xi'jOCi<S)Ae‘YSj.

Since each summand in the right-most side is negative, welwde thatX'- o C' and
\e do not jump at the same time. The same argument applies winsideoingX"! o C!
andX"1 oC" if i # i’ since at most one is of infinite variation. O

As already mentioned in Sectich) there exists a unique functigp(t,u) such that
¢(0,u) =uand
oY(t,u)
ot

=Ro Y(t,u).
We also consider the function
t
@(t,u) :/ Foy(su)ds
0

In order to prove that the proce&svhich solves ?) whenn = 0 is a CBI associated to
the pair of characteristic exponemandF, it suffices to see that is a Markov process
(which is covered by Lemmad), and to prove the following lemma:

Lemma 9. For any ze R, and uc R™

Ez( uZt) ezwtqu(p(tu)

Proof. Let
G(s) = E, (e‘l’(tfsyu)-zﬁ(p(tfs,u))
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for s [0,t]. We will show thatG'(s) = 0 for anys € (0,t) which implies that
ez~l,U(t7U)+(P(t7U) _ G(O) _ G(t) _ Ez(eu.Zt)

and hence finishes the proof.
To this end, write

G(s+h) —G(s) = E; (et,u(t—s—h,u)~Zs+h+(p(t—s—h7u) _ ew(t—s—h,u)-zs+q3(t—s—h,u))
1 E, (elp(tfsfh,u)-Zs+(p(tfsfh,u) . elp(tfs,u)-Zer(p(tfs,u))

Taking expectations in Lemma&)( we see that

1E (elp(t s—hu)-Zg p+@t—s—hu) ew(tfsfh,u)-zsﬂp(tfsfh,u))

h/ e‘l’t S=hU)-Zr+elt=s—hu) [F ow(t—s—h,u)+RoLp(t—s—h,u)-Zr]) dr

— Ez<e“’<t—sv”)'zs+"’<t—sv”) [Fo(t—su)+Roy(t—su)- Zs]> :

On the other hand, we can differentiate under the expeattgiobtain:

}Ez (ew(t—s—h,u).Zs+qa(t—s—h,u) _ ew(t_su).zsﬂp(t_&u))

h
— —Ez(e"’(t’s’”)'zﬁ‘/’(‘*&”) [Foy(t—su)-Zs+Rop(t—s, U)]> :

We conclude tha®'(s) = 0. O

Summary and conclusion of the proof of Theofewhen n= 0. Existence for solutions

to (2) are covered by Lemmaand is valid more generally. Uniqueness is then covered,
through the concept of spontaneous generation, in Letrhammar then proves that
the unique solution tak) is a Markov process and thanks to Lemé#nae can identify its
one-dimensional distributions with those of a CBI processoaiated to the parameters
of the underlying Lévy processes callRandF. O

5. CONSTRUCTION OF AFFINE PROCESSES o]Rim x RN

Let X1,...,X™ Y be Lévy processes satisfying the conditions of Theofientet
R andF be the characteristic exponentsXfandY as in Equation?) and letR =
(RL,...,R™M), where we seR = 0 for m+1 < i < m+n. With the firstm coordinates
of these processes we sol& {0 obtain the non-negative proces&es. .., Z™ analyzed
in Sectiond. We can then (re)defing by settingZ™"! =z+ 3y, X""JoC'4+Y! and note
thatZ solves EquationZ) when = 0. In this case, we can follow the arguments of
the casen = 0 presented in Sectiofi to see that is a Markov process and that its
one-dimensional distributions are characterized by tmepzdation

E(uzt) esztu—i—(p(tu)

valid foru e R™ x iR", wherey and @ solve the Riccati equations

7] 0
SWLW =Roy(tu) and Za(tu)=Foy(ty)

with initial conditionsy(0,u) = uand¢(0,u) = 0. This proves Theorethwhenf3 = 0.
Affine processes of this type have been dubbed partiallytiaddin [KRST11]] since the
law of Z+ Z underP, equalsPz,; wheneverzhas its firstm components equal to zero.
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We now extend the proceZs= (Zl, ey Zm“‘) just considered to obtain the full proof
of Theoreml. To do this, consider the equations

_ m . . ] n .
2 a3 Xog Y 5 f TR 1< <
i= =

WhereCtB’j = fézf’j dsform+1< j<m+n(andzfi =2zl for1<j<m). If welet
extend the matri3 to be(m+n) x (m-+n) by adding zeros at coordinateg if i <m
or | < m, the equations become:

(14) zP =z +CFp.

