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AFFINE PROCESSES ONRm
+×Rn AND MULTIPARAMETER TIME
CHANGES

MA. EMILIA CABALLERO, JOSÉ LUIS PÉREZ GARMENDIA, AND GERÓNIMO URIBE BRAVO

ABSTRACT. We present a time change construction of affine processes with state-space
Rm
+×Rn. These processes were systematically studied in [DFS03] since they contain

interesting classes of processes such as Lévy processes, continuous branching processes
with immigration, and of the Ornstein-Uhlenbeck type. The construction is based on
a (basically) continuous functional of a multidimensionalLévy process which implies
that limit theorems for Lévy processes (both almost sure and in distribution) can be
inherited to affine processes. The construction can be interpreted as a multiparameter
time change scheme or as a (random) ordinary differential equation driven by discontin-
uous functions. In particular, we propose approximation schemes for affine processes
based on the Euler method for solving the associated discontinuous ODEs, which are
shown to converge.

1. INTRODUCTION

Affine processes on the state-spaceE=Rm
+×Rn are a class of processes introduced in

[DFS03] for two reasons. First, they contain important classes of Markov processes like
Lévy processes, (multi-type) continuous branching processes with immigration, and of
the Ornstein-Uhlenbeck type. That is, they contain the fundamental examples of models
in (stochastic) population dynamics (as in [Lam08]) and mathematical finance (as has
been argued in [DFS03] and [Kal06]). Second, they are analytically tractable. Indeed,
they have been shown to be parametrized in a manner similar toLévy processes and
one can access their finite dimensional distributions by solving an ordinary differential
equation of the Riccati type (cf. [DFS03]).

To define them, letZ = (Zt , t ≥ 0) denote a stochastic process on a measurable space
(Ω,F ) whose paths are cádlag functions from[0,∞) to E. The canonical filtration of
Z will be denotedF ◦

t . Suppose that the measurable space is equipped with a familyof
(sub)probability measures(Pz,z∈ E) such that under eachPz the processZ starts atz.
Furthermore, we assume thatZ is stochastically continuous underPz for anyz∈ E and
that these measures constitute a Markov family:

Ez( f (Zt+s) |F ◦
s ) = Pt f (Zs) where Pt f (z) = Ez( f (Zt)) .

Definition. The Markov family(Pz,z∈ E) is affine if

(1) Ez
(

eu·Zt
)

= Φ(t,u)ez·ψ(t,u)

for all u ∈ Rm
−× iRn, whereRm

− denotes the set of elements ofRm whose coordinates
are negative.
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These processes are part of a larger one of so-called affine processes on general state-
spaces and much recent work has been aimed at characterizingthese Markov processes,
for example by proving their Feller property and the preciseform of their infinitesimal
generator. This work started in [DFS03] for regular affine processes onE and was
later extended in [KRST11], [KRST13] and [CT13] by proving that regularity already
follows from stochastic continuity and also by consideringmore general state-spaces
than we do here.

Our main result aims at giving a pathwise construction of affine processes in terms of
a multiparameter time change of Lévy processes, which are considered as more basic
building blocks.

Theorem 1. Let X1, . . . ,Xm and Y be independent Lévy processes onRm+n. We suppose
that the first m coordinates of Y are subordinators, that Xi,i has no negative jumps and
that Xi, j is a subordinator for1≤ i, j ≤ m and i6= j. Furthermore, in the Gaussian part
of Xi, the i-th coordinate is assumed independent of coordinatesm+1 up to n.

Let β be an n×n real matrix. Then, for any z∈ E there exists a unique solution Z to

(2)

{

Z j
t = zj +∑m

i=1Xi, j ◦Ci
t +Y j

t 1≤ j ≤ m

Zm+ j
t = zm+ j +∑m

i=1Xi,m+ j ◦Ci
t +Ym+ j

t +∑n
i=1Cm+i

t βi, j 1≤ j ≤ n

with

Ci
t =

∫ t

0
Zi

sds

whose first m coordinates are non-negative. IfPz denotes the law of Z, then(Pz,z∈ E)
is an affine Markov family onE and every affine Markov familyE is obtained by this
construction.

Note that the non-negative coordinates are more difficult tohandle. Indeed, the non-
negative coordinates alone constitute an affine process with n= 0, which is then called a
multitype continuous-state branching process with immigration (CBI) introduced (with-
out immigration and withm= 2) in [Wat69]. Once we analyze the casen= 0, we will
then get the general case by solving a linear differential equation driven by the solution
whenn = 0. These real-valued coordinates constitute the Ornstein-Uhlenbeck part of
the process, which is now not only driven by a Lévy process but also by a sum of time
changed Lévy processes.

Equation (2) represents a multiparameter time change equation proposed in [Kur80]
to generalize the classical time change construction of Markov processes of Volkonskii
(cf. [Vol58], [Dyn65, Vol 1, Ch 10]). A multiparameter time change representation
of affine processes was first proposed (in a weak sense) in [Kal06]; in that paper, the
question of whether the affine process was adapted to the filtration of the Lévy pro-
cess was left open. Recently, there have been a number of results concerning this time
change representation. For example, the PhD thesis [Gab14] (the relevant chapter is
found in [GT14]) proves existence (under additional but minor technical assumptions)
for a time change representation as in Theorem1. A discrete space version of Theorem
1 has also been recently studied. Indeed, a construction of Galton-Watson processes
(without immigration) in terms of multiparameter time changes of random walks is
found in [CL13] in discrete time and [Cha14] in continuous time. More generally, the
connection between time changes and changes of measure and the application to math-
ematical finance is explored in [BNS10]. The main contribution of our work is that we
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prove uniqueness of the pathwise representation in (2) (as well as for an accompany-
ing inequality). Uniqueness is the main tool in the forthcoming stability analysis of the
pathwise representation.

We now state some continuity properties of the system of equations (2). Consider
a sequence, indexed byl ≥ 1, of m+1 stochastic processesX1,·,l , . . . ,Xm,·,l ,Yl which
satisfy the upcoming hypothesisH of p. 6. Consider also any sequence of numbers
0 ≤ σl → 0. The numberσl is interpreted as the discretization parameter to be used
in an Euler type scheme as follows. Whenσl > 0, let Z j ,l andC j ,l , 1≤ j ≤ m+n, be
defined recursively by means of

C j ,l
0 = 0, Z j ,l

σl k
=

[

m

∑
i=1

zj
l +Xi, j ,l ◦Ci,l

σl k
+Y j ,l

σl k

]+

and C j ,l
σl (k+1) =C j ,l

σl k
+Z j ,l

σl k
σl(3)

when 1≤ j ≤ m, while for 1≤ j ≤ n we only change the definition ofZm+ j ,l to

Zm+ j ,l
σl k

= zj
l +

m

∑
i=1

Xi,m+ j ,l ◦Ci,l
σl k

+Ym+ j ,l
σl k

+
n

∑
i=1

Cm+i,l
σl k

βi, j(4)

When σl = 0, the forthcoming Lemma3 asserts that (2), when driven byXi, j ,l ,Y j ,l ,
admits a (global) solution (which could, in principle, explode). In that case, we let
Z j ,l ,C j ,l be any such solution. We recall in Subsection6.2 the definitions of the Skoro-
hodJ1 topology and of the uniformJ1 topology.

Theorem 2. Let X1, . . . ,Xm and Y be as in Theorem1. Let Z,C be the unique processes
satisfying(2).

Suppose that X1,·,l , . . . ,Xm,·,l ,Y·,l are stochastic processes which satisfy hypothesisH
of p. 6 and such that Xi,·,l converges to Xi,· (and Y·,l converges to Y) as l→ ∞. (The
convergence can be weak or almost surely in the Skorohod J1 topology when(2) has no
explosion and in the uniform J1 topology in case of explosion. ) Assume that zj

l → zj .
If Z·,l , C·,l are any processes satisfying(3) and (4) whenσl > 0 or (2) with respect

to the driving processes X1,·,l , . . . ,Xm,·,l ,Y·,l whenσl = 0 then Cl → C (with respect
to the topology of uniform convergence on compact sets when there is no explosion
and pointwise in case of explosion) and Zi,l → Zi for 1 ≤ i ≤ m (with respect to the
Skorohod J1 topology when there is no explosion and in the uniform J1 topology in case
of explosion) as l→ ∞. (The convergence will be either weak or strong depending on
the type of convergence of the Xi,·,l and Y.)

Note that the above limit theorem is either weak or strong, which follows from con-
tinuity properties of the multiparameter time change equations explored in Section6.
Indeed, we believe this is one strength of the time change representation versus, for
example, the SDE representation which is found in the one-dimensional case in [FL10]
and [Li14]. Indeed, even in the case of continuous sample paths, it is known that solving
SDEs is a discontinuous operation of the driving processes.A manifestation of this is
found in Wong-Zakai type phenomena (discovered in [WZ65]) and depending on the
type of approximation to the driving processes one obtains limits to different SDEs, as
has been argued in [FH14]. On the other hand, Theorem2 does not depend on how
one approximates the driving processes. We are not advocating, though, the use of one
representation over another. The construction of [Li14] is useful in the genealogical in-
terpretation of continuous branching processes, constructing directly some of the flows
in [BLG03].
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From Theorem2 we deduce a limit theorem concerning multi-type Galton-Watson
processes stated as Corollary1. In the one-dimensional case, Corollary1 includes limit
theorems found in [Gri74], [Li06] and [CPGUB13]. The multidimensional case has of-
ten been studied in the literature when the limit process is continuous, as in [JM86].
We state a version without immigration, just to illustrate the kind of statement one
can achieve as well as the technique. The technique can be adapted to the case of
immigration as in Corollary 7 of [CPGUB13]. Let (X1,·,l ,1 ≤ i ≤ m) be independent
d-dimensional random walks. Suppose thatXi,i,l has jumps inZ greater than−1 and
that otherwise the coordinates have jumps inN. Let kl =

(

kl
1, . . . ,k

l
m

)

∈ Nm be a se-
quence of starting states and define recursively the sequencesCl =

(

C j ,l ,1≤ j ≤ m
)

andZl =
(

Z j ,l ,1≤ j ≤ m
)

by

Cl
0 = 0, Zl

0 = kl , Z j ,l
n+1 = kl +

m

∑
i=1

Xi, j ,l ◦Ci,l
n and Cl

n+1 =Cl
n+Zl

n+1.

