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Abstract

We study local asymptotic properties of likelihood ratios of certain Heston models. We

distinguish three cases: subcritical, critical and supercritical models. For the drift param-

eters, local asymptotic normality is proved in the subcritical case, only local asymptotic

quadraticity is shown in the critical case, while in the supercritical case not even lo-

cal asymptotic quadraticity holds. For certain submodels, local asymptotic normality is

proved in the critical case, and local asymptotic mixed normality is shown in the supercrit-

ical case. As a consequence, asymptotically optimal (randomized) tests are constructed

in cases of local asymptotic normality. Moreover, local asymptotic minimax bound, and

hence, asymptotic efficiency in the convolution theorem sense are concluded for the max-

imum likelihood estimators in cases of local asymptotic mixed normality.

1 Introduction

Heston models have been extensively used in financial mathematics since one can well-fit them

to real financial data set, and they are well-tractable from the point of view of computability

as well, see Heston [8].

Let us consider a Heston model
{
dYt = (a− bYt) dt+ σ1

√
Yt dWt,

dXt = (α− βYt) dt+ σ2
√
Yt
(
̺ dWt +

√
1− ̺2 dBt

)
,

t > 0,(1.1)

where a > 0, b, α, β ∈ R, σ1 > 0, σ2 > 0, ̺ ∈ (−1, 1) and (Wt, Bt)t>0 is a 2-dimensional

standard Wiener process. Here one can interpret Xt as the log-price of an asset, and Yt as

the volatility of the asset price at time t > 0. The squared volatility process (σ2
2Yt)t>0 is a

Cox–Ingersoll–Ross (CIR) process. We distinguish three cases: subcritical if b > 0, critical if
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b = 0 and supercritical if b < 0. In this paper we study local asymptotic properties of the

likelihood ratios of the model (1.1) concerning the drift parameter (a, α, b, β).

In case of the one-dimensional CIR process Y , Overbeck [17] examined local asymptotic

properties of the likelihood ratios concerning the drift parameter (a, b), and proved the follow-

ing results under the assumption a ∈
(σ2

1

2
,∞
)
, which guarantees that the information matrix

process tends to infinity almost surely. It turned out that local asymptotic normality (LAN)

is valid in the subcritical case. In the critical case LAN has been proved for the submodel

when b = 0 is known, and only local asymptotic quadraticity (LAQ) has been shown for the

submodel when a ∈
(σ2

1

2
,∞
)

is known, but the asymptotic property of the experiment locally

at (a, 0) with a suitable two-dimensional localization sequence remained as an open question.

In the supercritical case local asymptotic mixed normality (LAMN) has been proved for the

submodel when a ∈
(σ2

1

2
,∞
)

is known.

For the Heston model (1.1), we assume again a ∈
(σ2

1

2
,∞
)
. We prove LAN in the subcritical

case (see Theorem 7.1), LAQ in the critical case (see Theorem 8.1), and show that LAQ

does not hold in the supercritical case, although we can describe the asymptotic property of

the experiment locally at (a, α, b, β) with a suitable four-dimensional degenerate localization

sequence (see Theorem 9.1). In the critical case LAN will be shown for the submodel when

b = 0 and β ∈ R are known (see Theorem 8.1). In the supercritical case LAMN will be

proved for the submodel when a ∈
(σ2

1

2
,∞
)

and α ∈ R are known (see Theorem 9.1).

If the LAN property holds then we obtain asymptotically optimal tests (see Remarks 7.2

and 8.2) based on Theorem 15.4 and Addendum 15.5 of van der Vaart [20].

If the LAMN property holds then we have a local asymptotic minimax bound for arbitrary

estimators, see, e.g., Le Cam and Yang [13, 6.6, Theorem 1]. Moreover, any maximum likelihood

estimator attains this bound for bounded loss function (see Le Cam and Yang [13, 6.6, Remark

11]), and it is asymptotically efficient in Hájek’s convolution theorem sense (for example, see,

Le Cam and Yang [13, 6.6, Theorem 3 and Remark 13]; Jeganathan [10]). Asymptotic behavior

of maximum likelihood estimators are described in all cases in Barczy and Pap [3].

2 Quadratic approximations to likelihood ratios

Let N, Z+, R, R+, R++, R− and R−− denote the sets of positive integers, non-negative

integers, real numbers, non-negative real numbers, positive real numbers, non-positive real

numbers and negative real numbers, respectively. For x, y ∈ R, we will use the notations

x ∧ y := min(x, y). By ‖x‖ and ‖A‖, we denote the Euclidean norm of a vector x ∈ Rd

and the induced matrix norm of a matrix A ∈ Rd×d, respectively. By Id ∈ Rd×d, we denote

the d-dimensional unit matrix. In the sequel
P−→,

D−→ and
a.s.−→ will denote convergence in

probability, in distribution and almost surely, respectively.

We recall some definitions and statements concerning quadratic approximations to likelihood

ratios based on Jeganathan [10], Le Cam and Yang [13] and van der Vaart [20].
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If P and Q are probability measures on a measurable space (X,X ), then

dP

dQ
: X → R+

denotes the Radon–Nykodym derivative of the absolutely continuous part of P with respect to

Q. If (X,X ,P) is a probability space and (Y,Y) is a measurable space, then the distribution

of a measurable mapping ξ : X → Y under P will be denoted by L(ξ |P) (i.e., L(ξ |P) is

the probability measure on (Y,Y) defined by L(ξ |P)(B) := P(ξ ∈ B), B ∈ Y).

2.1 Definition. A statistical experiment is a triplet
(
X,X , {Pθ : θ ∈ Θ}

)
, where (X,X ) is

a measurable space and {Pθ : θ ∈ Θ} is a family of probability measures on (X,X ). Its

likelihood ratio process with base θ0 ∈ Θ is the stochastic process
(
dPθ

dPθ0

)

θ∈Θ
.

2.2 Definition. A family (XT ,XT , {Pθ,T : θ ∈ Θ})T∈R++
of statistical experiments converges

to a statistical experiment (X,X , {Pθ : θ ∈ Θ}) as T → ∞ if, for every finite subset H ⊂ Θ

and every θ0 ∈ Θ,

L
((

dPθ,T

dPθ0,T

)

θ∈H

∣∣∣∣Pθ0,T

)
⇒ L

((
dPθ

dPθ0

)

θ∈H

∣∣∣∣Pθ0

)
as T → ∞,

i.e., the finite dimensional distributions of the likelihood ratio process
(

dPθ,T

dPθ0,T

)

θ∈Θ
under Pθ0,T

converges to the finite dimensional distributions of the likelihood ratio process
(

dPθ

dPθ0

)

θ∈Θ
under

Pθ0 as T → ∞.

If (XT ,XT ,PT ), T ∈ R++, are probability spaces and fT : XT → Rp, T ∈ R++, are

measurable functions, then

fT
PT−→ 0 or fT = oPT

(1) as T → ∞

denotes convergence in (PT )T∈R++
-probabilities to 0 as T → ∞, i.e., PT (‖fT‖ > ε) → 0 as

T → ∞ for all ε ∈ R++. Moreover,

fT = OPT
(1), T ∈ R++,

denotes boundedness in (PT )T∈R++
-probabilities, i.e., supT∈R++

PT (‖fT‖ > K) → 0 as

K → ∞.

2.3 Remark. Note that if (Ω,A,P) is a probability space and for each T ∈ R++, ξT : Ω →
XT is a random element with L(ξT |P) = PT , then fT = oPT

(1) as T → ∞ or fT = OPT
(1),

T ∈ R++, if and only if fT ◦ξT = oP(1) as T → ∞ or fT ◦ξT = OP(1), T ∈ R++, respectively.

Indeed, PT (‖fT‖ > c) = P(‖fT (ξT )‖ > c) for all T ∈ R++ and all c ∈ R++. Moreover,

fT = OPT
(1), T ∈ R++, if and only if the family (L(fT |PT ))T∈R++

of probability measures
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is tight, and hence, for each sequence Tn ∈ R++, n ∈ N, with Tn → ∞ as n → ∞, there

exist a subsequence Tnk
, k ∈ N, and a probability measure µ on (Rp,B(Rp)), such that

L(fTnk
|PTnk

) ⇒ µ as k → ∞. In this case, µ is called an accumulation point of the family

(L(fT |PT ))T∈R++
. ✷

2.4 Definition. Let Θ ⊂ Rp be an open set. A family (XT ,XT , {Pθ,T : θ ∈ Θ})T∈R++
of

statistical experiments is said to have locally asymptotically quadratic (LAQ) likelihood ratios

at θ ∈ Θ if there exist (scaling) matrices rθ,T ∈ Rp×p, T ∈ R++, measurable functions

(statistics) ∆θ,T : XT → Rp, T ∈ R++, and Jθ,T : XT → Rp×p, T ∈ R++, such that

(2.1) log
dPθ+rθ,ThT ,T

dPθ,T
= h⊤

T∆θ,T − 1

2
h⊤
TJθ,ThT + oPθ,T

(1) as T → ∞

whenever hT ∈ Rp, T ∈ R++, is a bounded family satisfying θ + rθ,ThT ∈ Θ for all

T ∈ R++,

(2.2) (∆θ,T ,Jθ,T ) = OPθ,T
(1), T ∈ R++,

and for each accumulation point µθ of the family (L((∆θ,T ,Jθ,T ) |Pθ,T ))T∈R++
as T → ∞,

which is a probability measure on (Rp × Rp×p,B(Rp × Rp×p)), we have

(2.3) µθ

({
(∆,J) ∈ Rp × Rp×p : J is symmetric and strictly positive definite

})
= 1

and

(2.4)

∫

Rp×Rp×p

exp

{
h⊤∆− 1

2
h⊤Jh

}
µθ(d∆, dJ) = 1

whenever h ∈ Rp such that there exist Tk ∈ R++, k ∈ N, and hTk
∈ Rp, k ∈ N, with

hTk
→ h as k → ∞, θ + rθ,Tk

hTk
∈ Θ for all k ∈ N.