This is a linear stochastic differential equation drivenzoyhich, of course, admits an
unigue solution. This is for example containedfing04 Ch. %V], where the following
explicit formula is given:

t
zP = eth+/ et dz,
0
We first construct an exponential martingale, which takegtace of Lemma.

Lemma 10. For any uc R x iR", the stochastic processAyiven by
B t 7B
ME = e —/ i Zs [F(u) + (R(u) + Bu) -zf] ds
0

is a martingale.

Proof. Lemmas can be extended to the caBe= 0, proving thatM? is a martingale.
Now, note that

eu-Ztﬁ _ eu~Zt eC[ﬁBu.
We now apply integration by parts, noting that sit@&3u is continuous and of finite
variation, then[e“‘Z,CBBu} = 0. We then obtain

t t t
vz’ :e”'z+/ ech”dM§+/ e Pu [ZS-R(u)+F(u)]e”'ZSdS+/ 2z BuesPuds
0 0 0
78 B
= Loc. Mart.+/ ghss [F(u)+[R(u)+Bu] -Zs] ds O
0
Adapting the proof of Lemma, we see that
Ez(eu-ztﬁ) — gVFtu+eity)
wherey®? and@® satisfy the Riccati equations

S0P =Ry L)+ BUPLY) and TPt u) = Foyf(tuy

with initial conditionsy® (0,u) = uand@® (0,u) = 0.

We now finish the proof thaZ? is an affine process, thereby proving Theorein
the remaining case whean# 0. Since we have already determined the one-dimensional
distributions ofZB, it remains to discuss the Markov property. Note that

s+t
Zt&s:ZtB‘FZHs—Zt"’B/t ZPdI’.
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Therefore,Z{i, satisfies the same differential equationZ&sbut starting atZtB and
driven by Zs,+ — Z;. Recall that the firsm coordinates oZf equal those of. Let
(%,t > 0) be the filtration defined in Sectichand with respect to which the Markov
property ofZ holds. Since is partially additive, then

the law ofZ, ...z, Z —Z™, . Z1" —Z™" given% isPp mg o

This shows that the law (Zfi, given% equals the law off underIP’Z,g which proves
t

that ZP is an affine Markov process whose infinitesimal parameterhiave already
determined.

6. STABILITY ANALYSIS OF THE TIME CHANGE TRANSFORMATION:
APPROXIMATION AND LIMIT THEOREMS

In this section, we will give a stability analysis relatedtb@ stochastic systenz)(
through the deterministic systerfi){ aiming at a proof of Theorer. For the stabil-
ity analysis we need to consider not only the systé&nbt a differential inequality
that turns up naturally. This differential inequality isadyzed in Subsectiof.1l. The
stability analysis is then performed in Subsectioawhich enables us to obtain some
applications to approximations and limit theorems concgraffine processes in Sub-
section6.3.

6.1. A differential inequality. Recall the setting of Theoremsand?. If C' converges
to C, it might happen tha€"' < Gl orC}"' > Ci. Hence, we can only infer that

XTo@) <liminf X' oGl < limsupx™H e G < X1 o .
|

The following proposition is useful in determining whethke limit X! o C' exists
for most values of.

Proposition 1. Under the setting of Theoref the associated cumulative population
C = (C1,...,C™M) is the unique non-decreasing and continuous process watjsthe
differential inequalities

t . ) _ . t N '
(15) /ZXE]OCerYs'dSSCJ—Cr‘ S/ > XM oCs+Ydds
A r4
As a preliminary result, let us see tl@&ttself satisfies both sides of the inequality.

Lemma 11. AImost surely, if t is such that' @ constant on an interval to the right of t
then X is continuous at € Hence, almost surely, for all+ O:

cg'—cri:/ 3 X-oCl+ Y ds
r o

Proof. The first statement of the lemma is obviously truesato To handle every> 0
simultaneously, it suffices to prove that for any ratiogaf T q o, denotes the first zero

of Z! afterq or zero, depending on E[q > 0 or not, therX' is continuous a€' (Tq‘0+)
This is basically a result of quasi-continuity of the Leuwppesses involved.