It is easy to see that for eachl , Zl is a multitype Galton-Watson process such that the
quantity of descendants of typej of an individual of typei has the same law asXi, j ,l

when i 6= j and the law ofXi,i,l +1 in the remaining case. However, ifXl is extended
by constancy on intervals of the form[n,n+1) with n∈ N, we see thatCl is the Euler
type approximation of span 1 applied toXl that we have just introduced andZl is the
right-hand derivative ofCl .

Corollary 1. Let X1,·,l , 1 ≤ i ≤ m be independent d-dimensional random walks. Sup-
pose that Xi,i,l has jumps inZ greater than−1 that otherwise the coordinates have
jumps inN.

Assume that for each i in{1, . . . ,m} there are scaling constants al and bi
l for l ≥ 1

such that
(

al

b j
l

Xi, j ,l
bi

l t
, t ≥ 0,1≤ j ≤ m

)

converges in Skorohod space (either almost surely or in distribution) to a Ĺevy process
Xi,·. Furthermore, al → ∞, bj

l /al → ∞ and kj
l is such that kjl al/b j

l → zj .
Then, the scaled Galton-Watson processes

(

al

b j
Z j ,l

al t , t ≥ 0,1≤ j ≤ m

)

started from(k j
l ,1 ≤ j ≤ m) converge in Skorohod space (either almost surely or in

distribution) to the uniqueCB process Z started from z and constructed from X and
Y = 0 in Theorem1.

We end this section with an application of Corollary1. Note that the different pro-
cesses in Corollary1 have scalings that have to be adequately balanced in order toobtain
a limit (with non-trivial reproduction and immigration components). In order to exem-
plify how this could be done, let us start by considering the framework of Theorem 4.2.2
of [JM86], giving a limit theorem for nearly critical multitype Galton-Watson processes
under finite-variance assumptions. Indeed, consider a sequence of multitype Galton-
Watson processesZ·,l such thatpi,l is the law of the offspring of an individual of typei.
We then define the mean matrixM by means of

Ml
i, j = ∑

k∈Nm

k j p
i,l (k) .
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Assume thatMl = Id+Cl/l whereCl →C asl → ∞. Consider also the variance matrix
σ l given by

σ l
i, j =

[

∑
k

(

k j −Ml
i, j

)2
pi,l (k)

]1/2

.

Supose thatσ l
i, j → σi1i= j asl → ∞ and that the following Lindeberg condition holds:

∑
ki≥ε

√
n

(

ki −Ml
i,i

)2
pi,l (k)→ 0

as l → ∞. Recall our construction of such a process in terms of randomwalks Xi,·,l

for i = 1, . . . ,m. From our hypotheses, it follows thatXi,i,l
l2· /l converges toσiBi +Ci,i Id

whereBi is a standard Brownian motion. Indeed, the convergence of one-dimensional
distributions is deduced from the Lindeberg-Feller central limit theorem. Because of
independence and stationarity of the increments this implies the convergence of finite-
dimensional distributions and tightness is easily deducedfrom the Aldous criterion. For
i 6= j, one sees thatXi, j ,l

l2· /l →Ci, j Id asl → ∞. Indeed, it suffices again to establish con-
vergence of one-dimensional distributions which follow from Chebyshev’s inequality.
Tightness again follows from the Aldous criterion. Hence, Corollary1 allows us to con-
clude that ifZl

0/l → z thenZl
l ·/l converges weakly to a continuous branching processZ

with continuous sample paths. One can then use the martingales associated toX, as in
[Kur80], to see that the generator ofZ is given by

m

∑
i=1

ziσ2
i

2
∂ 2

∂z2
i

+ ∑
1≤i, j≤m

ziCi, j
∂

∂zj
.

This fact can also be deduced from the infinitesimal parameters ofZ that are introduced
in Section2 and from the proof of Theorem1.

Our work continues and extends the one-dimensional situation covered in [CPGUB13].
There are however, important differences with that work. First of all, the discussion of
uniqueness to (2) now relies on the concept of (lack of) spontaneous generation. This
is to be contrasted to the previous analysis based on taking inverses. The multiple time
changes make this one-dimensional approach unfeasible. Onthe other hand, we also
take the point of view of multiparameter time changes from [Kur80], providing a very
concrete (but general) example of its applicability. This has led to several simplifications
when proving that solutions to (2) are affine processes.

The paper is organized as follows. We first consider a deterministic framework for
equation (2) whenn = 0 and analyze existence, uniqueness, and basic measurability
questions. This is done in Section3. We then undertake the proof of Theorem1 when
n = 0, which reduces basically to establishing the Markov property and constructing
relevant martingales, in Section4. The case of generaln is taken up in Section5.
Finally, we pass to the stability of equation2, which contains the proofs of Theorem2
and Corollary1 in Section6.

2. PRELIMINARIES ON AFFINE PROCESSES

Let Z be an affine process with laws(Pz,z∈ E). Let Φ andψ be defined as in Equa-
tion (1); applying the Markov property, we get the semi-flow property

(5) ψ(t +s,u) = ψ(s,ψ(t,u)) and Φ(t +s,u) = Φ(t,u)Φ(s,ψ(t,u)) .
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From Theorem 5.1 in [KRST11] or Theorem 3.3 in [KRST13], it is known that the
following derivatives exist and are continuous as a function of u:

F(u) =
∂
∂ t

Φ(t,u)

∣

∣

∣

∣

t=0
and R(u) =

∂
∂ t

ψ(t,u)

∣

∣

∣

∣

t=0
.

From the semi-flow property, we deduce the so called Riccati equations

(6)
∂
∂ t

Φ(t,u) = Φ(t,u)F(ψ(t,u)) and
∂
∂ t

ψ(t,u) = R(ψ(t,u))

with the initial conditions

Φ(0,u) = 1 and ψ(0,u) = u.

If Φ were non-zero andφ were continuous and satisfiedeφ = Φ, we would obtain the
more familiar equation

∂
∂ t

φ(t,u) = F(ψ(t,u))

which gives

φ(t,u) =
∫ t

0
F(ψ(s,u)) ds.

Furthermore, Theorem 2.7 in [DFS03] asserts thatF andR have the following very
specific form: ifX1, . . . ,Xm andY are Lévy processes satisfying the conditions of The-
orem1 thenF andR= (R1, . . . ,Rm+n) are the unique continuous functions such that

(7) eF(u) = E
(

eu·Y1
)

and eRi(u) = E
(

eu·Xi
1

)

for 1≤ i ≤ m while for m+1≤ i ≤ n we set

Rm+i(u) =
n

∑
j=1

βi, jum+ j .

Furthermore, Section 6 of [DFS03] discusses the (global) existence and uniqueness
of the generalized Riccati equations of (6).

3. PATHWISE ANALYSIS OF THE MULTIDIMENSIONAL TIME CHANGE EQUATION

Following [CPGUB13], we begin by considering a deterministic system of time
change equations appearing in Theorem1 in the case of non-negative processes (n= 0).
Considerm(m+1) càdlàg functions labeled

{

f i, j ,1≤ i, j ≤ m
}

and
{

g j ,1≤ j ≤ m
}

.
These functions satisfy the following requirements:

H1: f i, j has no negative jumps ifi = j and is non-decreasing otherwise.
H2: g j is non-decreasing.
H3: g j(0)+∑m

i=1 f i, j(0)≥ 0 for 1≤ j ≤ m.

The above hypotheses are collectively denotedH.
We seek a solution to the following system of equations for the càdlàg functionh=

(

h1, . . . ,hm
)

:

(8) h j(t) =
m

∑
i=1

f i, j ◦ci(t)+g j(t) for 1≤ j ≤ m where c j(t) =
∫ t

0
h j(s) ds.

This system can also be thought of as an ordinary differential equation forc when one
notes thath j is the right-hand derivative ofc j . With this interpretation, we might want
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to use other initial conditions forc rather than only zero. This amounts to shifting the
functions f i, j ; note however, that the shifts must still satisfyH3.

3.1. A basic monotonicity lemma and existence.Our approach to the study of (8) is
based on its monotonicity properties. We begin with a simpleand useful case of this
and postpone an elaboration of this idea which will be usefulto obtain uniqueness.

Lemma 1. Suppose that we have two sets of functions P= ( f i, j ,g j) andP̃= ( f̃ i, j , g̃ j)
satisfying hypothesisH. Assume that fi, j ≤ f̃ i, j and gj ≤ g̃ j and that additionally, for
every j∈ {1, . . . ,m}, either fi, j < f̃ i, j or g j < g̃ j . If h andh̃ are non-negative functions
that satisfy(8) driven by P andP̃ respectively then c≤ c̃.

Proof. Let

P=
(

f i, j ,g j ,1≤ i, j ≤ m
)

and P̃=
(

f̃ i, j , g̃ j ,1≤ i, j ≤ m
)

be a system of functions satisfying the assumptions of our lemma andh, h̃ the associated
non-negative solutions to (8). For anyε > 0 and anyα > 1, definec j(t) = c̃ j(ε +αt).

Hencec j has a càdlàg right-hand derivativeh
j
given byh

j
(t) = αh̃ j(ε +αt). We then

define

τ = inf
{

t ≥ 0 : c j(t)> c j(t) for somej
}

as well as the setJ of indices j ∈ {1, . . . ,m} such thatc j exceedsc j strictly at some
point of any right neighbourhood ofτ. If j ∈ J thenc j(τ) = c j(τ) while ci(τ) ≤ ci(τ)
for i 6= j, so that alsof̃ i, j ◦ ci(τ) ≤ f̃ i, j ◦ ci(τ) for i 6= j. We deduce the following for
j ∈ J:

0≤ h j(τ) = ∑
i

f i, j ◦ci(τ)+g j(τ)

< ∑
i

f̃ i, j ◦ci(τ)+ g̃ j(τ)

< α

[

∑
i

f̃ i, j ◦ci(τ)+ g̃ j(ε +ατ)

]

= h
j
(τ) .

(Note that the right-hand side of the first strict inequalitycannot be zero, which justifies
the second strict inequality.) We deduce thatc j remains belowc j in a right neighbour-
hood ofτ which contradicts the definitions ofτ andJ. We deduce thatc j ≤ c j and,
lettingα go to 1, thatc j ≤ c̃ j . �

We now tackle existence for (8) in the case when onlyf j , j ,1≤ j ≤ m are not piece-
wise constant. The proof will be based on the observation that under the piecewise
constant hypotheses, the system (8) is one-dimensional on adequate intervals. The
piecewise constant case will allow us to prove existence for(8) in general through the
monotonicity proved in Lemma1.

