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LOCAL ONE-SIDED POROSITY AND PRETANGENT SPACES

M. ALTINOK, O. DOVGOSHEY, M. KÜÇÜKASLAN

Abstract. For subsets of R+ we consider the local right upper porosity and
the local right lower porosity as elements of a cluster set of all porosity num-
bers. The use of a scaling function µ : N → R

+ provides an extension of the
concept of porosity numbers on subsets of N. The main results describe inter-
connections between porosity numbers of a set, features of the scaling funtions
and the geometry of so-called pretangent spaces to this set.

1. Introduction

The porosity appeared in the papers of Denjoy [5], [6] and Khintchine [15] and,
independently, Dolzenko [7]. The porosity has found interesting applications in
the theory of free boundaries [13], generalized subharmonic functions [12], complex
dynamics [16], quasisymmetric maps [17], infinitesimel geometry [2] and other areas
of mathematics.

Definition 1.1. [18] Let E ⊆ R
+ where R

+ = [0,∞). The right upper porosity of
E at 0 is the number

(1.2) p(E) = lim sup
h→0+

λ(E, h)

h

where λ(E, h) is the length of the largest open subinterval of (0, h) that contains no
point of E.

The notion of right lower porosity of E at 0 is defined similarly.

Definition 1.3. Let E ⊆ R
+. The right lower porosity of E at 0 is the number

(1.4) p(E) = lim inf
h→0+

λ(E, h)

h
.

where λ(E, h) is the same as in Definition 1.1.

We will use the following terminology. A set E ⊆ R
+ is:

Porous at 0 if p(E) > 0;
Strongly porous at 0 if p(E) = 1;
Nonporous at 0 if p(E) = 0.
It should be noted that the standard definitions of porous, strongly porous and

nonporous sets use the bilateral porosity at a point instead of the right porosity
at a point (see, for example, [18]) but the present paper deals only with the right
porosity at 0 and its analogues.

One of the main directions of the successful use of the local porosity machinery
is the investigations of cluster sets. See, for example, [7], [19], [20], [21] and [22].
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Thus the deep relationship between the local porosity and the cluster sets is obvious
for today. The first point of our paper is an inqlusion of the right upper porosity
and the right lower porosity in a cluster set of all porosity numbers.

Let p be a real number and let E ⊆ R
+. We say that p is a porosity number (of

E at 0) if there is a sequence (hk)k∈N such that

lim
k→∞

hk = 0, hk > 0 for every k ∈ N,

and

(1.5) p = lim
k→∞

λ(E, hk)

hk

.

The set P(E) of all porosity numbers of E simply is the cluster set of the function

(1.6) ΦE(h) =
λ(E, 0, h)

h

at the point 0. It is clear that

p(E) = max
p∈P(E)

p and p(E) = min
p∈P(E)

p.

The standard interpretation of the local porosity at a point as a size of holes near
this point can be formalized if we use the methods of the infinitesimal geometry
and it is the second point of our paper. For this purpose we employ the so-called
pretangent metric spaces recently introduced in [9], [10] for arbitrary metric spaces.
We recall the necessary definitions and results related to pretangent metric spaces
in the second section of the paper.

The third section begins with the introduction of porosity numbers at infinity
for subsets of N. We do this with the help of a scaling function µ : N → R

+ and
a large part of our results is a description of interrelations between the properties
of scaling functions and porosity properties of subsets of N. The main motivation
here is to obtain a porosity machinery for description of asymptotic expansions,
methods of summation, polynomial and rational approximations and other impor-
tant mathematical constructions on N anyhow connected with cluster sets. The
description of porosity properties of the set of primes also seems to be interesting.

The main result of Section 2 is Theorem 2.20 giving an infinitesimal characteri-
zation of porosity numbers. In Section 3 it is shown that for every E ⊆ N and every
scaling function µ the upper porosity at coincedes with the upper porosity at 0 of
the set µ(E) (see Theorem 3.11). Another result of Section 3 is a simple geometric
description of nonporous sets (see Theorem 3.17).

The first result of Section 4 is Theorem 4.1 which describes the porosity numbers
at infinity for subsets of N. In Theorem 4.7 we describe some condition under which
the sets of porosity numbers at infinity coincide for two scaling functions. Theorem
4.22 gives a construction of a “recursively enumerable” subset of R+ having the
same set of porosity numbers as a given set E ⊆ R

+.
The main object of study in Section 5 is the subsets of N having the unitary lower

porosity at infinity. We give the structural and infinitesimal characterizations of
such sets (see Theorem 5.3 and Theorem 5.31 respectively). Moreover in Corollary
5.23 we prove the exact inequality p(E) ≤ 1

2 for every E ⊆ R
+ with 0 /∈ acE. This

inequality probably is not new but we do not have any references here.
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The proof of almost all main results are simple and self-contained. The exception
is Theorem 5.31 with a proof using some additional results related to pretangent
spaces.

2. Porosity Numbers And Pretangent Spaces

In this section we give a geometrical interpretation of porosity numbers in the
language of pretangent spaces.

Let us recall the construction of pretangent spaces to E in the particular case
when E ⊆ R

+. Let r̃ = (rn)n∈N be a sequence of positive real numbers tending to

zero. In what follows r̃ will be called a normalizing sequence. Let us denote by Ẽ
the set of all sequences (xn)n∈N of points from E with limn→∞ xn = 0.

Definition 2.1. Two sequences x̃ = (xn)n∈N ∈ Ẽ and ỹ = (yn)n∈N ∈ Ẽ are
mutually stable w.r.t. r̃ if there s a finite limit

(2.2) lim
n→∞

|xn − yn|

rn
:= |x̃− ỹ|r̃.

We shall say that a family F̃ ⊆ Ẽ is self-stable (w.r.t. r̃) if every two x̃, ỹ ∈ F̃

are mutually stable. A family F̃ ⊆ X̃ is maximal self-stable is F̃ is self-stable and
for an arbitrary z̃ ∈ Ẽ either z̃ ∈ F̃ or there is x̃ ∈ F̃ such that x̃ and z̃ are not
mutually stable.

Proposition 2.3. ([9], [10]) Let E ⊆ R
+ be a pointed set with the marked point

0 ∈ E. Then for every normalizing sequence r̃ = (rn)n∈N there exists a maximal

self-stable family Ẽ0,r̃ such that

0̃ := (0, ..., 0, 0, ...) ∈ Ẽ0,r̃.

Consider a function |., .|r̃ on Ẽ0,r̃ × Ẽ0,r̃ where |x̃, ỹ|r̃ = |x̃ − ỹ|r̃ is defined by
(2.2). Obviously, |., .|r̃ is symmetric, nonnegative and satisfies the inequality

|x̃− ỹ|r̃ ≤ |x̃− z̃|r̃ + |z̃ − ỹ|r̃

for all x̃, ỹ, z̃ ∈ Ẽ0,r̃. Hence (Ẽ0,r̃, |., .|r̃) is a pseudometric space.

Definition 2.4. A pretangent space to E ⊆ R
+ (at the point 0 ∈ E w.r.t. r̃) is the

metric identification of a pseudometric space (Ẽ0,r̃ , |., .|r̃).

Since the notion of pretangent space is important for the paper, we shall describe
the metric identification construction (see, for example, [14]). Define a binary

relation ∼ on Ẽ0,r̃ by x̃ ∼ ỹ if and only if |x̃ − ỹ|r̃ = 0. Then ∼ is an equivalence

relation. Let us denote by ΩE
0,r̃ the set of equivalence classes in Ẽ0,r̃ under the

equivalence relation ∼. If for arbitrary α, β ∈ ΩE
0,r̃ and x̃ ∈ α, ỹ ∈ β, we set

(2.5) ρ(α, β) := |x̃− ỹ|r̃,

then ρ is a well-defined metric on ΩE
0,r̃. The metric space (ΩE

0,r̃, ρ) is, by definition,

the metric identification of (Ẽ0,r̃, |., .|r̃).

Proposition 2.6. Let E ⊆ R
+ be a pointed set with a marked point 0 ∈ E and

let Ẽ0,r̃ be a maximal self-stable family w.r.t. a normalizing sequence r̃ = (rn)n∈N.

Then, for every pair x̃, ỹ ∈ Ẽ0,r̃, the statement x̃ ∼ ỹ holds if and only if

lim
n→∞

xn

rn
= lim

n→∞

yn
rn

.
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Proof. Since x̃ and 0̃ are mutually stable, we have

|x̃− 0̃|r̃ = lim
n→∞

xn − 0

rn
= lim

n→∞

xn

rn
< ∞.

