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Abstract

We construct new examples of expander Cayley graphs of finite
groups, arising as congruence quotients of non-elementary subgroups
of SL2(Fp[t]) modulo certain square-free ideals. We describe some
applications of our results to simple random walks on such subgroups,
specifically giving bounds on the rate of escape of such walks from
algebraic subvarieties, the set of squares and the set of elements with
reducible characteristic polynomial in SL2(Fp[t]).

1 Introduction

The past few years have seen major developments in tools for constructing
expanders as congruence images of linear groups. This programme was be-
gun by the breakthrough paper of Bourgain and Gamburd [1], who studied
expander congruence quotients of non-elementary subgroups of SL2(Z), but
their approach was subsequently extended by many authors [5], [14]. We now
have a fairly satisfying picture of the phenomenon of superstrong approxi-
mation (as it has come to be known) in linear groups over Q. These results
on expanders have in turn shed new light on problems in the geometry and
analysis of infinite linear groups.

In spite of the major strides forward that have been made in this theory,
it is notable that the work of recent years has focused entirely on the char-
acteristic zero case, with a theory of expansion in linear groups over fields
of positive characteristic remaining largely undeveloped. In this paper we
commence the development such a theory.

1

http://arxiv.org/abs/1501.03199v2


1.1 Statement of Results

Fix a prime p ≥ 3. Our main results concern the escape of random walks
on SL2(Fp[t]) from subsets X of various types. All of the escape results are
proved by the same broad strategy: an upper bound for the probability of
the random walk lying in X is given by the probability of the random walk
on a congruence quotient lying in the image of X . This in turn may be
bounded above in terms of the size of the image of X , by our results on ex-
pander congruence quotients. Our first result on random walks demonstrates
exponentially fast escape from proper algebraic subvarieties.

Theorem 1.1. Let S ⊆ SL2(Fp[t]) be a finite symmetric subset, generating
a non-elementary subgroup. Let F : M2(Fp[t])

r → Fp[t] be a polynomial over
Fp[t] which does not vanish on SL2(Fp[t])

r. Then there exist C1(F ), C2(S) >
0 such that, letting V (F ) ⊆ M2(Fp[t])

r be the affine algebraic subvariety of
SL2(Fp[t])

r defined by F ,

(×r
i=1µ

(l)
S )(V (F )) ≤ C1e

−C2l.

Here µ
(l)
S is the lth convolution power of the measure µS and ×r

i=1µ
(l)
S is

the product measure. We define these notions precisely below.
Second, we turn to proper powers in SL2(Fp[t]). In the characteristic zero

case, a very general non-concentration result was provided by Lubotzky and
Meiri [12]. In positive characteristic we have:

Theorem 1.2. Let S be as in Theorem 1.1. There exist C1, C2 > 0 such
that:

µ
(l)
S ({g ∈ SL2(Fp[t]) : g = h2 for some h ∈ SL2(Fp[t])}) ≤ C1e

−C2

√
l/ log(l).

Remark 1.3. More could be said about proper powers via the same method.
We could, for instance, strengthen the proof of Theorem 1.2 to show that µ

(l)
S

escapes from the sets of mth powers in SL2(Fp[t]), for all m ∈ N satisfying
p ≡ 1 mod m, simultaneously. However, absent an application, we shall not
rehearse the details of such an argument.

Finally we prove a non-concentration estimate for elements with reducible
characteristic polynomial.

Theorem 1.4. Let S be as in Theorem 1.1. There exist C1, C2 > 0 such
that:



µ
(l)
S ({g ∈ SL2(Fp[t]) : χg is reducible }) ≤ C1e

−C2

√
l/ log(l).

It is very likely that bounds on return probabilities of random walks
to other subsets of SL2(Fp[t]) may be proved by the same method, and
we emphasize that our results are best viewed as sample, rather than an
exhaustive list, of the applications of this theory.

We now turn to our results on expanders.

Definition 1.5. For M > 0, an integer n > 1 will be called M-admissible
if n has no prime factor less than M . A polynomial f ∈ Fp[t] will be called
M-admissible if the degree of every irreducible factor of f is a M-admissible
integer.

Example 1.6. Let M > 0.

(i) Every prime > M is M-admissible.

(ii) There is a sequence (ni)i of M-admissible integers growing linearly in i.
For, given M , let π be the set of all primes up to M . Let ni = Ni+1, where
N =

∏

P∈π P . It will be significant in the applications in Section 3 that the
set of admissible integers is sufficiently dense.

Our main result on constructing expanders is:

Theorem 1.7. Let S ⊆ SL2(Fp[t]) be a finite symmetric subset, generat-
ing a non-elementary subgroup. Suppose every entry of every element of
S has degree at most D. Let (fi)i ⊆ Fp[t] be a sequence of distinct poly-
nomials. Then there exists M > 0 (depending on D and p) such that, if
(fi)i are M-admissible then for i0 ∈ N sufficiently large (depending on D, p),
(SL2(Fp[t]/(fi)), πfi(S))i≥i0 is a two-sided expander family, provided one of
the following holds:

(i) The fi are irreducible.

(ii) The fi are square-free, every irreducible factor of every fi has prime
degree, and no two irreducible factors of any fi have the same degree.

We define the concept of a two-sided expander family in Section 1.2 below.
Here, and throughout, for G a linear algebraic group defined over Fp and
f ∈ Fp[t], πf : G(Fp[t]) → G(Fp[t]/(f)) shall denote the congruence map.

One of the keys to the proof of Theorem 1.7 shall be an analysis of Cayley
graphs of large girth. For G a finite group generated by a subset S, recall



that the girth of (G, S) is the length of the shortest non-trivial reduced word
in S which equals 1 in G, or equivalently the length of the shortest non-trivial
embedded loop in the Cayley graph Cay(G, S). In the course of our analysis,
we also obtain the following result, which applies to generating sets which
may not be congruence images of a fixed subset in SL2(Fp[t]).

Theorem 1.8. For any C1 > 0 and any k ∈ N with k ≥ 2, there ex-
ists C > 0 (depending on k, p and C1) such that, if (ni)i a sequence of
C-admissible positive integers, Sni

⊆ SL2(p
ni) is symmetric with |Sni

| = 2k,
and girth(SL2(p

ni), Sni
) ≥ C1ni, for all i ∈ N, then for i0 sufficiently large

(depending on C1, k), (SL2(p
ni), Sni

)i≥i0 is a two-sided expander family.

