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Abstract

We study local asymptotic properties of likelihood ratios of certain Heston models. We
distinguish three cases: subcritical, critical and supercritical models. For the drift param-
eters, local asymptotic normality is proved in the subcritical case, only local asymptotic
quadraticity is shown in the critical case, while in the supercritical case not even lo-
cal asymptotic quadraticity holds. For certain submodels, local asymptotic normality is
proved in the critical case, and local asymptotic mixed normality is shown in the supercrit-
ical case. As a consequence, asymptotically optimal (randomized) tests are constructed
in cases of local asymptotic normality. Moreover, local asymptotic minimax bound, and
hence, asymptotic efficiency in the convolution theorem sense are concluded for the max-
imum likelihood estimators in cases of local asymptotic mixed normality.

Introduction

(Y

Heston models have been extensively used in financial mathematics since one can well-fit them
to real financial data set, and they are well-tractable from the point of view of computability
as well, see Heston [§].

Let us consider a Heston model

(1.1) t>0,

dY; = (a — bY;) dt + 01/Y; AW,
dX,; = (Oé — BY;) dt-'-O'g\/?t(Qth + ﬂdBt),

where a >0, b,a,B €R, 01 >0, 09 >0, p€ (=1,1) and (W, B;);>0 is a 2-dimensional
standard Wiener process. Here one can interpret X, as the log-price of an asset, and Y; as
the volatility of the asset price at time ¢ > 0. The squared volatility process (03Y;)i=o is a
Cox—Ingersoll-Ross (CIR) process. We distinguish three cases: subcritical if b > 0, critical if
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b = 0 and supercritical if b < 0. In this paper we study local asymptotic properties of the
likelihood ratios of the model (ILT]) concerning the drift parameter (a,«,b, ).

In case of the one-dimensional CIR process Y, Overbeck [I7] examined local asymptotic
properties of the likelihood ratios concerning the drift parameter (a,b), and proved the follow-
ing results under the assumption a € (%%, oo), which guarantees that the information matrix
process tends to infinity almost surely. It turned out that local asymptotic normality (LAN)
is valid in the subcritical case. In the critical case LAN has been proved for the submodel
when b =0 is known, and only local asymptotic quadraticity (LAQ) has been shown for the
submodel when a € (%%, oo) is known, but the asymptotic property of the experiment locally
at (a,0) with a suitable two-dimensional localization sequence remained as an open question.
In the supercritical case local asymptotic mixed normality (LAMN) has been proved for the
submodel when a € (U—j, oo) is known.

For the Heston model (L)), we assume again a € (0—2%, oo). We prove LAN in the subcritical
case (see Theorem [I), LAQ in the critical case (see Theorem [RII), and show that LAQ
does not hold in the supercritical case, although we can describe the asymptotic property of
the experiment locally at (a,«, b, 3) with a suitable four-dimensional degenerate localization
sequence (see Theorem [@.]). In the critical case LAN will be shown for the submodel when
b=0 and S € R are known (see Theorem B1]). In the supercritical case LAMN will be
proved for the submodel when a € (0—5, oo) and o € R are known (see Theorem [O.7]).

If the LAN property holds then we obtain asymptotically optimal tests (see Remarks
and B2)) based on Theorem 15.4 and Addendum 15.5 of van der Vaart [20].

If the LAMN property holds then we have a local asymptotic minimax bound for arbitrary
estimators, see, e.g., Le Cam and Yang [I3] 6.6, Theorem 1]. Moreover, any maximum likelihood
estimator attains this bound for bounded loss function (see Le Cam and Yang [I3, 6.6, Remark
11]), and it is asymptotically efficient in H4jek’s convolution theorem sense (for example, see,
Le Cam and Yang [13, 6.6, Theorem 3 and Remark 13]; Jeganathan [10]). Asymptotic behavior
of maximum likelihood estimators are described in all cases in Barczy and Pap [3].

2 Quadratic approximations to likelihood ratios

Let N, Z,, R, R,, R,,, R. and R__ denote the sets of positive integers, non-negative
integers, real numbers, non-negative real numbers, positive real numbers, non-positive real
numbers and negative real numbers, respectively. For z,y € R, we will use the notations
r Ay :=min(z,y). By |z| and ||A||, we denote the Euclidean norm of a vector x € R¢
and the induced matrix norm of a matrix A € R™?  respectively. By I; € R¥? we denote
the d-dimensional unit matrix. In the sequel i>, Py and 2% will denote convergence in
probability, in distribution and almost surely, respectively.

We recall some definitions and statements concerning quadratic approximations to likelihood
ratios based on Jeganathan [10], Le Cam and Yang [I3] and van der Vaart [20].



If P and @Q are probability measures on a measurable space (X, X), then

dP

@ X = R+
denotes the Radon—Nykodym derivative of the absolutely continuous part of P with respect to
Q. If (X,X,P) is a probability space and (Y,))) is a measurable space, then the distribution
of a measurable mapping £ : X — Y under P will be denoted by L({|P) (i.e., L(&|P) is

the probability measure on (Y,)) defined by L(¢|P)(B) :=P( € B), Be)).

2.1 Definition. A statistical experiment is a triplet (X, X, APy : 0 € @}), where (X, X) is
a measurable space and {Py : 0 € ©} is a family of probability measures on (X, X). Its
likelihood ratio process with base 6y € © s the stochastic process

( dPPy )

APy, / geo ‘

2.2 Definition. A family (X, X, {Por : 0 € O})per,, of statistical experiments converges
to a statistical experiment (X, X, {Pp:0 € ©}) as T — oo if, for every finite subset H C ©

and every 6y € ©,
P P
c((Fs),., 1 7r) == ()
dIP’ng 9cH dp@o 0cH
Py 1

i.e., the finite dimensional distributions of the likelihood ratio process (C;i]%—T) under Py,
0T/ geo

Pgo) as T — oo,

dP,

converges to the finite dimensional distributions of the likelihood ratio process Py under
0/ 6eo

Py, as T — oo.

If (Xp,Xp,Pr), T € Ry,, are probability spaces and fr : Xy — RP, T € R,,, are
measurable functions, then

fTE)O or fr=op.(1) as T — oo

denotes convergence in (Pr)rer,  -probabilities to 0 as 7" — oo, ie., Pp(|fr|| >¢) =0 as
T — oo forall e € Ry,. Moreover,

fT:O]P’T(1>7 TER++7

denotes boundedness in  (Pr)rer, -probabilities, ie., supreg,, Pr(||fr] > K) — 0 as
K — oo.