Similarly there exists the finite limit limn→∞
yn

rn
. From the definition of ∼ we have

x̃ ∼ ỹ if and only if limn→∞
|xn−yn|

rn
= 0. Since

(2.7)

∣

∣

∣

∣

lim
n→∞

xn

rn
− lim

n→∞

yn
rn

∣

∣

∣

∣

= lim
n→∞

|xn − yn|

rn
,

we obtain the logical equivalence

(2.8)

(

lim
n→∞

xn

rn
= lim

n→∞

yn
rn

)

⇔ (x̃ ∼ ỹ)

for all x̃, ỹ ∈ Ẽ0,r̃. �

Corollary 2.9. Let 0 ∈ E ⊆ R
+ and let Ẽ0,r̃ be a maximal self-stable family w.r.t.

r̃ = (rn)n∈N. Then a sequence x̃ = (xn)n∈N ∈ Ẽ belongs to Ẽ0,r̃ if and only if there
exists a finite limit limn→∞

xn

rn
.

Proof. As was shown in the proof of Proposition 2.6 the statement x̃ ∈ Ẽ0,r̃ implies
the existence of finite limn→∞

xn

rn
. The converse follows from (2.8) �

This corollary shows, in particular, that for every normalizing sequence r̃ and
every E ⊆ R

+ with 0 ∈ E there is a unique pretangent space ΩE
0,r̃. The last

assertion generally does not hold for arbitrary metric spaces, (see [1] for details).

We can identify the metric space (ΩE
0,r̃, ρ) with a subspace Ω

E

0,r̃ of R+ by the

following way. For every t ∈ R
+ we set t ∈ Ω

E

0,r̃ if and only if there is a sequence

x̃ ∈ Ẽ such that the equality

t = lim
n→∞

xn

rn

holds. Let us define a mapping L : ΩE
0,r̃ → Ω

E

0,r̃ as

(2.10) L(α) := lim
n→∞

xn

rn

where (xn)n→N is an arbitrary element of Ẽ0,r̃ which belongs to α.

Proposition 2.11. Let E ⊆ R with 0 ∈ E, let r̃ = (rn)n∈N be a normalizing
sequence and let ΩE

0,r̃ be the corresponding pretangent space. Then the mapping

L : ΩE
0,r̃ → Ω

E

0,r̃ defined by (2.10) is an isometric bijection between ΩE
0,r̃ and Ω

E

0,r̃

satisfying the equality

L(α0) = 0

where α0 is an element of ΩE
0,r̃ containing the constant sequence 0̃. Moreover, if

A ⊆ R
+, 0 ∈ A and F : ΩE

0,r̃ → A is an isometric bijection such that F (α0) = 0,

then A = Ω
E

0,r̃.

Proof. It follows from Corollary 2.9 that L is bijective. Equalities (2.2), (2.5) and
(2.10) imply that

ρ(α, β) = |L(α)− L(β)|
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for all α, β ∈ ΩE
0,r̃. Hence L is isometric. Now if A ⊆ R

+, 0 ∈ A and F : ΩE
0,r̃ → A

is an isometric bijection such that F (α0) = 0, then for every x ∈ A there is a unique
β ∈ ΩE

0,r̃ such that x = F (β). Moreover we have x = |x− 0| = ρ(β, α0). Hence

A = {ρ(α0, β) : Ω
E

0,r̃}.

In particular, the equality Ω
E

0,r̃ = {ρ(α0, β) : β ∈ Ω
E

0,r̃} is valid. Thus A = Ω
E

0,r̃

holds. �

Proposition 2.12. Let 0 ⊆ R
+. Then for every normalizing sequence r̃ = (rn)n∈N

the pretangent space ΩE
0,r̃ is complete.

Proof. It suffices to show that Ω
E

0,r̃ is a closed subset of R+ for every r̃. Suppose

the contrary and choose a point x ∈ R
+ such that

x ∈ acΩ
E

0,r̃ and x /∈ Ω
E

0,r̃.

Then there is a sequence (xm)m∈N with x = limm→∞ xm and xm ∈ Ω
E

0,r̃ and
|x − xm+1| < |x − xm| for every m ∈ N. For every m ∈ N we can find a sequence

(xn,m)n∈N ∈ Ẽ satisfying the conditions

xm = lim
n→∞

xn,m

rn
and

∣

∣

∣

∣

xn,m

rn
− xm

∣

∣

∣

∣

< |xm − x|

for all n ∈ N. Using the last inequality with m = n we obtain
∣

∣

∣

∣

xn,n

rn
− xn

∣

∣

∣

∣

< |xn − x|.

Hence

lim
n→∞

∣

∣

∣

∣

xn,n

rn
− xn

∣

∣

∣

∣

= 0

that implies

lim
n→∞

xn,n

rn
= lim

n→∞
xn = x.

By Corollary 2.9 we have (xn,n)n∈N ∈ Ẽ0,r̃. Thus x ∈ Ω
E

0,r̃, which is a contradiction.
�

Definition 2.13. Let E and T be subsets of R+. We shall write E � T if for every
sequence (en)n∈N with limn→∞ en = 0 and en ∈ E\{0}, (en)n∈N ∈ Ẽ, there is a
sequence (tn)n∈N, such that

lim
n→∞

en
tn

= 1

and tn ∈ T \{0} for every n ∈ N.

Proposition 2.14. Let E and T be subsets of R
+, 0 ∈ E ∩ T and let r̃ be a

normalizing sequence. If E � T and T � E, then the equality

(2.15) Ω
E

0,r̃ = Ω
T

0,r̃

holds.
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Proof. Let E � T and T � E hold. These conditions imply

(0 ∈ acT ) ⇔ (0 ∈ acE).

If 0 /∈ acT and 0 /∈ acE, then we evidently obtain

Ω
E

0,r̃ = {0} = Ω
T

0,r̃.

Now let 0 ∈ acT and 0 ∈ acE. If t ∈ Ω
T

0,r̃ and t 6= 0, then by Corollary 2.9 there is

(tn)n∈N ∈ T̃ such that

(2.16) t = lim
n→∞

tn
rn

and tn ∈ T \{0} for all n. From T � E it follows that there is (sn)n∈N ∈ Ẽ such
that

(2.17) lim
n→∞

sn
tn

= 1.

Limit relations (2.16) and (2.17) imply that

t = lim
n→∞

sn
rn

.

Hence t ∈ Ω
E

0,r̃. Thus we have the inclusion Ω
T

0,r̃ ⊆ Ω
E

0,r̃. Using the statement

E � T we obtain the inclusion Ω
E

0,r̃ ⊆ Ω
T

0,r̃. Equality (2.15) follows. �

Corollary 2.18. Let 0 ∈ E and E ⊆ R
+ and let E be the closure of E. Then the

equality

Ω
E

0,r̃ = Ω
E

0,r̃

holds for every normalizing sequence r̃.

Remark 2.19. If equality (2.15) holds for every normalizing sequence r̃ , then it
can be proved that E � T and T � E. Similar results are valid for subspaces of
arbitrary metric spaces, (see [11]).

Let (nk)k∈N be an infinite strictly increasing sequence of natural numbers. Let
r̃′ = (rnk

)k∈N be the corresponding subsequence of a normalizing sequence r̃ =

(rn)∈N. Define a subset Ẽ0,r̃′ of a set Ẽ by the rule
(

(xn)n∈N ∈ Ẽ0,r̃′

)

⇔

(

lim
k→∞

xnk

rnk

< ∞

)

.

One easily checks that Ẽ0,r̃′ is maximal self-stable w.r.t. r̃′, i.e., for all x̃, ỹ ∈ Ẽ0,r̃′

there are finite limits

|x̃− ỹ|r̃′ = lim
k→∞

|xnk
− ynk

|

rnk

,

and if z̃ ∈ Ẽ\Ẽ0,r̃′ , then there exists x̃ ∈ Ẽ0,r̃′ such that the limit

lim
k→∞

|xnk
− znk

|

rnk

is infinite or does not exist. It is also clear that Ẽ0,r̃ ⊆ Ẽ0,r̃′ and that |., .|r′ is a

pseudometric on Ẽ0,r̃ satisfying the equality

|x̃− ỹ|r̃ = |x̃− ỹ|r̃′
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for all x̃, ỹ ∈ Ẽ0,r̃. Let (Ω
E
0,r̃′ , ρ

′) be the metric identification of (Ẽ0,r̃′ , |., .|r̃′). Define

the subset Ω
E

0,r̃′ of R
+ and the mapping L′ : ΩE

0,r̃′ → Ω
E

0,r̃′ by the rules

(

t ∈ Ω
E

0,r̃′

)

⇔

(

there is x̃ ∈ Ẽ0,r̃′ with lim
k→∞

xnk

rnk

= t

)

and, respectively,

ΩE
0,r̃′ ∋ α ∋ (xn)n∈N 7→ L′(α) = lim

k→∞

xnk

rnk

∈ Ω
E

0,r̃′ .