The lower bound on girth is a natural hypothesis: for instance it is satis-
fied by generic subsets of SL2(p

n). Indeed large girth is a key component of
the proof [5] that random pairs of generators in SL2(p

n) yield expanders.

1.2 Expanders

Let G be a finite group. For two functionals φ, ψ ∈ l2(G), the convolution
φ ∗ ψ ∈ l2(G) is given by:

(φ ∗ ψ)(g) = ∑

h∈G φ(h)ψ(h
−1g).

For l ∈ N, we define the convolution power φ(l) recursively via:

φ(0) = χe; φ
(l+1) = φ(l) ∗ φ.

Here χe is the characteristic function of the identity element e ∈ G. For
S ⊆ G a symmetric subset, define a linear operator AS : l2(G) → l2(G)
(called the adjacency operator) by:

AS(f) = ( 1
|S|
χS) ∗ f .

AS is self-adjoint of operator norm 1; let its spectrum be:

1 = λ1 ≥ λ2 ≥ . . . λ|G| ≥ −1

with the eigenvalue λ1 = 1 corresponding to the constant functionals on
G. More generally, the 1-eigenspace of AS is generated by the indicator
functions of the right cosets of 〈S〉 ≤ G. In particular λ1 > λ2 iff S generates
G. Let l20(G) ≤ l2(G) be the space of functions of mean zero on G (that is,
the orthogonal complement of the constant functions), and note that l20(G)
is preserved by AS. Let ρ = max(|λ2|, |λ|G||), the norm of the restriction
AS |l20(G) in the Banach space B(l20(G)) of bounded linear operators on l20(G).



Definition 1.9. For ǫ > 0, the pair (G, S) is a (two-sided) ǫ-expander if
ρ ≤ 1− ǫ. A sequence (Gn, Sn)n∈N is called an ǫ-expander family if (Gn, Sn)
is an ǫ-expander for every n ∈ N, or just an expander family if there exists
ǫ > 0 such that (Gn, Sn)n∈N is an ǫ-expander family.

The two-sided version of expansion (also known as absolute expansion)
that we use here is stronger than the one-sided version which will be more
familiar to many readers, and which is equivalent to the combinatorial notion
of expansion defined in terms of the discrete Cheeger constant. For the most
part, however, the distinction need not concern us, thanks to a recent result
of Breuillard, Green, Guralnick and Tao [5]:

Theorem 1.10. For any ǫ > 0, k ∈ N, there exists δǫ,k > 0 such that,
if (G, S) is a one-sided ǫ-expander with |S| = k, then one of the following
holds:

(i) (G, S) is a two-sided δ-expander;

(ii) There exists H ≤ G with |G : H| = 2 and S ∩H = ∅.

We recall some facts about expanders which will be used in what follows.
Those readers more familiar with the one-sided version of expansion may
note that these results about two-sided expanders follow from their one-sided
analogues together with Theorem 1.10. Note that condition (ii) of Theorem
1.10 is equivalent to Cay(G, S) being bipartite.

Lemma 1.11. Let Γ be a finitely generated group; (Kn)n be a sequence of
finite index subgroups of Γ; πn : Γ ։ Γ/Kn be the natural epimorphism.
Let S, T ⊆ Γ be finite symmetric subsets, with 〈S〉 = 〈T 〉 = Γ. Suppose
Cay(Γ/Kn, πn(T )) is not bipartite, for all n ∈ N. If (Γ/Kn, πn(S))n is an
expander family then so is (Γ/Kn, πn(T ))n.

Lemma 1.12. Let Γ; (Kn)n; πn be as in Lemma 1.11 and let H ≤ Γ be
a finitely generated subgroup. Suppose πn(H) = Γ/Kn for all n ∈ N. Let
S ⊆ Γ, T ⊆ H be finite symmetric subsets, with 〈S〉 = Γ, 〈T 〉 = H. If
(Γ/Kn, πn(T ))n is an expander family, and Cay(Γ/Kn, πn(S)) is not bipartite,
then (Γ/Kn, πn(S))n is an expander family.

In all cases in which we shall use these results, the finite groups concerned
shall have no subgroups of index two, so the associated Cayley graphs shall
never be bipartite.



The expander property for the pair (G, S) provides a logarithmic bound
for the mixing times of random walks on G, given by a probability measure
supported on S. This will be useful in the applications in Section 3.

Lemma 1.13. For any l ∈ N; g, h ∈ G,

|〈Al
Sχg, χh〉 − 1

|G|
| ≤ ρl.

1.3 The Bourgain-Gamburd Machine

In [1] Bourgain and Gamburd developed a new method for constructing ex-
panders, exploiting results from additive combinatorics. Much has been writ-
ten about the possible formulations of the Bourgain-Gamburd Machine [3],
[16], so we shall not rehearse the details of the proof, and give only a rough
sketch of the most salient points.

The Machine tells us that the expansion of a pair (G, S) may be guaran-
teed by three hypotheses. The first is that G should be highly quasirandom,
meaning that G has no small-dimensional non-trivial complex representa-
tions. There are good classical estimates of quasirandomness for many fa-
miliar families of finite groups, including finite simple groups of Lie type.
The combinatorics of quasirandom groups was studied by Gowers [8], who
coined the term, but its connection with expansion was first noted by Sar-
nak and Xue [15]. Suppose AS has an eigenvalue λ of modulus close to 1,
so that the expansion is weak. The eigenspace of λ is a subrepresentation
of the right-regular representation of G, so by quasirandomness has large
dimension. This places a lower bound on tr(A2l

S ).
Proving expansion therefore reduces to showing that tr(A2l

S ) decays quickly.
Sufficient conditions for such decay come from the non-commutative Balog-
Szemerédi-Gowers Theorem, due to Tao [17], which tells us that if decay

fails, the measure µ
(2l)
S must concentrate somewhat on a small approximate

subgroup A of G (that is, a symmetric subset containing 1 such that AA is
covered by a small number of translates of A). Some papers utilising the
Bourgain-Gamburd Machine have tackled the problem of excluding this pos-
sibility head-on, but we can reduce the problem still further if G satisfies
a product theorem. All finite groups have some obvious approximate sub-
groups: if A is already almost the whole of G, or is almost a proper subgroup
of G, then A will not grow much under multiplication with itself. A product
theorem says roughly that these are the only possibilities. Through much



work by many authors in the past decade, product theorems are now known
for many families of groups, including finite (quasi)simple groups of Lie type
of fixed rank [4], [13].