Lemma 2. Let
{

f i, j ,g j ,1≤ i, j ≤ m
}

satisfyH and suppose that fi, j and gj are piece-
wise constant if1≤ i, j ≤m and i6= j. Then, there exists a solution h=

{

h j : 1≤ j ≤ m
}

to (8). This solution exists on an interval[0,τ) and cj
τ− = ∞ for some j.

The timeτ is termed the explosion time ofc.
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Remark 1. For the one-dimensional case, existence follows from Theorem 1 in [CPGUB13]
which asserts that the problem IVP( f ,0,x) consisting of a finding a functionc with a
right-hand derivativeh which satisfies

IVP( f ,0,x) : h= f ◦c with c(0) = x

admits, for anyx ≥ 0 and any càdlàg functionf such thatf has no negative jumps, a
unique solution which lacks spontaneous generation. Whenf (x) = 0, the only solution
lacking spontaneous generation is the functionc(t) = x. When f (x) > 0, the unique
solution can be constructed by a Lamperti type transformation obtained by first making
zero absorbing afterx; formally

T = inf {t ≥ x : f (t) = 0} and f̃ (t) =

{

f (t) t < T

0 t ∈ [T,∞]
.

We then definei on [x,∞) by means of

i(y) =
∫ y

x

1

f̃ (t)
dt.

Note thati is strictly increasing on[x,T) and infinite on(T,∞). Then, letc be the right-
continuous inverse ofi (in the sense of Lemma 0.4.8 of [RY99]). Note thatc is strictly
increasing on[0, i(T−)] and constant on[I(T−),∞] and by definitionc(0) = x. Then,
since the right-hand derivative ofi exists and equals 1/ f , thenc also admits a right-hand
derivative (on[0, i(T−))), sayh, and we haveh= 1/(1/ f ◦ i−1) = f ◦c. The functionc
so constructed fromf is called the Lamperti transform off absorbed at its first zero after
x. Note thatc(∞) = T. In the one-dimensional setting, whenX is a spectrally positive
Lévy process, Proposition 2 of [CPGUB13] shows that there is a unique solutionC to
IVP(x+X,0,0) (with right-hand derivativeZ) which has zero as an absorbing state; if
T denotes the hitting time of zero ofx+X, X̃ equalsX stopped atT, thenC is also
the unique solution IVP(x+X,0,0), so thatC∞ = T. This one dimensional result is
important in our proof of uniqueness of solutions to2. Since stopping a càdlàg process
at a stopping time and looking at a càdlàg process at a random time are measurable
transformations, we see that the Lamperti transformation is measurable on the Skorohod
space of càdlàg trajectories with theσ -field generated by projections. This would hold
even if we take the initial valuex to be random and measurable.

Proof. Suppose first that

f i, j =
∞

∑
k=1

xi, j
k 1

[t i, j
k−1,t

i, j
k )

g j =
∞

∑
k=1

y j
k1[t j

k−1,t
j
k)
,

wherexi, j
k−1 ≤ xi, j

k if i 6= j, 0= t i, j
0 ≤ t i, j

1 ≤ ·· · , the sequencet i, j
k ,k≥ 0 has no accumula-

tion points (similar assumptions hold forg j ) and additionally, for eachj

f j , j(0)+∑
i 6= j

xi, j
1 +y j

1 ≥ 0

so that assumptionsH hold. LetTi, j (resp. Tj ) denote the set of change points of the
functions f i, j (resp.g j ):

Ti, j =
{

t i, j
k : 0≤ k

}

and Tj =
{

t j
k : 0≤ k

}

.
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Let τ0 = 0 and, for any j = 1, . . . ,m, let c̃ j
1 be the unique solution of the problem

IVP
(

f j
1 ,0,0

)

, where the functionf j
1 is given by

f j
1(t) = f j , j(t)+∑

i 6= j

f i, j(0)+g j(0) .

We now define the times

τ i
1 = inf

{

t > 0 : t ∈ Ti or c̃i
1(t) ∈ ∪ j 6=iTi, j

}

and τ1 = min
i

τ i
1.

Setc j equal to ˜c j
1 on[0,τ1] and recursively define ˜c j

n+1 as the solution to IVP
(

f j
n+1,0,c

j(τn)
)

where the functionf j
n+1 is given by

f j
n+1(t) = f j , j(t)+∑

i 6= j

f i, j ◦ci(τn)+g j(τn) .

We then define

τ i
n+1 = inf

{

t > τn : t ∈ Ti or c̃i
1(t − τn) ∈ ∪ j 6=iTi, j

}

and τn+1 = min
i

τ i
n+1

and letc j(t) = c̃ j
n+1(t− τn) on [τn,τn+1]. We assert thatc =

(

c1, . . . ,cm
)

solves (8);
the proof is by induction. However, note that the starting point of c̃n is chosen so that
c is continuous and has a càdlàg right-hand derivative. On[0,τ1], f i, j ◦ ci andg j are
constant and hence, equal to their value at zero. Hence, if welet h j stand for the right-
hand derivative ofc j , we obtain the following equalities for anyt < τ1

h j(t) = f j
1 ◦c j(t)

= f j , j ◦c j(t)+∑
i 6= j

f i, j(0)+g j(0)

= f j , j ◦c j(t)+∑
i 6= j

f i, j ◦ci(t)+g j(t) ,

which allow us to conclude thatc solves (8) on [0,τ1]. On the other hand, if we assume
thatc solves (8) on [0,τn], then note that, by definition,f i, j ◦ ci andg j are constant on
[τn,τn+1]. We deduce that fort ∈ [τn,τn+1]:

h j(t) = f j
n+1◦ c̃ j

n+1(t− τn)

= f j , j ◦ c̃ j
n+1(t − τn)+∑

i 6= j

f i, j ◦c j(τn)+g j ◦c j(τn)

= f j , j ◦c j(t)+∑
i 6= j

f i, j ◦ci(t)+g j(t)

so thatc solves (8) on [0,τn+1].
Sinceτn increases inn, there are two possibilities: eitherτn → ∞ (in which case the

solution we have constructed is a global solution) orc j(τn)→∞ for somej by definition
of τ j

n, τn, and the fact that the setsTi, j andTj have no accumulation points. In the latter
case,c explodes. �

Remark 2. As in Remark1, we note that if we apply the procedure of the above proof
in the case of càdlàg stochastic processes (satisfying the conditions of Lemma2) then
the solutions are measurable. This follows because on adequate intervals (which are
obtained by stopping), the solutions are unidimensional and are constructed through the
Lamperti transformation.
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We now tackle existence for (8).

Lemma 3. Let
{

f i, j ,g j ,1≤ i, j ≤ m
}

satisfyH. Then, there existsτ > 0 such that a
non-negative solution h to(8) exists on[0,τ). Furthermore this solution explodes atτ
and is maximal:

(1) If c j(t) =
∫ t

0 h j(s) ds then cj(τ−) = ∞ for some j.
(2) If h̃ is another solution to(8) (with its corresponding̃c) thenc̃≤ c on the interval

of existence of̃h.

Proof. For 1≤ i, j ≤ m with i 6= j consider a sequence of càdlàg functionsf i, j
n andg j

n
which are piecewise constant, are strictly bigger thanf i, j andg j , and decrease asn→ ∞
towards f i, j and g j respectively. We then setf j , j

n = f j , j . Using Lemma2, we can
consider for anyn a solutionhn = (h1

n, . . . ,h
m
n ) to (8) driven by{ f i, j

n ,g j
n} . By Lemma1,

we see that the cumulative population ofhn exceeds the cumulative population of any
solution to (8).

Fix anyK > 0 and use it to stopcn at the instantτn,K that any one of its coordinates
reachK. Call the resulting function ˜cn. Sincecn+1 ≤ cn thenτn,K ≤ τn+1,K; setτK =

limn τn,K. Note that ˜cn has a càdlàg derivativẽhn given by

h̃ j
n(t) = 1t≤τn,K h j

n(t) .

Hence,h̃ j
n can be bounded on any interval[0, t] by mmaxi, j infx≤K f i, j

n (x)+g j
n(t), and

can then be bounded inn by construction off i, j
n andg j

n. By the Arzelà-Ascoli theorem
(which applies since ˜c j

n(0) = 0), c̃n is sequentially compact. We now show that every
subsequential limit coincides. Indeed, if ˜c is the (uniform) limit (on compact sets) of ˜c j

nk

ask→ ∞, then the bounded convergence theorem implies that for anyt < τK:

c̃ j(t) = lim
k

c̃ j
k(t) = lim

k

∫ t

0
∑
i

f i, j
n ◦ c̃i

n(s)+g j
n(s) ds=

∫ t

0
∑
i

f i, j ◦ci(s)+g j(s) ds.

We conclude that ˜c admits a right-hand derivativẽh on [0,τK) which satisfies (8) on
[0,τK). However, ˜c is the maximal solution by construction (since we can apply Lemma
1 to the approximationscn), so that all subsequential limits agree on[0,τK]. Finally,
note that beforeτK the coordinates of ˜c have to be smaller thanK and that atτK some
coordinate equalsK. HenceτK coincides with the instant in which some coordinate of
c̃ reachesK. By uniqueness, one can construct a functionc which coincides with ˜c on
[0,τK), so thatc is defined and solves (8) on [0,τ) whereτ = limK τK. By construction,
c explodes atτ and is maximal in the class of solutions to (8). �

Remark 3. Recall that the approximations of the above proof are measurable in the case
of applying them to càdlàg stochastic processes thanks toRemark2. Then, applying the
construction to a càdlàg stochastic processX satisfying hypothesesH, we get another
pair of stochastic processesZ andC. SinceZ andC are cadlag, thenXi, j ◦Ci is also a
stochastic process.

3.2. Spontaneous generation and minimal solutions.An interpretation for the one-
dimensional case of (8) was proposed in [CPGUB13] by noting that if f 1,1 represents
the breadth-first walk on a (combinatorial) forest representing the genealogy of a pop-
ulation with immigrants along each generation andg1 codes the immigration to the
population thenh1 is the population profile (that is, the sequence of generation sizes),
while c1 is the cumulative population. The multidimensional case ofthis discrete cod-
ing can be found in Subsection 2.2 of [CL13], wheng j = 0 for all j, and it shows that
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the one-dimensional interpretation still holds. In particular, the discrete interpretation
gives sense to the following definition of lack of spontaneous generation: in the one
dimensional case, a solutionh= f ◦c+g lacks spontaneous generation ifh(s) = 0 (the
population is zero at times) andg is constant on[s, t] (there is no immigration on[s, t])
implies thath= 0 on[s, t] (the population remains at zero). Perhaps it is then surprising
that there are solutions featuring spontaneous generation, but whenf is the typical path
of a normalized Brownian excursion then they do exist (cf. [CPGUB13, Sect. 2]).