2.5 Definition. Let Θ ⊂ Rp be an open set. A family (XT ,XT , {Pθ,T : θ ∈ Θ})T∈R++
of

statistical experiments is said to have locally asymptotically mixed normal (LAMN) likelihood

ratios at θ ∈ Θ if it is LAQ at θ ∈ Θ, and for each accumulation point µθ of the family

(L((∆θ,T ,Jθ,T ) |Pθ,T ))T∈R++
as T → ∞, we have

∫

Rp×B

eih
⊤
∆ µθ(d∆, dJ) =

∫

Rp×B

e−h
⊤
Jh/2 µθ(d∆, dJ), B ∈ B(Rp×p), h ∈ Rp,

i.e., the conditional distribution of ∆ given J under µθ is Np(0,J), or, equivalently,

µθ = L((ηθZ, ηθη⊤θ ) |P), where Z : Ω → Rp and ηθ : Ω → Rp×p are independent random

elements on a probability space (Ω,F ,P) such that L(Z |P) = Np(0, Ip).

2.6 Definition. Let Θ ⊂ Rp be an open set. A family (XT ,XT , {Pθ,T : θ ∈ Θ})T∈R++

of statistical experiments is said to have locally asymptotically normal (LAN) likelihood ratios

at θ ∈ Θ if it is LAMN at θ ∈ Θ, and for each accumulation point µθ of the family

(L((∆θ,T ,Jθ,T ) |Pθ,T ))T∈R++
as T → ∞, we have

µθ = Np(0,Jθ)× δJθ
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with some symmetric, strictly positive definite matrix Jθ ∈ Rp×p, where δJθ
denotes the

Dirac measure on (Rp×p,B(Rp×p)), concentrated in Jθ.

We will need Le Cam’s first lemma, see, e.g, Lemma 6.4 in van der Vaart [20]. We start

with the definition of contiguity of families of probability measures.

2.7 Definition. Let (XT ,XT ), T ∈ R++, be measurable spaces. For each T ∈ R++, let

PT and QT be probability measures on (XT ,XT ). The family (QT )T∈R++
is said to be

contiguous with respect to the family (PT )T∈R++
if QT (AT ) → 0 as T → ∞ whenever

AT ∈ XT , T ∈ R++, such that PT (AT ) → 0 as T → ∞. This will be denoted by

(QT )T∈R++
⊳ (PT )T∈R++

. The families (PT )T∈R++
and (QT )T∈R++

are said to be mutually

contiguous if both (PT )T∈R++
⊳ (QT )T∈R++

and (QT )T∈R++
⊳ (PT )T∈R++

hold.

2.8 Lemma. (Le Cam’s first lemma) Let (XT ,XT ), T ∈ R++, be measurable spaces. For

each T ∈ R++, let PT and QT be probability measures on (XT ,XT ). Then the following

statements are equivalent:

(i) (QT )T∈R++
⊳ (PT )T∈R++

;

(ii) If L
(

dPTk

dQTk

∣∣∣QTk

)
⇒ ν as k → ∞ for some sequence (Tk)k∈N with Tk → ∞ as

T → ∞, where ν is a probability measure on (R+,B(R+)), then ν(R++) = 1;

(iii) If L
(

dQTk

dPTk

∣∣∣PTk

)
⇒ µ as k → ∞ for some sequence (Tk)k∈N with Tk → ∞ as

T → ∞, where µ is a probability measure on (R+,B(R+)), then
∫
R++

xµ(dx) = 1;

(iv) L(fT |QT ) ⇒ 0 as T → ∞ whenever fT : XT → Rp, T ∈ R++, are measurable

functions and L(fT |PT ) ⇒ 0 as T → ∞.

We will need a version of general form of Le Cam’s third lemma, which is Theorem 6.6 in

van der Vaart [20].

2.9 Theorem. Let (XT ,XT ), T ∈ R++, be measurable spaces. For each T ∈ R++, let

PT and QT be probability measures on (XT ,XT ). Let fT : XT → Rp, T ∈ R++, be

measurable functions. Suppose that the family (QT )T∈R++
is contiguous with respect to the

family (PT )T∈R++
and

L
((

fT ,
dQT

dPT

) ∣∣∣∣PT

)
⇒ ν as T → ∞,

where ν is a probability measure on (Rp × R+,B(Rp × R+)). Then L(fT |QT ) ⇒ µ as

T → ∞, where µ is the probability measure on (Rp,B(Rp)) given by

µ(B) :=

∫

Rp×R+

1B(f)V ν(df, dV ), B ∈ B(Rp).
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The following convergence theorem is Proposition 1 in Jeghanathan [10]. In fact, it is a

generalization of Theorems 9.4 and 9.8 of van der Vaart [20], which are valid for LAMN and

LAN families of experiments. For completeness, we give a proof.

2.10 Theorem. Let Θ ⊂ Rp be an open set. Let (XT ,XT , {Pθ,T : θ ∈ Θ})T∈R++
be a family

of statistical experiments. Assume that LAQ is satisfied at θ ∈ Θ. Let Tk ∈ R++, k ∈ N,

be such that Tk → ∞ and L((∆θ,Tk
,Jθ,Tk

) |Pθ,Tk
) ⇒ µθ as k → ∞. Then, for every

hTk
∈ Rp, k ∈ N, with hTk

→ h as k → ∞ and θ+ rθ,Tk
hTk

∈ Θ for all k ∈ N, we have

L((∆θ,Tk
,Jθ,Tk

) |Pθ+rθ,Tk
hTk

,Tk
) ⇒ Qθ,h as k → ∞, where

Qθ,h(B) :=

∫

B

exp

{
h⊤∆− 1

2
h⊤Jh

}
µθ(d∆, dJ), B ∈ B(Rp × Rp×p).

Consequently, the sequence (XTk
,XTk

, {Pθ+rθ,Tk
h,Tk

: h ∈ Rp})k∈N of statistical experiments

converges to the statistical experiment (Rp×Rp×p,B(Rp×Rp×p), {Qθ,h : h ∈ Rp}) as k → ∞.

Note that for each h ∈ Rp, the probability measures Qθ,h and Qθ,0 are equivalent, and

dQθ,h

dQθ,0

(∆,J) = exp

{
h⊤∆− 1

2
h⊤Jh

}
, (∆,J) ∈ Rp × Rp×p.

Proof. Let (Ω,A,P) be a probability space and let (∆,J) : Ω → Rp×Rp×p be a measurable

function such that L((∆,J) |P) = µθ. Using L((∆θ,Tk
,Jθ,Tk

) |Pθ,Tk
) ⇒ µθ as k → ∞, by

Slutsky’s lemma,

L
(
dPθ+rθ,Tk

h,Tk

dPθ,Tk

∣∣∣∣Pθ,Tk

)
⇒ L

(
exp

{
h⊤∆− 1

2
h⊤Jh

})
as T → ∞.

By (2.3) and (2.4), applying Lemma 2.8, we conclude that the sequences (Pθ+rθ,Tk
h,Tk

)k∈N and

(Pθ,Tk
)k∈N are mutually contiguous. Therefore, for each h,h0 ∈ Rp, the probability of the set

on which we have

log
dPθ+rθ,Tk

h,Tk

dPθ+rθ,Tk
h0,Tk

= log
dPθ+rθ,Tk

h,Tk

dPθ,Tk

− log
dPθ+rθ,Tk

h0,Tk

dPθ,Tk

,

converges to one. By (2.1), we obtain

log
dPθ+rθ,Tk

h,Tk

dPθ+rθ,Tk
h0,Tk

= (h− h0)
⊤∆θ,Tk

− 1

2
h⊤Jθ,Tk

h+
1

2
h⊤

0 Jθ,Tk
h0 + oPθ,T

(1) as T → ∞.

Hence it suffices to observe that L((∆θ,Tk
,Jθ,Tk

) |Pθ+rθ,Tk
h,Tk

) ⇒ Qθ,h as k → ∞ for all

h ∈ Rp follows from Theorem 2.9. ✷

The following statements are trivial consequences of Theorem 2.10, and they can also be

derived from Theorems 9.4 and 9.8 of van der Vaart [20].
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2.11 Proposition. Let Θ ⊂ Rp be an open set. Let (XT ,XT , {Pθ,T : θ ∈ Θ})T∈R++
be a

family of statistical experiments. Assume that LAMN is satisfied at θ ∈ Θ. Let Tk ∈ R++,

k ∈ N, be such that L((∆θ,Tk
,Jθ,Tk

) |Pθ,Tk
) ⇒ L((ηθZ, ηθη⊤θ ) |P) as k → ∞, where Z :

Ω → Rp and ηθ : Ω → Rp×p are independent random elements on a probability space (Ω,F ,P)
such that L(Z |P) = Np(0, Ip). Then, for every hTk

∈ Rp, k ∈ N, with hTk
→ h as k → ∞

and θ + rθ,Tk
hTk

∈ Θ for all k ∈ N, we have L((∆θ,Tk
,Jθ,Tk

) |Pθ+rθ,Tk
hTk

,Tk
) ⇒ L((ηθZ +

ηθη
⊤
θ
h, ηθη

⊤
θ
) |P) as k → ∞. Consequently, the sequence (XTk

,XTk
, {Pθ+rθ,Tk

h,Tk
: h ∈

Rp})T∈R++
of statistical experiments converges to the statistical experiment (Rp×Rp×p,B(Rp×

Rp×p), {L((ηθZ + ηθη
⊤
θ
h, ηθη

⊤
θ
) |P) : h ∈ Rp}) as k → ∞.

