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Abstract

We give some examples of random fields that can be represented as space-domain scaled station-

ary Ornstein-Uhlenbeck fields defined on the plane. Namely, we study a tied-down Wiener bridge,

tied-down scaled Wiener bridges, a Kiefer process and so called (F,G)-Wiener bridges.

1 Introduction

In this note, we give some examples of random fields that can be represented as space-domain scaled

stationary Ornstein-Uhlenbeck fields defined on the plane by specifying the space and domain transfor-

mations in question explicitly as well. Before turning to fields, we recall a well-known one-dimensional

example that a Wiener bridge can be represented as a space-time scaled stationary Ornstein-Uhlenbeck

process. Namely, if (W (t))t>0 is a standard Wiener process, then S(t) := e−
t
2W (et), t ∈ R,

defines a strictly stationary centered Gauss process S = (S(t))t∈R defined on the real line with

Cov(S(s), S(t)) = e−
|t−s|

2 , s, t ∈ R, see, e.g., Doob [7] or Shorack and Wellner [11, Exercise 9, page

32]. The process S is known as a stationary Ornstein-Uhlenbeck process defined on R. Then a

Wiener bridge W (t) − tW (1), t ∈ [0, 1], from 0 to 0 over the time interval [0, 1] generates the

same law on C([0, 1]) as the space-time scaled stationary Ornstein-Uhlenbeck process





√
t(1− t)S

(
ln

(
t

1−t

))
if t ∈ (0, 1),

0 if t = 0 or t = 1,

see, e.g., Shorack and Wellner [11, Exercise 10, page 32], where C([0, 1]) denotes the space of

continuous real-valued functions defined on [0, 1].

In Barczy and Kern [3] we presented a class of Gauss-Markov processes which can be represented as

space-time scaled stationary Ornstein-Uhlenbeck processes defined on the real line by giving examples

as well, such as scaled Wiener bridges, Ornstein-Uhlenbeck type bridges, weighted Wiener bridges and

so-called F-Wiener bridges.

In what follows, let N and R+ denote the set of positive integers and non-negative real numbers,

respectively, let B(R) be the set of Borel sets of R, and for s, t ∈ R, let s ∧ t and s ∨ t denote

min(s, t) and max(s, t), respectively. For a subset D ⊆ R
2, C(D) denotes the space of continuous

real-valued functions on D.

2010 Mathematics Subject Classifications: 60G15, 60G10.

Key words and phrases: random field, Wiener field, Ornstein-Uhlenbeck field.

1

http://arxiv.org/abs/1501.03717v2


1.1 Definition. A zero-mean Gauss field {W (s, t) : s, t ∈ R+} with continuous sample paths almost

surely and with covariance function

Cov(W (s1, t1),W (s2, t2)) = (s1 ∧ s2)(t1 ∧ t2), s1, s2, t1, t2 ∈ R+,

is called a standard Wiener field (or a bivariate Wiener process).

Here by a Gauss field, we mean that for all n ∈ N and (si, ti) ∈ R
2
+, i = 1, . . . , n, the

random variable (W (s1, t1), . . . ,W (sn, tn)) is n-dimensional normally distributed. By the property

that W has continuous sample paths almost surely, we mean that P({ω ∈ Ω : R
2
+ ∋ (s, t) 7→

W (s, t)(ω) is continuous}) = 1, where (Ω,A,P) denotes an underlying probability space on which

the random variables in question are defined.

1.2 Definition. Let α, β, σ > 0. A zero-mean Gauss field {X(s, t) : s, t ∈ R} with continuous

sample paths almost surely and with covariance function

Cov(X(s1, t1),X(s2, t2)) =
σ2

4αβ
exp

{
− α|s2 − s1| − β|t2 − t1|

}
, s1, s2, t1, t2 ∈ R,

is called a stationary Ornstein-Uhlenbeck field with parameters (α, β, σ).

Here stationarity means that for all n ∈ N and (si, ti) ∈ R
2, i = 1, . . . , n, the distribution of the

random vector

(X(s + s1, t+ t1),X(s + s2, t+ t2), . . . ,X(s + sn, t+ tn))

does not depend on (s, t) ∈ R
2.