Then L′ is an isometric bijection such that L′(α′
0) = 0 where α′

0 is the point of
ΩE

0,r̃′ which contains the constant sequence 0̃. Moreover, it is easy to prove that
the diagram

Ẽ0,r
π

−→ ΩE
0,r̃

L
−→ Ω

E

0,r̃

inẼ ↓ ↓ em′ ↓ inR+

Ẽ0,r′
π′

−→ ΩE
0,r̃′

L′

−→ Ω
E

0,r̃′

is commutative, where π and π′ are the natural projections

π(x̃) = {ỹ ∈ Ẽ0,r̃ : |x̃− ỹ|r̃ = 0}, π′(x̃) = {ỹ ∈ Ẽ0,r̃′ : |x̃− ỹ|r̃′ = 0};

inẼ and inR+ are the injections,

inẼ(x̃) = x̃ and inR+(t) = t;

and em′ is an isometric embedding for which the equality em′ · π = inẼ · π′ holds.
Now we are ready to describe the set of porosity numbers P(E) on the language

of pretangent spaces.

Theorem 2.20. Let E ⊆ R
+ and let 0 ∈ E. A number p ∈ R

+ is a porosity number
of the set E at 0 if and only if there are a normalizing sequence r̃ = (rn)n∈N and an
open interval (a, b) ⊆ (0, 1) with |a− b| = p which satisfy the following conditions.

(i) The equality

(2.21) (a, b) ∩ Ω
E

0,r̃′ = ∅

holds for every subsequence r̃′ = (rnk
)k∈N of r̃.

(ii) If (c, d) ⊆ (0, 1) is an open interval such that

(2.22) (c, d) ∩Ω
E

0,r̃′ = ∅

holds for every subsequence r̃′ of r̃, then |c− d| ≤ |a− b|.

Proof. If 0 /∈ acE, then the set P(E) of porosity numbers contains only the number

1 and the equality Ω
E

0,r̃′ = {0} holds for every normalizing sequence r̃. Hence the
theorem is trivially true when 0 /∈ acE.

Let us consider the case 0 ∈ acE. It follows from Corollary 2.18 that we can
assume that E is a closed set. Let p be a porosity number of E. Then there is a
sequence h̃ = (hm)m∈N such that limm→∞ hm = 0, hm > 0 for every m ∈ N, and

(2.23) p = lim
m→∞

λ(E, hm)

hm

where λ(E, hm) is the same as in Definition 1.1.
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For every m ∈ N, let (am, bm) be the largest open interval in (0, hm) such that

(2.24) (am, bm) ∩ E = ∅.

(This interval can be empty, am = bm, if p = 0.) Then, by definition, we have

(2.25) λ(E, hm) = bm − am

and, in addition, am ∈ E because E is closed. Suppose also that there is a subse-
quence h̃′ = (hmn

)n∈N of h̃ such that

(2.26) bmn
∈ E for every n ∈ N.

Passing this subsequence we can also assume the existence the finite limit

(2.27) b = lim
n→∞

bmn

hmn

.

For every n ∈ N denote by rn the element hmn
of h̃ and consider the pretangent

space ΩE
0,r̃ w.r.t. the normalizing sequence r̃ = (rn)n∈N. It is clear that a ∈ Ω

E

0,r̃′

and b ∈ Ω
E

0,r̃ hold for every subsequence r̃′ of r̃. Equalities (2.23), (2.25) and (2.27)
give us the equality |a− b| = p. Let us prove (2.21) for every r̃′.

Suppose contrary that there is a subsequence r̃′ = (rnk
)k∈N of r̃ such that

(a, b) ∩ Ω
E

0,r̃′ 6= ∅.

Let x ∈ Ω
E

0,r̃′ with

(2.28) a < x < b.

By definition of Ω
E

0,r̃′ we can find (xn)n∈N ∈ Ẽ such that

x = lim
k→∞

xnk

rnk

.

Now using (2.28) we obtain

lim
k→∞

ank

rnk

< lim
k→∞

xnk

rnk

< lim
k→∞

bnk

rnk

.

The last double inequality implies that

(2.29) xnk
∈ (ank

, bnk
)

holds for all sufficiently large k. Since xnk
∈ E, statement (2.29) contradicts the

condition
(an, bn) ∩E = ∅ for every n ∈ N.

Hence (2.21) holds for every r̃′.
To prove (ii), suppose that, on the contrary, there exists r̃′ such that for an

interval (c, d) with 0 ≤ c < d ≤ 1, we have (2.22) but |c − d| > |a − b|. Without
loss of generality we can assume that (c, d) is the largest open subinterval of (0, 1)
which satisfies condition (ii). Then we have either

(2.30) c ∈ Ω
E

0,r̃′ and d ∈ Ω
E

0,r̃′

or

(2.31) c ∈ Ω
E

0,r̃′ and d = 1,

because, by Proposition 2.12, the set Ω
E

0,r̃′ is closed in R
+. In what follows we

assume that (2.30) holds. (The case where (2.31) holds can be considered similarly.)
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Let ε > 0 be a number for which

(2.32) c ≤ (1 + ε)c < (1 − ε)d < d and |(1 + ε)c− (1− ε)d| > |a− b| = p.

Since by (2.30) we have c, d ∈ Ω
E

0,r̃, there are (cn)n∈N ∈ Ẽ and (dn)n∈N ∈ Ẽ such
that

c = lim
k→∞

cnk

rnk

and d = lim
k→∞

dnk

rnk

.

Using (2.32) we obtain the inequality

(2.33) |(1 + ε)cnk
− (1 − ε)dnk

| > λ(E, rnk
)

for all sufficiently large k. Consequently there is a point xnk
such that

xnk
∈ ((1 + ε)cnk

, (1 − ε)dnk
) ∩ E.

Passing to a subsequence we can assume that there exists a finite limit

(2.34) x = lim
k→∞

xnk

rnk

.

From (2.34) we obtain x ∈ [(1 + ε)cnk
, (1− ε)dnk

]. The inclusion

[(1 + ε)cnk
, (1− ε)dnk

] ⊆ (c, d)

implies
x ∈ (c, d).

From (2.34) it follows that x ∈ Ω
E

0,r̃′ . Hence x ∈ (c, d) ∩ Ω
E

0,r̃′ , contrary to (2.22).
Thus if p is a porosity number and (2.26) holds, then conditions (i) and (ii)

are satisfied. If there is no strictly increasing (mn)n∈N so that (2.27) hold. Then
bm = hm, and hm /∈ E for all sufficiently large m. This case is more simple and
can be considered similarly.

Suppose now that r̃ = (rn)n∈N is a normalizing sequence such that conditions (i)
and (ii) take place with an interval (a, b) ⊆ (0, 1). We must prove that p = |a− b|

is a porosity number of E at 0. Let us consider a sequence
(

λ(E,rn)
rn

)

n∈N

. This

sequence contains a convergent subsequence
(

λ(E,rnk
)

rnk

)

k∈N

. By definition

p∗ := lim
k→∞

λ(E, rnk
)

rnk

is a porosity number of E. It is sufficient to prove that p∗ = |a − b|. Write
r̃∗ = (rnk

)k∈N. It was shown in the first part of the proof that there is a subsequence
r̃∗∗ of r̃∗ and an interval (a∗, b∗) such that (i) and (ii) hold for every subsequence
r̃′ of r̃∗∗. In particular we have p∗ = |a∗ − b∗|. Using condition (ii) we obtain the
inequalities

|a∗ − b∗| ≤ |a− b| and |a− b| ≤ |a∗ − b∗|.

Hence p = |a− b| = |a∗ − b∗| = p∗. Thus p = |a− b| is a porosity number of E as
required. �

Corollary 2.35. Let E and T be subsets of R
+. If the conditions E � T and

T � E hold, then E and T have equal sets of porosity numbers,

(2.36) P(E) = P(T ).

Proof. It follows directly from Theorem 2.20 and Proposition 2.14 if 0 ∈ E and
0 ∈ T . Otherwise, it suffices to note that P(X) = P(X∪{0}) for everyX ⊆ R

+. �
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Corollary 2.37. Let E ⊆ R
+ and let 0 ∈ E. The set E is strongly porous at 0 if

and only if there is a normalizing sequence r̃ = (rn)n∈N such that the equality

(0, 1) ∩ Ω
E

0,r̃′ = ∅

holds for every subsequence r̃′ of the sequence r̃.

Proof. Let (a, b) ⊆ (0, 1) and |a − b| = 1. Then it is easy to see that a = 0 and
b = 1. Note also that E is strongly porous if and only if 1 ∈ P(E). Now it suffices
to use Theorem 2.20 with p = 1 and (a, b) = (0, 1). �

Using Theorem 4 from [8] we can also give another description of the strongly
porous at 0 subsets of R+.

Corollary 2.38. Let E ⊆ R
+ and let 0 ∈ E. The set E is strongly porous at 0 if

and only if there is a normalizing sequence r̃ such that ΩE
0,r̃′ is one-point for every

subsequence r̃′ of r̃.