2.3 Remark. Note that if (©2,.4,P) is a probability space and for each T € Ry, & : Q —
Xr is arandom element with L£({r |P) = Pp, then fr =op,.(1) as T'— oo or fr = Op,(1),
T eR,,, ifand only if froér =op(l) as T'— oo or fro&r = Op(1), T € R, , respectively.
Indeed, Pr(||fr| > ¢) = P(||fr(&r)|| > ¢) for all T'€ Ry, and all ¢ € R,,. Moreover,
fr=0p,(1), T € Ryy, if and only if the family (L(fr|Pr))rer,, of probability measures
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is tight, and hence, for each sequence T, €e R.,, n €N, with T, - oo as n — oo, there
exist a subsequence T,,, k € N, and a probability measure g on (RP,B(RP)), such that
L(fr, |Pr, )= p as k— oo. Inthis case, p is called an accumulation point of the family

(L(fr|Pr))rer, - O

2.4 Definition. Let © C R” be an open set. A family (Xp, Xp,{Por : 0 € O})per,, of
statistical experiments is said to have locally asymptotically quadratic (LAQ) likelihood ratios
at @ € O if there exist (scaling) matrices ror € RP*P, T € Riy, measurable functions
(statistics) Der: Xy —RP, T €R,y, and Jor: Xp — RPP, T € Ryy, such that

1

APty rhy 1
2

2.1 1
(2.1) %8 Py s

=h;Apr — shpJorhr +op, (1)  as T — oo

whenever hry € RP, T € Riy, s a bounded family satisfying 6 + rerhr € © for all
T € R-ﬁ--ﬁ-}

(2.2) (Aor,Jor) =Opp (1), T eER.,,

and for each accumulation point g of the family (L((Aeox,Jor)|Por))rer,, as T — oo,
which is a probability measure on (RP x RP*P B(RP x RP*P)), we have

(2.3) P ({(A, J) € R x RP*P . J is symmetric and strictly positive deﬁnite}) =1
and
1
(2.4) / exp {hTA — —hTJh} po(dA,dJ) =1
RP x RPXP 2

whenever h € RP  such that there exist T, € Ryy, kK €N, and hy € RP, ke N, with
hy, - h as k—o00, 0+ rephr, €O forall keN.

2.5 Definition. Let © C R” be an open set. A family (Xp, Xp,{Por : 0 € O})per,, of
statistical experiments is said to have locally asymptotically mixed normal (LAMN) likelihood
ratios at @ € © if it is LAQ at 0 € O, and for each accumulation point e of the family
(E((AQ’T, J07T) |]P)0,T))T€R++ as T — o0, we have

/ eih,TA po(dA, dJ) = / e—hTJh'/2 pe(dA,dJ), B € B(RP*?), h e R?,
RrPx B RPxB

i.e., the conditional distribution of A giwen J under pg is N,(0,J), or, equivalently,
po = L((neZ,neng ) |P), where Z:Q — RP and ng : Q — RP*P  are independent random
elements on a probability space (Q, F,P) such that L(Z]|P) = N,(0,1,).

2.6 Definition. Let © C RP be an open set. A family (Xr,Xr,{Poxr : 0 € O})rer, .,
of statistical experiments is said to have locally asymptotically normal (LAN) likelihood ratios
at @ € © if it is LAMN at 0 € ©, and for each accumulation point e of the family
(L((Agr:Jor) | Por))rer,, as T — oo, we have

He :-/V;D(Oan)) X 5Je
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with some symmetric, strictly positive definite matriz Jo € RP*P, where 4y, denotes the
Dirac measure on (RP*P, B(RP*P)), concentrated in Jg.

We will need Le Cam’s first lemma, see, e.g, Lemma 6.4 in van der Vaart [20]. We start
with the definition of contiguity of families of probability measures.

2.7 Definition. Let (Xrp,Xr), T € Ry, be measurable spaces. For each T € Ry, let
Pr and Qp be probability measures on (Xp,Xr). The family (Qp)rer,, 1is said to be
contiguous with respect to the family (Pr)rer,, if Qp(Ar) = 0 as T — oo whenever
Ar € Xp, T € R.y, such that Pp(Ar) — 0 as T — oo. This will be denoted by
(Q7r)rer,, < (Pr)rer,,. The families (Pr)per,, and (Qr)rer,, are said to be mutually
contiguous if both (Pr)rer,, <(Qr)rer,, and (Qr)rer,., < (Pr)rer,., hold.

2.8 Lemma. (Le Cam’s first lemma) Let (X7, A7), T € Ry, be measurable spaces. For
each T € Ry,, let Py and Qp be probability measures on (Xr,Xr). Then the following
statements are equivalent:

(1) (Qr)rer,; < (Pr)rer, . ;

(i) 1f £

T — o0, where v is a probability measure on (Ry,B(R,)), then v(R,y)=1;

dPy,

QTk) = v as k — oo for some sequence (Ty)ren with T, — oo as

(i) 1/ £ (G
T — oo, where p is a probability measure on (R, B(Ry)), then fR xp(de) =1;

IPTk) = n as k — oo for some sequence (Ty)gen with Tj, — oo as

(iv) L(fr|Qp) = 0 as T — oo whenever fr: Xp — RP, T € R,,, are measurable
functions and L(fr|Pr) =0 as T — oc.

We will need a version of general form of Le Cam’s third lemma, which is Theorem 6.6 in
van der Vaart [20].

2.9 Theorem. Let (Xp,Xr), T € R,., be measurable spaces. For each T € Ry, let
Pr and Qp be probability measures on (Xrp,Xr). Let fr: Xy - RP, T € Ry,, be
measurable functions. Suppose that the family (Qr)rer,, s contiguous with respect to the

famzly (PT)T€R++ and
dQr
<<fT, dIP’T) ‘IP’T) =V as T — oo,

where v is a probability measure on (R x Ry, B(RP x R)). Then L(fr|Qp) = p as
T — oo, where p is the probability measure on (RP, B(RP)) given by

W(B) = /R L(OVAALAY),  BeBR)



The following convergence theorem is Proposition 1 in Jeghanathan [10]. In fact, it is a
generalization of Theorems 9.4 and 9.8 of van der Vaart [20], which are valid for LAMN and
LAN families of experiments. For completeness, we give a proof.

2.10 Theorem. Let © C R? be an open set. Let (Xp, Xp,{Por:0 € O})rer,, be a family
of statistical experiments. Assume that LAQ is satisfied at @ € ©. Let T, € Ry,, k €N,
be such that T, — oo and L((Aer,Jor,)|Por,) = e as k — oo. Then, for every
hp, € RP, k€N, with hy, = h as k— 0o and 0 +rgr.hy, € © forall k€N, we have
E((A&Tk’ JO,Tk) ‘ P0+7'0,Tkth ,Tk> = Qe,h as k — oo, where

1
2

@e,h(B) = /

exp {hTA —
B

hTJh} re(dA, dJ), B € B(R? x RP*P),

Consequently, the sequence (X, Xr,, {PgHg’Tkh,Tk : h € RP})en  of statistical experiments
converges to the statistical experiment (RP x RP*P B(RP x RP*?) {Qgp : h € RP}) as k — oo.