Definition. Let
(

f i, j ,g j
)

satisfyH. We say that a solutionh=
(

h j
)

to (8) has no spon-
taneous generation if wheneverh j(s) = 0 for somes≥ 0 and for all j in J ⊂ {1, . . . ,m},
we have that the strict increase ofc j at s for somej ∈ J implies that eitherg j increases
strictly atsor there existsi 6∈ J such thatf i, j ◦ci increases strictly to the right ofs.

As a remark, we mention thath lacks spontaneous generation if and only if at any
s≥ 0 such that the setJ(s) =

{

j : h j(s) = 0
}

is nonempty, the strict increase ofc j at s
for somej ∈ J(s) implies that eitherg j increases strictly to the right ofs or there exists
i 6∈ J(s) such thatf i, j increases strictly to the right ofci(s).

The definition works very well with induction on the dimension, in the sense that
if h =

(

hi , i ≤ m
)

is a non-negative solution to (8) driven by
(

f i, j ,1≤ i, j ≤ m
)

and
(

g j , j ≤ m
)

without spontaneous generation andm1<m, we can then considerh1, . . . ,hm1

as a solution, which will lack spontaneous generation, to (8) but driven by f i, j and
g j +∑i>m1

f i, j ◦ci for 1≤ j ≤ m1.
The importance of solutions lacking spontaneous generation is that they have mono-

tonicity properties (see Lemma4 below) and, consequently, they are minimal solutions
to (8) as well as unique. In particular, if all solutions of (8) can be shown to have no
spontaneous generation, then there is at most one solution.There are two cases when
we can actually apply this technique. First, wheng j is strictly increasing for allj since
then solutions trivially have no spontaneous generation. Another example is when (8)
is driven by Lévy processes satisfying the hypotheses of Theorem1: we will show in
Lemma6 that solutions have no spontaneous generation, which covers the uniqueness
statement in Theorem1.

Lemma 4. Suppose that we have two sets of functions P= ( f i, j ,g j) andP̃= ( f̃ i, j , g̃ j)
satisfying hypothesisH. Assume that fi, j ≤ f̃ i, j and gj ≤ g̃ j . If h andh̃ are non-negative
functions that satisfy(8) driven by P andP̃ respectively and h lacks spontaneous gen-
eration, then c≤ c̃. Hence,(8) admits at most one solution h whose coordinates are
non-negative and have no spontaneous generation.

The above lemma also tells us that solutions without spontaneous generation are min-
imal in the sense that their primitive is a lower bound for theprimitive of any other
solution.

Proof. This proof is an elaboration of the proof of Lemma1. We proceed by induction.
Let m= 1, let P = ( f ,g) andP̃ =

(

f̃ , g̃
)

satisfy hypothesisH and leth andh̃ be non-
negative solutions to (8) driven byP and P̃ and lacking spontaneous generation. Let
ε > 0 andα > 1 and use them to definec by means ofc(t) = c̃(ε +αt). Let

τ = inf {t ≥ 0 : c(t)> c(t)} .
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Note thatc has a càdlàg right-hand derivativeh given byh(t)=αh̃(ε +αt). If h(τ)>
0, sincec(τ) = c(τ), our assumptions give

h(τ) = f ◦c(τ)+g(τ)
≤ f̃ ◦c(τ)+g(τ)

< α
[

f̃ ◦c(τ)+ g̃(ε +ατ)
]

= h(τ) .

Hence,c ≤ c on a right neighbourhood ofτ contradicting its definition. On the other
hand, ifh(τ) = 0, then we can only infer, as in the previous display, that

0≤ h(τ) = f ◦c(τ)+g(τ)
≤ f ◦c(τ)+g(ε +ατ)
≤ f̃ ◦ c̃(τ)+ g̃(ε +ατ) = 0.

We conclude thatg is constant on[τ,ε +ατ] which, by lack of spontaneous generation,
shows thath = 0 on the same interval so thatc cannot exceed ˜c in any small enough
right neighbourhood ofτ. We conclude thatc(t)≤ c̃(ε +ατ) for anyt ≥ 0, anyε > 0
and anyα > 1. Hencec≤ c̃.

Let m≥ 2. Suppose now that the monotonicity statementc ≤ c̃ is true for any so-
lution to (8) of dimension strictly less thanm. Let P =

(

f i, j ,g j ,1≤ i, j ≤ m
)

and
P̃ =

(

f i, j ,g j ,1≤ i, j ≤ m
)

be a system of functions satisfying the assumptions of our
lemma in dimensionm andh andh̃ the associated non-negative solutions to (8) without
spontaneous generation. We proceed as in the one dimensional case: for anyε > 0 and
any α > 1, definec j(t) = c̃ j(ε +αt). Hencec j has a càdlàg right-hand derivativeh

j

given byh
j
(t) = αh̃ j(ε +αt). We then define

τ = inf
{

t ≥ 0 : c j(t)> c j(t) for somej
}

as well as the setJ of indices j ∈ {1, . . . ,m} such thatc j exceedsc j strictly at some
point of any right neighbourhood ofτ. If j ∈ J thenc j(τ) = c j(τ) while ci(τ) ≤ ci(τ)
for i 6= j. If h

j
(τ)> 0 for somej ∈ J, we infer that

h j(τ) = f j , j ◦c j(τ)+∑
i 6= j

f i, j ◦ci(τ)+g j(τ)

< α

[

f̃ j , j ◦c j(τ)+∑
i 6= j

f̃ i, j ◦ci(τ)+ g̃ j(ε +ατ)

]

= h
j
(τ) .

We deduce thatc j remains belowc j in a right neighbourhood ofτ which contradicts the
definitions ofτ andJ. Hence, we can assume thath

j
(τ) = 0 for every j ∈ J. Note that

if J = {1, . . . ,m} then

0≤ h j(τ) = ∑
i

f i, j ◦ci(τ)+g j(τ)

≤ ∑
i

f i, j ◦ci(τ)+g j(ε +ατ)

≤ ∑
i

f̃ i, j ◦ci(τ)+ g̃ j(ε +ατ) = 0.

We conclude not only thath j(τ) = 0, but also thatg j is constant on[τ,ε +ατ], which
implies, by lack of spontaneous generation, thath j is constant on[τ,ε +ατ], which
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contradicts the definition ofτ. Hence, we can assume thatJ ( {1, . . . ,m} and by rela-
belling, we writeJ = {1, . . . ,m1} wherem1 < m. For every j > m1, c j ≤ c j in a right
neighbourhood ofτ. Also, note thatc j , j ≤ m1 solves system (8) in dimensionm1 when
driven by

(

f i, j , i, j ≤ m1
)

andg j +∑i>m1
f i, j ◦c j . The same remark holds forc j , j ≤m1.

Since this system have dimension strictly less thanmand the reduced systemh1, . . . ,hm1

has no spontaneous generation, monotonicity holds for themand we can conclude that
c j ≤ c j , j ≤ m1 in a right neighbourhood ofτ, which again contradicts the definition of
τ. As before, we conclude thatc≤ c̃.

Finally, suppose thath andh̃ are two non-negative solutions to (8) which lack spon-
taneous generation and are driven by the same functionsP. Applying our monotonicity
statement, we see thatc= c̃ which then impliesh= h̃. �

3.3. Further consequences in the stochastic setting.We now show that the process
C is a multiparameter random time change in the sense of [EK86, Ch. 6]. For this,
consider theσ -field

(9) F
◦
t1,...,tm,t = F

X1

t1 ∨· · ·∨F
Xm

tm ∨F
Y
t .

Lemma 5. Let X1, . . . ,Xm and Y be a stochastic process satisfying hypothesesH. Let Z
be the solution to(2) (with n= 0) such that its primitive C is maximal. Then

σ
(

Z j
s,C

j
s,Y

j
s ,X

i, j ◦Ci
s : 0≤ s≤ t,0≤ i, j ≤ m

)

∩
{

Ci
t ≤ ti,1≤ i ≤ m

}

⊂ F
◦
t1,...,tm,t .

Recall that the solution constructed in Lemma3 has a maximal primitive. The proof
will be based on a Galmarino type test in the multiparameter setting. (Cf. [Gal63] and
[RY99, Ex. 1.4.21].)

Proof. Let Z, C be as in the statement. Consider also the solutionZ̃ to (2) (with m= 0),
but now driven byXi stopped atti (denotedX̃i) for 1≤ i ≤ m, byY stopped att (denoted
Ỹ), and such that its primitivẽC is maximal. Analysing the construction ofC, Z, C̃ and
Z̃ we note that ifCi

t ≤ ti for 1≤ i ≤ m thenZ= Z̃, Xi, j ◦Ci = X̃i, j ◦C̃i andC= C̃ on [0, t].
SinceZ̃t , X̃i, j ◦C̃i andC̃i are measurable functions ofX̃i, j , the statement follows. �

We now study the uniqueness of (2) whenn= 0.

Lemma 6. Let X1, . . . ,Xm and Y be Ĺevy processes satisfying the assumptions of Theo-
rem1 when n= 0. Then, almost surely, solutions Z to(2) have no spontaneous genera-
tion.

Proof. Let Z (equivalentlyC) be a solution to (2). Let τ be the first instant such that
Z admits spontaneous generation. We argue thatτ = ∞ by contradiction. Indeed, we
first show thatτ > 0 almost surely and then we apply arguments related to the strong
Markov property to deduce thatτ < τ on the setτ < ∞.

Let us now show thatτ > 0. Note thatτ > 0 means that ifJ =
{

j ≤ m : zj = 0
}

then the assumption thatY j = 0 on a right neighbourhood of 0 for everyj ∈ J and that
Xi, j = 0 on a right neighbourhood of zero for everyj ∈ J andi 6∈ J implies thatZ j = 0 for
every j ∈ J on a right neighbourhood of zero. Hence, the problem is reduced to proving
that if zj = 0 andY j = 0 for every j thenZ= 0. (This corresponds to analyzing the case
of multitype CB processes without immigration. ) LetT > 0 be such thatC j

T < ∞ for
every j. SinceXi, j is a subordinator for anyi 6= j then limh→0Xi, j

h /h exists and equals
the drift coefficient ofX (cf. [Ber96, Prop 8, Ch III]). Hence, there existsM > 0 such
thatXi, j < M Id on [0,C j

T ] for all i 6= j. If j is any coordinate such thatX j , j is a finite
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variation Lévy process (that is, the difference of two subordinators), the same argument
implies that (for a possibly differentM) X j , j < M Id on [0,C j

T ]. For this coordinate we
see that

0≤ Z j
t ≤ MC j

t +M ∑
i 6= j

Ci
t .