Expansion is thereby reduced to showing that µ
(2l)
S escapes quickly from

proper subgroups of G. It should be noted that this is the only point at
which the set S enters the argument. We therefore usually expect some
information about the geometry of S to be crucially involved in proving
escape from subgroups.

The general form of the Bourgain-Gamburd Machine admits many, re-
lated but distinct, formulations. The version which it shall be most conve-
nient for us to consider shall be the following.

Theorem 1.14. Let G be a finite group; S ⊆ G a symmetric generating set.
Suppose:

(i) (Quasirandomness) There exists α > 0 such that, for some finite groups
G1, . . . , Gn, G =

∏n
i=1Gi and for every i, for any non-trivial represen-

tation ρ : Gi → GLd(C),

d ≥ |Gi|α.

(ii) (Product theorem) For all δ > 0 there exists β(δ) > 0 such that for any
symmetric A ⊆ G such that:

|A| < |G|1−δ and µA(gH) < [G : H ]−δ|G|β

for any g ∈ G and H � G, then |AAA| ≫ |A|1+β.

(iii) (Escape from subgroups) There exists γ > 0 and C0 > 0 such that for
some l ≤ C0 log|G| and every H � G,

µ
(2l)
S (H) ≤ |G : H|−γ.

Then there exists ǫ(α, β(·), γ, C0, |S|) > 0 such that (G, S) is a two-sided
ǫ-expander.

A proof of this result is contained in Sections 3.1 and 5 of [18]. See also
Section 3 of [3] for a self-contained and accessible account of a related (though
non-equivalent) version of the Machine.



Remark 1.15. For H ≤ G, and φ ∈ l2(G), define φ ∈ l2(G/H) by:

φ(gH) =
∑

h∈H φ(gh).

Then since S is symmetric, for l ∈ N,

µ
(2l)
S (H) = ‖µ(l)

S ‖22.
Now define AS : l2(G/H) → l2(G/H) by:

AS(F )(gH) = 1
|S|

∑

s∈S F (sgH).

Then AS is a linear operator; it is a contraction (being the adjacency operator
on the Schreier graph of (G/H, S)) and satisfies, for φ ∈ l2(G),

AS(φ) = µS ∗ φ.

It follows that µ
(2l)
S (H) is a decreasing function of l. Hypothesis (iii) of

Theorem 1.14 therefore follows from an apparently weaker variant, in which
our l ≤ C0 log|G| is permitted to depend on the subgroup H.

1.4 Further Questions and Structure of the Paper

It is natural to ask whether the admissibility hypothesis in Theorems 1.7
and 1.8 may be weakened. However there are some significant obstacles to
doing so. For instance it is clear that Theorem 1.8 does not remain true for
arbitrary sequences (ni)i:

Example 1.16. Let ni = 2i. Then we may identify Fpni with a proper
subfield of Fpni+1 , and hence embed SL2(p

ni) →֒ SL2(p
ni+1). For i even, let

Sni
be a generating set for SL2(p

ni) satisfying girth(SL2(p
ni), Sni

) ≫ ni.
For i odd, let Sni

= Sni−1
, so that 〈Sni

〉 � SL2(p
ni). Then for every i,

girth(SL2(p
ni), Sni

) ≫ ni, but {(SL2(p
ni), Sni

)}i≥j is not an expander family
for any j.

So the presence of large subfield subgroups presents a genuine obstruc-
tion to expansion of subsets. It should be noted however that Example 1.16
exhibits an obstruction to expansion which is qualitative, rather than quan-
titative in nature. That is to say, expansion in (SL2(p

ni), Sni
) fails simply

by virtue of the fact that 〈Sni
〉 6= SL2(p

ni) for infinitely many i. This leads
to the question of whether this is the only obstruction to expansion in these
groups. Specifically:



Question 1.17. Let Sn ⊆ SL2(p
n) with girth(SL2(p

n), Sn) ≫ n. Does there
exist ǫ > 0 such that (〈Sn〉, Sn) is an ǫ-expander for all n sufficiently large?

Question 1.18. Let S ⊆ SL2(Fp[t]) be a finite symmetric set generating a
non-elementary subgroup. Let (fi)i ⊆ Fp[t] be a sequence of distinct irre-
ducible polynomials. Does there exist ǫ > 0 such that (〈πfi(S)〉, πfi(S)) is an
ǫ-expander for all i sufficiently large?

A second way in which Theorem 1.7 (ii) might be extended would be relax
the assumption that no two irreducible factors of fi have the same degree. As
a model case, let f, g ∈ Fp[t] be distinct irreducibles of degree n, and consider
the group SL2(Fp[t]/(f · g)). By the Chinese Remainder Theorem, this may
be identified with SL2(p

n)×SL2(p
n). A potential obstruction to expansion in

this group comes from proper subdirect products of SL2(p
n)×SL2(p

n), which
arise as the graphs of automorphisms of SL2(p

n). It remains an open question
how to demonstrate escape from such subgroups, as would be required for
hypothesis (iii) of Theorem 1.14.

The primality assumption in Theorem 1.7 (ii) comes from hypothesis (ii)
of Theorem 1.14, which in our setting is satisfied by results of Varjú [18].
The applicability of these results shall be discussed in more detail in Section
2. Roughly speaking though, for the product theorem to apply to reductions
modulo polynomials with unboundedly many irreducible factors (so that the
corresponding congruence quotients decompose as products with unbound-
edly many quasisimple factors), the subgroup structure of the quasisimple
factors must be highly restricted. It seems plausible that a generalisation of
Varjú’s product theorem which relaxes these restrictions may be discovered,
and the primality assumption thereby removed.

An expansion result for reductions modulo arbitrary square-free polyno-
mials seems even further out of reach. For then the decompositions of the
congruence quotients into products of quasisimple groups contain unbound-
edly many isomorphic factors, so Varjú’s product theorem fails even more
dramatically. It may be that the fastest route to a result on expansion in
this general setting is to tackle the question of concentration in approximate
subgroups directly.

Even an expansion result in the case of two irreducible factors of the
same degree would have useful consequences for sieving in SL2(Fp[t]). For in
the presence of such a result (and the relevant strengthening of the product
theorem indicated above) we could substitute the group sieve of Lubotzky-



Meiri for Proposition 3.3 in the proofs of Theorems 1.2 and 1.4, thereby

improving the upper bounds in those two results from e−C
√

l/ log(l) to e−Cl.
The paper is structured as follows: in Section 2 we prove Theorems 1.7

and 1.8. Specifically, Section 2.1 shall deal with hypotheses (i) and (ii) of
Theorem 1.14 and further reduce Theorem 1.7 to the case of non-abelian free
subgroups. We then turn to hypothesis (iii) of Theorem 1.14. In Section
2.2 it is verified for Cayley graphs of SL2(p

n) with large girth under the
admissibility hypothesis. This yields Theorem 1.7 (i) and Theorem 1.8. The
generalisation of this argument required for Theorem 1.7 (ii) is explained in
Section 2.3.