Note that for each h € RP, the probability measures Qg ; and Qg are equivalent, and

dQg p,
dQg,0

1
(A, J) =exp {hTA — 5hTJh} , (A, J) € RP x RP*P,

Proof. Let (2, A,P) be a probability space and let (A, J): Q — RP x RP*P be a measurable
function such that L((A,J)|P) = pg. Using L((Aemr,,Jor,)|Por,) = e as k — oo, by
Slutsky’s lemma,

(dpengkh,ﬂc
dPg 7,

1
P&Tk> =L (eXp {hTA - 5hTJh}) as T — o0.

By (23) and (2.4)), applying Lemma 2.8, we conclude that the sequences (]P)e-i-'f'e,:rk b1y )ken and
(Po.1, )ren are mutually contiguous. Therefore, for each h, hy € RP, the probability of the set
on which we have

dP9+"‘e,Tk h. T dP9+"‘e,Tk h, T, dIP)0+7'9,Tk ho, Ty,

o8 o8 dPe 1, o8 dPer, '

dPO"‘T’G,TkhOka
converges to one. By (2.1]), we obtain

dPe-ﬁ-'r‘gka h, T},

1 1
log = (h—ho)"App, — §hTJg7Tkh + §th97Tkh0 + 0p (1) as T — oo.

dPB-H"e,Tk ho, Ty

Hence it suffices to observe that L((Aer1,,Jo.1,) |P0+76,Tkh7Tk) = Qpp as k — oo for all
h € R? follows from Theorem O

The following statements are trivial consequences of Theorem 2.10, and they can also be
derived from Theorems 9.4 and 9.8 of van der Vaart [20].



2.11 Proposition. Let © C R? be an open set. Let (Xp,Xp,{Por: 0 € O})rer,, bea
family of statistical experiments. Assume that LAMN is satisfied at @ € ©. Let T, € R,
k € N, be such that L((Aer,,Jor.)|Por.) = L((NeZ,16mg)|P) as k — oo, where Z :
Q — RP and ng : Q — RP*P are independent random elements on a probability space (Q, F,P)
such that L(Z|P) = N,(0,1,). Then, for every hy, € R?, k€N, with hy, — h as k — o0
and 6 + 'f‘g’Tkth €0 fOT all k€ N, we have E((AQ’T}C, JO,Tk) |]P)0+r97Tkth 7Tk) = £((7]@Z +
neng h,meng ) | P) as k — oo.  Consequently, the sequence (X1, X1, {Potrgrn1 + B E
RP})rer,, of statistical experiments converges to the statistical experiment (RP x RP*PB(RP x
RPP), {L((n0Z + nong b mond ) | B) : h € RPY) as & — oo,

2.12 Proposition. Let © C R” be an open set. Let (Xp,Xp,{Por : 0 € O})per,, be
a family of statistical experiments. Assume that LAN is satisfied at @ € ©. Let T, €
Rit, ke N, be such that L((Aer,.Jor,)|Por,) = Ny(0,Jg) X 05, as k — oo with
some symmetric, strictly positive definite matriz Jo € RP*P. Then, for every hr, € RP,
ke N, with hy — has k — oo and 0 + repnhr, € © forall k € N, we have
L((Aor,.Jom,)]| ]P)e‘f""e,Tkthka) = N,(Jgh,Jg)x b5, as k — oo. Consequently, the sequence
(Xr,, X1, {]P)0+7"9,Tkh7Tk ch € RP})per,,  of statistical experiments converges to the statistical
experiment (RP, B(RP),{N,(Jgh,Jg) : h € RP}) as k — oo.

3 Asymptotically optimal tests

3.1 Definition. A (randomized) test (function) in a statistical experiment (X, X,{Ps : 0 €
©}) is a Borel measurable function ¢ : X — [0,1]. (The interpretation is that if v € X s
observed, then a null hypothesis Hy C © is rejected with probability ¢(x).)

The power function of a test ¢ is the function 0 — [, ¢(x)Pg(dx). (This gives the
probability that the null hypothesis Hy is rejected.)

For a€(0,1), atest ¢ isof level o for testing a null hypothesis Hy if
sup {/ ¢(x)Po(dx) : 0 € HO} < a.
X

If the LAN property holds then one obtains asymptotically optimal tests in the following
way, see, e.g., Theorem 15.4 and Addendum 15.5 of van der Vaart [20].

3.2 Theorem. Let © C R? be an open set. Let (Xp, Xp,{Por:0 € O})rer,, be a family
of statistical experiments such that LAN is satisfied at 0y € ©. Let T, € Ry, k€N, be
such that L((Ae, 1, Joo.1,) | Pog 1) = Np(0,Jg,) X 0, as k — oo with some symmetric,
strictly positive definite matriz Jo, € RP*P. Let 1) : © — R be differentiable at 6y € © with
¥(09) =0 and Y¥'(0y) #0. Let o€ (0,1). Foreach k€N, let ¢r: X, — [0,1] be a test
of level « for testing Hy : (0) < 0 against Hy :(0) > 0, i.e., it is a Borel measurable



function such that

sup{ or(z)Por, (dx) : 0 € ©, (0) < O} < a.
X7,

Then for each h € RP with (¥'(0y),h) > 0, the power function of the test ¢y satisfies

. (@), h
lim sup O1(2) Pogtre, 7 nm (A7) K1 =@ | 24 — <Ip (60). b
e Sy V(Tal/(80), v (60))
where ® denotes the standard normal distribution function, and z, denotes the upper -
quantile of the standard normal distribution.

Y

Moreover, if Sgyr: X1, = R, k€N, are Borel measurable functions such that
<J501A007Tk’ ¢/(00)>
VTal v (80), ' (60))

then the family of tests that reject for values Sg,r exceeding z, 1is asymptotically optimal
for testing Hy : ¢¥(0) < 0 against Hy : (@) > 0 in the sense that for every h € RP with

<w/(00)7 h’> > 0;

Segk =

+Op907k(1), k¢ N,

{¢'(60, h)

P(S@mk(l’) > Za) —-1-9 2o —
V(T5v(80), 1(85))

as k — o0.

4 Local asymptotic minimax bound for estimators

If LAMN property holds then we have the following local asymptotic minimax bound for
arbitrary estimators, see, e.g., Le Cam and Yang [I3] 6.6, Theorem 1].

4.1 Proposition. Let © C R? be an open set. Let (Xp, Xp,{Por: 6 € O})per,, be a family
of statistical experiments. Assume that LAMN is satisfied at @ € ©. Let T, e R,,, k€N,
be such that L((A¢r,,Jor,) | Por,) = L((M6Z,1emg)|P) as k — oo, where Z:Q — RP
and mng : Q@ — RP*P are independent random elements on a probability space (2, F,P) such
that L(Z|P) = N,(0,1,). Let w:RP — Ry be a bowl-shaped loss function, i.c., for each
c e Ry, theset {z € R’ :w(x) < ¢} is closed, conver and symmetric. Then, for arbitrary
estimators (statistics, i.e., measurable functions) 0r: Xr — RP, T € Ry, of the parameter
0, one has

lim lim inf sup /X w(ryh, B, (2) — 0)) P, (dz) > Ew((nd) )],

c—o0 k—oo _ =~
{reXT, :I\T’g,lTk (01, (z)—0)I<c}

Maximum likelihood estimators attain this bound for bounded loss function w, see, e.g.,
Le Cam and Yang [I3 6.6, Remark 11]. Moreover, maximum likelihood estimators are asymp-

totically efficient in H&jek’s convolution theorem sense (for example, see, Le Cam and Yang
[13, 6.6, Theorem 3 and Remark 13]; Jeganathan [10]).
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5 Heston models

The next proposition is about the existence and uniqueness of a strong solution of the SDE
(L)), see, e.g., Barczy and Pap [3| Proposition 2.1].