From Gronwall’s inequality, we see thatZ equals zero until there existsi 6= j such that
Ci grows. Hence, coordinatesj such thatX j , j have finite variation cannot be responsible
for spontaneous generation. To analyze coordinates with infinite variation, recall from
[Rog68] that if X j , j has infinite variation then liminfh→0X j , j

h /h = −∞. We consider
m≥2 since the casem=1 has been handled in [CPGUB13]. In particular, forA>m−1,
we can choose a sequence(tn) decreasing to zero and such thatX j , j

tn <−MAtn. We then
chooseεn in the interval(Mtn,MAtn/(m−1)). Now, defineX̃i, j ,n = εn∨ (M Id) for i 6= j
and consider a solutioñZ to

Z̃ j
t = X j , j ◦C̃ j

t +∑
i 6= j

X̃i, j ,n◦C̃i
t .

A modification of the proof of Lemma1 shows thatC j ≤ C̃ j on [0,T]. However, note
that while everyC̃ j is belowεn/M, C̃ j behaves as the solution to

Z̃ j
t = X j , j ◦C̃ j

t +(m−1)εn.

It follows that if Z̃ j reaches zero before anỹCi exceedsεn/M thenZ̃ j remains at zero
afterwards (since this happens for the one-dimensional problem definingZ̃ j ). However,
recall from Remark1, that in the one-dimensional case the total population (C j

∞) equals
the time the reproduction function reaches zero (inf{t ≥ 0 :(m−1)εn+X j , j

t =0}). Since
(m−1)εn+X j , j

tn < (m−1)εn−MAtn < 0 andtn≤ εn/M, it follows thatZ̃ j reaches zero
beforeC̃ j reachesεn/M. Hence,C̃ j ≤ εn/M and soC = 0 on [0,T]. We have hence
shown thatτ > 0.

We now the following identity in law:
(10)
(

X1(C1
τ + ·

)

−X1(C1
τ
)

, . . . ,Xm(Cm
τ + ·)−Xm(Cm

τ ) ,Yτ+t −Yτ
)
∣

∣τ <∞ d
=
(

X1, . . . ,Xm,Y
)

.

The identity in law (10) implies a contradiction since if̃Z satisfies (8) but driven by
the left-hand side of (10) with initial value Zτ then Z̃ should, by definition ofτ, have
spontaneous generation at time 0, which is impossible.

To prove the identity in law of (10), we first prove that for any 0≤ t1, . . . , tm we have

(11) A=
{

C1
τ ≤ t1, . . . ,C

m
τ ≤ tm,τ > t

}

∈ F
◦
t1,...,tm,t .

Indeed, the above will follow from proving that

{τ < t} ∈ σ
(

C j
s,Z

j
s,Y

j
s ,X

i, j ◦Ci
s : 0≤ s≤ t,1≤ i, j ≤ m

)

.

thanks to Lemma5. However, note thatτ < t is and only if there existsJ ⊂ [m] =
{1, . . . ,m} and j ∈ J such thatZ j presents spontaneous generation over a common in-
terval of constancy ofY j andXi, j ◦Ci of length greater thanε. This can be discretized
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as follows:

{τ < t}=
⋃

J⊂[m]

⋃

j∈J

⋃

ε>0
ε∈Q

⋃

q∈[0,t]
q∈Q

⋂

δ>0
δ∈Q

⋃

p<q−ε
p∈Q

⋂

i 6∈J

⋂

j ′∈J

{

Z j
q > 0,0< Z j

[p,q],Z
j ′
p < δ

}

∩
{

Xi, j ◦Ci,Y j are constant on[p,q]
}

,

whereZ j
[p,q] = inf

{

Z j
s : s∈ [p,q]

}

.

We now consider the random timesτn andCi
n where

τn = (k+1)/2n if k/2n ≤ τ < (k+1)/2n

and
Ci

n = (ki +1)/2n if ki/2n ≤Ci
τn
< (ki +1)/2n.

Then, thanks to (11)
{

τ = (k+1)/2n,Ci
n = (ki +1)/2n}

=
{

k/2n ≤ τ < (k+1)/2n,ki/2n ≤Ci
(k+1)/2n < (ki +1)/2n

}

∈ F
◦
(k1+1)/2n,...,(km+1)/2n,(k+1)/2n

Also, note thatτn andCi
n decrease toτ andCi

τ respectively.
Consider now the processesX̃i andỸ whereX̃i

t = Xi
Ci

n+t −Xi
Ci

n
andỸt = Yτn+t −Yτn.

We assert now that the joint law of̃X1, . . . , X̃m andỸ equals the law ofX1, . . . ,Xm and
Y. To prove this, we focus on the one-dimensional distributions since the computation
of the finite-dimensional distributions is just notationally more cumbersome.

P
(

X̃i
t ≤ xi ,1≤ i ≤ m,Ỹt ≤ x,τn < ∞

)

= ∑
k1,...,km,k

P
(

τn = (k+1)/2n,Ci
n = (ki +1)/2n, X̃i

t ≤ xi ,1≤ i ≤ m,Ỹt ≤ x
)

= ∑
k1,...,km,k

P
(

k/2n ≤ τ < (k+1)/2n,ki/2n ≤Ci
(k+1)/2n < (ki +1)/2n,

Xi
t+(ki+1)/2n −Xi

(ki+1)/2n ≤ x,1≤ i ≤ m,Yt+(k+1)/2n −Y(k+1)/2n ≤ x
)

= ∑
k1,...,km,k

P
(

k/2n ≤ τ < (k+1)/2n,ki/2n ≤Ci
(k+1)/2n < (ki +1)/2n,1≤ i ≤ m

)

×P
(

Xi
t ≤ xi ,1≤ i ≤ m,Yt ≤ x

)

= P(τn < ∞)P
(

Xi
t ≤ xi ,1≤ i ≤ m,Yt ≤ x

)

.

As n→ ∞, the process̃Xi converges toXi
Ci

τ+·−Xi
Ci

τ
. We conclude (10). �

4. CONSTRUCTION OF AFFINE PROCESSES ONRm
+

In this section we aim at completing the proof of Theorem1 in the case where the
process takes values inRm

+; that is, whenn= 0.
Let X1, . . . ,Xm,Y be Lévy processes satisfying the conditions of Theorem1 when

n = 0. Let z∈ Rm
+ have non-negative coordinates, letZ be the unique solution to (2)

(when there is uniqueness and letZ be zero otherwise) and letC be the (coordinatewise)
primitive of Z which starts at zero. (The solution exists thanks to Lemma3 and is unique
by Lemmas4 and6).
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For t, t1, . . . , tm ≥ 0, recall the definition of the multiparameter filtrationF ◦
t1,...,tm,t

given in (9). Let N be the null sets ofP and define

(12) Ft1,...,tm,t = F
◦
t1,...,tm,t ∨N .

Since the processesX1, . . . ,Xm,Y are independent and the completed filtrations of
any one of the Lévy processes are right-continuous (cf. [Ber96, Prop. 4, Ch. 1]) then
one can use [CY03, Ex. 2.5] to see that

Fs1,...,sm,s=
⋂

ti>si ,t>s

Ft1,...,tm,t.

Lemma 7 (Measurability details and the Markov property).
(1) For any t≥ 0, Ct is a multidimensional stopping time:

{

C1
t ≤ t1, . . . ,C

m
t ≤ tm

}

∈ Ft1,...,tm,t .

(2) The class

(13) Gt =
{

A∈ F : A∩
{

C1
t ≤ t1, . . . ,C

m
t ≤ tm

}

∈ Ft1,...,tm,t
}

is a σ -field and the collection(Gt , t ≥ 0) is a filtration satisfying the usual hy-
potheses.

(3) The following strong Markov property holds: for any t≥ 0, conditionally on
Ci

t < ∞ for 1≤ i ≤ m
(

X1
C1

t +·−X1
C1

t
, . . . ,Xm

Cm
t +·−Xm

Cm
t
,Yt+·−Yt

)

d
=
(

X1, . . . ,Xm,Y
)

and the process on the left-hand side is independent ofGt .
(4) Z is a a(Gt , t ≥ 0)-Markov process.

Proof. (1) The fact thatC is a multidimensional stopping time follows from Lemma
5 once we note thatC is almost surely equal to the maximal solution to (2)
constructed in Lemma3 thanks to the fact that solutions have almost surely
no spontaneous generation (Lemma6) and the uniqueness of solutions without
spontaneous generation of Lemma4.

(2) It is easy to prove thatGt is a σ -field. Gt also contains the null setsN since
everyFt1,...,tm,t contains them by definition. Also, sinceFt1,...,tm,s ⊂ Ft1....,tm,t if
s≤ t, then(Gt , t ≥ 0) is a filtration. To see thatGt is right continuous, we only
need to prove that∩t>sGt = Gs. Let A∈ ∩t>sGt . Then fort ′ > t > s we have

A∩
{

C1
t ≤ t1, . . . ,C

m
t ≤ tm

}

∈ Ft1,...,tm,t ′.

SinceCi
t →Ci

s ast ↓ s, we see that

A∩
{

C1
t ≤ t1, . . . ,C

m
t ≤ tm

}

↑ A∩
{

C1
s ≤ t1, . . . ,C

m
s ≤ tm

}

ast ↓ s and we conclude that

A∩
{

C1
s ≤ t1, . . . ,C

m
s ≤ tm

}

∈ Ft1,...,tm,t ′

for s< t ′. Finally, we have already remarked thatFt1,...,tm,t ′ ↓ Ft1,,...,tm,s ast ′ ↓ s,
proving thatA∈ Gs.

(3) The proof of the Markov type property follows the same pattern as the one in
Lemma6. In fact, it is basically the same proof as the strong Markov property
for Lévy processes at a stopping time.
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(4) First, from Lemma5 we deduce the existence of a measurable mapFt which
applied to functions( f j ,g j) satisfyingH returns the value att of the (maximal)
solutionh to (8) (which is the unique one when inputting Lévy processes plus
an initial value). Note also thatt 7→ C̃ j

t = C j
t+s−C j

s has a càdlàg derivative
t 7→ Z̃ j

t = Z j
t+s and satisfies

Z̃ j
t = Z j

s +∑
i

X̃i, j

C̃ j
s
+Ỹ j

t

where
X̃i, j

t = Xi, j
t+Ci

s
−Xi, j

Ci
s

and Ỹt =Yt+s−Ys.