If T is any stopping time with respect to the filtratig#,t > 0) defined in ((3) then
(C}, ...,C[, T) is a stopping time with respect to the multiparameter fitrat7, . 1,,t
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defined in ((2). This follows simply wherT takes values in a discrete Sef : k € N}
because, by definition &, , we see that

{Ct <ty .CP<tnT=a} ={C5 <t1,-,Cq <tm}N{T =a} € A, . tnac

WhenT is a general stopping time, we approximate it by the deangasequence of
stopping timed, which takes the valuk/2" if T € [(k—1)/2", k/2").

Let T equal one of the'I'q'OJr and note thaT is the increasing limit ofl,, whereTy,

is the first time afteq thatZ! is below 1/n or zero depending on Zcﬂ > 1/n or not.
We always hav@, <T. If Z(’] > 0 thenT, < T for all n. Recall thal(;irn is a stopping
time for the filtrationo (X}, Xl : § > 0,s<t,i’ #i),t > 0 defined for each. SinceX'
is a Lévy process with respect to that filtration, by quasimuity, we see thax' is
continuous aCy. O

Proof of Propositioril.. Denote byC any process satisfying the inequality5]. Re-
call that, from Lemma, C is obtained as the limit of', whereC' solves Equatior
driven by processes strictly bigger thxh! andY!. The simple argument presented
in Lemmal implies thatC is bounded above bg' and thereforeC < C. We now let

T =inf {t >0:G < Q}. By continuity, we see th& = C on [0, T]. Let us suppose that
T < oo to reach a contradiction. If < o, there exist K i, ] < mandgy > 0 such that
for 0 < € < gy we have

T+¢€ i A T+¢€ A
(16) /T Xz oCSds</T X" oCyds

WhenZ. > 0thenC! is strictly increasing to the right af, implying thatC' is strictly
increasing to the right of and so {6) does not hold. Whe#._ = 0, T cannot belong
to the interior (or be the beginning) of an interval of constaofC'. Indeed, Lemma 1
would then imply thaX") o CL = X':J o Cl and thaCC' is constant to the right af which
would contradict {6). HenceC' increases on any right neighbourhoodroHowever,
recall thatC has no spontaneous generation. This implies the existesibeat indices
io, ..., ikin {1,...,m} such thaZy > 0, iy =i andX"-1l o ClI-1 s strictly increasing on
a rlght nelghbourhood af. Starting withig and using the fact th& = € on [0, 7], then
Xi-vii o Ci-1 s strictly i increasing on a right neighbourhoodrofor everyl and hence
(16) can not hold either wheR! = 0. O

6.2. Stability analysis. The following result deals with stability of the multiparater
time changes of equatioR)(in the deterministic setting of Sectiéh We focus on the
casen = 0 since our arguments can then handle the non-negativeinated. Hence, we
will concern ourselves with equatiofi)(not only under changes ifi-) andgd' fori, j =
1,....m, but also with respect to discretization of the transfororaitself. Consider the
following approximation procedure: given> 0, called the span, consider the partition

tc=ko, k=0,1,2,...,
and construct a functioef = (c{,...,cy) by the recursion
cf(0)=0 forj=1,....m
and fort € [ty_1,ty):

(17) cf (t) = cf (t1) +<t—tk_1>[if‘vi o (tk-1) +9' (t-1)] "
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Equivalently, the functior? is the unique solution to the system of equations

t m . .
:/O[i;f"oci (Is/o|o)+gi(|s/a|o)*ds forj=1,....m

The stability result is stated in terms of the usual Skorahddpology for cadlag func-
tions: a sequencg converges td if each coordinate converges in the usual Skorohod

Ji topology. This means that for each coordineﬁfel > 1 there exist a sequence of
homeomorphisma,,1 > 1 of [0, ) into itself such that

flj — fl o)\lj and)\lj —Id converge to 0 uniformly on compact sets

We will also use the unifornd; topology and which is characterized by: a sequence of

fi converges taf if for 1 < j < mthere exists a sequence of homeomorphi$ﬁtﬂ
[0, 0) into itself such that

flj — f o)\lj and)\lj — Id converges to 0 uniformly of®, ).

Theorem 3. Let (f'))"_, and ¢ be cdlag functions which satisfy hypothesis and
suppose that there exists a unique non-decreasing ¢ whicdfiea

(18) /Zlf” i(rydr<cl(t)—ci(s /Zf"oc )+gl(r)dr

fors<t,and j=1,....m. (In particular, c solve$3) and has a right-hand derivative
h.) Lett be the explosion time of c defined by

T=inf{t>0:3jsuchthaté(t) =co}.