3. The Upper Porosity At Infinity

Let µ : N → R
+ be a strictly decreasing function such that limn→∞ µ(n) = 0

and let E ⊆ N. Let us define the numbers pµ(E) and pµ(E) as

(3.1) pµ(E) = lim sup
n→∞

λµ(E, n)

µ(n)

and

(3.2) p
µ
(E) = lim inf

n→∞

λµ(E, n)

µ(n)

where

(3.3) λµ(E, n) = sup{|µ(n(1))− µ(n(2))| : n ≤ n(1) < n(2), (n(1), n(2)) ∩E = ∅}.

We will say that µ is a scaling function and that pµ(E) and p
µ
(E) are the upper

porosity of E at infinity and, respectively, the lower porosity of E at infinity.

Remark 3.4. If E is an infinite subset of N, |E| = ∞, then, for every n ∈ N,
λµ(E, n) is the length of the largest open subinterval of (0, µ(n)) that contains no

point of µ(E) and has a form (µ(n(2)), µ(n(1))) with n(1) < n(2). For the case of
finite E we evidently have λµ(E, n) = µ(n) for all sufficiently large n. Consequently
the equalities

p
µ
(E) = pµ(E) = 1

hold with every scaling function µ for all E ⊆ N with |E| < ∞.

For given µ we define E ⊆ N to be: porous at infinity if pµ(E) > 0, strongly
porous at infinity if pµ(E) = 1 and, respectively, nonporous at infinity if pµ(E) = 0.

Definition 3.5. Let µ : N → R
+ be a scaling function and let E ⊆ N. A number

p is a porosity number of E at infinity if there is a strictly increasing sequence
(nk)k∈N such that

(3.6) p = lim
k→∞

λµ(E, nk)

µ(nk)

where λµ(E, nk) is defined by (3.3).
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For E ⊆ N and a scaling function µ we shall write Pµ(E) for the set of all
porosity numbers of E at infinity. It is clear that Pµ(E) is a closed subset of [0, 1]
and

pµ(E) = max
p∈Pµ(E)

p and p
µ
(E) = min

p∈Pµ(E)
p.

The following lemma often allows us to compute the upper porosity at infinity
for subsets of N which are defined by recurrence relations.

Lemma 3.7. Let

E = {n1, n2, ..., nk, nk+1, ...} ⊆ N

where nk < nk+1 for every k ∈ N. Then for each scaling function µ the upper
porosity pµ(E) satisfies the equality

(3.8) pµ(E) = 1− lim inf
k→∞

µ(nk)

µ(nk−1)
.

Proof. Let µ : N → R
+ be a scaling function. The right-hand side of (3.8) is less

than or equal to pµ(E). Indeed,

1− lim inf
k→∞

µ(nk)

µ(nk−1)
= lim sup

k→∞

µ(nk−1)− µ(nk)

µ(nk−1)

≤ lim sup
k→∞

λµ(E, nk)

µ(nk)
≤ lim sup

n→∞

λµ(E, n)

µ(n)
= pµ(E).

Hence to prove (3.8) it suffices to show that

(3.9) pµ(E) ≤ 1− lim inf
k→∞

µ(nk)

µ(nk−1)
.

For every n ∈ N let n(1) and n(2) be positive integer numbers such that n ≤ n(1) <
n(2) and

λµ(E, n) = µ(n(1))− µ(n(2)).

Since µ is decreasing, the inequality

λµ(E, n)

µ(n)
≤

λµ(E, n)

µ(n(1))

holds. Moreover it is easy to see that

λµ(E, n) = λµ(E, n(1)).

Consequently we have

(3.10)
λµ(E, n)

µ(n)
≤

λµ(E, n(1))

µ(n(1))
= 1−

µ(n(2))

µ(n(1))

for every n ∈ N. Since for every n ∈ N there is k ∈ N such n(2) = nk+1 and
n(1) = nk, where nk+1, nk ∈ E, it follows from (3.10) that

lim sup
n→∞

λµ(E, n)

µ(n)
≤ lim sup

k→∞

(

1−
µ(nk+1)

µ(nk)

)

,

which implies (3.9). �

The following theorem can be used as a base for translation of some results
related to the classical right upper porosity at 0 into the language of the upper
porosity at infinity.
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Theorem 3.11. Let E ⊆ N. Then the equality

(3.12) p(µ(E)) = pµ(E)

holds for every scaling function µ : N → R
+.

Proof. Equality (3.12) is trivial if |E| < ∞. Suppose that E is infinite,

E = {n1, ..., nk, nk+1, ...}

where nk < nk+1 for every k ∈ N. Note that the inequality p(µ(E)) ≥ pµ(E)
follows immediately from the definitions. In order to prove the converse inequality

p(µ(E)) ≤ pµ(E),

it is sufficient to show that for every h ∈ (0, µ(n1)) there is nk = nk(h) ∈ E
satisfying the inequality

(3.13)
λ(µ(E), h)

h
≤

µ(nk−1)− µ(nk)

µ(nk−1)
.

Indeed, using Lemma 3.7 and (3.13) we obtain

p(µ(E)) = lim sup
h→∞

λ(µ(E), h)

h

≤ lim sup
k→∞

µ(nk−1)− µ(nk)

µ(nk−1)
= pµ(E).

We now turn to the proof of inequality (3.13). This is trivial if λ(µ(E), h) = 0.
Hence we may suppose that λ(µ(E), h) > 0. Let h ∈ (0, µ(n1)) and let x, y be
positive numbers such that 0 < x < y ≤ h and

(3.14) y − x = λ(µ(E), h)

and

(x, y) ∩ µ(E) = ∅.

Let us define k = k(h) ∈ N by the rule

k = min{j ∈ N : µ(nj) ≤ x, nj ∈ E}.

It follows directly from the definition of k = k(h) that

µ(nk) ≤ x < µ(nk−1).

If µ(nk) < x, then we have

(µ(nk), y) = (µ(nk), x] ∪ (x, y) ⊆ (µ(nk), µ(nk−1)) ∪ (x, y).

Consequently

(µ(nk), y) ∩ µ(E) = ((µ(nk), µ(nk−1)) ∩ µ(E)) ∪ ((x, y) ∩ µ(E)) = ∅

and

|y − µ(nk)| = |x− µ(nk)|+ |x− y|

hold. The last equality and (3.14) imply

|y − µ(nk)| > λ(µ(E), h),

contrary to the definition of λ(µ(E), h). Hence

x = µ(nk)
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holds. Now the equalities

(µ(nk), µ(nk−1)) ∩ µ(E) = ∅

and

(x, y) ∩ µ(E) = (µ(nk), y) ∩ µ(E) = ∅

imply that y ≤ µ(nk−1). If µ(nk−1) ≤ h, then reasoning as in the proof of the
equality x = µ(nk) we can show that

µ(nk−1) = y.

Thus in this case we have λ(µ(E), h) = µ(nk−1) − µ(nk) and µ(nk−1) ≤ h, that
yields (3.13).

In the case of h < µ(nk−1) we can simply obtain the equality y = h. Indeed if
y < h, then

|x− y| = |µ(nk)− y| < |µ(nk)− µ(nk−1)|.

It contradicts the equality λ(µ(E), h) = |x − y|. Consequently in the case of h <
µ(nk−1) we have

λ(µ(E), h)

h
=

y − x

h
=

h− µ(nk)

h
.

Since the function

f(t) =
t− µ(nk)

t

is increasing on (µ(nk),∞), the inequality h < µ(nk−1) implies

h− µ(nk)

h
≤

µ(nk−1)− µ(nk)

µ(nk−1)
,

that is equivalent to (3.13). �

The next result describes some sufficient and necessary conditions under which
N is nonporous or porous or strongly porous at infinity.

Proposition 3.15. Let E be an infinite subset of N,

E = {n1, ..., nk, nk+1, ...}

where nk < nk+1 for every k ∈ N and let µ : N → R
+ be a scaling function. Then

the following statements hold.
(i) The set E is nonporous at infinity w.r.t. µ if and only if

(3.16) lim
k→∞

µ(nk+1)

µ(nk)
= 1.

(ii) The set E is porous at infinity w.r.t. µ if and only if

lim sup
k→∞

µ(nk+1)

µ(nk)
< 1.

(iii) The set E is strongly porous at infinity w.r.t. µ if and only if

lim inf
k→∞

µ(nk+1)

µ(nk)
= 0.
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Proof. Let prove (i). Suppose that (3.16) holds. Then, by Lemma 3.7, we obtain

pµ(E) = 1− lim inf
k→∞

µ(nk+1)

µ(nk)
= 1− lim

k→∞

µ(nk+1)

µ(nk)
= 0.

Thus E is nonporous at infinity w.r.t. µ. Conversely, assume pµ(E) = 0. Then
using Lemma 3.7 again we find that

1 = lim inf
k→∞

µ(nk+1)

µ(nk)
.