2.12 Proposition. Let Θ ⊂ Rp be an open set. Let (XT ,XT , {Pθ,T : θ ∈ Θ})T∈R++
be

a family of statistical experiments. Assume that LAN is satisfied at θ ∈ Θ. Let Tk ∈
R++, k ∈ N, be such that L((∆θ,Tk

,Jθ,Tk
) |Pθ,Tk

) ⇒ Np(0,Jθ) × δJθ
as k → ∞ with

some symmetric, strictly positive definite matrix Jθ ∈ Rp×p. Then, for every hTk
∈ Rp,

k ∈ N, with hTk
→ h as k → ∞ and θ + rθ,Tk

hTk
∈ Θ for all k ∈ N, we have

L((∆θ,Tk
,Jθ,Tk

) |Pθ+rθ,Tk
hTk

,Tk
) ⇒ Np(Jθh,Jθ)×δJθ

as k → ∞. Consequently, the sequence

(XTk
,XTk

, {Pθ+rθ,Tk
h,Tk

: h ∈ Rp})T∈R++
of statistical experiments converges to the statistical

experiment (Rp,B(Rp), {Np(Jθh,Jθ) : h ∈ Rp}) as k → ∞.

3 Asymptotically optimal tests

3.1 Definition. A (randomized) test (function) in a statistical experiment (X,X , {Pθ : θ ∈
Θ}) is a Borel measurable function φ : X → [0, 1]. (The interpretation is that if x ∈ X is

observed, then a null hypothesis H0 ⊂ Θ is rejected with probability φ(x).)

The power function of a test φ is the function θ 7→
∫
X
φ(x)Pθ(dx). (This gives the

probability that the null hypothesis H0 is rejected.)

For α ∈ (0, 1), a test φ is of level α for testing a null hypothesis H0 if

sup

{∫

X

φ(x)Pθ(dx) : θ ∈ H0

}
6 α.

If the LAN property holds then one obtains asymptotically optimal tests in the following

way, see, e.g., Theorem 15.4 and Addendum 15.5 of van der Vaart [20].

3.2 Theorem. Let Θ ⊂ Rp be an open set. Let (XT ,XT , {Pθ,T : θ ∈ Θ})T∈R++
be a family

of statistical experiments such that LAN is satisfied at θ0 ∈ Θ. Let Tk ∈ R++, k ∈ N, be

such that L((∆θ0,Tk
,Jθ0,Tk

) |Pθ0,Tk
) ⇒ Np(0,Jθ0

)× δJθ0
as k → ∞ with some symmetric,

strictly positive definite matrix Jθ0
∈ Rp×p. Let ψ : Θ → R be differentiable at θ0 ∈ Θ with

ψ(θ0) = 0 and ψ′(θ0) 6= 0. Let α ∈ (0, 1). For each k ∈ N, let φk : XTk
→ [0, 1] be a test

of level α for testing H0 : ψ(θ) 6 0 against H1 : ψ(θ) > 0, i.e., it is a Borel measurable
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function such that

sup

{∫

XTk

φk(x)Pθ,Tk
(dx) : θ ∈ Θ, ψ(θ) 6 0

}
6 α.

Then for each h ∈ Rp with 〈ψ′(θ0),h〉 > 0, the power function of the test φk satisfies

lim sup
k→∞

∫

XTk

φk(x)Pθ0+rθ0,Tk
h,Tk

(dx) 6 1− Φ


zα − 〈ψ′(θ0),h〉√

〈J−1
θ0
ψ′(θ0), ψ′(θ0)〉


 ,

where Φ denotes the standard normal distribution function, and zα denotes the upper α-

quantile of the standard normal distribution.

Moreover, if Sθ0,k : XTk
→ R, k ∈ N, are Borel measurable functions such that

Sθ0,k =
〈J−1

θ0
∆θ0,Tk

, ψ′(θ0)〉√
〈J−1

θ0
ψ′(θ0), ψ′(θ0)〉

+ oPθ0,k
(1), k ∈ N,

then the family of tests that reject for values Sθ0,k exceeding zα is asymptotically optimal

for testing H0 : ψ(θ) 6 0 against H1 : ψ(θ) > 0 in the sense that for every h ∈ Rp with

〈ψ′(θ0),h〉 > 0,

P
(
Sθ0,k(x) > zα

)
→ 1− Φ


zα − 〈ψ′(θ0,h〉√

〈J−1
θ0
ψ′(θ0), ψ′(θ0)〉


 as k → ∞.

4 Local asymptotic minimax bound for estimators

If LAMN property holds then we have the following local asymptotic minimax bound for

arbitrary estimators, see, e.g., Le Cam and Yang [13, 6.6, Theorem 1].

4.1 Proposition. Let Θ ⊂ Rp be an open set. Let (XT ,XT , {Pθ,T : θ ∈ Θ})T∈R++
be a family

of statistical experiments. Assume that LAMN is satisfied at θ ∈ Θ. Let Tk ∈ R++, k ∈ N,

be such that L((∆θ,Tk
,Jθ,Tk

) |Pθ,Tk
) ⇒ L((ηθZ, ηθη⊤θ ) |P) as k → ∞, where Z : Ω → Rp

and ηθ : Ω → Rp×p are independent random elements on a probability space (Ω,F ,P) such

that L(Z |P) = Np(0, Ip). Let w : Rp → R+ be a bowl-shaped loss function, i.e., for each

c ∈ R+, the set {x ∈ Rp : w(x) 6 c} is closed, convex and symmetric. Then, for arbitrary

estimators (statistics, i.e., measurable functions) θ̃T : XT → Rp, T ∈ R+, of the parameter

θ, one has

lim
c→∞

lim inf
k→∞

sup
{x∈XTk

:‖r−1

θ,Tk
(θ̃Tk

(x)−θ)‖6c}

∫

XTk

w
(
r−1
θ,Tk

(θ̃Tk
(x)− θ)

)
Pθ,Tk

(dx) > E
[
w((η⊤

θ
)−1Z)

]
.

Maximum likelihood estimators attain this bound for bounded loss function w, see, e.g.,

Le Cam and Yang [13, 6.6, Remark 11]. Moreover, maximum likelihood estimators are asymp-

totically efficient in Hájek’s convolution theorem sense (for example, see, Le Cam and Yang

[13, 6.6, Theorem 3 and Remark 13]; Jeganathan [10]).
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5 Heston models

The next proposition is about the existence and uniqueness of a strong solution of the SDE

(1.1), see, e.g., Barczy and Pap [3, Proposition 2.1].

5.1 Proposition. Let
(
Ω,F ,P

)
be a probability space. Let (Wt, Bt)t∈R+

be a 2-dimensional

standard Wiener process. Let (η0, ζ0) be a random vector independent of (Wt, Bt)t∈R+

satisfying P(η0 ∈ R+) = 1. Then for all a ∈ R++, b, α, β ∈ R, σ1, σ2 ∈ R++,

̺ ∈ (−1, 1), there is a (pathwise) unique strong solution (Yt, Xt)t∈R+
of the SDE (1.1)

such that P((Y0, X0) = (η0, ζ0)) = 1 and P(Yt ∈ R+ for all t ∈ R+) = 1.

Based on the asymptotic behavior of the expectations (E(Yt),E(Xt)) as t→ ∞, one can

classify Heston processes given by the SDE (1.1), see Barczy and Pap [3].

5.2 Definition. Let (Yt, Xt)t∈R+
be the unique strong solution of the SDE (1.1) satisfying

P(Y0 ∈ R+) = 1. We call (Yt, Xt)t∈R+
subcritical, critical or supercritical if b ∈ R++, b = 0

or b ∈ R−−, respectively.

The following result states ergodicity of the process (Yt)t∈R+
given by the first equation

in (1.1) in the subcritical case, see, e.g., Cox et al. [6, Equation (20)], Li and Ma [14, Theorem

2.6] or Theorem 4.1 in Barczy et al. [2].

5.3 Theorem. Let a, b, σ1 ∈ R++. Let (Yt)t∈R+
be the unique strong solution of the first

equation of the SDE (1.1) satisfying P(Y0 ∈ R+) = 1.

(i) Then Yt
D−→ Y∞ as t→ ∞, and the distribution of Y∞ is given by

E(e−λY∞) =

(
1 +

σ2
1

2b
λ

)−2a/σ2
1

, λ ∈ R+,(5.1)

i.e., Y∞ has Gamma distribution with parameters 2a/σ2
1 and 2b/σ2

1, hence

E(Y κ
∞) =

Γ
(
2a
σ2
1

+ κ
)

(
2b
σ2
1

)κ
Γ
(
2a
σ2
1

) , κ ∈
(
−2a

σ2
1

,∞
)
.

Especially, E(Y∞) = a
b
. Further, if a ∈

(σ2
1

2
,∞
)
, then E

(
1

Y∞

)
= 2b

2a−σ2
1

.