5.1 Proposition. Let (Q,f, IP’) be a probability space. Let (W, By)ier, be a 2-dimensional
standard Wiener process. Let (no,(y) be a random vector independent of (Wi, By)ier,
satisfying P(ny € Ry) = 1. Then for all a € Ryy, ba,f € R, o1,00 € Ryy,
o € (=1,1), there is a (pathwise) unique strong solution (Y, X¢)ier, of the SDE (L))
such that P((Yo, Xo) = (10,¢0)) =1 and P(Y; € Ry forall te€Ry) =1.

Based on the asymptotic behavior of the expectations (E(Y;),E(X;)) as t — oo, one can
classify Heston processes given by the SDE ([III), see Barczy and Pap [3].

5.2 Definition. Let (Y;, Xi)ier, be the unique strong solution of the SDE (I1l) satisfying
P(Yo e Ry)=1. We call (Y, Xi)ier, subcritical, critical or supercritical if b€ Ry, b=0
or be R__, respectively.

The following result states ergodicity of the process (Y;)iwcr, given by the first equation
in (LT)) in the subcritical case, see, e.g., Cox et al. [0l Equation (20)], Li and Ma [I4], Theorem
2.6] or Theorem 4.1 in Barczy et al. [2].

5.3 Theorem. Let a,b,o00 € Riy. Let (Yi)ier, be the unique strong solution of the first
equation of the SDE (1) satisfying P(Yy € Ry) = 1.

(i) Then Y, LY. as t— 0o, and the distribution of Yy s given by

2\ —2a/0f
(5.1) E(e ) = (1 + %A) , AER,,

i.e., Yoo has Gamma distribution with parameters 2a/o? and 2b/c?, hence

E(Y;):Ffiﬂ, HE( 2a oo).

(Z)T(% ot
Especially, E(Ys) = §. Further, if ac (”—j,oo), then E(é) = 2a2—ba§'

(ii) For all Borel measurable functions f:R — R such that E(|f(Yx)|) < 0o, we have

(5.2) %/0 FV)ds 25 E(F(Ya))  as T — oo,



6 Radon—Nikodym derivatives for Heston models

From this section, we will consider the Heston model (ILT]) with fixed 01,00 € Ry4, 0 € (—1,1),
and fixed initial value (Yg, Xo) = (yo,x0) € Ry X R, and we will consider 6 := (a,a,b, ) €
R,, x R®=:© as a parameter. Note that © C R? is an open subset.

Let Py denote the probability measure induced by (Y7, X;);er, on the measurable space
(C(R4,R?), B(C(R4+,R?))) endowed with the natural filtration (Gi)wer,, given by G, :=
o {(B(C(R,,R?))), t € Ry, where ¢;: C(R,R?) — C(R,,R?) is the mapping ¢;(f)(s) :=
f(tns), s,teR,, feC(Ry,R?). Here C(R,,R?) denotes the set of R%-valued continuous
functions defined on R, and B(C(R,,R?)) is the Borel o-algebra on it. Further, for all
T eRyy, let Pgp:=Pglg, be the restriction of Py to Gr.

Let us write the Heston model (L)) in the form

dY; — by, 0 dw,
(6.1) e T ey | g
dX; a — BY; 020 0O24/1 — 0?| |dB,
In order to calculate Radon—Nikodym derivatives jﬁ‘j; for certain 6, 0 € O, we need the

following statement, which can be derived from formula (7.139) in Section 7.6.4 of Liptser and
Shiryaev [15], see Barczy and Pap [3, Lemma 3.1].

6.1 Lemma. Let a,a € [o—j,oo) and bb,o,d, 3,8 € R. Let 6 := (a,a,b, ) and 0 =
(a,a,b,B). Then for all T € Ry., the measures Pgr and Pg, are absolutely continuous

with respect to each other, and
-
1

d ~
log v = [ 4
’ 0 Y;

(@— DY) — (a — bYy)
(@— BY;) — (o — BY;)

dY;
d X

—1

(G —BY.) — (a—bY)) Tsllﬁ—zn)ua—mg
(

_E/Ti ds
2Jo Yi|(@-BY,) — (a—BY,) a—BY)+(a—BYy)|
where
(6.2) s:=|" ’ e p= T

020 02\/1— 0? 0 02\/1—02 00102 05

Moreover, the process

dP;
(6.3) < ”)
dPg,r TeR

is a Pg-martingale with respect to the filtration (Gr)rer, -

The martingale property of the process (6.3)) is a consequence of Theorem 3.4 in Chapter
IIT of Jacod and Shiryaev [9].
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In order to investigate convergence of the family

(64) (ST)T€R++ = (C(R+,R2),B(C(R+,R2)), {PQT 10 € Ry, X Rs})

TER, 4

of statistical experiments, we derive the following corollary.

6.2 Corollary. Let a € [%,0), bya,8,€R and T €R, . Put 6:=(a,a,b,B). If

e, 11 0 0 0 hTJ
0 0 0 h
TorT = ro.1,2 c R4X4, hr = 2 c R4
0 0 rers O hr3
0 0 0 To,T,4 hTA

such that a+reri1hr) € [0—2%, oo), then

dIP)e-i-'I’gyThT,T

1
log (Y, X) = h;Ap (Y, X) — 5h;Jﬁ.,T(Y, X) hy,

dPg 1
where _
fT dW,
0 VY
—1 T dB,
o o \
Dor(V,X)=rpr | L@ | /w J ;V@
0 o9¢/1—0 — [y VY:dW,
- foT VY, dB,
and
T gs T
JG,T(Y> X) =TerT 0 ¥ T & S_l To,T,
-7 [, Yids

where A ® B denotes the Kronecker product of matrices A and B. Consequently, by
Remark[Z3, the quadratic approximation ([Z1) is valid.

Proof. Using equations (6.1]), we get

G|

log oy
Og d]P)&T( ) )_A \/75

1/T1
2/, Y,

Writing r = rgr and h = hp for the sake of simplicity, we obtain

-1
dW,
dB,

(@—a)—(b-b)Y,
(@—a)— (BB,

T
01 020 ]

0 0’2\/1—92
sﬂ[@‘@—@—@ﬂ

@-a)-(G-ny.]