Since µ is decreasing the inequality

lim sup
k→∞

µ(nk+1)

µ(nk)
≤ 1

holds. Thus

1 = lim inf
k→∞

µ(nk+1)

µ(nk)
≤ lim sup

k→∞

µ(nk+1)

µ(nk)
≤ 1,

that implies (3.16). Statement (i) follows.
Statement (ii) and (iii) can be proved similarly. �

Using the pretangent spaces we can give a simple geometric characterization of
subsets of N which are nonporous at infinity.

Theorem 3.17. Let E be a subset of N, let µ : N → R
+ be a scaling function and

let Eµ = µ(E) ∪ {0}. Then the following statements are equivalent.
(i) The set E is nonporous at infinity w.r.t. µ,

(3.18) pµ(E) = 0.

(ii) The equality

(3.19) Ω
Eµ

0,r̃ = R
+

holds for every normalizing sequence r̃.
(iii) For every normalizing sequence r̃ there is a subsequence r̃′ such that the

pretangent space Ω
Eµ

0,r̃′ includes a dense subset of (0, 1).

Proof. Let E be nonporous at infinity. Then E is infinite

E = {n1, ..., nk, nk+1, ...}

where nk < nk+1 for every k ∈ N. Proposition 3.15 implies that

(3.20) lim
k→∞

µ(nk+1)

µ(nk)
= 1.

Let h̃ = {hm}m∈N be an arbitrary sequence of positive real numbers such that
limm→∞ hm = 0. For every m ∈ N define the number k(m) as

k(m) = min{k ∈ N : µ(nk) ≤ hm}.

Then the double inequality

(3.21) µ(nk(m)) ≤ hm < µ(nk(m)−1)
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holds for all sufficiently large m. It follows from (3.20) and (3.21) that

1 ≤ lim inf
m→∞

hm

µ(nk(m))
≤ lim sup

m→∞

hm

µ(nk(m))

≤ lim sup
k→∞

µ(nk(m)−1)

µ(nk(m))
= 1.

Hence limm→∞
hm

µ(nk(m))
= 1 holds. Thus we have

(3.22) R
+ � µ(E) � Eµ.

Let r̃ = (rn)n∈N be a normalizing sequence. By Proposition 2.14 the equality (3.22)
implies that

Ω
Eµ

0,r̃ = Ω
R

+

0,r̃ .

Hence equality (3.19) holds if and only if

(3.23) Ω
R

+

0,r̃ = R
+.

To prove the last equality note that 0 ∈ Ω
R

+

0,r̃ . If s ∈ (0,∞) and x̃ := (srn)n∈N, then
we obviously have

lim
n→∞

srn
rn

= s.

Hence by Corollary 2.9 we obtain x̃ ∈ R̃
+
0,r̃ where R̃

+
0,r̃ is a maximal self-stable

family corresponding to ΩR
+

0,r̃ . By Proposition 2.11 the statement s ∈ Ω
R

+

0,r̃ is fulfiled.

Consequently (3.23) holds. The implication (i) ⇒ (ii) follows. The implication (ii)
⇒ (iii) is trivial. Now let (iii) hold. Using Theorem 2.20 we obtain that

(3.24) p(Eµ) = 0.

Since p(Eµ) = p(µ(E)), equality (3.24) implies

p(µ(E)) = 0.

By Theorem 3.11 we have pµ(E) = p(µ(E)). Consequently (3.19) holds. The
implication (iii) ⇒ (i) is also proved. �

Corollary 3.25. Let E ⊆ N, let µ : N → R
+ be a scaling function and let Eµ :=

µ(E) ∪ {0}. Then the following statements are equivalent
(i) The set E is porous at infinity w.r.t. µ.
(ii) There is a normalizing sequence r̃ and an interval (a, b) ⊆ (0, 1) with |a−b| >

0 such that the equality

Ω
Eµ

0,r̃′ ∩ (a, b) = ∅

holds for every r̃′.
(iii) There is a normalizing sequence r̃ such that

R
+\Ω

Eµ

0,r̃′ 6= ∅.

Proof. It follows from Theorem 3.11 that the set E is porous at infinity if and only
if µ(E) is porous at 0 . Note also that µ(E) is porous at 0 if and only if Eµ is
porous at 0. Now using Theorem 3.17 and Theorem 2.20 we obtain that (i) ⇔ (ii)
and (i) ⇔ (iii). �
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4. The Set Of Porosity Numbers At Infinity And Relativization Of

Pretangent Spaces

To describe the set of porosity numbers at infinity, we will use a slightly modified
version of concept of pretangent spaces.

Let E and M be subsets of R+ such that 0 ∈ E and 0 ∈ acM . If r̃ = (rn)n∈N is
a normalizing sequence, then we write r̃ ⊆ M if rn ∈ M for every n ∈ N.

It is clear that r̃ ⊆ (0,∞) holds for every normalizing sequence r̃. Note also that
r̃′ ⊆ M if r̃ ⊆ M and r̃′ is a subsequence of r̃.

Theorem 4.1. Let E ⊆ N, let µ : N → R
+ be a scaling function and let

Eµ := µ(E) ∪ {0}.

A number p is a porosity number of E at infinity, p ∈ Pµ(E), if and only if there
is a normalizing sequence t̃ ⊆ µ(N) and an open interval (a, b) ⊆ (0, 1) such that
|a− b| = p and the following conditions hold.

(i) The equality (a, b) ∩ Ω
Eµ

0,t̃′ = ∅ holds for every subsequence t̃′ of t̃.

(ii) If (c, d) ⊆ (0, 1) is an open interval such that (c, d)∩Ω
Eµ

0,t̃′ = ∅ holds for every

subsequence t̃′ of t̃, then |c− d| ≤ |a− b|.

The proof of this theorem is completely similar to the proof of Theorem 2.20, so
that we omit it here.

In the following lemma we understand the symbol � in the sense of Definition
2.13.

Lemma 4.2. Let 0 ∈ A ⊆ R
+ and let M and K be subsets of R+ which satisfy

0 ∈ (acM) ∩ (acK) and M � K.

Then for every normalizing sequence r̃ = (rn)n∈N ⊆ M there is a normalizing
sequence t̃ = (tn)n∈N ⊆ K such that, for every strictly increasing sequence (nk)k∈N

of natural numbers, the equality

(4.3) ΩA
0,r̃′ = ΩA

0,t̃′

holds for r̃′ = (rnk
)k∈N and t̃′ = (tnk

)k∈N.

Proof. Let r̃ = (rn)n∈N ⊆ M . By the definition of � we can find t̃ = (tn)n∈N ⊆ K
such that limn→∞

rn
tn

= 1. This equality gives also the limit relation limk→∞
rnk

tnk

=

1. for every strictly increasing sequence (nk)k∈N of natural numbers.

Consequently for every x̃ = (xn) ∈ Ã we have
(

there is lim
k→∞

xnk

rnk

< ∞

)

⇔

(

there is lim
k→∞

xnk

tnk

< ∞

)

.

Using Corollary 2.9 we obtain the equality Ã0,r̃′ = Ã0,r̃′ for the corresponding
maximal self-stable families. Equality (4.3) follows. �

Recall that the symbol P(X) denotes the set of all porosity numbers at 0 of a
set X ⊆ R

+.
The following proposition describes a sufficient condition under whichP(µ(E)) =

Pµ(E) holds for every E ⊆ N.
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Proposition 4.4. Let a scaling function µ satisfy the limit relation

(4.5) lim
n→∞

µ(n+ 1)

µ(n)
= 1.

Then for every E ⊆ N the equality

(4.6) P(µ(E)) = Pµ(E)

holds.

Proof. As in the proof of Theorem 3.17 we obtain (0,∞) � µ(N) if (4.5) holds. Let
E ⊆ N. The inclusion

Pµ(E) ⊆ P(µ(E))

is immediate. Let p be a porosity number of µ(E) at 0. By Theorem 2.20 there
is a normalizing sequence r̃ ⊆ (0,∞) an open interval (a, b) ⊆ (0, 1) such that
|a− b| = p and statements (i) and (ii) of this theorem hold. Using Lemma 4.2 with
A = µ(E) ∪ {0} we obtain that there is a normalizing sequence t̃ ⊆ µ(N) such that
t̃ and (a, b) satisfy statements (i) and (ii) of Theorem 4.1. Hence, by Theorem 4.1,
p is a porosity number at infinity of E w.r.t. µ. Thus P(µ(E)) ⊆ Pµ(E). Equality
(4.6) follows. �

The next theorem gives us sufficient conditions under which the sets of porosity
numbers for every E ⊆ N coincede for two scaling functions.

Theorem 4.7. Let µ1 and µ2 be scaling functions. If the limit relation

(4.8) lim
n,m→∞

µ1(n)µ2(m)

µ2(n)µ1(m)
= 1

holds, then we have the equality

(4.9) Pµ1(E) = Pµ2(E)

for every E ⊆ N.

Proof. If |E| < ∞, then (3.1) and (3.2) give us the equalities

pµ1
(E) = p

µ1
(E) = pµ2

(E) = p
µ2
(E) = 1.