We discuss the applications to random walks in SL2(Fp[t]) in Section 3.
In Section 3.1 we explain in general terms how non-concentration results in
infinite groups can be obtained using expansion results on finite quotients.
Theorems 1.1, 1.2 and 1.4 are proved in the subsequent three Sections.

I would like to thank my supervisor, Marc Lackenby, for the abundance
of support and sound advice he has given me in preparing this work, and his
ongoing enthusiasm for my research in general. I am also grateful to Em-
manuel Breuillard, Alireza Salehi-Golsefidy and Peter Varjú for enlightening
conversations. Finally, I would like to thank EPSRC for providing financial
support during the undertaking of this work.

2 Constructing the Expanders

As a notational convenience, for n ∈ N we set Qn = SL2(p
n).

2.1 Reduction to Escape for Free Generators

In this section we reduce the proof of Theorem 1.7 to the following Proposi-
tion:

Proposition 2.1. Let T ⊆ SL2(Fp[t]) be the symmetric closure of a finite
subset, freely generating a non-abelian free subgroup. Suppose every entry of
every element of T has degree at most D̃. Then there exists C,M, γ > 0
(depending on D̃, |T | and p) such that the following holds. Let f ∈ Fp[t]
be an M-admissible square-free polynomial with no two irreducible factors
having the same degree. Then for every H � G = SL2(Fp[t]/(f)), there
exists l ≤ C log|G| such that:



µ
(2l)
T (H) ≤ |G : H|−γ.

The reduction shall be via Theorem 1.14. We reference known results
which cover hypotheses (i) and (ii) of Theorem 1.14. We then use the general
results about expanders from Section 1.2 to reduce the question of expansion
for arbitrary sets S as in the Statement of Theorem 1.7 to expansion for finite
sets T ⊆ 〈S〉 freely generating 〈T 〉. This shall be via a Tits alternative.

The quasirandomness condition in our setting is classical (see for instance
[10]):

Theorem 2.2. There is an absolute constant C > 0 such that every non-
trivial complex representation of Qn has dimension at least Cpn.

Let f be as in Proposition 2.1 and let p1, . . . , pN be the irreducible factors
of f , of degrees n1, . . . , nN respectively. It follows from the Chinese Remain-
der Theorem that:

Lemma 2.3. The natural map:

(
∏N

j=1 πpj ) : SL2(Fp[t]/(f)) →
∏N

j=1Qnj

is an isomorphism.

We turn next to the product theorem. In the setting of Theorem 1.7 (i),
this is due to Dinai [6]. For Theorem 1.7 (ii) we use Proposition 14 of [18],
which we quote in full:

Theorem 2.4. For all δ > 0, L ∈ N and β : R+ → R+ there exists β ′
L,β(δ) >

0 such that the following holds. Let G be a finite group, G1, . . . , GN be finite
groups such that G ∼= G1 × · · · ×GN . Suppose:

(i) For any finite group F , |{i ∈ {1, . . . , N} : Gi
∼= F}| ≤ L.

(ii) For 1 ≤ i ≤ N , Gi is quasisimple and |Z(Gi)| ≤ L.

(iii) For 1 ≤ i ≤ N , any non-trivial complex representation of Gi has di-

mension at least |Gi|
1
L .

(iv) For 1 ≤ i ≤ N and for some m < L, there are classes H0,H1, . . . ,Hm

of subgroups of Gi satisfying:



(a) H0 = {Z(Gi)}.
(b) Each Hj is closed under conjugation in Gi.

(c) For each H < Gi there is 1 ≤ j ≤ m and H♯ ∈ Hj such that
|H : H ∩H♯| ≤ L.

(d) For 1 ≤ j ≤ m and for each H1, H2 ∈ Hj with H1 6= H2, there
exists j′ < j and H♯ ∈ Hj′ such that |H1∩H2 : H1∩H2∩H♯| ≤ L.

If G1, . . . , GN satisfy hypothesis (ii) of Theorem 1.14 with respect to the func-
tion β, then G satisfies hypothesis (ii) of Theorem 1.14 with respect to the
function β ′

L,β.

We check that this result applies to G = SL2(Fp[t]/(fi)), for fi as in
Theorem 1.7 (ii). The decomposition as a product is given by Lemma 2.3.
(i) follows from the assumption that no two irreducible factors of fi have the
same degree. (ii) is well-known for Gi = Qni

. (iii) is Theorem 2.2. For (iv),
we recall the classification of subgroups of Qn (see for instance [9]).

Proposition 2.5. For Fq the finite field of order q and characteristic p ≥ 3,
any proper subgroup H of SL2(Fq) satisfies one of the following:

(i) H fixes a point in the projective line Fq2P
1 over the quadratic extension

Fq2 of Fq. In particular H is metabelian.

(ii) H ≤ S5.

(iii) H is conjugate in SL2(Fq) to a subgroup of SL2(E) for some proper
subfield E of Fq.

Define H1 to be the set of stabilisers in Qn of pairs of distinct points
in Fp2nP

1, and H2 to be the set of stabilisers in Qn of points in Fp2nP
1.

We check that the conditions of Theorem 2.4 (iv) are satisfied by H0 =
{Z(Qn)},H1,H2, in the case for which n is prime. (a), (b) are obvious, and
(c) is immediate from Proposition 2.5, since by primality of n, the only proper
subfield subgroups of Qn are the conjugates of Q1, which are of bounded size.
(d) is a consequence of the following elementary fact from linear algebra:

Lemma 2.6. Suppose g ∈ Qn has at least three distinct fixed points in Fq2P
1.

Then g ∈ Z(Qn).



Now let S be as in the statement of Theorem 1.7. We produce a pair
of words in S freely generating a non-abelian free subgroup. In the classical
Tits alternative, the lengths of our free generators as words in S, and hence
the degrees of their entries, depend on S and not just on D. However, we
can obtain a bound depending only on D by utilising the following result of
Breuillard:

Theorem 2.7 (Uniform Tits Alternative [2]). For every d ≥ 2, there exists
N(d) > 0 such that, for any field K, and S ⊆ SLd(K) finite symmetric,
either 〈S〉 is virtually soluble or the ball BS(N(d)) of radius N(d) in the
word metric contains two elements which freely generate a non-abelian free
subgroup of SLd(K).