~ ds.
(@ —a)—(8—=P)Y,

(@—a)= (8- P,

dPg,, 1
M(Y,X) =1, — —1Is,

1
%8 T Py 1 2

11



where

T -1
[ /T L |rihy —rshsYs| |ow 020 dW;
b 0 \/?s 7’2}1,2—7"4}141/3 0 0'2\/1—Q2 dBS ’
T
I — /T 1 rihy — r3hgYs g1 rihy — r3hgYs ds.
0o Y rohy —ryhyYs rohy —ryihsYs
We have
T T T
1 Tlhl — Tgth; _ 1 hl 1 0 _ \/)75 hg T3 0 ’
\/78 ’I“th — 7’4h4Y; \/?s hg 0 T2 h4 0 T4

hence

T —1 T dW,
- hy rn 0| |oy 020 fo VY5
' hg 0 T2 0 094/ 1— Q2 OT dBs

VYs

T —1 T
hs rg 0] o1 020 - fo VY, dW
+ 5 . = Ag (Y, X),
hy 0 rgf |0 o02y/1—0p —fo VY, dB,
and
. 4T T
]2 _ / % hl T1 0 S_l T 0 hl _ T hl 1 0 S_l T3 0 hg
0 Y; hg_ 0 9 0 T2 hg hg 0 T2 0 T4 h4
] Trs 0 ol [n T hal 0 IRE
L | T3 g1 r1 1 +/ Y. ds 3 T3 g1 T3 3
h4 i 0 T4 0 D) h2 0 h4 0 T4 0 T4 h4
= JG,T(Y7 X)a
hence we conclude the assertion. O

7 Subcritical case

7.1 Theorem. If a € (%4,0), b€ R.y, and a,8 € R, then the family (Er)res,,

of statistical experiments, given in ([G4l), is LAN at 0 = (a,a,b, ) with scaling matrices
ror = ﬁh, T € Ry, and with information matriz



Consequently, the family (C(R.,R*), B(C(R.,R")), {Posin/yrr:h € R*})rer,, of statistical
experiments converges to the statistical experiment (R* x R4 B(R* x R™) {Ny(Jgh,Jo) :
heR'}) as T — oo.

Proof. By part (i) of Theorem 5.3, E(Y,) =% and E (i) = 52>, and hence, part (ii) of
Theorem implies

e as 1 [Tds as 1
(7.1) T/o Yeds — E(Y) and 7 ), d?j — E (K) as T — oo.
Thus, using e = %(Ig ® I,), T € R,,, and applying the identity (A ® B)(C @ D) =
(AC) ® (BD), we obtain

1 (Tds 1

_ TJo v,
JH,T(YvX)_(I2®I2)([ o lfTsts

Moreover,

T aw,
0 VY
T 4B,

My = 0V .,  TeR,,
_fo \/VSdWS

|~ J, VY2dB, |

is a 4-dimensional continuous local martingale with quadratic variation process

T@ T
M)y = |0 ¥ ©I, teR,.
e e v

By (1)), we have

gy, s [E(R)

— (M) = ® I, as T — oo.
r -1 E(Ya)

Hence, Theorem [AT] yields

L, 2 ()
— My — N, |0, o ® I as T — oo,
VT —1  E(Ya)

13



consequently, as T"— co, we have
4 -1

1 o1 020
AO,T(Y,X):ﬁ I, ® 0 on/T=F M~
1 o -
2ol 7 ] N | o, E<K> - ® I,
0 09¢/1— ¢ —1  E(Ya)
N :
2a o | Lo |” 720 ] E<K) - ® 1,
0 09¢/1— ¢ —1  E(Ya)
N T
01 020
1By @M]

=N, |0, E(é> ! ® S | = Ni(0, Jp).

Thus,
£((A97T, JQ’T) ‘ PQ’T) = N4<0, Jg) X 5J9 as 1" — oo,

yielding by Remark 23] that the family (€7)per,, of statistical experiments is LAN at 6. O

7.2 Remark. Applying Theorem 3.2 for the functions ¢y (a, a, b, 8) := a—ag, ¥e(a,a,b,B) :=
a — Qp, ¢3(CL,OK,b, B) =b- b07 and w4(a7a7b7 B) = B - 507 (CL,OK,b, B) S R—l—-i- X Rgv we
obtain that the family of tests that reject for values

2a9 — b
Sy = Y200t / %0~ 50%s 1y, — (a — boY;) ],

O' vV CL(]bO

2a0—a% Talo_bOY:g

2) ._ V=t~ 01 dx. _8Yd
SGO,T' UleW Y, [ s (050 ﬁO s) 3]7
2a0 — 02 — 2b,Y.
S(g?,T = \/W/ - 1 022 [dY, — (ag — beYs) ds],
2a9 — 02 — 2byYs
L / 0 1 075 1dX, — (ap — BoYs) d
0o, T 0'1(72\/m [ (Oéo 50 ) S]a

exceeding z,, respectively, are asymptotically optimal for testing Hél) ca < ap against
Hl(l) Sa > aog, Hé2) ca < ap against Hl(z) Ca > a, Hég) : b < by against Hl(?’) : b > by,
and H§4) : B < By against H1(4) . B > [y, respectively, where 6y = (ag, ap, by, 5y) with

ag € (F,00), bo € Rys, ao,fo € R. Indeed,

—1

E<i> 1 2 —o? [2 1

Jo, = | V= ®8 ="yt | ® S,
-1 E(Yy) 71

14



-1
o1 020
M
0 0’2\/1—92] )

—1 ~
1
E (K) —1 2 01 0 /T \/1Y_5 ® dWs
—1 E(Yy) 090 094/1 — 0? 0 —VY,] dB,

(e () ] ®<01 0 'dWS>

020 09y/1—0*| |dB;

dY; — (a() — boYZ;) ds
dXS — (OAO — B(]Y;) dS

[ (2a0—0%)(ao—boYs)

1 r o2boYs
T 0 (20,0—0’%—2603/5)

o‘% Ys

2 dY:9 — (CLQ — b()Y:g) ds
dXS — (Oéo — ﬁoYé) dS

where we used

dW,
dB;

o1 0 1
020 024/1 — 0 VY

following from ([G.1]), and ()’ (ao, o, bo, o) = €;, © € {1,2,3,4}.

dY; — (a() — boYZ;) ds
dXS — (OAO — ﬁoY;) dS

8 Critical case

8.1 Theorem. If a € (U—j,oo), b=20, and o,f € R, then the family (Er)rer,, of
statistical experiments, given in (64, is LAQ at 0 := (a,a, b, 8) with scaling matrices

Tor = [ﬁ . I, TeR,,,
T
and with
(8.1) (Apr(Y, X), Jor(Y, X)) 25 (Ag, Jg)  as T — oo,
where

-1
-2\ 12 | oy 020
a——1> Z
Ay : (-3 [0 02\/1—92] 2
0=

Q
|
A
| |



where (Vy, Xp)ier, is the unique strong solution of the SDE

(8.2)

{dyt:adt+al\/37tth, R
+>

dX; = adt + ooV (0dW, + /1 — 02 dB,),

with initial value (Yo, Xy) = (0,0), where (Wi, Bi)er, is a 2-dimensional standard
Wiener process, Zo is a 2-dimensional standard normally distributed random vector in-
dependent of (yl,fol V dt,Xl), and S s defined in ([62). Consequently, the family
(C(R4,RY), B(C(R4,RY)), {Porrgrnr : b € R} )rer,. of statistical experiments converges
to the statistical experiment (R* x R4 B(R* x R™*),{Qqp, : h € R*}) as T — oo, where

1
Qon(B) :=E (eXp {hTAg - 5hTJ,,,h} 15(A, J9)> ., BeBR xR¥), heR.

If b=0 and [ € R are fized, then the subfamily

2

(C(R+,R2),B(C(R+,R2)), {IPQT ac (% oo), ac R})

TRy 4

of statistical experiments is LAN at (a,«) with scaling matrices r((;zf = I, T e

log ViegT

-1
R.., and with information matrix J(Ol) = (a—‘;—%> S~ Consequently, the family

(C(R4,R?), B(C(R4,R?)), {Pyp) iogrr : 1 € R*})rer,, of statistical experiments converges
to the statistical experiment (R? x R2*2 B(R? x R¥2) (N (JS hy,JY)) : by € R2Y) as
T — oo, where h:= (h;,0)" € R%.