Consequently Pµ1(E) = Pµ2(E) = {1}, that implies (4.9). Thus, without loss of
generality, we assume |E| = ∞.

Suppose (4.8) holds. Let p ∈ Pµ1(E). By Definition 3.5 there is a strictly
increasing sequence (nk)k∈N such that

(4.10) p = lim
k→∞

λµ1 (E, nk)

µ1(nk)
.

Since E is infinite, for every k ∈ N there are n
(1)
k , n

(2)
k ∈ N such that nk ≤ n

(1)
k < n

(2)
k

and

(4.11) λµ1(E, nk) = µ1(n
(1)
k )− µ1(n

(2)
k ).

Let ε > 0. Equality (4.8) implies

(4.12) (1− ε)
µ2(n)

µ2(m)
≤

µ1(n)

µ1(m)
≤ (1 + ε)

µ2(n)

µ2(m)

if m and n are sufficiently large.
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Using (4.11) and (4.12) we obtain

λµ1(E, nk)

µ1(nk)
=

µ1(n
(1)
k )

µ1(nk)
−

µ1(n
(2)
k )

µ1(nk)
≤ (1 + ε)

µ2(n
(1)
k )

µ(2)(nk)
− (1− ε)

µ2(n
2
k)

µ2(nk)

≤
µ2(n

(1)
k )− µ2(n

(2)
k )

µ2(nk)
+ 2ε ≤

λµ2 (E, nk)

µ2(nk)
+ 2ε.(4.13)

It is clear that
λµ2 (E,nk)

µ2(nk)
≤ 1 for every k. Hence

(

λµ2 (E,nk)

µ2(nk)

)

k∈N

contains a conver-

gent subsequence
(

λµ2 (E,nk′)

µ2(nk′ )

)

k′∈N

. Write

(4.14) p′ = lim
k′→∞

λµ2(E, nk′ )

µ2(nk′)
.

It follows from (4.10), (4.13) and (4.14) that p ≤ p′ + 2ε. Letting ε → 0 we obtain
the inequality p ≤ p′. Let us prove the converse inequality. Using (4.14) instead
of (4.10) and (nk′ )k′∈N instead of (nk)k∈N and repeating the above arguments we

can find a subsequence (nk′′ )k′′∈N of (nk′)k′∈N such that
(

λµ1 (E,nk′′)

µ1(nk′′ )

)

k′′∈N

is a

convergent subsequence of
(

λµ1 (E,nk′ )

µ1(nk′ )

)

k′∈N

and

p′ ≤ lim
k′′→∞

λµ1(E, nk′′ )

µ1(nk′′ )
.

Since
(

λµ1 (E,nk′′ )

µ1(nk′′ )

)

k′′∈N

is also a subsequence of the sequence
(

λµ1 (E,nk)

µ1(nk)

)

k∈N

, we

have the equality

p = lim
k′′→∞

λµ1 (E, nk′′)

µ(nk′′

.

Consequently p′ ≤ p holds, that, together with p ≤ p′, implies the equality p = p′.
It is clear that p′ ∈ Pµ2(E). Since p is an arbitrary element of Pµ1(E), we obtain
Pµ1(E) ⊆ Pµ2(E). Similar arguments show that Pµ2(E) ⊆ Pµ1(E). Equality (4.9)
follows. �

Corollary 4.15. Let c > 0 and let µ1 : N → R
+ and µ2 : N → R

+ be scaling

functions satisfying the equality limn→∞
µ1(n)
µ2(n)

= c. Then the equality

Pµ1(E) = Pµ2(E)

holds for every E ⊆ N.

Using Lemma 3.7 we can prove a variant of a ”week converse” to Theorem 4.7.

Proposition 4.16. Let α ∈ [0, 1) ∪ (1,∞] and let µ1 and µ2 be scaling functions.
Suppose (nk)k∈N is a strictly increasing sequence of natural numbers such that

(4.17) lim
k→∞

µ1(nk+1)µ2(nk)

µ1(nk)µ2(nk+1)
= α.

Then for the set E = {nk : k ∈ N} we have

(4.18) pµ1
(E) 6= pµ2

(E)

or

pµ2
(E) = 1.
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Proof. Let us consider first the case α ∈ (1,∞]. Write,

p∗i = lim inf
k→∞

µi(nk+1)

µi(nk)
for i = 1, 2.

For i = 1, 2 by Lemma 3.7 the equality pµ1
(E) = pµ2

(E) holds if and only if p∗1 = p∗2
and, moreover,

(pµ2
(E) = 1) ⇔ (p∗2 = 0).

Suppose that p∗2 6= 0. To prove (4.18) it is sufficient to show that

(4.19) p∗1 > p∗2.

Let (nk(j))j∈N be a subsequence of (nk)k∈N such that

p∗1 = lim
j→∞

µ1(nk(j)+1)

µ1(nk(j))
.

This equality and (4.17) imply

α = lim
j→∞

p∗1
µ2(nk(j)+1)

µ2(nk(j))

.

Now using the conditions p∗2 6= 0 and

p∗2 ≤ lim
j→∞

µ2(nk(j)+1)

µ2(nk(j))

we obtain the inequality α ≤ p∗

1

p∗

2
. The inequality α ≤ p∗

1

p∗

2
and p∗2 6= 0 imply (4.19),

because α ∈ (1,∞]. The case α ∈ [0, 1) can be considered similarly. �

In the following corollary the set E is the same as in Proposition 4.16.

Corollary 4.20. Let µ1 and µ2 be scaling functions. If limit relation (4.17) holds
with α 6= 1 and pµ1

(E) = pµ2
(E), then the set E is strongly porous w.r.t. the both

scaling functions µ1 and µ2.

Let E be a subset of R+ and let µ : N → R
+ be a scaling function. Denote by E

the closure of E in R
+ and define a subset M = ME,µ of the set N by the following

rule:
(i1) An integer number m ≥ 2 belongs M if and only if

[µ(m+ 1), µ(m− 1)] ∩ E 6= ∅

where [µ(m+ 1), µ(m− 1)] = {x ∈ R
+ : µ(m+ 1) ≤ x ≤ µ(m− 1)};

(i2) The number 1 belongs to M if and only if [µ(2),∞) ∩ E 6= ∅.

Proposition 4.21. The following conditions hold for every E ⊆ R
+ and every

scaling function µ : N → R
+,

(i) ME,µ is empty if and only if E ⊆ {0};
(ii) ME,µ is finite if and only if 0 /∈ acE;
(iii) The equality ME,µ = ME,µ holds.

Moreover for every µ : N → R
+ and all A,B ⊆ R

+ we have
(iv) If A ⊆ B, then the inclusion MA,µ ⊆ MB,µ holds.
(v) The equality MA∪B,µ = MA,µ ∪MB,µ holds.
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Proof. Property (v) follows from the well-known equality

A ∪B = A ∪B.

Other properties can be derived directly from the definition of the function

E 7→ ME,µ.

�

The next theorem shows that the porosity at infinity on N gives a relevant model
for the porosity at 0 on R

+.

Theorem 4.22. Let µ : N → R
+ be a scaling function. Then the following state-

ments are equivalent.
(i) The equality

(4.23) P(E) = Pµ(M)

holds for every E ⊆ R
+ with M = ME,µ.

(ii) The scaling function µ satisfies the limit relation

(4.24) lim
n→∞

µ(n+ 1)

µ(n)
= 1.

Proof. Let statement (i) hold. If (ii) is not valid, then using the decrease of µ we
obtain

lim inf
n→∞

µ(n+ 1)

µ(n)
< 1.

This inequality and Lemma 3.7 imply that

(4.25) pµ(N) > 0.

It is clear that the set R+ is nonporous, p(R+) = 0. From (4.23) it follows that

p(E) = pµ(M)

holds for every E ⊆ R
+. Since MR+ , µ = N holds for every scaling function µ, we

obtain

pµ(N) = 0,

contrary to inequality (4.25).
Suppose now that statement (ii) holds. Then by Proposition 4.4 we obtain the

equality

Pµ(M) = P(µ(M)).

Consequently equality (4.23) can be written in the form

(4.26) P(E) = P(µ(M))

where M = ME,µ. Equality (4.26) is trivial for E satisfying the condition 0 /∈ acE.
Indeed, by statement (ii) of Proposition 4.21 the set ME,µ is finite if 0 /∈ acE. Thus
in this case P(µ(M)) = P(E) = {1}. Suppose 0 ∈ acE. Corollary 2.35 implies that
(4.26) holds if E � ME,µ and ME,µ � E. By the definition the statement E � ME

holds if for every (en)n∈N with en ∈ E\{0}, n ∈ N and limn→∞ en = 0 there is a
sequence (xn)n∈N with xn ∈ M\{0} such that

(4.27) lim
n→∞

en
xn

= 1.
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Using property (i1) from the definition of ME,µ we see that for every sufficiently
large n ∈ N there is n(m) ∈ N satisfying the statement

(4.28) en ∈ [µ(n(m) + 1), µ(n(m)− 1)] .