If fli’j — fllfori,j=1,...,m, and Q — ¢! in the Skorohod gJtopology,a; — 0, and
¢ is any solution to

N
¢ (1) /[Zf"ocl s/om>+g.<[s/mm>] ds

then ¢ — ¢ pointwise and uniformly on compact sﬁﬁsr) Furthermore, if " oc' and
fl" ocl do not jump at the same time foi j and f oc' and g do not jump at the same
time then the right-hand derivatives [, converge to h
(1) in the SkorohodJtopology ift = o, N
(2) in the uniform J topology ifT < « and we additionally assume that'f— fiJ
fori=1,...,min the uniform Jtopology.

Theorem? follows from Theorens thanks to Lemma and Corollary?.
In order to prove Theorerdwe will first prove a series of lemmata.

Lemma 12. Under the assumptions of Theoréxif (¢ (t),l > 1) is bounded for some
t > O0then ¢ — c uniformly on[0,t].

Proof. Let M be a bound foc; and letK be an upper bound fc(rf' J>1i=1,....m)

on [0,M] and(g;,l > 1) on [0,t] (which exists sincef") — il fori, j=1,...,m, and
Om — Q). For anys € [0,t] we have that
(19)

D.cl(s Zlf"ocl (Is/aila) +dl ([s/ai]o)]" < (m+1K foranyi=1,...,m,
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implying that the family of functions{clJ : 1 > 1} has uniformly bounded right-hand
derivatives (on0,t]) and starting points. (I = 0 we get the same upper bound for
D¢ using the equalitp. ¢/ = s, ! ocl +g/.) Therefore{c/ :1 > 1,j=1,...,m}
is uniformly bounded and equicontinuous fiht]. This in turn implies the same for
the family {c; : | > 1} c C([0, T],R™) on [0,t]. By the Arzela-Ascoli theorem, every
sequencéc, ,k > 1) has a further subsequence that converges to a funct{amich
depends on the subsequence). We now provectka€, which implies that; — ¢ as
| — oo uniformly on[0,t].
Suppose thdj is such that;, has a limitc'ask — co uniformly on|[0,t]. Since each

fi.] has no negative jumps, we get

e g gl : L) _ £

|II;(7LI§‘/]f f'l=1f2'(y) and limsupf")(x) = f"I(y)

X—=Yy

so that
ol <liminf filog and limsupilog, < fod.
k—yo0 k k

Using Fatou’s lemma we get

/ t[i fo8(r)+g (1) "dr <&() - &(9

/ Zlf'lo i(r)*dr
foreachj=1,....m. O

Proof of Theoren3. For the convergence of the to ¢, we will argue along sequences
lx — o, considering the following two casesc, (t)) is bounded or goes t®. The
former alternative is handled by the previous theorem Hettatter we prove thaj, — c
pointwise on0,t] ask — c. The conclusion is tha — ¢ pointwise on0, «) and hence,
by the previous lemma, uniformly on compact setf0of).

Suppose thdf — oo is such that|cy, ||j0 — c. For anyx > 0, consider the sequence

AX = (cI AX,...,¢'AX). Note that it is uniformly bounded. Lé¢ be a common
bound forf, "1 on [0 x| and forg! on [0,t]. For anys € [0, t]

D (CI /\X Zi fl | OC|k([S/O-|k]O-|k) +g| ([S/O]k]o]k)] {c' (9<x} = (m+1)K

so that the sequeneg A x is uniformly bounded and equicontinuous [nt]. Let € be
its uniform limit on[0,t]. If &l(s) < xforall j =1,...,mwe can argue as in the proof
of the previous lemma to see that="c on [0,s]. If cJ( s)>xforanyj=1,...,m, we
see that botie! and¢@ both reactx at the same poir < sand hence!(s) = cJ( S) AX.
HencecI AX— ¢l Ax. Sincexis arbitrary, we see thaﬂ — ¢l pointwise on0,t], even
if |c(t)] = co.