Proof. We have

T S
b

-1 T
0920 ] f ?/%
_fo \/VSdWS
__ fOT \/?Sst_

r fT dWs -
_J0 VYs
(fT d5)1/2
T dBs
0 VY¥s

1/2 -1
1 T ds V¥
B (logT 0 75) 0 [01 020 ] (o 4)™

T 1/2 T ‘ .
0 (7 Jo vads) -

L 0
Agr(V,X) = hagT

®I2) I, ®

Si=

(fOT Y. ds
_ ) V¥ dBs
(Jy veas)" ]

16



and

1 T gs 1
& — 0
Jor(Y,X) = lvlogT ) ®I2> ( oY ®S_1> <[vlogT ) ®I2)
! T ds 1
__ | logT JO Y5 ViogT -1
=" N fTY s ® S .
L~ ViegT 12Jo ‘'s
It is known that
1 Tds p o2\
8.3 — — - = T
(8.3) oeT |, . (a 5 as T — oo,

see, e.g., Overbeck [I7, Lemma 5] or Ben Alaya and Kebaier [4, Proposition 2]. Consequently,
B1) will follow from

T aw. T 4B,
( S IR VT, VTR, Y 1/TYds>
( 0

Tan) 12T (T asy 2 Ty gy 2 ([ Ty as) 2 T T?

(8.4)

D Yi—a !
— Z27 1 1/27Z37y17 yst
Ul(fo Vs ds) 0

as T — oo, where Z3 is a standard normally distributed random variable independent of

(Zg,yl,fol Vsds). Indeed,
(AG,T((}/;aXs)se[O,T})a Je,T((Ys,Xs)se[o,T})) 2 (307 Jo) as 1" — o0,

where, by (6.2),

(a 0%>—1/2 0 1 Z2
~ -2 01 020 a—V1
Ry : ol e [ ] .
0 (fiv.a5)”| Lo evT=¢ i)
—243
_ -1 -
( o§>_1/2 01 020 7
a— 4
2 0 0'2\/1 — Q2 ?
B . a—J ’
o 220 (g — Y)) — o9\/1 — 0273 ( [ Vsds v
L o1 1 2 0~ 43 0 VY's ]

and (Ag, Jo) 2 (Ag, Jg), since

1 o 2 1 o
yl,/ Vods, 22N VIZC 2(3/1,/ ysds,M),
0 o1 fy Ysds ([, Vsds) 0 Jo Ysds
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and Z, is independent of (Z3, Vi, fol Vsds) and of (), fol Vsds, X)), see Barczy and Pap
[3, Equation (6.9)].

We will prove (84) using continuity theorem. We have

Taw, o? T ds
8.5 —— =log Yy —1 1 — TeR
(8.5) 01/0 Y. og Yr ogy0+<2 a)/o Y. € Ry,

see Barczy and Pap [3, Formula (6.16)]. By (I.I) and by the assumption b= 0, we obtain

T
01/ VY dWy =Yy —yo — a7, T eR,.
0

Consequently, fOT C\I/V% and fOT VYs dW; are measurable with respect to the o-algebra o(Ys, s €

[0, T]). For all (ur,us,us, ug,vi,ve) € RS and T € R,,, we have

T T
e i o v . Jo S fIVYiaw, [T Y.dB,
Py 12 2 T e 12 s 1z T 1/2
( 0 TS) ( 0 TS) (fo Y;ds) (fo Y;ds)

1 o1 [T
+w1?YT+w2ﬁ/o sts} Y, s € [O,T])

T aw,
S dW T
Xp{iul(f VY oy fo VY 012 ! sts}

=e +iv=Yr +ivg—

Tﬁ)l/Q lu (fo Yd )1/2 T T2

0 Ys

. T U9 1 Uy
XE&“{ié(ff%f”¢z+<ﬁwmam”@gd&}’@SGNTO

oy JEVY AW, 1T
:exp{lu Ta “i/z—i-l 0 1/2—1—11)1 YT+1U2 2/ Y, ds
h ) (fy Yods) T T

0 Y

1 /T u3 1 u? 2uguy
X exp + Y, + ds
{ <foT?ZY Jo Yedt ™ (f st f vean)

T aw,
S dW T
:exp{iu (f VY fo VY = L sts}

+ iy =Yr + ivg—

ius
T ey T
1 2 2 TUQU4
x expq —=(us + ujy) — ,
{ 2 <5%ﬁnmﬂ%

where we used the independence of Y and B. Consequently, the joint characteristic function
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of the random vector on the left hand side of (84]) takes the form

T aw, T dB;
E exp i f; \/731/2 g fT \/731/2 +iu fo \/7(3”/1/;2 +iuy fo \/_dBi/2
(h %) (o #) (i veds) (i veds)

o1 17
—l—wlTYT%—wgﬁ Y, ds

o Tusu
— o (U3t iWE(exp{&p(ul,us,vl,vz)— T at o 1/2}>’
(i 4 i vid

where
Jo S 17 VYL AW, 1 17
Er(uq, us, vy, v9) == iug - 1/2 +iug o ° T N1 ivl—YT—l—ivg—Q/ Y, ds.
o #) " vads) T = Jo

Ben Alaya and Kebaier [B, proof of Theorem 6] proved

log Y7 — logyo + (% — a) J;| & v Yr 1 TYdS
ViogT T T?

1
g
71221,321,/ Vs ds
91 0

a= 3

as T — oo, where Z; is a l-dimensional standard normally distributed random variable
independent of (yh fol Vi dt). Using (83]) we have

T T ds
Ih C\‘/V% B FgTol (logYT—logyo—l-(——a) 0 7)

1/2 1/2
(Tﬁ)/ 1 T ds /
0 Y oeT Jo v,

; TeRyy,

and, by (83), we conclude

Jo %y vYeaw. vp 1T
( T§)1/2’ (IOTY;dS)l/2’ T T2 $

0 Ys

D Yi—a '
— (Zl, . 1/2,321,/ ysds) as 1" — oo,
o1 (fo yst) ’

thus we derived joint convergence of four coordinates of the left hand side of (84]). Hence

E(exp{&r(u1, us, v1,v2)})

_ 1
(87) - E(exp{iulzl + ius Yi—a 172 +in + i'UZ/ Vs ds})
0

o ( I, ds)
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as T — oo for all (uy,us,vi,ve) € RY. Using |exp{&r(uy,usz, v, v2)} =1, we have