HenceZt+s = Ft
(

X̃1, . . . , X̃m,Zs+Ỹ
)

. SinceX̃1, . . . , X̃m,Ỹ are independent of

Z j
s,C

j
s (which areGs-measurable), we see that the conditional law ofZt+s given

Gs equals the law ofZ started at ˜z on the setZs = z̃. �

We now consider a martingale which is fundamental to the proof of Theorem1.

Lemma 8 (An exponential martingale). For any u∈Rm
−, the stochastic process M given

by

Mt = eu·Zt −
∫ t

0
eu·Zs [F(u)+R(u) ·Zs] ds

is a martingale.

Proof. SinceM has bounded paths on[0, t] for any t ≥ 0, sinceu ∈ Rm
−,it suffices to

prove thatM is a local martingale. Consider the exponential martingaleassociated to
anyXi and toY: since

E
(

eu·Xi
1

)

= eRi(u) and E
(

eu·Y1
)

= eF(u),

and sincex 7→ eu·x is bounded onE = Rm
+×Rn if u∈ Rm

−, the stochastic processes

M̃i
t = eu·Xi

t −
∫ t

0
Ri(u)eu·Xi

s ds and Nt = eu·Yt −
∫ t

0
F(u)eu·Ys ds

are martingales. (Note that the above assertion is true evenif Ci
t = ∞ for somet andi.)

They are independent sinceX1, . . . ,Xm andY are independent.
The random variables(Ct , t ≥ 0) areFs1,...,sm,t-stopping times ands≤ t impliesCs≤

Ct . Hence, they constitute a multiparameter time change in thesense of Chapter 6 of
[EK86]. Consider then the time changed processes

Mi
t = M̃i ◦Ci

t = eu·Xi◦Ci
t −
∫ t

0
eu·Xi◦Ci

sRi(u)Zi
sds.

Problem 19 in [EK86, Ch. 2] tells us that the (multiparameter) time change of the
m+1 independent martingales̃M1, . . . ,M̃m,N gives rise to them+1 orthogonal local
martingalesM1, . . . ,Mn,N. Hence

[

Mi ,M j]= 0=
[

Mi ,N
]

for all i, j with i 6= j.
Note that

eu·Zt = ∏
j

eu j ·Z j
t = ∏

j
eu j ·Y j

t ∏
i

eu j ·Xi, j◦Ci
t = eu·Yt ∏

i
eu·Xi◦Ci

t .
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Sinceeu·Xi◦Ci
andeu·Y are semimartingales whose local martingale parts are orthogonal,

and whose finite variation parts are continuous, we can use integration by parts, the fact
that covariation is bilinear and that the covariation with acontinuous finite-variation
process is zero (cf. Theorem 26.6.viii in [Kal02]) to obtain

eu·Zt = Loc. Mart.+∑
j

∫ t

0
eu·Ys∏

i 6= j

eu·Xi◦C j
eu·Z j

sRj(u)Z j
s ds+

∫ t

0
∏

i
eu·Xi◦Ci

t eu·YsF(u) du

= Loc. Mart.+
∫ t

0
eu·Zs [R(u) ·Zs+F(u)] ds.

We conclude thatM is a local martingale. �

We deduce the following result, which is important in our proof of stability of the
multiparameter time change equation. Indeed, it is important since addition is not con-
tinuous on the space of càdlàg functions (with the Skorohod J1 topology), but it is
continuous when the summands do not have common discontinuities, as is discussed
for example in Theorem 4.1 of [Whi80].

Corollary 2. Almost surely, for each j∈ {1, . . . ,m} the processes Xi, j ◦Ci ,1 ≤ i ≤ m
and Yj do not jump at the same time.

Proof. As shown in the proof of Lemma8, the processeseu·Xi◦Ci
,1 ≤ i ≤ m andeu·Y

are semimartingales for 1≤ i ≤ m with zero covariation. Considering a vectoru all
of whose coordinates are zero except thej-th which equals−1, we deduce that the
semimartingalese−Xi, j◦Ci

,1 ≤ i ≤ m ande−Y j
have zero covariation. Sincee−Y j

is of
finite variation, we see that

0= [e−Xi, j◦Ci
,e−Y j

]t = ∑
s≤t

∆e−Xi, j◦Ci(s)∆e−Y j
s .

Since each summand in the right-most side is negative, we conclude thatXi, j ◦Ci and
Y j do not jump at the same time. The same argument applies when consideringXi, j ◦Ci

andXi′, j ◦Ci′ if i 6= i′ since at most one is of infinite variation. �

As already mentioned in Section2, there exists a unique functionψ(t,u) such that
ψ(0,u) = u and

∂ψ(t,u)
∂ t

= R◦ψ(t,u) .

We also consider the function

φ(t,u) =
∫ t

0
F ◦ψ(s,u) ds.

In order to prove that the processZ which solves (2) whenn= 0 is a CBI associated to
the pair of characteristic exponentsRandF, it suffices to see thatZ is a Markov process
(which is covered by Lemma7), and to prove the following lemma:

Lemma 9. For any z∈ Rm
+, and u∈ Rm

−

Ez
(

eu·Zt
)

= ez·ψ(t,u)+φ(t,u).

Proof. Let

G(s) = Ez

(

eψ(t−s,u)·Zs+φ(t−s,u)
)
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for s∈ [0, t]. We will show thatG′(s) = 0 for anys∈ (0, t) which implies that

ez·ψ(t,u)+φ(t,u) = G(0) = G(t) = Ez
(

eu·Zt
)

and hence finishes the proof.
To this end, write

G(s+h)−G(s) = Ez

(

eψ(t−s−h,u)·Zs+h+φ(t−s−h,u)−eψ(t−s−h,u)·Zs+φ(t−s−h,u)
)

+Ez

(

eψ(t−s−h,u)·Zs+φ(t−s−h,u)−eψ(t−s,u)·Zs+φ(t−s,u)
)

Taking expectations in Lemma (8), we see that

1
h
Ez

(

eψ(t−s−h,u)·Zs+h+φ(t−s−h,u)−eψ(t−s−h,u)·Zs+φ(t−s−h,u)
)

=
1
h

∫ s+h

s
Ez

(

eψ(t−s−h,u)·Zr+φ(t−s−h,u) [F ◦ψ(t −s−h,u)+R◦ψ(t −s−h,u) ·Zr ]
)

dr

→ Ez

(

eψ(t−s,u)·Zs+φ(t−s,u) [F ◦ψ(t−s,u)+R◦ψ(t −s,u) ·Zs]
)

.

On the other hand, we can differentiate under the expectation to obtain:

1
h
Ez

(

eψ(t−s−h,u)·Zs+φ(t−s−h,u)−eψ(t−s,u)·Zs+φ(t−s,u)
)

→−Ez

(

eψ(t−s,u)·Zs+φ(t−s,u) [F ◦ψ(t −s,u) ·Zs+R◦φ(t −s,u)]
)

.

We conclude thatG′(s) = 0. �

Summary and conclusion of the proof of Theorem1 when n= 0. Existence for solutions
to (2) are covered by Lemma3 and is valid more generally. Uniqueness is then covered,
through the concept of spontaneous generation, in Lemma6. Lemma7 then proves that
the unique solution to (2) is a Markov process and thanks to Lemma9 we can identify its
one-dimensional distributions with those of a CBI process associated to the parameters
of the underlying Lévy processes calledR andF. �

5. CONSTRUCTION OF AFFINE PROCESSES ONRm
+×Rn

Let X1, . . . ,Xm, Y be Lévy processes satisfying the conditions of Theorem1. Let
Ri andF be the characteristic exponents ofXi andY as in Equation (7) and letR=
(

R1, . . . ,Rn+m
)

, where we setRi = 0 for m+1≤ i ≤ m+n. With the firstmcoordinates
of these processes we solve (2) to obtain the non-negative processesZ1, . . . ,Zm analyzed
in Section4. We can then (re)defineZ by settingZm+ j = z+∑m

i=1Xi, j ◦Ci +Y j and note
that Z solves Equation (2) whenβ = 0. In this case, we can follow the arguments of
the casen = 0 presented in Section4 to see thatZ is a Markov process and that its
one-dimensional distributions are characterized by the computation

Ez
(

eu·Zt
)

= ez·ψ(t,u)+φ(t,u),

valid for u∈ Rm
−× iRn, whereψ andφ solve the Riccati equations

∂
∂ t

ψ(t,u) = R◦ψ(t,u) and
∂
∂ t

φ(t,u) = F ◦ψ(t,u)

with initial conditionsψ(0,u) = u andφ(0,u) = 0. This proves Theorem1 whenβ = 0.
Affine processes of this type have been dubbed partially additive in [KRST11] since the
law of z̃+Z underPz equalsPz̃+z whenever ˜z has its firstm components equal to zero.
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We now extend the processZ=
(

Z1, . . . ,Zm+n
)

just considered to obtain the full proof
of Theorem1. To do this, consider the equations

Zβ ,m+ j
t = zm+ j +

m

∑
i=1

Xi,m+ j ◦Ci
t +Ym+ j

t +
n

∑
i=1

Cβ ,i+m
t βi, j 1≤ j ≤ n

whereCβ , j
t =

∫ t
0 Zβ , j

s ds for m+1≤ j ≤ m+n (andZβ , j = Z j for 1≤ j ≤ m). If we let
extend the matrixβ to be(m+n)× (m+n) by adding zeros at coordinatesi, j if i ≤ m
or j ≤ m, the equations become:

(14) Zβ = Z+Cβ β .

This is a linear stochastic differential equation driven byZ which, of course, admits an
unique solution. This is for example contained in [Pro04, Ch. 9§V], where the following
explicit formula is given:

Zβ
t = etβ z+

∫ t

0
e(t−s)β dZs.

We first construct an exponential martingale, which takes the place of Lemma8.

Lemma 10. For any u∈ Rm
+× iRn, the stochastic process Mβ given by

Mβ
t = eu·Zβ

t −
∫ t

0
eu·Zβ

s

[

F(u)+(R(u)+βu) ·Zβ
s

]

ds

is a martingale.

Proof. Lemma8 can be extended to the caseβ = 0, proving thatM0 is a martingale.
Now, note that

eu·Zβ
t = eu·Zt eCβ

t βu.