(ii) For all Borel measurable functions f : R → R such that E(|f(Y∞)|) <∞, we have

(5.2)
1

T

∫ T

0

f(Ys) ds
a.s.−→ E(f(Y∞)) as T → ∞.
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6 Radon–Nikodym derivatives for Heston models

From this section, we will consider the Heston model (1.1) with fixed σ1, σ2 ∈ R++, ̺ ∈ (−1, 1),

and fixed initial value (Y0, X0) = (y0, x0) ∈ R++ × R, and we will consider θ := (a, α, b, β) ∈
R++ × R3 =: Θ as a parameter. Note that Θ ⊂ R4 is an open subset.

Let Pθ denote the probability measure induced by (Yt, Xt)t∈R+
on the measurable space

(C(R+,R
2),B(C(R+,R

2))) endowed with the natural filtration (Gt)t∈R+
, given by Gt :=

ϕ−1
t (B(C(R+,R

2))), t ∈ R+, where ϕt : C(R+,R
2) → C(R+,R

2) is the mapping ϕt(f)(s) :=

f(t∧s), s, t ∈ R+, f ∈ C(R+,R
2). Here C(R+,R

2) denotes the set of R2-valued continuous

functions defined on R+, and B(C(R+,R
2)) is the Borel σ-algebra on it. Further, for all

T ∈ R++, let Pθ,T := Pθ|GT
be the restriction of Pθ to GT .

Let us write the Heston model (1.1) in the form

(6.1)

[
dYt

dXt

]
=

[
a− bYt

α− βYt

]
dt +

√
Yt

[
σ1 0

σ2̺ σ2
√
1− ̺2

][
dWt

dBt

]
.

In order to calculate Radon–Nikodym derivatives
dP

θ̃,T

dPθ,T
for certain θ, θ̃ ∈ Θ, we need the

following statement, which can be derived from formula (7.139) in Section 7.6.4 of Liptser and

Shiryaev [15], see Barczy and Pap [3, Lemma 3.1].

6.1 Lemma. Let a, ã ∈
[σ2

1

2
,∞
)

and b, b̃, α, α̃, β, β̃ ∈ R. Let θ := (a, α, b, β) and θ̃ :=

(ã, α̃, b̃, β̃). Then for all T ∈ R++, the measures Pθ,T and P
θ̃,T are absolutely continuous

with respect to each other, and

log
dP

θ̃,T

dPθ,T
(Y,X) =

∫ T

0

1

Ys

[
(ã− b̃Ys)− (a− bYs)

(α̃− β̃Ys)− (α− βYs)

]⊤
S−1

[
dYs

dXs

]

− 1

2

∫ T

0

1

Ys

[
(ã− b̃Ys)− (a− bYs)

(α̃− β̃Ys)− (α− βYs)

]⊤
S−1

[
(ã− b̃Ys) + (a− bYs)

(α̃− β̃Ys) + (α− βYs)

]
ds,

where

(6.2) S :=

[
σ1 0

σ2̺ σ2
√
1− ̺2

][
σ1 σ2̺

0 σ2
√

1− ̺2

]
=

[
σ2
1 ̺σ1σ2

̺σ1σ2 σ2
2

]
.

Moreover, the process

(6.3)

(
dP

θ̃,T

dPθ,T

)

T∈R+

is a Pθ-martingale with respect to the filtration (GT )T∈R+
.

The martingale property of the process (6.3) is a consequence of Theorem 3.4 in Chapter

III of Jacod and Shiryaev [9].
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In order to investigate convergence of the family

(6.4) (ET )T∈R++
:=
(
C(R+,R

2),B(C(R+,R
2)), {Pθ,T : θ ∈ R++ × R3}

)
T∈R++

of statistical experiments, we derive the following corollary.

6.2 Corollary. Let a ∈
[σ2

1

2
,∞
)
, b, α, β,∈ R and T ∈ R++. Put θ := (a, α, b, β). If

rθ,T =




rθ,T,1 0 0 0

0 rθ,T,2 0 0

0 0 rθ,T,3 0

0 0 0 rθ,T,4



∈ R4×4, hT =




hT,1

hT,2

hT,3

hT,4



∈ R4

such that a+ rθ,T,1hT,1 ∈
[
σ2
1

2
,∞
)
, then

log
dPθ+rθ,ThT ,T

dPθ,T
(Y,X) = h⊤

T∆θ,T (Y,X)− 1

2
h⊤

TJθ,T (Y,X)hT ,

where

∆θ,T (Y,X) := rθ,T


I2 ⊗

[
σ1 σ2̺

0 σ2
√
1− ̺2

]−1






∫ T

0
dWs√
Ys

∫ T

0
dBs√
Ys

−
∫ T

0

√
Ys dWs

−
∫ T

0

√
Ys dBs




and

Jθ,T (Y,X) := rθ,T

([∫ T

0
ds
Ys

−T
−T

∫ T

0
Ys ds

]
⊗ S−1

)
rθ,T ,

where A ⊗ B denotes the Kronecker product of matrices A and B. Consequently, by

Remark 2.3, the quadratic approximation (2.1) is valid.

Proof. Using equations (6.1), we get

log
dP

θ̃,T

dPθ,T
(Y,X) =

∫ T

0

1√
Ys

[
(ã− a)− (̃b− b)Ys

(α̃− α)− (β̃ − β)Ys

]⊤ [
σ1 σ2̺

0 σ2
√
1− ̺2

]−1 [
dWs

dBs

]

− 1

2

∫ T

0

1

Ys

[
(ã− a)− (̃b− b)Ys

(α̃− α)− (β̃ − β)Ys

]⊤
S−1

[
(ã− a)− (̃b− b)Ys

(α̃− α)− (β̃ − β)Ys

]
ds.

Writing r = rθ,T and h = hT for the sake of simplicity, we obtain

log
dPθ+rh,T

dPθ,T

(Y,X) = I1 −
1

2
I2,
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where

I1 :=

∫ T

0

1√
Ys

[
r1h1 − r3h3Ys

r2h2 − r4h4Ys

]⊤ [
σ1 σ2̺

0 σ2
√

1− ̺2

]−1 [
dWs

dBs

]
,

I2 :=

∫ T

0

1

Ys

[
r1h1 − r3h3Ys

r2h2 − r4h4Ys

]⊤
S−1

[
r1h1 − r3h3Ys

r2h2 − r4h4Ys

]
ds.

We have

1√
Ys

[
r1h1 − r3h3Ys

r2h2 − r4h4Ys

]⊤
=

1√
Ys

[
h1

h2

]⊤ [
r1 0

0 r2

]
−
√
Ys

[
h3

h4

]⊤ [
r3 0

0 r4

]
,

hence

I1 =

[
h1

h2

]⊤ [
r1 0

0 r2

][
σ1 σ2̺

0 σ2
√
1− ̺2

]−1


∫ T

0
dWs√
Ys

∫ T

0
dBs√
Ys




+

[
h3

h4

]⊤ [
r3 0

0 r4

][
σ1 σ2̺

0 σ2
√

1− ̺2

]−1


−
∫ T

0

√
Ys dWs

−
∫ T

0

√
Ys dBs


 = ∆θ,T (Y,X),

and

I2 =

∫ T

0

ds

Ys

[
h1

h2

]⊤ [
r1 0

0 r2

]
S−1

[
r1 0

0 r2

][
h1

h2

]
− T

[
h1

h2

]⊤ [
r1 0

0 r2

]
S−1

[
r3 0

0 r4

][
h3

h4

]

+ T

[
h3

h4

]⊤ [
r3 0

0 r4

]
S−1

[
r1 0

0 r2

][
h1

h2

]
+

∫ T

0

Ys ds

[
h3

h4

]⊤ [
r3 0

0 r4

]
S−1

[
r3 0

0 r4

][
h3

h4

]

= Jθ,T (Y,X),

hence we conclude the assertion. ✷

7 Subcritical case

7.1 Theorem. If a ∈
(σ2

1

2
,∞
)
, b ∈ R++, and α, β ∈ R, then the family (ET )T∈R++

of statistical experiments, given in (6.4), is LAN at θ := (a, α, b, β) with scaling matrices

rθ,T := 1√
T
I4, T ∈ R++, and with information matrix

Jθ :=



E
(

1
Y∞

)
−1

−1 E(Y∞)



⊗ S−1.
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Consequently, the family (C(R+,R
4),B(C(R+,R

4)), {P
θ+h/

√
T ,T : h ∈ R4})T∈R++

of statistical

experiments converges to the statistical experiment (R4 × R4×4,B(R4 × R4×4), {N4(Jθh,Jθ) :

h ∈ R4}) as T → ∞.

Proof. By part (i) of Theorem 5.3, E(Y∞) = a
b

and E

(
1

Y∞

)
= 2b

2a−σ2
1

, and hence, part (ii) of

Theorem 5.3 implies

1

T

∫ T

0

Ys ds
a.s.−→ E(Y∞) and

1

T

∫ T

0

ds

Ys

a.s.−→ E

(
1

Y∞

)
as T → ∞.(7.1)

Thus, using rθ,T = 1√
T
(I2 ⊗ I2), T ∈ R++, and applying the identity (A ⊗B)(C ⊗D) =

(AC)⊗ (BD), we obtain

Jθ,T (Y,X) = (I2 ⊗ I2)

([
1
T

∫ T

0
ds
Ys

−1

−1 1
T

∫ T

0
Ys ds

]
⊗ S−1

)
(I2 ⊗ I2)

a.s.−→



E
(

1
Y∞

)
−1

−1 E(Y∞)



⊗ S−1 = Jθ as T → ∞.