Leth =D.¢ = (D+¢},...,Di¢" andh=D,c= (D.ct,...,D;c™). We now prove
thath; — hin the Skorohod); topology if the explosion time is infinite. Recall that
h=3M, floc +gand that whemw; = 0 thenh; = 31, f{ o | + g while if ¢ > 0 then
hl(t) = [Z.: flod(|s/ai]ai) +gl(|s/ai|a)]*. Assume thawj = 0 for all | (the
arguments are analogous whagrn> 0), then the assertidm — his reduced in proving
that : floc' — floc for alli = 1,...,m, which is related to the composition mapping
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on Skorohod space, and then deducing §ag f' ocI +9 =5 floc +g, which is
related to continuity of addition on Skorohod space. Bothticmity assertions require
conditions to hold: the convergendgocl — fioc can be deduced fromAJu0g if
we prove thatf! is continuous at every point at whigh') 1 is discontinuous, and the
convergencg ", f} o +g — 3y f' o ¢! + g will hold because of\\Vhig0, Thm. 1.4]
since we assume théto ¢ and fl o ¢! will not jump at the same time nor as the same
time asg. Hence the convergentge — his reduced to proving that is continuous at
the discontinuities ofc') L. If ¢' is strictly increasing theic') 1 is continuous. When
cis not strictly increasing, we will use the assumed uniqaerté (L8) to prove thatf!

is continuous at the discontinuities @f)~1. The proof consists in two steps. First we
will prove that f is continuous at'(s) and the we will use this fact to prove that the
rest of the components df is continuous at the same point.

We know prove thaf'! is continuous at the discontinuities (f ) 1. Suppose that
(c)~Lis discontinuous at. Lets= (¢')~1(x—) andt = (¢')~1(x). Thenc is constant
on on|s,t] while ¢ < xon|[0,s) andc' > xon(t, ). SinceD, ¢ =5, fi'iod +g =0
on[st), we seethay ", f'oc” +d' is constant orfs,t). We assert that

m
infly=0:f'(y)=— 5 f"loc’(5)+d ()} =x
v =Tii
Indeed, iff' reached- 31 ; f'' oc'(s) +d(s) atX < x, there would exist' < s
such that
filod(g)+ Y flod(9+d(=0>flod(e)+ T flod(€)+d(€)>0
v =Tii v =Tizi

so that actually we have thaty ", ,; f"'oc”(s) +d/(s) is constantirs, t). Hence(
has spontaneous generation, which implies that there deasittwo solutions tol@):
one that is constant of¥, s), andc'. This contradicts the assumed uniqueness & (

Having proved the continuity of' atx, we need to prove that for eagh i, that f']
is continuous ax. To this end let us recall that(s) = x, and consider a sequenfg,}
such thatx, 1 x, therefore there exists another sequefs@ such thats, T s. So using
the continuity off' atx we have that

m

n—oo

0< lim <fi7ioci(sn)+ fj7iocj(sn)+gj(aq)>

j=L]#i
< floc(g+ 3 fllocl(s)+d(s)=0.
j=1)#i
Therefore we obtain that
lim % floc(sm)+d ()= 5 floc(s)+d'(9).
i=11# =4

And hence we can conclude, using that the functiblisandg’, are non-decreasing
that
lim fiioci(s,) = flioci(s)  forall j #i. O

n—oo
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6.3. Applications of the stability analysis. In this subsection, we apply the stability
analysis of Subsectiof 2to give a proof of Corollaryi.

Proof of Corollaryl. We first analyze the action of scaling 6. Since

oo [ [b 3 X0 (el
-/ [b_%Zix(c 'Msj/a)] ds

we see thafC j"t/bj,t > 0,1 < j<m)is the Euler type approximation of sparal
applied to(X"}: '(bJ )b’/a, t >0,1<i,j < m). Note that by hypothesis, the spafal
goes to 0 a$ — . Also, the right-hand derivative @Ig;t/b‘ equalsZé{a,/b'

_Also, we have assume'-J- '(blJ )],bﬂ/a,,t >0,1< j <m) converges tX"". Since
bl /al — 0, we see thak'! is spectrally positive. If # j thenX"I is a subordinator.
(We have only assumed convergence in the Skoraghdadpology. However, the same
arguments as in the proof of Corollary 7 aiPGUB13 gives us convergence in the
uniform J; topology in case of explosion.) Finally, sink{éy',_. ..,X™" are independent,
we are in position to construct the CB proc@sstarting atz! and constructed fronX
andY = 0 in Theoreml. From Theoren?, we deduce the(tZé;'tal/bll) converges t&
asl — oo, which proves Corollary. O

ds
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