Proof of Theorem 1.7. Let N = N(2) be as in Theorem 2.7 and let
x, y ∈ BS(N) freely generate a non-abelian free group. Every entry of every
member of T = {x±1, y±1} is expressible as a sum of monomials of degree at
most N in the entries of the elements of S, hence has degree at most DN .
We now apply Theorem 1.14 to (SL2(Fp[t]/(fi))), πfi(T )).

We verify the conditions of Theorem 1.14. Hypothesis (i) is immediate from
Theorem 2.2 and Lemma 2.3. Hypothesis (ii) follows from [6] and Theorem
2.4. Hypothesis (iii) follows from Proposition 2.1, applied with f = fi and
D̃ = DN , and Remark 1.15.

We conclude that (SL2(Fp[t]/(fi)), πfi(T ))i is an expander family. By Lemma
1.12, (SL2(Fp[t]/(fi)), πfi(BS(N)))i is an expander family. The required re-
sult follows from Lemma 1.11, since 〈S〉 = 〈BS(N)〉.

Remark 2.8. The constants M and i0 in the statement of Theorem 1.7
could in principle be computed, by keeping track of the bounds arising in the
proof of Proposition 2.1 below. They shall involve both the constant N from
the statement of the Uniform Tits Alternative and the known spectral radius
√

8/9 for the simple random walk on {x±1, y±1} in F (x, y). Moreover, the
proof of the Uniform Tits Alternative is effective, so N could in principle be
computed (though to our knowledge this has not been done). Such a compu-
tation would yield an explicit description of the degrees of reductions which
would give rise to families of expanders, in terms only of the degrees of the
entries of elements of S, |S| and p.



2.2 Escape from Subgroups: The Irreducible Case

In this section we warm up to the proof of Proposition 2.1 by examining the
case for which the polynomials fi are irreducible, so that SL2(Fp[t]/(fi)) =
Qdeg(fi). The proof of this case shall contain all the key ideas of the general
case (to be discussed in the following section) but is technically simpler.
Indeed, more generally we shall prove:

Proposition 2.9. For any C1 > 0 and any k ∈ N with k ≥ 2, there exists
C2, C3, γ > 0 (depending on C1, p, |S|) such that, if n is a C2-admissible posi-
tive integer, Sn ⊆ Qn is symmetric with |Sn| = 2k, and
girth(Qn, Sn) ≥ C1n, then for n sufficiently large and for all Hn � Qn,
there exists l ≤ C3 log|Qn| such that:

µ
(2l)
Sn

(Hn) ≤ |Qn|−γ.

The relevant case of Proposition 2.1 follows immediately from Proposition
2.9 and the following Lemma:

Lemma 2.10. let T be as in Proposition 2.1 and f ∈ Fp[t] be of degree n.
Then:

girth(SL2(Fp[t]/(f)), πf(T )) ≥ n/D̃.

Proof. Let w be a non-trivial reduced word in T of length l. Every entry of
every element of T has degree at most D̃, so every entry of w has degree at
most D̃l. Now suppose πf(w) = 1, so that w ∈ (I2+f ·M2(Fp[t]))\{I2}. Then
at least one entry of w has degree at least n, so l ≥ n/D̃, as required.

Given the discussion in Section 2.1, Proposition 2.9 also immediately
implies Theorem 1.8.

Proof of Theorem 1.8. As in the proof of Theorem 1.7, we apply Theorem
1.14. Hypothesis (i) is Theorem 2.2; hypothesis (ii) is [6] and hypothesis (iii)
follows from Proposition 2.9 and Remark 1.15.

We now turn to the proof of Proposition 2.9. Once again we exploit the
classification of subgroups of Qn.

Informally, in all cases, the girth hypothesis and Kesten’s Theorem will
reduce the problem of bounding µ

(2l)
Sn

(Hn) to providing an upper bound for
|Hn ∩ BSn(2l)|. For Hn ≤ S4 or A5 this is immediate. The admissibility



hypothesis on n will guarantee that any proper subfield subgroup is too small
to fill |BSn(2l)|. Non-concentration in metabelian subgroups will be achieved
by the same combinatorial argument as was used for the corresponding case in
[1]: a metabelian group satisfies a short group law, so that if |Hn∩BSn(2l)| is
large, there will be many short relations between the elements of Sn. However
the girth hypothesis guarantees that this will not happen.

First we recall:

Theorem 2.11 (Kesten). Let X be a finite set. Then there exists
C4(|X|) > 0 such that µX ∈ l2(F (X)) satisfies:

µ
(2l)
X (g) ≪|X| e

−C4l

for all g ∈ F (X).

The technicalities of non-concentration in subgroups are contained in the
following general Lemma.

Lemma 2.12. Let G be a finite group, S ⊆ G symmetric with |S| = 2k
and let C1 > 0 be such that girth(G, S) > C1 log|G|. Let C4(k) > 0 be the
constant from Kesten’s Theorem. Let H � G. Let γ > 0 and let C5 ∈ (0, C1).
Suppose |G| is sufficiently large.

(i) Suppose H is metabelian. Suppose C5 log|G| ≤ 2l ≤ C1

32
log|G|. Suppose

γ < C4C5/2. Then µ
(2l)
S (H) ≤ |G|−γ.

(ii) Let C6 > 0 and suppose |H| ≤ C6|G|
1
C2 Suppose

C5 log|G| ≤ 2l ≤ C1 log|G|. Suppose γ + 1/C2 < C4C5/2. Then

µ
(2l)
S (H) ≤ |G|−γ.

Proof. (i) Define a homomorphism θ : F → G from a non-abelian free
group F on free basis X , such that θ maps X ∪ X−1 bijectively onto
S. Then θ maps BX(32l) bijectively onto BS(32l).

Consider Y = BX(2l) ∩ θ−1(H). Then for any a, b, c, d ∈ Y ,
θ([[a, b], [c, d]]) = 1 (since H is metabelian) so [[a, b], [c, d]] = 1 (since
[[a, b], [c, d]] ∈ BX(32l)).

Recall that the centraliser of every non-trivial element of a free group
is cyclic. Hence there exists x ∈ F such that for all a, b ∈ Y ,

[a, b] ∈ Z := 〈x〉 ∩BX(8l) (1)



so that |Z| ≤ 16l + 1. Now for a ∈ Y and z ∈ Z, define:

Wa,z = {b ∈ Y : [a, b] = z}.