Write xn = µ(n(m)). Since µ(n(m)+1) ≤ µ(n(m)) ≤ µ(n(m)−1), condition (4.28)
gives us the estimations

µ(n(m) + 1)

µ(n(m))
≤

en
µ(n(m))

≤
µ(n(m)− 1)

µ(n(m))
.

This double inequality and the limit relation

lim
k→∞

µ(k)

µ(k + 1)
= 1

imply (4.27). The statement E � ME,µ follows. Reasoning similarly we obtain the
statement ME,µ � E. �

5. The Lower Porosity At Infinity

Define a family SSP of sets T ⊆ R
+ by the next rule. A set T ⊆ R

+ belongs to
SSP if 0 /∈ acT or there is a sequence {(ak, bk)}k∈N of open intervals (ak, bk) ⊆ R

+

meeting the following conditions.
(i1) The inequalities ak ≥ bk+1 > ak+1 > 0 hold for each k ∈ N.
(i2) Every interval (ak, bk) is a connected component of ExtT , i.e.

(ak, bk) ∩ T = ∅

but for every (a, b) ⊇ (ak, bk) we have ((a, b) 6= (ak, bk)) ⇒ ((a, b) ∩ T 6= ∅).
(i3) The limit relations

(5.1) lim
k→∞

ak = 0, lim
k→∞

bk − ak
bk

= 1 and lim
k→∞

bk+1

ak
= 1

hold.

Remark 5.2. The letters SSP is merely an abbreviation for the words ”super
strongly porous”. Every T ∈ SSP is completely strongly porous in the sense of
paper [3].

Theorem 5.3. Let µ : N → R be a scaling function. The equality

(5.4) p
µ
(N) = 1

holds if and only if µ(N) ∈ SSP.

Proof. Let µ(N) ∈ SSP. Then there is a sequence {(ak, bk)}k∈N satisfying the
conditions from the definition of SSP with E = µ(N).

In particular from (i1) and (i2) it follows that

µ(N) ⊆ [b1,∞) ∪∞
k=1 [ak, bk+1].

Consequently there is N0 ∈ N such that for every n ≥ N0 there is a unique k = k(n)
such that

(5.5) µ(n) ∈ [bk+1, ak].

Condition (i2) from the definition of SSP implies that ak, bk ∈ µ(N) for every
k ∈ N. Hence, for every n ∈ N with n > N0 we have

(5.6) λµ(N, n) ≥ |bk+1 − ak+1|
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where λµ(N, n) is defined as in (3.3). Using inequality (5.6), limit relations (5.1)
and condition (5.5) we obtain

p
µ
(N) = lim inf

n→∞

λµ(N, n)

µ(n)

≥ lim inf
k→∞

bk+1 − ak+1

ak

= lim inf
k→∞

bk+1 − ak+1

bk+1

bk+1

ak

= lim
k→∞

bk+1 − ak+1

bk+1
lim
k→∞

bk+1

ak
= 1.

Consequently p
µ
(N) ≥ 1. The inequality p

µ
(N) ≤ 1 is trivial. Equality (5.4) follows.

To prove the implication

(5.7)
(

p
µ
(N) = 1

)

⇒ (µ(N) ∈ SSP)

we will use the next fact. If E ⊆ N is infinite and p
µ
(N) > 1

2 , then there is N0 ∈ N

such that for every integer n ≥ N0 there are unique n1, n2 ∈ N satisfying the
conditions n ≤ n1 ≤ n2, (n1, n2) ∩ E = ∅ and

(5.8) λµ(E, n) = |µ(n1)− µ(n2)| >
1

2
µ(n)

where λµ(E, n) is defined by (3.3). Indeed, suppose the contrary and choose
m1,m2 ∈ N such that (5.8) holds with n1 = m1 and n2 = m2. Consequently
the inequality p

µ
(N) > 1

2 implies that

(5.9)
µ(n1)− µ(n2)

µ(n)
>

1

2
and

µ(m1)− µ(m2)

µ(n)
>

1

2
.

By our supposition we have

(n1, n2) 6= (m1,m2).

Together with the equalities

|µ(n1)− µ(n2)| = |µ(m1)− µ(m2)| = λµ(E, n),

this implies that the intervals (m1,m2) and (n1, n2) are disjoint. Without loss of
generality we may assume that

(5.10) n ≤ n1 < n2 ≤ m1 < m2.

Now using (5.9) and (5.10) we obtain

µ(n) < (µ(n1)− µ(n2)) + (µ(m1)− µ(m2))

= (µ(n1)− µ(m2)) + (µ(m1)− µ(n2))

≤ µ(n1)− µ(m2) < µ(n1).

Consequently the inequality µ(n) < µ(n1) holds, which contradicts µ being strictly
decreasing. The desirable uniqueness follows.

Suppose now that p
µ
(N) = 1. Then there is N0 ∈ N such that for every integer

n ≥ N0 there is a unique interval (n1(n), n2(n)) such that (5.8) holds with E = N.
Write τ(n) = n2(n) for every n ≥ N0. Note that n1(n) = τ(n) − 1 for every

n ≥ N0 because E = N here. Define a sequence {(ak, bk)}k∈N by setting a1 =
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µ(τ(N0)), b1 = µ(τ(N0) − 1) and for k ≥ 2, ak = µ(τk(N0)), bk = µ(τk(N0) − 1)
where τk(N0) = τ(τk−1(N0)) with τ1(N0) = τ(N0).

It remains to prove that conditions (i1)-(i3) from the definition of SSP are
satisfied with T = µ(N) if {(ak, bk)}k∈N is defined as above. It is easy to see that
equality (3.3) and the strict decreasing of µ imply (i1) and (i2).

Moreover the limit relation limn→∞ µ(n) = 0 yields limk→∞ ak = 0. Let us
prove the equality

(5.11) lim
k→∞

bk − ak
bk

= 1.

It follows from the definitions that

bk − ak
bk

=
µ(τk(N0)− 1)− µ(τk(N0))

µ(τk(N0)− 1)
=

λµ(N, τ
k(N0)− 1)

µ(τk(N0)− 1)
.

Consequently we have

lim inf
k→∞

λµ(N, τ
k(N0)− 1)

µ(τk(N0)− 1)
∈ Pµ(N).

The equality p
µ
(N) = 1 implies that

Pµ(N) = {1}.

Hence the inequality

(5.12) lim inf
k→∞

λµ(N, τ
k(N0)− 1)

µ(τk(N0)− 1)
≥ 1

holds. Moreover the inequality

(5.13) lim sup
k→∞

λµ(N, τ
k(N0)− 1)

µ(τk(N0)− 1)
≤ 1

is evidently valid. Now (5.11) follows from (5.12) and (5.13). Let us consider the
last limit relation from (5.5),

(5.14) lim
k→∞

bk
ak−1

= 1.

This equality can be written as

lim
k→∞

λµ(N, τ
k(N0)− 1)

µ(τk(N0)− 1)
= 1.

Note that

λµ(N, n) = µ(τk(N0)− 1)− µ(τk(N0))

for every integer n ∈ [τk−1(N0), τ
k(N0) − 1]. Similarly to (5.11), we obtain the

equality

lim
k→∞

bk − ak
ak−1

= 1.

The last equality and (5.11) directly imply (5.14). The implication (5.7) follows. �

Example 5.15. Let µ : N → R
+ be a scaling function satisfying the limit relation

lim
k→∞

µ(k + 1)

µ(k)
= 0.
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It is easy to show that properties (i1)-(i3) from the definitions of the family SSP

hold with T = µ(N) and ak = µ(k + 1), bk = µ(k) for k ∈ N. Consequently
µ(N) ∈ SSP and, by Theorem 5.3 the equality p

µ
(N) = 1 holds.

Theorem 3.11 claims that the equality

(5.16) p(µ(E)) = pµ(E)

holds for every scaling function µ and every E ⊆ N. Note that the equality arising
from (5.16) by replacing of the upper porosity by lower porosity is generally not
valid, as it follows from Theorem5.23 and Proposition 5.17.

Proposition 5.17. Let T ∈ SSP and let 0 ∈ acT . Then the equality

(5.18) p(T ) =
1

2

holds.

Proof. If (an) is a sequence from the definition of SSP, then

A = {a1, ..., ak, ak+1, ...}

satisfies the conditions:

• ak > ak+1 > 0 for every k ∈ N;
• limk→∞

ak+1

ak
= 0;

• T � A and A � T

where the symbol � is understood in accordance with Definition 2.13. Using Corol-
lary 2.35 it is easy to see that (5.18) holds if and only if we have the equality

(5.19) p(A) =
1

2
.

Let us prove (5.19). Let (hn)n∈N be a decreasing sequence of positive numbers such
that

(5.20) p(A) = lim
h→∞

λ(A, hn)

h

and h1 ≤ a2. Then for every n ∈ N there is a unique k = k(n) ∈ N such that

hk ∈ [ak, ak+1].