Moreover,

MT :=




∫ T

0
dWs√
Ys∫ T

0
dBs√
Ys

−
∫ T

0

√
Ys dWs

−
∫ T

0

√
Ys dBs



, T ∈ R+,

is a 4-dimensional continuous local martingale with quadratic variation process

〈M〉T =

[∫ T

0
ds
Ys

−T
−T

∫ T

0
Ys ds

]
⊗ I2, t ∈ R+.

By (7.1), we have

1

T
〈M〉T a.s.−→


E
(

1
Y∞

)
−1

−1 E(Y∞)


⊗ I2 as T → ∞.

Hence, Theorem A.1 yields

1√
T
MT

D−→ N4


0,


E
(

1
Y∞

)
−1

−1 E(Y∞)


⊗ I2


 as T → ∞,

13



consequently, as T → ∞, we have

∆θ,T (Y,X) =
1√
T


I2 ⊗

[
σ1 σ2̺

0 σ2
√

1− ̺2

]−1

MT

D−→


I2 ⊗

[
σ1 σ2̺

0 σ2
√
1− ̺2

]−1

N4


0,


E
(

1
Y∞

)
−1

−1 E(Y∞)


⊗ I2




D
= N4


0,


I2 ⊗

[
σ1 σ2̺

0 σ2
√
1− ̺2

]−1





E
(

1
Y∞

)
−1

−1 E(Y∞)


⊗ I2




×



I2 ⊗
[
σ1 σ2̺

0 σ2
√
1− ̺2

]−1



⊤



= N4


0,


E
(

1
Y∞

)
−1

−1 E(Y∞)


⊗ S−1


 = N4(0,Jθ).

Thus,

L
(
(∆θ,T ,Jθ,T ) |Pθ,T

)
⇒ N4(0,Jθ)× δJθ

as T → ∞,

yielding by Remark 2.3, that the family (ET )T∈R++
of statistical experiments is LAN at θ. ✷

7.2 Remark. Applying Theorem 3.2 for the functions ψ1(a, α, b, β) := a−a0, ψ2(a, α, b, β) :=

α − α0, ψ3(a, α, b, β) := b − b0, and ψ4(a, α, b, β) := β − β0, (a, α, b, β) ∈ R++ × R3, we

obtain that the family of tests that reject for values

S
(1)
θ0,T

:=

√
2a0 − σ2

1

σ2
1

√
a0b0T

∫ T

0

a0 − b0Ys
Ys

[dYs − (a0 − b0Ys) ds],

S
(2)
θ0,T

:=

√
2a0 − σ2

1

σ1σ2
√
a0b0T

∫ T

0

a0 − b0Ys
Ys

[dXs − (α0 − β0Ys) ds],

S
(3)
θ0,T

:=
1

σ2
1

√
2b0T

∫ T

0

2a0 − σ2
1 − 2b0Ys
Ys

[dYs − (a0 − b0Ys) ds],

S
(4)
θ0,T

:=
1

σ1σ2
√
2b0T

∫ T

0

2a0 − σ2
1 − 2b0Ys
Ys

[dXs − (α0 − β0Ys) ds],

exceeding zα, respectively, are asymptotically optimal for testing H
(1)
0 : a 6 a0 against

H
(1)
1 : a > a0, H

(2)
0 : α 6 α0 against H

(2)
1 : α > α0, H

(3)
0 : b 6 b0 against H

(3)
1 : b > b0,

and H
(4)
0 : β 6 β0 against H

(4)
1 : β > β0, respectively, where θ0 = (a0, α0, b0, β0) with

a0 ∈
(σ2

1

2
,∞
)
, b0 ∈ R++, α0, β0 ∈ R. Indeed,

J−1
θ0

=


E
(

1
Y∞

)
−1

−1 E(Y∞)




−1

⊗ S =
2a0 − σ2

1

σ2
1

[
a0
b0

1

1 2b0
2a0−σ2

1

]
⊗ S,
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hence

J−1
θ0
∆θ0,T =




E
(

1
Y∞

)
−1

−1 E(Y∞)




−1

⊗ S


 1√

T


I2 ⊗

[
σ1 σ2̺

0 σ2
√

1− ̺2

]−1

MT

=
1√
T




E
(

1
Y∞

)
−1

−1 E(Y∞)




−1

⊗
[
σ1 0

σ2̺ σ2
√

1− ̺2

]

∫ T

0

([
1√
Ys

−√
Ys

]
⊗
[
dWs

dBs

])

=
1√
T

∫ T

0







E
(

1
Y∞

)
−1

−1 E(Y∞)




−1 [

1√
Ys

−√
Ys

]

⊗
([

σ1 0

σ2̺ σ2
√

1− ̺2

][
dWs

dBs

])

=
1√
T

∫ T

0




E
(

1
Y∞

)
−1

−1 E(Y∞)



−1 [

1
Ys

−1

]
⊗

[
dYs − (a0 − b0Ys) ds

dXs − (α0 − β0Ys) ds

]

=
1√
T

∫ T

0




(2a0−σ2

1
)(a0−b0Ys)

σ2
1
b0Ys

(2a0−σ2
1
−2b0Ys)

σ2
1
Ys



⊗
[
dYs − (a0 − b0Ys) ds

dXs − (α0 − β0Ys) ds

]

where we used
[
σ1 0

σ2̺ σ2
√

1− ̺2

][
dWs

dBs

]
=

1√
Ys

[
dYs − (a0 − b0Ys) ds

dXs − (α0 − β0Ys) ds

]

following from (6.1), and (ψi)
′(a0, α0, b0, β0) = ei, i ∈ {1, 2, 3, 4}.

8 Critical case

8.1 Theorem. If a ∈
(σ2

1

2
,∞
)
, b = 0, and α, β ∈ R, then the family (ET )T∈R++

of

statistical experiments, given in (6.4), is LAQ at θ := (a, α, b, β) with scaling matrices

rθ,T :=

[
1√
log T

0

0 1
T

]
⊗ I2, T ∈ R++,

and with

(8.1)
(
∆θ,T (Y,X),Jθ,T (Y,X)

) D−→ (∆θ,Jθ) as T → ∞,

where

∆θ :=




(
a− σ2

1

2

)−1/2
[
σ1 σ2̺

0 σ2
√

1− ̺2

]−1

Z2

S−1

[
a− Y1

α− X1

]



, Jθ :=



(
a− σ2

1

2

)−1

0

0
∫ 1

0
Ys ds


⊗ S−1,
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where (Yt,Xt)t∈R+
is the unique strong solution of the SDE

{
dYt = a dt+ σ1

√Yt dWt,

dXt = α dt+ σ2
√Yt

(
̺ dWt +

√
1− ̺2 dBt

)
,

t ∈ R+,(8.2)

with initial value (Y0,X0) = (0, 0), where (Wt,Bt)t∈R+
is a 2-dimensional standard

Wiener process, Z2 is a 2-dimensional standard normally distributed random vector in-

dependent of
(
Y1,
∫ 1

0
Yt dt,X1

)
, and S is defined in (6.2). Consequently, the family

(C(R+,R
4),B(C(R+,R

4)), {Pθ+rθ,Th,T : h ∈ R4})T∈R++
of statistical experiments converges

to the statistical experiment (R4 × R4×4,B(R4 × R4×4), {Qθ,h : h ∈ R4}) as T → ∞, where

Qθ,h(B) := E

(
exp

{
h⊤∆θ −

1

2
h⊤Jθh

}
1B(∆θ,Jθ)

)
, B ∈ B(Rp × R4×4), h ∈ R4.

If b = 0 and β ∈ R are fixed, then the subfamily

(
C(R+,R

2),B(C(R+,R
2)),

{
Pθ,T : a ∈

(σ2
1

2
,∞
)
, α ∈ R

})
T∈R++

of statistical experiments is LAN at (a, α) with scaling matrices r
(1)
θ,T := 1√

log T
I2, T ∈

R++, and with information matrix J
(1)
θ

:=
(
a− σ2

1

2

)−1

S−1. Consequently, the family

(C(R+,R
2),B(C(R+,R

2)), {Pθ+h/
√
log T ,T : h1 ∈ R2})T∈R++

of statistical experiments converges

to the statistical experiment (R2 × R2×2,B(R2 × R2×2), {N4(J
(1)
θ
h1,J

(1)
θ
) : h1 ∈ R2}) as

T → ∞, where h := (h1, 0)
⊤ ∈ R4.

Proof. We have

∆θ,T (Y,X) =

([
1√
log T

0

0 1
T

]
⊗ I2

)
I2 ⊗

[
σ1 σ2̺

0 σ2
√
1− ̺2

]−1






∫ T

0
dWs√
Ys

∫ T

0
dBs√
Ys

−
∫ T

0

√
Ys dWs

−
∫ T

0

√
Ys dBs




=







(
1

log T

∫ T

0
ds
Ys

)1/2
0

0
(

1
T 2

∫ T

0
Ys ds

)1/2


⊗

[
σ1 σ2̺

0 σ2
√

1− ̺2

]−1






∫ T
0

dWs√
Ys

(
∫ T
0

ds
Ys
)
1/2

∫ T
0

dBs√
Ys

(
∫ T
0

ds
Ys
)
1/2

−
∫ T
0

√
Ys dWs

(
∫ T
0

Ys ds)
1/2

−
∫ T
0

√
Ys dBs

(
∫ T
0

Ys ds)
1/2
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and

Jθ,T (Y,X) =

([
1√
log T

0

0 1
T

]
⊗ I2

)([∫ T

0
ds
Ys

−T
−T

∫ T

0
Ys ds

]
⊗ S−1

)([
1√
log T

0

0 1
T

]
⊗ I2

)

=

[
1

logT

∫ T

0
ds
Ys

− 1√
log T

− 1√
log T

1
T 2

∫ T

0
Ys ds

]
⊗ S−1.