Then Wa,z is contained in a single coset of the centraliser of a, and in
BX(2l), so that |Wa,z| ≤ 4l + 1. Fix a ∈ Y . By (1),

Y ⊆ ⋃

z∈Z Wa,z.

We conclude that:

|H ∩BS(2l)| ≤ |Y | ≤ (16l + 1)(4l + 1).

By Kesten’s Theorem and the girth hypothesis,

µ
(2l)
S (H) ≪k e

−C4l|H ∩ BS(2l)| ≪ l2e−C4l,

so decays exponentially fast.

(ii) Suppose (for a contradiction) that for some C5 log|G| ≤ 2l ≤ C1 log|G|,

|G|−γ < µ
(2l)
S (H) ≪k e

−C4l|H| ≤ C6e
−C4l|G|

1
C2 .

(the second inequality being by Kesten’s Theorem and the girth hy-
pothesis). Hence:

|G|
1
C2

+γ ≫k,C6 e
C4l.

But eC4l ≥ |G|C4C5
2 , so choosing C2 sufficiently large and γ sufficiently

small, we have the required contradiction.

Proof of Proposition 2.9. Suppose C5n ≤ 2l ≤ C1

32
n, for some C5 ∈ (0, C1

32
).

We consider each case of Proposition 2.5 separately:

(i) Suppose Hn is metabelian. Choosing γ ∈ (0, C4C5/2), the required
result follows from Lemma 2.12 (i).



(ii) If Hn ≤ S5, then |Hn| ≤ 120, so µ
(2l)
Sn

(Hn) ≪k e
−C4l for any 2l ≤ C1n,

by Kesten’s Theorem and the girth hypothesis.

(iii) Suppose that there exists a proper subfield E < Fpn such that Hn is
contained in (some conjugate of) SL2(E). Recall that there existsm | n
such that E = Fpm. By the admissibility hypothesis, m ≤ n/C2 so:

|Hn| ≤ |Qm| ≤ p3m ≤ (p3n)
1
C2 ≪p |Qn|

1
C2 .

Choosing γ sufficiently small and C2 sufficiently large, we may suppose
γ + 1/C2 < C4C5/2, and the result follows from Lemma 2.12 (ii).

2.3 Escape from Subgroups: The General Case

In this Section we complete the proof of Proposition 2.1. The proof shall
be very similar in spirit to that of the special case discussed in Section 2.2:
recall that there, Proposition 2.5 guaranteed that every proper subgroup of
SL2(Fp[t]/(f)) was either metabelian (Case (i)) or small (Cases (ii) and (iii)),
so fell within reach of Lemma 2.12. Something similar is true in general, but
to apply Lemma 2.12 we first need to use the product decomposition of
SL2(Fp[t]/(f)) from Lemma 2.3, and project down to either the factors on
which the image of our proper subgroup is metabelian, or those on which it
is small, depending on which make up the larger part of the product.

Recall the notation of Section 2.1: f ∈ Fp[t] is an M-admissible square-
free polynomial with no two irreducible factors having the same degree.
G = SL2(Fp[t]/(f)) and H � G. Let p1, . . . , pN be the irreducible factors of
f , of degrees n1, . . . , nN respectively. Recall (Lemma 2.3) that:

(
∏N

j=1 πpj ) : SL2(Fp[t]/(f)) →
∏N

j=1Qnj

is an isomorphism.

Corollary 2.13. πpj (H) � Qnj
for some 1 ≤ j ≤ N .

Proof. We proceed by induction on N (the case N = 1 being trivial). Sup-
pose (for a contradiction) that the projections πpj of H to Qnj

are all sur-

jective. Denote F =
∏N−1

j=1 Qnj
, so that by Lemma 2.3, G ∼= F × QnN

.
Define:



K1 = {g ∈ F : (g, e) ∈ H}, K2 = {g ∈ QnN
: (e, g) ∈ H}.

By induction the projections of H to F and QnN
are surjective. By Goursat’s

Lemma, K1 ⊳ F , K2 ⊳ QnN
and F/K1

∼= QnN
/K2.

If K2 6= QnN
then F has PSL2(p

nN ) as a composition factor. But this is
not the case, as the nj are all distinct. Hence K2 = QnN

and K1 = F , so
H = G.

Up to a reordering of the pi, there exist k,m, n ∈ N with k +m+ n = N
such that:

(i) πpi(H) = Qni
for 1 ≤ i ≤ k;

(ii) πpi(H) is metabelian for k + 1 ≤ i ≤ k +m;

(iii) πpi(H) � Qni
is not metabelian for k +m+ 1 ≤ i ≤ N .

Let C2, γ > 0 be constants satisfying the conditions of Lemma 2.12. For
M sufficiently large, by the admissibility hypothesis and Proposition 2.5,

|πpi(H)| ≤ |Qni
|

1
C2 for k +m + 1 ≤ i ≤ N . Moreover by Corollary 2.13, at

least one of m,n is non-zero.

Write F1 =
∏k

i=1 pi, F2 =
∏k+m

i=k+1 pi, F3 =
∏N

i=k+m+1 pi, so that f = F1·F2·F3.
Applying Lemma 2.3 with f replaced by F1, F2, F3 respectively, we have:

Lemma 2.14. (i) πF1(H) =
∏k

i=1 SL2(p
ni).

(ii) πF2(H) is metabelian.

(iii) |πF3(H)| ≤ |πF3(G)|
1
C2 .

Finally, we are ready to complete:

Proof of Proposition 2.1. |H| ≥ |πF1(H)| = |πF1(G)|, so:
|G : H| ≤ |G|/|πF1(G)| = |πF2F3(G)|.

Case 1: deg(F2) ≥ deg(F3):

We have |πF2F3(G)|
1
2 ≪p |πF2(G)| ≤ |πF2F3(G)|.

By Lemma 2.10, girth(πF2(G), S) ≥ 1
D̃
deg(F2) ≥ 1

3D̃ log(p)
log|πF2(G)|,

so that for C5 log|πF2(G)| ≤ 2l ≤ 1
96D̃ log(p)

log|πF2(G)|, by Lemma 2.12

(i),



µ
(2l)
S (H) ≤ µ

(2l)
S (πF2(H)) ≤ |πF2(G)|−γ ≪p |πF2F3(G)|

−γ
2 ≤ |G : H|−γ

2

and

2l ≤ 1
96D̃ log(p)

log|πF2(G)| ≤ 1
96D̃ log(p)

log|πF2F3(G)|.