Let us consider the function

f(h) =
λ(A, h)

h

on the interval [ak, ak−1]. The equality limk→∞
tk+1

tk
= 0 implies that

(5.21) |ak+1 − ak| ≤ |ak − ak−1|

for sufficiently large k.
Using (5.21) it is easy to show that

λ(A, h) =

{

ak − ak+1, h ∈ [ak, ak + (ak − ak+1)]
h− ak, h ∈ [ak + (ak − ak+1), ak−1].

Consequently we have

f(n) =

{

ak−ak+1

h
, h ∈ [ak, 2ak − ak+1]

h−ak

h
, h ∈ [2ak − ak+1, ak−1].
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It implies that f is decreasing on [ak, 2ak − ak+1] and increasing on [2ak −
ak+1, ak−1]. Hence we obtain

(5.22) min
h∈[ak,ak−1]

f(h) = f(2ak − ak+1) =
ak − ak+1

2ak − ak+1
.

Using (5.22) and the equality

lim
k→∞

ak+1

ak
= 0

we can find that

p(A) ≥ lim
k→∞

ak − ak+1

2ak − ak+1
=

1

2
.

Since limk→∞
ak−ak+1

2ak−ak+1
= limk→∞

λ(A,2ak−ak+1)
2ak−ak+1

, the number 1
2 is a porosity number

of A. Hence the inequality 1
2 ≥ p(A) holds. Equality (5.19) follows. �

Corollary 5.23. Let E ⊆ R
+ and let 0 be an accumulation point of E. Then the

inequality

(5.24) p(E) ≤
1

2

holds.

Proof. Since 0 ∈ acE, there is a subset T of E such that T ∈ SSP and 0 ∈ acT . By
Proposition 5.17 the equality p(T ) = 1

2 holds. The inclusion T ⊆ E implies that

λ(E, h) ≤ λ(T, h)

for every h > 0. Consequently we have the inequality

p(E) ≤ p(T ).

This inequality and the equality p(T ) = 1
2 give us (5.24). �

Definition 5.25. A real valued sequence (an)n∈N is eventually concave if the in-
equality

(5.26)
an−1 + an+1

2
≥ an

holds for all sufficiently large n.

Proposition 5.27. Let a scaling function µ be eventually concave. Then we have
the equalities

(5.28) p(µ(N)) =
p
µ
(N)

1 + p
µ
(N)

and

(5.29) p
µ
(N) = 1− lim sup

n→∞

µ(n+ 1)

µ(n)
.

Proof. Let us prove (5.29) by analogy with the proof of the Lemma 3.7. It is clear
that

1− lim sup
n→∞

µ(n+ 1)

µ(n)
= lim inf

n→∞

µ(n)− µ(n+ 1)

µ(n)
.

Since µ is eventually concave, we have

|µ(n+ 1)− µ(n)| ≥ |µ(n+ 2)− µ(n+ 1)|
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for all sufficiently large n. Consequently the equality

λµ(N, n) = µ(n)− µ(n+ 1)

holds for sufficiently large n. Hence

lim inf
n→∞

µ(n)− µ(n+ 1)

µ(n)
= lim inf

n→∞

λµ(N, n)

µ(n)
= p

µ
(N).

Equality (5.29) follows.
Let us prove (5.28). As in the proof of Proposition 5.17 we can find that

(5.30) p(µ(N)) = lim inf
k→∞

µ(k)− µ(k + 1)

2µ(k)− µ(k + 1)
.

(Note that inequality (5.21) holds if and only if the sequence (an)n∈N from the
proof of Proposition 5.17 is concave.) Using (5.30) and (5.29) we obtain

p(µ(N)) = 1− lim sup
k→∞

µ(k)

2µ(k)− µ(k + 1)

= 1−
1

2− lim supk→∞
µ(k+1)
µ(k)

= 1−
1

1− p
µ
(N)

,

that implies (5.28). �

The closing result of this section is the following infinitesimal characterization of
super strongly porous sets.

Theorem 5.31. Let 0 ∈ E ⊆ R
+. Then E ∈ SSP if and only if the inequality

(5.32) card(ΩE
0,r̃) ≤ 2

holds for every pretangent space ΩE
0,r̃.

A relatively simple proof of this theorem can be obtained if we use the corre-
sponding result for completely strongly porous at 0 subsets of R+. In what follows
the set of such subsets will be denoted by CSP. Several different characterizations
of CSP-sets have been found in [3]. In particular using Theorem 27, Theorem 42
and Definition 22 from [3] we can give the definition of CSP-sets in the next form.

Definition 5.33. Let E ⊆ R
+ and 0 ∈ acE. Then E is a CSP-set if there is a

sequence L̃ = ((an, bn))n∈N satisfying the following conditions.
(i1) Every interval (an, bn) is a connected component of ExtE.
(i2) The inequalities ak ≥ bk+1 > ak+1 > 0 holds for each n ∈ N.
(i3) The upper limit

(5.34) M(L̃) := lim sup
n→∞

an
bn+1

is finite.

Now directly from the definitios of SSP-sets andCSP-sets we have the following.

Lemma 5.35. Let E ⊆ R
+ and 0 ∈ acE. Then E is a SSP-set if and only if E is

a CSP-set and M(L̃) = 1 where M(L̃) is defined by (5.34).
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To formulate an infinitesimal characterization of CSP-sets we introduce the
following two quantities

Let F = {(Xi, di, pi) : i ∈ I} be a family of metric spaces with marked points
pi ∈ Xi. Write

Di = {di(x, pi) : x ∈ Xi}, i ∈ I.

Define

ρ∗(Xi) = sup
t∈Di

t and R∗(F) = sup
i∈I

ρ∗(Xi)

and, respectively,

ρ∗(Xi) =

{

inf{t : t ∈ Di\{0}} if Di 6= {0}
+∞ if Di = {0},

and

R∗(F) = inf ρ∗(Xi).

Lemma 5.36. Let F = {(Xi, di, pi) : i ∈ I} be a nonempty family of metric space
with marked points pi. Then the following statements are equivalent.

(i) The equality Di = {0, 1} holds for every i ∈ I.
(ii) We have R∗(F) = R∗(F) = 1.

Proof. The implication (i) ⇒ (ii) is trivial. Suppose that (ii) holds. If there is
i0 ∈ I such that

(0, 1) ∩Di 6= ∅,

then the strict inequality R∗(F) < 1 holds contrary to (ii). Hence (0, 1) ∩Di = ∅.
Similarly we see that (1,∞) ∩ Di = ∅ for every i ∈ I. The implication (ii) ⇒ (i)
follows. �

Let 0 ∈ E ⊆ R
+. Define the set 1ΩE

0 of pretangent spaces ΩE
0,r̃ by the rule

(

ΩE
0,r̃ ∈

1ΩE

0

)

⇔
(

1 ∈ Ω
E

0,r̃

)

.

The next lemma follows directly from Theorem 4.6 and formula (4.11) of [4].

Lemma 5.37. Let 0 ∈ E ⊆ R
+ and let 0 ∈ acE. Then the following three condi-

tions are equivalent.
(i) The inequality

R∗(1ΩE

0
) < ∞

holds.
(ii) The inequality

R∗(
1ΩE

0 ) > 0

holds.
(iii) The set E is a CSP-set.
Moreover if E is a CSP-set, then

R∗(1ΩE

0 ) = M(L̃) and R∗(
1ΩE

0 ) =
1

M(L̃)

where M(L̃) is defined by (5.34).
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Now we are ready to prove the theorem formulated above.
Proof of Theorem 5.31 By Lemma 5.35 we have E ∈ SSP if and only if

(5.38) E ∈ CSP and M(L̃) = 1.

Suppose that inequality (5.32) holds. We must show that conditions (5.38) are

satisfied. Let Ω
E

0,r̃ ∈
1ΩE

0 . Then inequality (5.32) implies the equality

Ω
E

0,r̃ = {0, 1}.

It follows from the last equality that

R∗(1ΩE

0
) = R∗(

1ΩE

0
) = 1.

Hence, by Lemma 5.36, conditions (5.38) hold. Similarly if conditions (5.38) hold,
then inequality (5.32) follows from Lemma 5.36 and Lemma 5.37. �

Define a function F : E × E → R
+ as

F (x, y) =

{

|x−y|(x∧y)
(x∨y)2 if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

where x ∨ y = max{x, y} and x ∧ y = min{x, y}. Using Theorem 5.31 which was
proved above and Theorem 2.2 from [10] we obtain the following.

Corollary 5.39. Let 0 ∈ E ⊆ R. Then E is a SSP-set if and only if

lim
x,y→0

F (x, y) = 0.
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[4] V. Bilet, O. Dovgoshey, M. Küçükaslan, Uniform boundedness of pretangent spaces, local

constancy of metric derivatives and strong right upper porosity at a point // arXiv : 1409.
3418.
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