It is known that

1

log T

∫ T

0

ds

Ys

P−→
(
a− σ2

1

2

)−1

as T → ∞,(8.3)

see, e.g., Overbeck [17, Lemma 5] or Ben Alaya and Kebaier [4, Proposition 2]. Consequently,

(8.1) will follow from

( ∫ T

0
dWs√
Ys(∫ T

0
ds
Ys

)1/2 ,
∫ T

0
dBs√
Ys(∫ T

0
ds
Ys

)1/2 ,
∫ T

0

√
Ys dWs

(∫ T

0
Ys ds

)1/2 ,
∫ T

0

√
Ys dBs

(∫ T

0
Ys ds

)1/2 ,
YT
T
,
1

T 2

∫ T

0

Ys ds

)

D−→
(
Z2,

Y1 − a

σ1
(∫ 1

0
Ys ds

)1/2 , Z3,Y1,

∫ 1

0

Ys ds

)(8.4)

as T → ∞, where Z3 is a standard normally distributed random variable independent of(
Z2,Y1,

∫ 1

0
Ys ds

)
. Indeed,

(
∆θ,T

(
(Ys, Xs)s∈[0,T ]

)
,Jθ,T

(
(Ys, Xs)s∈[0,T ]

)) D−→ (∆̃θ,Jθ) as T → ∞,

where, by (6.2),

∆̃θ :=







(
a− σ2

1

2

)−1/2

0

0
(∫ 1

0
Ys ds

)1/2


⊗

[
σ1 σ2̺

0 σ2
√

1− ̺2

]−1






Z2

a−Y1

σ1(
∫
1

0
Ys ds)

1/2

−Z3




=




(
a− σ2

1

2

)−1/2
[
σ1 σ2̺

0 σ2
√

1− ̺2

]−1

Z2

S−1




a− Y1

σ2̺
σ1

(a− Y1)− σ2
√
1− ̺2Z3

(∫ 1

0
Ys ds

)1/2






,

and (∆̃θ,Jθ)
D
= (∆θ,Jθ), since

(
Y1,

∫ 1

0

Ys ds,
σ2̺

σ1

Y1 − a
∫ 1

0
Ys ds

+
σ2
√

1− ̺2
(∫ 1

0
Ys ds

)1/2Z3

)
D
=

(
Y1,

∫ 1

0

Ys ds,
X1 − α
∫ 1

0
Ys ds

)
,
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and Z2 is independent of (Z3,Y1,
∫ 1

0
Ys ds) and of (Y1,

∫ 1

0
Ys ds,X1), see Barczy and Pap

[3, Equation (6.9)].

We will prove (8.4) using continuity theorem. We have

σ1

∫ T

0

dWs√
Ys

= log YT − log y0 +

(
σ2
1

2
− a

)∫ T

0

ds

Ys
, T ∈ R+,(8.5)

see Barczy and Pap [3, Formula (6.16)]. By (1.1) and by the assumption b = 0, we obtain

σ1

∫ T

0

√
Ys dWs = YT − y0 − aT, T ∈ R+.

Consequently,
∫ T

0
dWs√
Ys

and
∫ T

0

√
Ys dWs are measurable with respect to the σ-algebra σ(Ys, s ∈

[0, T ]). For all (u1, u2, u3, u4, v1, v2) ∈ R6 and T ∈ R++, we have

E

(
exp

{
iu1

∫ T

0
dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iu2

∫ T

0
dBs√
Ys(∫ T

0
ds
Ys

)1/2 + iu3

∫ T

0

√
Ys dWs

(∫ T

0
Ys ds

)1/2 + iu4

∫ T

0

√
Ys dBs

(∫ T

0
Ys ds

)1/2

+ iv1
1

T
YT + iv2

1

T 2

∫ T

0

Ys ds

}∣∣∣∣∣Ys, s ∈ [0, T ]

)

= exp

{
iu1

∫ T

0
dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iu3

∫ T

0

√
Ys dWs

(∫ T

0
Ys ds

)1/2 + iv1
1

T
YT + iv2

1

T 2

∫ T

0

Ys ds

}

× E

(
exp

{
i

∫ T

0

(
u2(∫ T

0
dt
Yt

)1/2
1√
Ys

+
u4(∫ T

0
Yt dt

)1/2
√
Ys

)
dBs

}∣∣∣∣∣Ys, s ∈ [0, T ]

)

= exp

{
iu1

∫ T

0
dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iu3

∫ T

0

√
Ys dWs

(∫ T

0
Ys ds

)1/2 + iv1
1

T
YT + iv2

1

T 2

∫ T

0

Ys ds

}

× exp

{
−1

2

∫ T

0

(
u22∫ T

0
dt
Yt

1

Ys
+

u24∫ T

0
Yt dt

Ys +
2u2u4(∫ T

0
dt
Yt

∫ T

0
Yt dt

)1/2

)
ds

}

= exp

{
iu1

∫ T

0
dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iu3

∫ T

0

√
Ys dWs

(∫ T

0
Ys ds

)1/2 + iv1
1

T
YT + iv2

1

T 2

∫ T

0

Ys ds

}

× exp

{
−1

2
(u22 + u24)−

Tu2u4(∫ T

0
dt
Yt

∫ T

0
Yt dt

)1/2

}
,

where we used the independence of Y and B. Consequently, the joint characteristic function
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of the random vector on the left hand side of (8.4) takes the form

E

(
exp

{
iu1

∫ T

0
dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iu2

∫ T

0
dBs√
Ys(∫ T

0
ds
Ys

)1/2 + iu3

∫ T

0

√
Ys dWs

(∫ T

0
Ys ds

)1/2 + iu4

∫ T

0

√
Ys dBs

(∫ T

0
Ys ds

)1/2

+ iv1
1

T
YT + iv2

1

T 2

∫ T

0

Ys ds

})

= e−(u2
2+u2

4)/2 E

(
exp

{
ξT (u1, u3, v1, v2)−

Tu2u4(∫ T

0
dt
Yt

∫ T

0
Yt dt

)1/2

})
,

where

ξT (u1, u3, v1, v2) := iu1

∫ T

0
dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iu3

∫ T

0

√
Ys dWs

(∫ T

0
Ys ds

)1/2 + iv1
1

T
YT + iv2

1

T 2

∫ T

0

Ys ds.

Ben Alaya and Kebaier [5, proof of Theorem 6] proved

(
log YT − log y0 +

(σ2
1

2
− a
) ∫ T

0
ds
Ys√

log T
,
YT
T
,
1

T 2

∫ T

0

Ys ds

)
D−→


 σ1√

a− σ2
1

2

Z1,Y1,

∫ 1

0

Ys ds




as T → ∞, where Z1 is a 1-dimensional standard normally distributed random variable

independent of
(
Y1,
∫ 1

0
Yt dt

)
. Using (8.5) we have

∫ T

0
dWs√
Ys(∫ T

0
ds
Ys

)1/2 =

1√
log T

1
σ1

(
log YT − log y0 +

(
σ2
1

2
− a
) ∫ T

0
ds
Ys

)

(
1

log T

∫ T

0
ds
Ys

)1/2 , T ∈ R++,

and, by (8.3), we conclude

(8.6)

( ∫ T

0
dWs√
Ys(∫ T

0
ds
Ys

)1/2 ,
∫ T

0

√
Ys dWs

(∫ T

0
Ys ds

)1/2 ,
YT
T
,
1

T 2

∫ T

0

Ys ds

)

D−→
(
Z1,

Y1 − a

σ1

(∫ 1

0
Ys ds

)1/2 ,Y1,

∫ 1

0

Ys ds

)
as T → ∞,

thus we derived joint convergence of four coordinates of the left hand side of (8.4). Hence

(8.7)

E(exp{ξT (u1, u3, v1, v2)})

→ E

(
exp

{
iu1Z1 + iu3

Y1 − a

σ1

(∫ 1

0
Ys ds

)1/2 + iv1Y1 + iv2

∫ 1

0

Ys ds

})
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as T → ∞ for all (u1, u3, v1, v2) ∈ R4. Using | exp{ξT (u1, u3, v1, v2)}| = 1, we have
∣∣∣∣∣E
(
exp

{
ξT (u1, u3, v1, v2)−

Tu2u4(∫ T

0
dt
Yt

∫ T

0
Yt dt

)1/2

})
− E(exp{ξT (u1, u3, v1, v2)})

∣∣∣∣∣

6 E

(
| exp{ξT (u1, u3, v1, v2)}|

∣∣∣∣∣exp
{
− Tu2u4(∫ T

0
dt
Yt

∫ T

0
Yt dt

)1/2

}
− 1

∣∣∣∣∣

)

= E

(∣∣∣∣∣exp
{
− Tu2u4(∫ T

0
dt
Yt

∫ T

0
Yt dt

)1/2

}
− 1

∣∣∣∣∣

)
→ 0 as T → ∞,

by the moment convergence theorem (see, e.g., Stroock [19, Lemma 2.2.1]). Indeed, by (8.3),