We now apply integration by parts, noting that sinceCβ βu is continuous and of finite

variation, then
[

eu·Z,Cβ βu
]

= 0. We then obtain

eu·Zβ
t = eu·z+

∫ t

0
eCβ

s βudM0
s +

∫ t

0
eCβ

s βu [Zs ·R(u)+F(u)]eu·Zs ds+
∫ t

0
eu·ZsZsβueCβ

s βuds.

= Loc. Mart.+
∫ t

0
eu·Zβ

s

[

F(u)+ [R(u)+βu] ·Zβ
s

]

ds. �

Adapting the proof of Lemma9, we see that

Ez

(

eu·Zβ
t

)

= ez·ψβ(t,u)+φβ(t,u),

whereψβ andφ β satisfy the Riccati equations

∂
∂ t

ψβ (t,u) = R◦ψβ (t,u)+βψβ (t,u) and
∂
∂ t

φ β (t,u) = F ◦ψβ (t,u)

with initial conditionsψβ (0,u) = u andφ β (0,u) = 0.
We now finish the proof thatZβ is an affine process, thereby proving Theorem1 in

the remaining case whenn 6= 0. Since we have already determined the one-dimensional
distributions ofZβ , it remains to discuss the Markov property. Note that

Zβ
t+s = Zβ

t +Zt+s−Zt +β
∫ s+t

t
Zβ

r dr.
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Therefore,Zβ
t+· satisfies the same differential equation asZβ but starting atZβ

t and
driven byZs+t − Zt . Recall that the firstm coordinates ofZβ equal those ofZ. Let
(Gt , t ≥ 0) be the filtration defined in Section4 and with respect to which the Markov
property ofZ holds. SinceZ is partially additive, then

the law ofZ1
t+·, . . . ,Z

m
t+·,Z

m+1
t+· −Zm+1

t , . . . ,Zm+n
t+· −Zm+n

t givenGt is PZ1
t ,...,Z

m
t ,0...,0.

This shows that the law ofZβ
t+· givenGt equals the law ofZβ underP

Zβ
t

which proves

that Zβ is an affine Markov process whose infinitesimal parameters wehave already
determined.

6. STABILITY ANALYSIS OF THE TIME CHANGE TRANSFORMATION:
APPROXIMATION AND LIMIT THEOREMS

In this section, we will give a stability analysis related tothe stochastic system (2)
through the deterministic system (8), aiming at a proof of Theorem2. For the stabil-
ity analysis we need to consider not only the system (2) but a differential inequality
that turns up naturally. This differential inequality is analyzed in Subsection6.1. The
stability analysis is then performed in Subsection6.2 which enables us to obtain some
applications to approximations and limit theorems concerning affine processes in Sub-
section6.3.

6.1. A differential inequality. Recall the setting of Theorems1 and2. If Cl converges
to C, it might happen thatCi,l

t ≤Ci
t or Ci,l

t ≥Ci
t . Hence, we can only infer that

Xi, j
− ◦Ci

t ≤ lim inf
l

Xi, j ,l ◦Ci,l
t ≤ limsup

l
Xi, j ,l ◦Ci,l

t ≤ Xi, j ◦Ci
t .

The following proposition is useful in determining whetherthe limit Xi, j ,l ◦Ci,l exists
for most values oft.

Proposition 1. Under the setting of Theorem1, the associated cumulative population
C = (C1, . . . ,Cm) is the unique non-decreasing and continuous process satisfying the
differential inequalities

(15)
∫ t

r
∑
i

Xi, j
− ◦Cs+Y j

s ds≤C j
t −C j

r ≤
∫ t

r
∑
i

Xi, j ◦Cs+Y j
s ds.

As a preliminary result, let us see thatC itself satisfies both sides of the inequality.

Lemma 11. Almost surely, if t is such that Ci is constant on an interval to the right of t
then Xi is continuous at Cit . Hence, almost surely, for all t> 0:

C j
t −C j

r =
∫ t

r
∑
i

Xi, j
− ◦Ci

s+Y j
s ds.

Proof. The first statement of the lemma is obviously true att = 0. To handle everyt > 0
simultaneously, it suffices to prove that for any rationalq, if T j

q,0+ denotes the first zero

of Z j afterq or zero, depending on ifZ j
q > 0 or not, thenXi is continuous atCi(T j

q,0+).
This is basically a result of quasi-continuity of the Lévy processes involved.

If T is any stopping time with respect to the filtration(Gt, t ≥ 0) defined in (13) then
(

C1
T , . . . ,C

m
T ,T

)

is a stopping time with respect to the multiparameter filtration Ft1,...,tm,t
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defined in (12). This follows simply whenT takes values in a discrete set{ak : k∈ N}
because, by definition ofGak, we see that
{

C1
T ≤ t1, · · · ,Cm

T ≤ tm,T = ak
}

=
{

C1
ak
≤ t1, · · · ,Cm

ak
≤ tm

}

∩{T = ak} ∈ Ft1,...,tm,ak.

WhenT is a general stopping time, we approximate it by the decreasing sequence of
stopping timesTn which takes the valuek/2n if T ∈ [(k−1)/2n,k/2n).

Let T equal one of theT j
q,0+ and note thatT is the increasing limit ofTn whereTn

is the first time afterq that Z j is below 1/n or zero depending on ifZ j
q > 1/n or not.

We always haveTn ≤ T. If Z j
q > 0 thenTn < T for all n. Recall thatCi

Tn
is a stopping

time for the filtrationσ(Xi′
s′ ,X

i
s : s′ ≥ 0,s≤ t, i′ 6= i), t ≥ 0 defined for eachi. SinceXi

is a Lévy process with respect to that filtration, by quasi-continuity, we see thatXi is
continuous atCi

T . �

Proof of Proposition1. Denote byC̃ any process satisfying the inequality (15). Re-
call that, from Lemma3, C is obtained as the limit ofCl , whereCl solves Equation2
driven by processes strictly bigger thanXi, j andY j . The simple argument presented
in Lemma1 implies thatC̃ is bounded above byCl and thereforeC̃ ≤ C. We now let
τ = inf

{

t ≥ 0 : C̃t <Ct
}

. By continuity, we see that̃C=C on [0,τ]. Let us suppose that
τ < ∞ to reach a contradiction. Ifτ < ∞, there exist 1≤ i, j ≤ m andε0 > 0 such that
for 0< ε < ε0 we have

(16)
∫ τ+ε

τ
Xi, j
− ◦C̃i

sds<
∫ τ+ε

τ
Xi, j ◦C̃i

sds.

WhenZi
τ− > 0 thenCi is strictly increasing to the right ofτ, implying thatC̃i is strictly

increasing to the right ofτ and so (16) does not hold. WhenZi
τ− = 0, τ cannot belong

to the interior (or be the beginning) of an interval of constancy ofCi . Indeed, Lemma11
would then imply thatXi, j

− ◦Ci
τ = Xi, j ◦Ci

τ and thatCi is constant to the right ofτ which
would contradict (16). Hence,Ci increases on any right neighbourhood ofτ. However,
recall thatC has no spontaneous generation. This implies the existence distinct indices
i0, . . . , ik in {1, . . . ,m} such thatZi0

τ > 0, ik = i andXi l−1,i l ◦Ci l−1 is strictly increasing on
a right neighbourhood ofτ. Starting withi0 and using the fact thatC= C̃ on [0,τ], then
Xi l−1,i l ◦C̃i l−1 is strictly increasing on a right neighbourhood ofτ for everyl and hence
(16) can not hold either whenZi

τ− = 0. �

6.2. Stability analysis. The following result deals with stability of the multiparameter
time changes of equation (2) in the deterministic setting of Section3. We focus on the
casen= 0 since our arguments can then handle the non-negative coordinates. Hence, we
will concern ourselves with equation (8) not only under changes inf i, j andgi for i, j =
1, . . . ,m, but also with respect to discretization of the transformation itself. Consider the
following approximation procedure: givenσ > 0, called the span, consider the partition

tk = kσ , k= 0,1,2, . . . ,

and construct a functioncσ = (cσ
1 , . . . ,c

σ
m) by the recursion

cσ
j (0) = 0 for j = 1, . . . ,m.

and fort ∈ [tk−1, tk):

(17) cσ
j (t) = cσ

j (tk−1)+(t− tk−1)[
m

∑
i=1

f i, j ◦cσ
i (tk−1)+g j(tk−1)]

+.
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Equivalently, the functioncσ is the unique solution to the system of equations

cσ
j (t) =

∫ t

0
[

m

∑
i=1

f i, j ◦cσ
i (⌊s/σ⌋σ)+g j(⌊s/σ⌋σ)]+ds for j = 1, . . . ,m.

The stability result is stated in terms of the usual SkorohodJ1 topology for cádlág func-
tions: a sequencefl converges tof if each coordinate converges in the usual Skorohod
J1 topology. This means that for each coordinatef j

l , l ≥ 1 there exist a sequence of

homeomorphismsλ j
l , l ≥ 1 of [0,∞) into itself such that

f j
l − f j ◦λ j

l andλ j
l − Id converge to 0 uniformly on compact sets.

We will also use the uniformJ1 topology and which is characterized by: a sequence of
fl converges tof if for 1 ≤ j ≤ m there exists a sequence of homeomorphismsλ j

l of
[0,∞) into itself such that

f j
l − f j ◦λ j

l andλ j
l − Id converges to 0 uniformly on[0,∞).

Theorem 3. Let ( f i, j)m
i, j=1 and gj be ćadlág functions which satisfy hypothesisH, and

suppose that there exists a unique non-decreasing c which satisfies

(18)
∫ t

s

m

∑
i=1

f i, j
− ◦ci(r)+g j(r)dr ≤ c j(t)−c j(s)≤

∫ t

s

m

∑
i=1

f i, j ◦ci(r)+g j(r)dr

for s≤ t, and j= 1, . . . ,m. (In particular, c solves(8) and has a right-hand derivative
h.) Letτ be the explosion time of c defined by

τ = inf
{

t ≥ 0 : ∃ j such that cj(t) = ∞
}

.

If f i, j
l → f i, j for i, j = 1, . . . ,m, and gjl → g j in the Skorohod J1 topology,σl → 0, and

cl is any solution to

c j
l (t) =

∫ t

0

[

m

∑
i=1

f i, j
l ◦ci

l ([s/σl ]σl )+g j
l ([s/σl ]σl)

]+

ds

then cl → c pointwise and uniformly on compact sets[0,τ). Furthermore, if fi,· ◦ci and
f j ,· ◦c j do not jump at the same time for i6= j and fi,· ◦ci and g do not jump at the same
time then the right-hand derivatives D+cl converge to h

(1) in the Skorohod J1 topology ifτ = ∞.
(2) in the uniform J1 topology ifτ < ∞ and we additionally assume that fi, j

l → f i, j

for i = 1, . . . ,m in the uniform J1 topology.