Case 2: deg(F3) ≥ deg(F2):

We have |πF2F3(G)|
1
2 ≪p |πF3(G)| ≤ |πF2F3(G)|.

By Lemma 2.10, girth(πF3(G), S) ≥ 1
D̃
deg(F3) ≥ 1

3D̃ log(p)
log|πF3(G)|,

so that for C5 log|πF3(G)| ≤ 2l ≤ 1
3D̃ log(p)

log|πF3(G)|, by Lemma 2.12

(ii),

µ
(2l)
S (H) ≤ µ

(2l)
S (πF3(H)) ≤ |πF3(G)|−γ ≪p |πF2F3(G)|

−γ
2 ≤ |G : H|−γ

2

and

2l ≤ 1
3D̃ log(p)

log|πF3(G)| ≤ log|πF2F3(G)|.

The required result follows.

3 Non-Concentration Results

3.1 Two Different Sieves

We start with a simple observation:

Lemma 3.1. Let G be a discrete countable group; H a finite group and
φ : G → H an epimorphism. Let ν be a probability measure on G and
X ⊆ G. Then ν(X) ≤ (φν)(φ(X)) ≤ |φ(X)| ·maxx∈X(φν)(φ(x)).

Though straightforward, this bound can be very useful: when ν = µ
(l)
S ,

for S ⊆ G symmetric, with φ(S) generating H , then for l sufficiently large
and even, φν is almost uniform on H , so that:

(φν)(φ(X)) ≪ |φ(X)|/|H|. (2)



Moreover if (H, φ(S)) is a good expander, equidistribution occurs for l suf-
ficiently small that (2) gives a non-trivial lower bound on the rate at which

µ
(l)
S escapes from X .
The present section contains two different instantiations of this philosophy

for the group SL2(Fp[t]), taking (H, φ) to be one of the congruence quotients
from Theorem 1.7. In the first of these it shall be sufficient to consider
congruences modulo irreducible polynomials. We define, for G a countable
discrete group and ν1, . . . , νr finitely supported probability measures on G,
the product measure ×r

i=1νi on G by:

(×r
i=1νi)(X) =

∑

x∈X

∏r
i=1 νi(x), for X ⊆ G.

Proposition 3.2. Let S ⊆ SL2(Fp[t]), M > 0 be as in Theorem 1.7; let
(ni)i be as in Example 1.6 (ii) and let fi ∈ Fp[t] be irreducible of degree ni.
Let X ⊆ SL2(Fp[t])

r and suppose there exists α,C > 0 such that for all i
sufficiently large,

|πfi(X)|/|Qni
|r ≤ Cp−αni.

Then there exist C1(C, r), C2(α, p, S) > 0 such that for all l ∈ N,

(×r
i=1µ

(l)
S )(X) ≤ C1e

−C2l.

Proof. By Theorem 1.7 and Lemma 1.13, there exists c > 0 such that, for
i ≥ i0, l ≥ cni and any x ∈ Qni

, (πfiµ
(l)
S )(x) ≤ 2/|Qni

|. Fix δ ∈ (0, 1), so that
for l sufficiently large, ∃i ≥ i0 such that l ≥ cni ≥ δl. Then for i sufficiently
large,

(×r
j=1µ

(l)
S )(X) ≤ (×r

j=1πfiµ
(l)
S )(πfi(X))

≤ 2r|πfi(X)|/|Qni
|r (by Lemma 3.1)

≤ 2rCp−αni (by hypothesis)

≤ 2rCe−
αδ log(p)l

c

as required.

Proposition 3.2 is very useful for proving escape of the random walk from
such subsets as proper algebraic subvarieties, which have small image in
congruence quotients, as we shall see. Indeed, we have already implicitly
used a form of Proposition 3.2 in the proof of Theorem 1.7, to establish non-
concentration in subgroups. However, Proposition 3.2 is powerless in the face
of subsets X whose images modulo fi are of order ∼ γ|Qni

|, for γ ∈ (0, 1), say.



This difficulty may be partially resolved by considering, instead of individual
congruence quotients Qni

, large products Qni
× . . .×Qni+k

. The image of X
in such a quotient will be of order ∼ γk|Qni

| · · · |Qni+k
|, so by allowing k to

grow and applying Theorem 1.7, we may recover a good non-concentration
estimate. As discussed in the Introduction, Theorem 1.7 is not powerful
enough to retain exponentially fast escape from such X . However we still
have:

Proposition 3.3. Let S ⊆ SL2(Fp[t]), M > 0 be as in Theorem 1.7; let
(ni)i be the sequence of all primes greater than M (arranged in ascending
order) and let fi ∈ Fp[t] be irreducible of degree ni. Let X ⊆ SL2(Fp[t])

r and
suppose there exists γ ∈ (0, 1) and i1 ∈ N such that for all i ≥ i1,

|πfi(X)|/|Qni
|r ≤ γ.

Then there exist C1(r), C2(γ, p, S) > 0 such that for all l ∈ N,

(×r
i=1µ

(l)
S )(X) ≤ C1e

−C2

√
l/ log(l).

Proof. Define gi =
∏i2+i−1

k=i2
fk ∈ Fp[t], with i2 sufficiently large (to be deter-

mined). Then:

|πgi(X)| ≤ γi
∏i2+i−1

k=i2
|Qnk

|r

(provided i2 ≥ i1). By Theorem 1.7, there exists c > 0 such that, provided
i2 is sufficiently large, for l ≥ c

∑i2+i−1
k=i2

nk and for any g ∈ SL2(Fp[t]/(gi)),

(πgiµ
(l)
S )(g) ≤ 2/

∏i2+i−1
k=i2

|Qnk
|.

For such l,

(×r
j=1µ

(l)
S )(X) ≤ (×r

j=1πgiµ
(l)
S )(πgi(X))

≤ |πgi(X)|(2/∏i2+i−1
k=i2

|Qnk
|)r

≤ 2rγi.

Recalling that nk is of the order of k log(k), we have
∑i2+i−1

k=i2
nk ≍ i2 log(i).

Choosing i ≍
√

l/ log(l), l ≫ i2 log(i) and the result follows.



3.2 Escape from Subvarieties

We are now ready to prove Theorem 1.1. In view of Proposition 3.2, it
will suffice to bound the size of projections of subvarieties to congruence
quotients. We use:

Theorem 3.4 (Schwarz-Zippel [11]). Let F be a finite field; F be its algebraic
closure. Let V be an affine algebraic subvariety of Fd, defined by A polynomi-
als in F[x1, . . . , xd], each of total degree at most B. Then |V | ≪A,B,d |F|dim(V ).