TU2U4
(o & J Yedt)

Tusu
<E<|GXP{§T(U1>U3,01,U2)}| exp{_ T at T2 - 1/2}_1D
( 0 Efo Ytdt)

TUQU4 } ‘)
=K exp{— -1 —0 as T — oo,
( (Jo 5 J vea)™”

by the moment convergence theorem (see, e.g., Stroock [19, Lemma 2.2.1]). Indeed, by (83,

E (exp{ﬁT(ul, ug, U1, Vg) — 7z }) — E(exp{&r(uq, us, vq, 1)2)})‘

[®4), continuous mapping theorem and Slutsky’s lemma,

‘exp{— Tuguy } — 1‘ = exp{— 2t } —1 L 0
T T 1/2 - T T 1/2
( 0 %fo Y;‘/dt) VlogT(logT 0 d?f'%fo Y;‘/dt)

as T — oo, and the family

XPY T T 2 (7|
(Jo § Jo Yedt)

is uniformly integrable, since, by Cauchy—Schwarz inequality,

T6R++}

Tusuy T\U2U4|
eXP{— T gt (T 1/2}_1 <eXp{ Ta (T iz (H1 S ep{luul}+1
‘ (fo ¥ J5 Yedt) (Jo ¥ fo Yedt)

forall T € R,,. Using (81), we conclude

T aw. T 4B
o o VY.d VY,.dB,
E| exp iulif; Ysl 7 19 fT Ysl 7o +iu fO VI//; + iuy fo 72
f %) (f ) S vads) () vads)

0 Ys

0 Ys

“+1 1
Vi—=TXT () 5 s

. 1
N e‘(u%-ﬁ-ui)/? E (eXp{iulZl T iug Vi—a s +ivi Y + 1vy / Y, ds})
o1 (Jy ods ’

as T — oo. Note that, since Z; is independent of (371, fol Vs ds), we have

. 1
e—(u%-i—u?;)/? E(exp{iu1zl —+ iU3 yl ¢ 1/2 + i’Ulyl + iU2 / ys dS})
01 <f01 ys dS) 0

. 1
_ E(eiu1Z1>E(eiu2Z2>E<eiu323)E<eXp{iu3 ‘)fl a 73 —|—i’01y1 —|—i’02/ ys ds}),
o1 (fo Vs d8> ’
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where (73, Z3) is a 2-dimensional standard normally distributed random vector, independent
of (Z1, ), fol Vs ds), thus we obtain 84) with Z, := (Z;, Z»), and hence (BI)), which yields

2.2).
It is known that P( fol YVsds € Ry;) =1 (which has been shown in the proof of Theorem
3.1 in Barczy et al. [1]), hence (23) holds. Finally, ([2.4]) will follow from

1
(8.8) E (exp {hTAg - §hTJ9h}) —1

for all h € R*. Writing h = (hy,hs)", hy, ho € R?, and using the independence of Z, and
(y1, fol Y, dt, Xl), we have

1
E <exp {hTAe — 5hTJgh}) = F\E,,

where
o2\ 1 o1 020 - 1 o2\ !
Ey=FE | exp <a - —1) th Zy— = (Cl - —1> hIS_lhl )
2 0 o941 — 0?2 2 2

_ 1
¢ y1] —1(/ ysds) h;rs—lhz}).
Oé—Xl 2 0

The moment generating function of the 2-dimensional standard normally distributed random
vector Z, has the form

E, =E (exp {h;S‘l

(8.9) E(e?'22) = PP 4 e R?,
since

E(ev 2y = - / 0 T2/ g — / ool /2t0l2/2 4 (llwl/2
2T R2 2T R2

Applying this with

o? —1/2 o1 020 - g2 -1
v = (a - ?1) h! ) v =v'v = <a - —1) h{S'hy,

0 0’2\/1—92 2

we obtain F; = 1. Using Corollary for the process (Y, Xi)ier, Wwith

00
ror =T = ® I, hr =h
01
we obtain qP 1
log —A T (Y XY = hT Agr(V, X) — ~hT Jer (Y, X) h,
dP 2
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where

T dw,
Jo U5
-1 T dB.
00 i
hTA97T(y,X) _ hT <[ ®I2> I2 ® 01 020 ] Vs
01 0 o9y/1— 0? _fo VYL dW,
__fOT\/YSst_
~1
hT 01 020 ] fOT\/ySdWS — _pTg! o1 0 ] foT\/ydes
= —hy
0 o094/1— 02 fOT\/ysst 090 Tar/1 — 02 fOT\/ysst
N
? aT — Xp
and
00 T ds 00
h'Jor(Y,X)h=h' ® I O ® 8! oI, |h
0 ~T [T Y.ds 01

T
— (/ Vs ds) hy S™'h,.
0

By Lemma [6.1] the process
dPgyrh 1 ) Tqo1 |0 =Vr 1 (/T ) Tao-1
— Y, X = |exp hy, S — = V,ds | h, STh

( dPBT ( ) TeR, ( p{ 2 OZT—XT 2 0 2 ?
dPgy. dPg,

E2:E< 9+hl(y)()) IE( 0+h0(y)()):1’

is a martingale, hence
d]P)g 1 CHP)B 0

TeR

and we conclude that the family (E7)reryy of statistical experiments is LAQ at 6. O

8.2 Remark. If 6y = (ag, ap, by, fy) with ag € (U—j,oo), bp = 0 and ap, [y € R, then
applying Theorem for the functions 1(a,a,b,f) := a —ay and y(a,a,b, ) == a — ay,
(a,a,b,B) € Ry, x R3 we obtain that the family of tests that reject for values

S(l) ) \/2&0—0'1 / dY O—b(]Y)dS
00, T

V2logT

)

@ . \/2%—01/ dX, — ao—ﬂo 5)ds
00, T

V2logT
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exceeding z,, respectively, are asymptotically optimal for testing Hél) s a < ap against
Hl(l) ca > ag, and HO(Q) ca < ap against H1(2) s a > g, respectively. Indeed, (J((j,lo))_1 =

-1
1 T 1
Dgyr— | |77 Vg | 22 / | g |
0 7 0 o02v/1.0° o \|-vY,
1
_ /T ligT 0 1YS Q (%51 020 dWs
0 0 7| |-VYs 0 o09y/1.0° dB,
_/T -\/YsllogT ® S—l 1 d}/;—(ao—bo}/;)ds
o | —@ VY, dX, — (ag — BoYs) ds ’

where we used

1
dW,
dB;

dW;
dB;

dY; — (a() — boYZ;) ds

S L
dX, — (ap — BoYs) ds|

Y.

o o0 | _g1 | 0
0 o094y/1.0? 020 094/1.0?

following from (6.10), thus

ao — boY) ds

Al ,
o (o — poYs) ds

“iee |, fax

hence
dY:9 — (CLQ — boyzg) ds

dX, — (g — BoYs) ds|

and wg(a())aOabO?ﬂO) = €4, (S {172}

9 Supercritical case

9.1 Theorem. If a € [C;—%,oo), beR__, and o, € R, then the family (Er)rer,, of
statistical experiments, given in (6.4, is not LAQ at 0 := (a,«,b, ) with scaling matrices

1 0
r@,T = [O ebT/2 X I2, T < R++,
although
(9.1) (Apr(Y, X), Jor(Y, X)) =5 (Ag, Jg)  as T — oo,
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with

—15,
o,V

-1
01 020 ] 7 Jo =

) 0 -—
: (

o2/ 1 — 0? _371/b>1/2 Z,
b

Ag = I2®

where (ﬁt)teﬂh is a CIR process given by the SDE

AV, = adt + o \/ Y, dW,,  tER,,

with initial value Yo = yo, where (Wi)ier, is a standard Wiener process,

B . 02 —1/b _
V:=logY_1,, — logyo — (a — 71) Y du,
0

Zy s a 1-dimensional standard normally distributed random variable, Zy is a 2-dimensional
standard normally distributed random vector such that (Y_1, fo_l/b Vodu), Zy and Zy are
independent, and S is defined in ([€2). Moreover, [23)) also holds, but [Z4) is not valid.