(8.6), continuous mapping theorem and Slutsky’s lemma,

∣∣∣∣∣exp
{
− Tu2u4(∫ T

0
dt
Yt

∫ T

0
Yt dt

)1/2

}
− 1

∣∣∣∣∣ =

∣∣∣∣∣∣
exp

{
− u2u4√

log T
(

1
log T

∫ T

0
dt
Yt

· 1
T 2

∫ T

0
Yt dt

)1/2

}
− 1

∣∣∣∣∣∣
P−→ 0

as T → ∞, and the family
{∣∣∣∣∣exp

{
− Tu2u4(∫ T

0
dt
Yt

∫ T

0
Yt dt

)1/2

}
− 1

∣∣∣∣∣ , T ∈ R++

}

is uniformly integrable, since, by Cauchy–Schwarz inequality,
∣∣∣∣∣exp

{
− Tu2u4(∫ T

0
dt
Yt

∫ T

0
Yt dt

)1/2

}
− 1

∣∣∣∣∣ 6 exp

{
T |u2u4|(∫ T

0
dt
Yt

∫ T

0
Yt dt

)1/2

}
+ 1 6 exp{|u2u4|}+ 1

for all T ∈ R++. Using (8.7), we conclude

E

(
exp

{
iu1

∫ T

0
dWs√
Ys(∫ T

0
ds
Ys

)1/2 + iu2

∫ T

0
dBs√
Ys(∫ T

0
ds
Ys

)1/2 + iu3

∫ T

0

√
Ys dWs

(∫ T

0
Ys ds

)1/2 + iu4

∫ T

0

√
Ys dBs

(∫ T

0
Ys ds

)1/2

+ iv1
1

T
YT + iv2

1

T 2

∫ T

0

Ys ds

})

→ e−(u2
2
+u2

4
)/2 E

(
exp

{
iu1Z1 + iu3

Y1 − a

σ1

(∫ 1

0
Ys ds

)1/2 + iv1Y1 + iv2

∫ 1

0

Ys ds

})

as T → ∞. Note that, since Z1 is independent of
(
Y1,
∫ 1

0
Ys ds

)
, we have

e−(u2
2
+u2

4
)/2 E

(
exp

{
iu1Z1 + iu3

Y1 − a

σ1

(∫ 1

0
Ys ds

)1/2 + iv1Y1 + iv2

∫ 1

0

Ys ds

})

= E(eiu1Z1)E(eiu2Z2)E(eiu3Z3)E

(
exp

{
iu3

Y1 − a

σ1

(∫ 1

0
Ys ds

)1/2 + iv1Y1 + iv2

∫ 1

0

Ys ds

})
,

20



where (Z2, Z3) is a 2-dimensional standard normally distributed random vector, independent

of
(
Z1,Y1,

∫ 1

0
Ys ds

)
, thus we obtain (8.4) with Z2 := (Z1, Z2), and hence (8.1), which yields

(2.2).

It is known that P(
∫ 1

0
Ys ds ∈ R++) = 1 (which has been shown in the proof of Theorem

3.1 in Barczy et al. [1]), hence (2.3) holds. Finally, (2.4) will follow from

(8.8) E

(
exp

{
h⊤∆θ −

1

2
h⊤Jθh

})
= 1

for all h ∈ R4. Writing h = (h1,h2)
⊤, h1,h2 ∈ R2, and using the independence of Z2 and(

Y1,
∫ 1

0
Yt dt,X1

)
, we have

E

(
exp

{
h⊤∆θ −

1

2
h⊤Jθh

})
= E1E2,

where

E1 := E



exp





(
a− σ2

1

2

)−1/2

h⊤
1

[
σ1 σ2̺

0 σ2
√
1− ̺2

]−1

Z2 −
1

2

(
a− σ2

1

2

)−1

h⊤
1 S

−1h1







 ,

E2 := E

(
exp

{
h⊤
2 S

−1

[
a− Y1

α− X1

]
− 1

2

(∫ 1

0

Ys ds

)
h⊤
2 S

−1h2

})
.

The moment generating function of the 2-dimensional standard normally distributed random

vector Z2 has the form

(8.9) E(ev
⊤Z2) = e‖v‖

2/2, v ∈ R2,

since

E(ev
⊤Z2) =

1

2π

∫

R2

ev
⊤Z2−‖x‖2/2 dx =

1

2π

∫

R2

e−‖x−v‖2/2+‖v‖2/2 dx = e‖v‖
2/2.

Applying this with

v⊤ =

(
a− σ2

1

2

)−1/2

h⊤
1

[
σ1 σ2̺

0 σ2
√
1− ̺2

]−1

, ‖v‖2 = v⊤v =

(
a− σ2

1

2

)−1

h⊤
1 S

−1h1,

we obtain E1 = 1. Using Corollary 6.2 for the process (Yt,Xt)t∈R+
with

rθ,T = r :=

[
0 0

0 1

]
⊗ I2, hT = h

we obtain

log
dPθ+rh,T

dPθ,T
(Y ,X ) = h⊤∆θ,T (Y ,X )− 1

2
h⊤Jθ,T (Y ,X )h,
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where

h⊤∆θ,T (Y ,X ) = h⊤

([
0 0

0 1

]
⊗ I2

)
I2 ⊗

[
σ1 σ2̺

0 σ2
√

1− ̺2

]−1






∫ T

0
dWs√
Ys

∫ T

0
dBs√
Ys

−
∫ T

0

√Ys dWs

−
∫ T

0

√Ys dBs




= −h⊤
2

[
σ1 σ2̺

0 σ2
√

1− ̺2

]−1



∫ T

0

√Ys dWs

∫ T

0

√Ys dBs



 = −h⊤
2 S

−1

[
σ1 0

σ2̺ σ2
√

1− ̺2

]


∫ T

0

√Ys dWs

∫ T

0

√Ys dBs





= h⊤
2 S

−1

[
aT −YT

αT − XT

]

and

h⊤Jθ,T (Y ,X )h = h⊤

([
0 0

0 1

]
⊗ I2

)([∫ T

0
ds
Ys

−T
−T

∫ T

0
Ys ds

]
⊗ S−1

)([
0 0

0 1

]
⊗ I2

)
h

=

(∫ T

0

Ys ds

)
h⊤

2 S
−1h2.

By Lemma 6.1, the process

(
dPθ+rh,T

dPθ,T
(Y ,X )

)

T∈R+

=

(
exp

{
h⊤

2 S
−1

[
aT − YT

αT −XT

]
− 1

2

(∫ T

0

Ys ds

)
h⊤

2 S
−1h2

})

T∈R+

is a martingale, hence

E2 = E

(
dPθ+rh,1

dPθ,1
(Y ,X )

)
= E

(
dPθ+rh,0

dPθ,0
(Y ,X )

)
= 1,

and we conclude that the family (ET )T∈R++ of statistical experiments is LAQ at θ. ✷

8.2 Remark. If θ0 = (a0, α0, b0, β0) with a0 ∈
(σ2

1

2
,∞
)
, b0 = 0 and α0, β0 ∈ R, then

applying Theorem 3.2 for the functions ψ1(a, α, b, β) := a − a0 and ψ2(a, α, b, β) := α − α0,

(a, α, b, β) ∈ R++ × R3, we obtain that the family of tests that reject for values

S
(1)
θ0,T

:=

√
2a0 − σ2

1

σ1
√
2 log T

∫ T

0

dYs − (a0 − b0Ys) ds

Ys
,

S
(2)
θ0,T

:=

√
2a0 − σ2

1

σ2
√
2 log T

∫ T

0

dXs − (α0 − β0Ys) ds

Ys
,
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exceeding zα, respectively, are asymptotically optimal for testing H
(1)
0 : a 6 a0 against

H
(1)
1 : a > a0, and H

(2)
0 : α 6 α0 against H

(2)
1 : α > α0, respectively. Indeed,

(
J

(1)
θ0

)−1
=(

a0 − σ2
1

2

)
S,

∆θ0,T =



[

1√
logT

0

0 1
T

]
⊗
[
σ1 σ2̺

0 σ2
√

1.̺2

]−1


∫ T

0

([
1√
Ys

−√
Ys

]
⊗
[
dWs

dBs

])

=

∫ T

0

([
1√
log T

0

0 1
T

][
1√
Ys

−√
Ys

])
⊗



[
σ1 σ2̺

0 σ2
√
1.̺2

]−1 [
dWs

dBs

]


=

∫ T

0

[
1√

Ys logT

−
√
Ys

T

]
⊗
(
S−1 1√

Ys

[
dYs − (a0 − b0Ys) ds

dXs − (α0 − β0Ys) ds

])
,

where we used

[
σ1 σ2̺

0 σ2
√

1.̺2

]−1 [
dWs

dBs

]
= S−1

[
σ1 0

σ2̺ σ2
√
1.̺2

][
dWs

dBs

]
= S−1 1√

Ys

[
dYs − (a0 − b0Ys) ds

dXs − (α0 − β0Ys) ds

]
,

following from (6.1), thus

∆−1
θ0,T

=
1

Ys
√
log T

S−1

∫ T

0

[
dYs − (a0 − b0Ys) ds

dXs − (α0 − β0Ys) ds

]
,

hence
(
J

(1)
θ0

)−1
∆−1

θ0,T
=
(
a0 −

σ2
1

2

) 1√
log T

∫ T

0

1

Ys

[
dYs − (a0 − b0Ys) ds

dXs − (α0 − β0Ys) ds

]
,

and ψ′
i(a0, α0, b0, β0) = ei, i ∈ {1, 2}.