Theorem2 follows from Theorem3 thanks to Lemma1 and Corollary2.
In order to prove Theorem3 we will first prove a series of lemmata.

Lemma 12. Under the assumptions of Theorem3, if (cl (t), l ≥ 1) is bounded for some
t > 0 then cl → c uniformly on[0, t].

Proof. Let M be a bound forcl and letK be an upper bound for( f i,·
l , l ≥ 1, i = 1, . . . ,m)

on [0,M] and(gl , l ≥ 1) on [0, t] (which exists sincef i, j
l → f i, j for i, j = 1, . . . ,m, and

gm → g). For anys∈ [0, t] we have that
(19)

D+c j
l (s) = [

m

∑
i=1

f i, j
l ◦ci

l([s/σl ]σl)+g j
l ([s/σl ]σl)]

+ ≤ (m+1)K for any i = 1, . . . ,m,
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implying that the family of functions{c j
l : l ≥ 1} has uniformly bounded right-hand

derivatives (on[0, t]) and starting points. (Ifσl = 0 we get the same upper bound for
D+c j

l using the equalityD+c j
l = ∑m

i=1 f i, j
l ◦ci

l +g j
l .) Therefore{c j

l : l ≥ 1, j = 1, . . . ,m}
is uniformly bounded and equicontinuous on[0, t]. This in turn implies the same for
the family{cl : l ≥ 1} ⊂ C([0,T],Rm) on [0, t]. By the Arzelà-Ascoli theorem, every
sequence(clk,k ≥ 1) has a further subsequence that converges to a function ˜c (which
depends on the subsequence). We now prove thatc= c̃, which implies thatcl → c as
l → ∞ uniformly on [0, t].

Suppose thatlk is such thatclk has a limitc̃ ask→ ∞ uniformly on [0, t]. Since each
f i, j has no negative jumps, we get

liminf
x→y

f i, j = f i, j
− (y) and limsup

x→y
f i, j(x) = f i, j(y)

so that

f i, j
− ◦ c̃i ≤ lim inf

k→∞
f i, j
lk

◦ c̃i
lk and limsupf i, j

lk
◦ c̃i

lk ≤ f i, j ◦ c̃i .

Using Fatou’s lemma we get
∫ t

s
[

m

∑
i=1

f i, j
− ◦ c̃i(r)+g j

−(r)]
+dr ≤ c̃ j(t)− c̃ j(s)

≤
∫ t

s
[

m

∑
i=1

f i, j ◦ c̃i(r)+g j(r)]+dr

for each j = 1, . . . ,m. �

Proof of Theorem3. For the convergence of thecl to c, we will argue along sequences
lk → ∞, considering the following two cases:(clk(t)) is bounded or goes to∞. The
former alternative is handled by the previous theorem, for the latter we prove thatclk → c
pointwise on[0, t] ask→∞. The conclusion is thatcl → cpointwise on[0,∞) and hence,
by the previous lemma, uniformly on compact sets of[0,τ).

Suppose thatlk → ∞ is such that‖clk‖[0,t] → ∞. For anyx> 0, consider the sequence
clk ∧ x = (c1

lk
∧ x, . . . ,cm

lk
∧ x). Note that it is uniformly bounded. LetK be a common

bound for f i, j
kl

on [0,x] and forg j on [0, t]. For anys∈ [0, t]

D+(c
j
lk
∧x)(s) = [

m

∑
i=1

f i, j
lk

◦ci
lk([s/σlk]σlk)+g j

lk
([s/σlk]σlk)]

+1{c j
lk
(s)≤x} ≤ (m+1)K,

so that the sequenceclk ∧x is uniformly bounded and equicontinuous on[0, t]. Let c̃ be
its uniform limit on [0, t]. If c̃ j(s) < x for all j = 1, . . . ,m we can argue as in the proof
of the previous lemma to see that ˜c= c on [0,s]. If c̃ j(s) ≥ x for any j = 1, . . . ,m, we
see that bothc j andc̃ j both reachx at the same points′ ≤ s and hence ˜c j(s) = c j(s)∧x.
Hencec j

lk
∧x→ c j ∧x. Sincex is arbitrary, we see thatc j

lk
→ c j pointwise on[0, t], even

if |c(t)|= ∞.
Let hl =D+cl = (D+c1

l , . . . ,D+cm
l ) andh=D+c= (D+c1, . . . ,D+cm). We now prove

thathl → h in the SkorohodJ1 topology if the explosion timeτ is infinite. Recall that
h= ∑m

i=1 f i ◦ci +g and that whenσl = 0 thenhl = ∑m
i=1 f i

l ◦ci
l +gl while if σl > 0 then

h j
l (t) = [∑m

i=1 f i, j
l ◦ ci

l (⌊s/σl⌋σl ) + g j
l (⌊s/σl⌋σl )]

+. Assume thatσl = 0 for all l (the
arguments are analogous whenσl > 0), then the assertionhl → h is reduced in proving
that : f i

l ◦ ci → f i ◦ ci for all i = 1, . . . ,m, which is related to the composition mapping
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on Skorohod space, and then deducing that∑m
i=1 f i

l ◦ci
l +gl → ∑m

i=1 f i ◦ci +g, which is
related to continuity of addition on Skorohod space. Both continuity assertions require
conditions to hold: the convergencef i

l ◦ ci
l → f i ◦ ci can be deduced from [Wu08] if

we prove thatf i is continuous at every point at which(ci)−1 is discontinuous, and the
convergence∑m

i=1 f i
l ◦ci

l +gl → ∑m
i=1 f i ◦ci +g will hold because of [Whi80, Thm. 1.4]

since we assume thatf i ◦ ci and f j ◦ c j will not jump at the same time nor as the same
time asg. Hence the convergencehl → h is reduced to proving thatf i is continuous at
the discontinuities of(ci)−1. If ci is strictly increasing then(ci)−1 is continuous. When
c is not strictly increasing, we will use the assumed uniqueness of (18) to prove thatf i

is continuous at the discontinuities of(ci)−1. The proof consists in two steps. First we
will prove that f ii is continuous atci(s) and the we will use this fact to prove that the
rest of the components off i is continuous at the same point.

We know prove thatf i,i is continuous at the discontinuities of(ci)−1. Suppose that
(ci)−1 is discontinuous atx. Let s= (ci)−1(x−) andt = (ci)−1(x). Thenci is constant
on on[s, t]while ci < x on [0,s) andci > x on(t,∞). SinceD+ci =∑m

i′=1 f i′,i ◦ci′+gi = 0
on [s, t), we see that∑m

i′=1,i′ 6=i f i′,i ◦ci′ +gi is constant on[s, t). We assert that

inf{y≥ 0 : f i,i(y) =−
m

∑
i′=1,i 6=i

f i′,i ◦ci′(s)+gi(s)}= x.

Indeed, if f i,i reached−∑m
i′=1,i 6=i f i′,i ◦ ci′(s)+gi(s) at x′ < x, there would exists′ < s

such that

f i,i ◦ci(s)+
m

∑
i′=1,i 6=i

f i′,i ◦ci′(s)+gi(s) = 0≥ f i,i ◦ci(s′)+
m

∑
i′=1,i 6=i

f i′,i ◦ci′(s′)+gi(s′)≥ 0.

so that actually we have that−∑m
i′=1,i′ 6=i f i′,i ◦ci′(s)+gi(s) is constant in[s′, t). Hence,ci

has spontaneous generation, which implies that there are atleast two solutions to (18):
one that is constant on(s′,s), andci . This contradicts the assumed uniqueness to (18).

Having proved the continuity off i,i atx, we need to prove that for eachj 6= i, that f i, j

is continuous atx. To this end let us recall thatci(s) = x, and consider a sequence{xn}
such thatxn ↑ x, therefore there exists another sequence{sn} such thatsn ↑ s. So using
the continuity off i,i at x we have that

0≤ lim
n→∞

(

f i,i ◦ci(sn)+
m

∑
j=1, j 6=i

f j ,i ◦c j(sn)+g j(sn)

)

≤ f i,i ◦ci(s)+
m

∑
j=1, j 6=i

f j ,i ◦c j(s)+g j(s) = 0.

Therefore we obtain that

lim
n→∞

m

∑
j=1, j 6=i

f j ,i ◦c j(sn)+g j(sn) =
m

∑
j=1, j 6=i

f j ,i ◦c j(s)+g j(s).

And hence we can conclude, using that the functionsf j ,i andg j , are non-decreasing
that

lim
n→∞

f j ,i ◦c j(sn) = f j ,i ◦c j(s) for all j 6= i. �
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6.3. Applications of the stability analysis. In this subsection, we apply the stability
analysis of Subsection6.2to give a proof of Corollary1.

Proof of Corollary1. We first analyze the action of scaling onC j ,l . Since

1

b j
l

C j ,l
al t =

∫ al t

0

[

k j
l

b j
l

+
1

b j
l

m

∑
i=1

Xi, j ,l
(

C j ,l
⌊s⌋

)

]

ds

=
∫ t

0

[

k j
l

b j
l

+
al

b j
l

m

∑
i=1

Xi, j ,l
(

C j ,l
al ⌊al s⌋/al

)

]

ds,

we see that(C j ,l
al t/b j

l , t ≥ 0,1 ≤ j ≤ m) is the Euler type approximation of span 1/al

applied to(Xi, j ,l(b j
l t)b j

l /al , t ≥ 0,1≤ i, j ≤ m). Note that by hypothesis, the span 1/al

goes to 0 asl → ∞. Also, the right-hand derivative ofC j ,l
al t/b j

l equalsZ j ,l
al tal/b j

l .

Also, we have assumed(Xi, j ,l(b j
l t)],b

j
l /al , t ≥ 0,1≤ j ≤ m) converges toXi,·. Since

b j
l /a j

l → 0, we see thatXi,i is spectrally positive. Ifi 6= j thenXi, j is a subordinator.
(We have only assumed convergence in the SkorohodJ1 topology. However, the same
arguments as in the proof of Corollary 7 of [CPGUB13] gives us convergence in the
uniformJ1 topology in case of explosion.) Finally, sinceX1,·, . . . ,Xm,· are independent,
we are in position to construct the CB processZ starting atzj and constructed fromX
andY = 0 in Theorem1. From Theorem2, we deduce that(Z·,l

al tal/b j
l ) converges toZ

asl → ∞, which proves Corollary1. �
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