If a€ (%%, oo) and o € R are fized, then the subfamily

(C(R4,R?*), B(C(R4,R?)), {Pgr:beR__, B €R})

TeRy 4

of statistical experiments is LAMN at (b, 3) with scaling matrices r(ezzp =TI, T eR,y,

and with
VATARE - y
A(2) — | _ —1/b 01 020 Z,, J(z) — | _ —1/b g1
’ ( b 0 o09y/1—¢? ’ o b

Consequently, the family (C(Ry,R?), B(C(R4+,R?)), {Pg,pr/2p1 - ho € R?})rer,,  of statisti-
cal experiments converges to the statistical experiment (R x R2*2 B(R2 x R¥2) {£((AY +
TP hy, IO | P) - hy € R?}) as T — oo, where h:=(0,hy)" € R
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Proof. We have

1

0 ebT/2

aurtr = | N

®I2> I, ®

|~ Jy VY.dB, |

T aw.
Jo

T
7%

— [T Yaaw,

- fT dWs -1
Ys
ng
T ds 1/2 1 OT(\i/B{TZ
_ ( 0 ?) ! = R ()"
= 1/2
0 (emfvias)| L0 evTo@] )| v,
0 T 1/2
(fo Ys ds)
_ _Jo VY dBs
(Jo s ds)l/z—
and
T ds
1 0 S T 1
Jor(Y,X) = I 0 ¥ St I
or(¥: X) [0 errz| © 2) ( ~T [ Y.ds ) <[0 e 2)
_ oT ¥ — et -1
= T :
_—TebT/2 ebT fo Y:gds
We have
T 2 T
dW, o ds
0_1/(; ﬁZIOgYT—logQO“‘(%—a)/(; ?s+bT, TGRJ’_J’_.
see Barczy and Pap [3, Formula (4.10)]. Moreover,
T T 00
a.s. a.s. v d a.s. d
Ty 25 v, ebT/ Yids — ——, —8—>/ —S, as 1T — oo,
0 b 0 Ys o Ys
see Barczy and Pap [3, Formulae (4.7) and (4.9)]. Thus,
T dw,
o1y 7 log(eYy) —1 2 s logV—1 2
9.2) ;d\/? _ loge ;;r)ds OgijL%_a;) og wd_ggyo %
0 Y 0 Y 0 Ys
as T — oo. By Theorem 4 in Ben Alaya and Kebaier [5],
ds —1/b _
V, _ wdu |,
( 7/0 }/S) <y 1/bs N U)
hence -
logV —1lo 2 logY_1, —lo 2 ~
g OOdsgyojL%_ag gyll//bb gyo—k%—a:)ﬂ.
0 Ys Jo 7 Vudu
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Further,

) L (Tyviaw, [T yYidB,
(o &) (f) Yads)"™ (Jy vads)"?

) i>(Z1,—Z2) as T — oo,
0 Ys
see Barczy and Pap [3, Formula (7.6)]. Hence we obtain (@.1]).

It is known that under the condition a € [U—j, oo), we have IP’()j_l/b ER,) =1 (see,
e.g., page 442 in Revuz and Yor [18]) and P(fo_l/b V,ds € Ry,) =1 (which has been shown
in the proof of Theorem 3.1 in Barczy et al. [1]), hence (23] holds.

If ac€ (%%, oo) and « € R are fixed, then LAMN property of the subfamily will follow
from

1
(9.3) E (exp {thg) - §h2TJ§f>h2}) — Fy=1

for all hy, € R2. We have

- -1 ~
~1/2 1 -1
By =E[exp (-y‘l/b) [ Zz——<—y‘”b) h] S~'h,
b 0 09/1— 02 2 b
- —1
y—l/b)_1/2 T |01 020

=E|E(exp (— h Z
( ( { b ? 0 0'2\/1—Q2 ?

1/ Yoap) -
_ §<__yb1/b) hgs—th} ‘y_l/b>> =1

by ([83), thus we conclude ([@.3)).

Finally, we show that (2Z4) is not valid for the whole family (&r)rer,, of statistical
experiments, given in (6.4, i.e., there exists h € R*, such that

(9.4) E (eXp {hTAg?) - %hTJf)h}) #1,
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Indeed, using again (83), for h = (0,1,0)" € R x R x R?, we have

E(exp{hTAg — %hTJgh}>

T 1 -
B 0 o1 020 Ul_lV
= exp
1 0 DRV ]_ — Q2 Zl
T
—1/b _ 0 0
— 1( Y du) S

2\Jo 1 1

1 1 “b
=E|lexp{ —m—7] — ———~ Y, du
( p{02\/1—92 ' 205(1 = 02) Jo }>
=E[|exp{ ——7 Ef expd ——5——— Y, du
b 024/ 1 — 0? ' P 20%(1_92) 0

1 1 “1/b
= exp m E exp —m ; yudu 7& ].,

since, by Lemma 1 in Ben Alaya and Kebaier [4],

t _ 2a 2
E <exp{—2,u2/ Vu du}) = cosh(oyput) % exp { 'Zijo tanh(al,ut)}
0

for p,t e R,. O

Appendix

A A limit theorem for continuous local martingales

In what follows we recall a so called stable central limit theorem for multidimensional continuous
local martingales.

A.1 Theorem. (van Zanten [21, Theorem 4.1]) Let (0, F, (Fi)er,.P) be a filtered
probability space satisfying the usual conditions. Let (M )icr, be a d-dimensional continuous
local martingale with respect to the filtration (F;)ier, such that P(My = 0) = 1. Suppose
that there exists a function Q : Ry — R such that Q(t) is an invertible (non-random)
matriz for all t € Ry, limy,. ||Q(t)|| =0 and

QUMY Q) = nn" s t— oo,
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where m is a d x d random matriz. Then, for each R¥-valued random vector v defined on
(Q, F,P), we have

Q)M v) =+ (nZ,v)  as t— oo,
where Z is a d-dimensional standard normally distributed random vector independent of
(m,v).

We note that Theorem [A ]l remains true if the function @ is defined only on an interval
[to, 00) with some ;€ R, .
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