9 Supercritical case

9.1 Theorem. If a ∈
[σ2

1

2
,∞
)
, b ∈ R−−, and α, β ∈ R, then the family (ET )T∈R++

of

statistical experiments, given in (6.4), is not LAQ at θ := (a, α, b, β) with scaling matrices

rθ,T :=

[
1 0

0 ebT/2

]
⊗ I2, T ∈ R++,

although

(9.1)
(
∆θ,T (Y,X),Jθ,T (Y,X)

) D−→ (∆θ,Jθ) as T → ∞,
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with

∆θ :=



I2 ⊗
[
σ1 σ2̺

0 σ2
√

1− ̺2

]−1







σ−1
1 Ṽ
Z1(

− Ỹ−1/b

b

)1/2
Z2


 , Jθ :=

[∫ −1/b

0
Ỹu du 0

0 − Ỹ−1/b

b

]
⊗S−1,

where (Ỹt)t∈R+
is a CIR process given by the SDE

dỸt = adt + σ1

√
Ỹt dWt, t ∈ R+,

with initial value Ỹ0 = y0, where (Wt)t∈R+
is a standard Wiener process,

Ṽ := log Ỹ−1/b − log y0 −
(
a− σ2

1

2

)∫ −1/b

0

Ỹu du,

Z1 is a 1-dimensional standard normally distributed random variable, Z2 is a 2-dimensional

standard normally distributed random vector such that (Ỹ−1/b,
∫ −1/b

0
Ỹu du), Z1 and Z2 are

independent, and S is defined in (6.2). Moreover, (2.3) also holds, but (2.4) is not valid.

If a ∈
(σ2

1

2
,∞
)

and α ∈ R are fixed, then the subfamily

(
C(R+,R

2),B(C(R+,R
2)),

{
Pθ,T : b ∈ R−−, β ∈ R

})
T∈R++

of statistical experiments is LAMN at (b, β) with scaling matrices r
(2)
θ,T := ebT/2I2, T ∈ R++,

and with

∆
(2)
θ

:=

(
−Ỹ−1/b

b

)1/2 [
σ1 σ2̺

0 σ2
√

1− ̺2

]−1

Z2, J
(2)
θ

:=

(
−Ỹ−1/b

b

)
S−1.

Consequently, the family (C(R+,R
2),B(C(R+,R

2)), {Pθ+ebT/2h,T : h2 ∈ R2})T∈R++
of statisti-

cal experiments converges to the statistical experiment (R2 × R2×2,B(R2 × R2×2), {L((∆(2)
θ

+

J
(2)
θ
h2,J

(2)
θ
) |P) : h2 ∈ R2}) as T → ∞, where h := (0,h2)

⊤ ∈ R4.
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Proof. We have

∆θ,T (Y,X) =

([
1 0

0 ebT/2

]
⊗ I2

)

I2 ⊗
[
σ1 σ2̺

0 σ2
√

1− ̺2

]−1







∫ T

0
dWs√
Ys

∫ T

0
dBs√
Ys

−
∫ T

0

√
Ys dWs

−
∫ T

0

√
Ys dBs




=







(∫ T

0
ds
Ys

)1/2
0

0
(
ebT
∫ T

0
Ys ds

)1/2


⊗

[
σ1 σ2̺

0 σ2
√

1− ̺2

]−1






∫ T
0

dWs√
Ys

(
∫ T
0

ds
Ys
)
1/2

∫ T
0

dBs√
Ys

(
∫ T
0

ds
Ys
)
1/2

−
∫ T
0

√
Ys dWs

(
∫ T
0

Ys ds)
1/2

−
∫ T
0

√
Ys dBs

(
∫ T
0

Ys ds)
1/2




and

Jθ,T (Y,X) =

([
1 0

0 ebT/2

]
⊗ I2

)([∫ T

0
ds
Ys

−T
−T

∫ T

0
Ys ds

]
⊗ S−1

)([
1 0

0 ebT/2

]
⊗ I2

)

=

[ ∫ T

0
ds
Ys

−T ebT/2

−T ebT/2 ebT
∫ T

0
Ys ds

]
⊗ S−1.

We have

σ1

∫ T

0

dWs√
Ys

= log YT − log y0 +

(
σ2
1

2
− a

)∫ T

0

ds

Ys
+ bT, T ∈ R++.

see Barczy and Pap [3, Formula (4.10)]. Moreover,

ebTYT
a.s.−→ V, ebT

∫ T

0

Ys ds
a.s.−→ −V

b
,

∫ T

0

ds

Ys

a.s.−→
∫ ∞

0

ds

Ys
, as T → ∞,

see Barczy and Pap [3, Formulae (4.7) and (4.9)]. Thus,

(9.2)
σ1
∫ T

0
dWs√
Ys∫ T

0
ds
Ys

=
log(ebTYT )− log y0∫ T

0
ds
Ys

+
σ2
1

2
− a

a.s.−→ log V − log y0∫∞
0

ds
Ys

+
σ2
1

2
− a

as T → ∞. By Theorem 4 in Ben Alaya and Kebaier [5],

(
V,

∫ ∞

0

ds

Ys

)
D
=

(
Ỹ−1/b,

∫ −1/b

0

Ỹu du

)
,

hence
log V − log y0∫∞

0
ds
Ys

+
σ2
1

2
− a

D
=

log Ỹ−1/b − log y0∫ −1/b

0
Ỹu du

+
σ2
1

2
− a = Ṽ.
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Further,

( ∫ T

0
dBs√
Ys(∫ T

0
ds
Ys

)1/2 ,
∫ T

0

√
Ys dWs

(∫ T

0
Ys ds

)1/2 ,
∫ T

0

√
Ys dBs

(∫ T

0
Ys ds

)1/2

)
D−→ (Z1,−Z2) as T → ∞,

see Barczy and Pap [3, Formula (7.6)]. Hence we obtain (9.1).

It is known that under the condition a ∈
[
σ2
1

2
,∞
)
, we have P(Ỹ−1/b ∈ R++) = 1 (see,

e.g., page 442 in Revuz and Yor [18]) and P(
∫ −1/b

0
Ỹs ds ∈ R++) = 1 (which has been shown

in the proof of Theorem 3.1 in Barczy et al. [1]), hence (2.3) holds.

If a ∈
(σ2

1

2
,∞
)

and α ∈ R are fixed, then LAMN property of the subfamily will follow

from

(9.3) E

(
exp

{
h⊤

2 ∆
(2)
θ

− 1

2
h⊤
2 J

(2)
θ
h2

})
=: E2 = 1

for all h2 ∈ R2. We have

E2 = E

(
exp

{(
−Ỹ−1/b

b

)−1/2

h⊤
2

[
σ1 σ2̺

0 σ2
√
1− ̺2

]−1

Z2 −
1

2

(
−Ỹ−1/b

b

)−1

h⊤
2 S

−1h2

})

= E

(
E

(
exp

{(
−Ỹ−1/b

b

)−1/2

h⊤
2

[
σ1 σ2̺

0 σ2
√

1− ̺2

]−1

Z2

− 1

2

(
−Ỹ−1/b

b

)−1

h⊤
2 S

−1h2

}∣∣∣∣∣ Ỹ−1/b

))
= 1

by (8.9), thus we conclude (9.3).

Finally, we show that (2.4) is not valid for the whole family (ET )T∈R++
of statistical

experiments, given in (6.4), i.e., there exists h ∈ R4, such that

(9.4) E

(
exp

{
h⊤∆

(2)
θ

− 1

2
h⊤J

(2)
θ
h

})
6= 1.
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Indeed, using again (8.9), for h = (0, 1, 0)⊤ ∈ R× R× R2, we have

E

(
exp

{
h⊤∆θ −

1

2
h⊤Jθh

})

= E

(
exp

{[
0

1

]⊤ [
σ1 σ2̺

0 σ2
√

1− ̺2

]−1 [
σ−1
1 Ṽ
Z1

]

− 1

2

(∫ −1/b

0

Ỹu du

)[
0

1

]⊤
S−1

[
0

1

]})

= E

(
exp

{
1

σ2
√
1− ̺2

Z1 −
1

2σ2
2(1− ̺2)

∫ −1/b

0

Ỹu du

})

= E

(
exp

{
1

σ2
√
1− ̺2

Z1

})
E

(
exp

{
− 1

2σ2
2(1− ̺2)

∫ −1/b

0

Ỹu du

})

= exp

{
1

2σ2
2(1− ̺2)

}
E

(
exp

{
− 1

2σ2
2(1− ̺2)

∫ −1/b

0

Ỹu du

})
6= 1,

since, by Lemma 1 in Ben Alaya and Kebaier [4],

E

(
exp

{
−2µ2

∫ t

0

Ỹu du

})
= cosh(σ1µt)

− 2a

σ2
1 exp

{
2µy0
σ1

tanh(σ1µt)

}

for µ, t ∈ R+. ✷

Appendix

A A limit theorem for continuous local martingales

In what follows we recall a so called stable central limit theorem for multidimensional continuous

local martingales.

A.1 Theorem. (van Zanten [21, Theorem 4.1]) Let
(
Ω,F , (Ft)t∈R+

,P
)

be a filtered

probability space satisfying the usual conditions. Let (M t)t∈R+
be a d-dimensional continuous

local martingale with respect to the filtration (Ft)t∈R+
such that P(M 0 = 0) = 1. Suppose

that there exists a function Q : R+ → Rd×d such that Q(t) is an invertible (non-random)

matrix for all t ∈ R+, limt→∞ ‖Q(t)‖ = 0 and

Q(t)〈M〉tQ(t)⊤
P−→ ηη⊤ as t→ ∞,
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where η is a d × d random matrix. Then, for each Rk-valued random vector v defined on

(Ω,F ,P), we have

(Q(t)M t, v)
D−→ (ηZ, v) as t→ ∞,

where Z is a d-dimensional standard normally distributed random vector independent of

(η, v).

We note that Theorem A.1 remains true if the function Q is defined only on an interval

[t0,∞) with some t0 ∈ R++.
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