Proof of Theorem 1.1. SLr
2 is irreducible of dimension 3r, so by Theorem

3.4,

|πfi(V (F ))| ≪F p
(3r−1)ni ≪ p−ni|Qni

|r.
The result now follows from Proposition 3.2.

Example 3.5. Under the hypotheses of Theorem 1.1:

(i) Zero entries are rare: let F1 : M2(Fp[t]) → Fp[t] be given by

F1

(

a b
c d

)

= abcd. Then there exist C1, C2 > 0 such that:

µ
(l)
S ({g ∈ SL2(Fp[t]) : g has a zero entry}) = µ

(l)
S (V (F1)) ≤ C1e

−C2l.

(ii) Matrices with a particular trace are rare: fix α ∈ Fp[t] and let
Fα : M2(Fp[t]) → Fp[t] be given by Fα(A) = tr(A) − α. Then there
exist C1, C2 > 0 such that:

µ
(l)
S ({g ∈ SL2(Fp[t]) : tr(g) = α}) = µ

(l)
S (V (Fα)) ≤ C1e

−C2l.

(iii) Torsion elements are rare: Let g ∈ SL2(Fp[t]). Conjugate g, possibly
over a quadratic extension, to an upper triangular matrix

g̃ =

(

a b
0 a−1

)

. Suppose there exists n ∈ N such that gn = I2. Then

an = 1. This is only possible if a lies in a quadratic extension of Fp.
In particular tr(g) ∈ Fp, so g satisfies one of the bounded set of poly-
nomials Fα as in (ii) above, for α ∈ Fp. Hence there exist C1, C2 > 0
such that:

µ
(l)
S ({g ∈ SL2(Fp[t]) : g has finite order}) ≤ ∑

α∈Fp
µ
(l)
S (V (Fα)) ≤

C1e
−C2l.



(iv) Elements fixing a point in the adjoint representation are rare: Re-
call that SL2(Fp[t]) acts linearly on sl2(Fp[t]) by conjugation. Given
g ∈ SL2(Fp[t]), let Ad(g) ∈ GL3(Fp[t]) be the matrix of the associ-
ated linear transformation with respect to some (fixed) Fp[t]-basis for
sl2(Fp[t]).

Now recall that, given polynomials F1(X), F2(X) over some field K,
there is a polynomial function Res(F1(X), F2(X)) of their coefficients
(defined over Z and depending only on the degrees of F1, F2) which van-
ishes precisely when F1, F2 have a common root in some extension of
K. In particular, F (g) = Res(χAd(g)(X), X − 1) is a polynomial in the
entries of g which vanishes precisely when g has a non-zero fixed point
in sl2(Fp[t]). Moreover F (g) does not vanish identically on SL2(Fp[t]):

F

(

1 + t 2 + t
t 1 + t

)

6= 0, for instance. We conclude that there exist

C1, C2 > 0 such that:

µ
(l)
S ({g ∈ SL2(Fp[t]) : ∃X ∈ sl2(Fp[t]) \ {0} s.t. Xg = X}) ≤ C1e

−C2l.

3.3 Squares in SL2(Fp[t]) are Rare

In this section we prove Theorem 1.2. Let X ⊆ SL2(Fp[t]) be the set of
squares. In light of Proposition 3.3, it suffices to bound the sizes of images
πfi(X). We note some elementary facts about SL2(Q), for Q an arbitrary
odd prime power. Let D(Q) ≤ SL2(Q) be the subgroup of diagonal matrices.
Recall that D(Q) is cyclic of order Q− 1.

Lemma 3.6. Let g ∈ D(Q) be non-central in SL2(Q). Then:

(i) CSL2(Q)(g) = D(Q).

(ii) |cclSL2(Q)(g) ∩D(Q)| = 2.

(iii) If g is a square in SL2(Q) then it is a square in D(Q).

Now 2 | (Q − 1), so the set of squares in D(Q) is of order Q−1
2

.
Z(SL2(Q)) = {±I2} consists of squares in SL2(Q), so that by Lemma 3.6

(iii), there is a subset {gi}
Q−1
2

i=1 ⊆ D(Q) consisting entirely of non-squares in
SL2(Q). If g ∈ SL2(Q) is not a square, then cclSL2(Q)(g) consists entirely of
non-squares, and by Lemma 3.6 (i), |cclSL2(Q)(g)| = Q(Q + 1). Hence:



|{non-squares in SL2(Q)}| ≥ |⋃
Q−1
2

i=1 cclSL2(Q)(gi)|
≥ 1

2

∑

Q−1
2

i=1 |cclSL2(Q)(gi)| (by Lemma 3.6 (ii))
≥ 1

4
(Q− 1)Q(Q + 1)
= 1

4
|SL2(Q)|.

Theorem 1.2 is now immediate from Proposition 3.3, taking γ = 3
4
.

3.4 Reducible Characteristic Polynomials in SL2(Fp[t])

are Rare

In this section we prove Theorem 1.4. Let Y ⊆ SL2(Fp[t]) be the set of
elements with reducible characteristic polynomial. Once again, we bound
|πfi(Y )|. Let g ∈ Y and let f ∈ Fp[t] be irreducible of degree n. Since
χg ∈ Fp[t][X ] splits over Fp[t], χπf (g) ∈ Fpn[X ] splits over Fpn. Let Q be
an arbitrary odd prime power. It will suffice to bound the set of elements
g ∈ SL2(Q) with reducible characteristic polynomial. We distinguish two
cases and prove exponential decay in each:

Case 1: tr(g) 6= ±2.
χg does not have a repeated root, so is diagonalisable in SL2(Q). Hence
there exists non-central h ∈ D(Q) such that cclSL2(Q)(g) = cclSL2(Q)(h).
There areQ−3 non-central elements h ∈ D(Q), and each has conjugacy
class in SL2(Q) of order Q(Q + 1), by Lemma 3.6 (i). Therefore the
number of non-central diagonalisable elements g is at most:

|⋃h∈D(Q)\Z(SL2(Q)) cclSL2(Q)(h)| ≤ 1
2

∑

h∈D(Q)\Z(SL2(Q))|cclSL2(Q)(h)|
(by Lemma 3.6 (ii))
≤ 1

2
(Q− 3)Q(Q + 1)
≤ 1

2
|SL2(Q)|.

Case 2: tr(g) = ±2 is immediate from Example 3.5.

Theorem 1.4 follows from Proposition 3.3, with any γ > 1
2
.
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