Next, we present a well-known result that a stationary Ornstein-Uhlenbeck field can be represented

as a space-domain scaled standard Wiener field, see, e.g., Walsh [13, page 271] or Baran, Pap and van

Zuijlen [1, (3.1)]. In particular, this shows the existence of a stationary Ornstein-Uhlenbeck field. For

completeness, we give a proof of this statement as well.

1.3 Proposition. If α, β, σ > 0 and {W (s, t) : s, t ∈ R+} is a standard Wiener field, then the

random field

Z(s, t) :=
σ

2
√
αβ

e−αs−βtW (e2αs, e2βt), s, t ∈ R,

is a stationary Ornstein-Uhlenbeck field with parameters (α, β, σ).

Proof. It can be readily seen that Z is a zero-mean Gauss field with continuous sample paths almost

surely. Further, for all s1, s2, t1, t2 ∈ R,

Cov(Z(s1, t1), Z(s2, t2)) =
σ2

4αβ
e−αs1−βt1e−αs2−βt2 Cov(W (e2αs1 , e2βt1),W (e2αs2 , e2βt2))

=
σ2

4αβ
e−α(s1+s2)−β(t1+t2)(e2αs1 ∧ e2αs2)(e2βt1 ∧ e2βt2)

=
σ2

4αβ
e−α(s1+s2−2(s1∧s2))e−β(t1+t2−2(t1∧t2))

=
σ2

4αβ
e−α|s1−s2|−β|t1−t2|,
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where we used that x+ y − 2(x ∧ y) = |x− y|, x, y ∈ R. ✷

We remark that despite the fact that the covariance function of a stationary Ornstein-Uhlenbeck

field is of product type, a stationary Ornstein-Uhlenbeck field can not be represented as a product of

two independent one dimensional Ornstein-Uhlenbeck processes (since such a product process is not

a Gauss field).

In the present note, we show that a tied-down Wiener bridge, tied-down scaled Wiener bridges,

a Kiefer process and so called (F,G)-Wiener bridges can be represented as space-domain scaled

stationary Ornstein-Uhlenbeck fields defined on the plane. In Remark 2.3 we point out that the form

of the space-domain transformations used for representing a tied-down Wiener bridge as a space-

domain scaled stationary Ornstein-Uhlenbeck field is not appropriate in case of a bivariate Wiener

bridge. Note that, due to Proposition 1.3, a tied-down Wiener bridge, tied-down scaled Wiener bridges,

a Kiefer process and (F,G)-Wiener bridges can be represented as a space-domain scaled Wiener field

as well, however a Wiener field is not stationary. The presented results may be used later on to

calculate the distribution of the supremum location of the studied random fields on compact subsets.

For such an application in dimension one, see Barczy and Kern [3, Section 5].

2 Bivariate and tied-down Wiener bridge

Let {W (s, t) : s, t ∈ R+} be a standard Wiener field. Deheuvels et al. [6, formulas (2.15) and (2.16)]

introduced a bivariate Wiener bridge

B(s, t) := W (s, t)− stW (1, 1), s, t ∈ [0, 1],

and a tied-down Wiener bridge

B∗(s, t) := B(s, t)− sB(1, t)− tB(s, 1)

= W (s, t)− sW (1, t)− tW (s, 1) + stW (1, 1), s, t ∈ [0, 1].

Then {B(s, t) : s, t ∈ R+} and {B∗(s, t) : s, t ∈ R+} are zero-mean Gauss fields with continuous

sample paths almost surely and with covariance functions

Cov(B(s1, t1), B(s2, t2)) = (s1 ∧ s2)(t1 ∧ t2)− s1s2t1t2,

and

Cov(B∗(s1, t1), B∗(s2, t2)) = (s1 ∧ s2 − s1s2)(t1 ∧ t2 − t1t2)

for si, ti ∈ [0, 1], i = 1, 2, respectively, see Deheuvels at el. [6, formulas (2.17) and (2.18)]. Note that

the bivariate Wiener bridge B is zero on the line segments between (0, 0) and (0, 1), and between

(0, 0) and (1, 0), and at the point (1, 1) as well; while the tied-down Wiener bridge B∗ is zero on

the border of a square with vertices (0, 0), (0, 1), (1, 0), and (1, 1). Note also that the covariance

function of B∗ is of product type (i.e., a product of functions depending on (s1, s2) and (t1, t2),

respectively), while the covariance function of B is not of that kind.
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2.1 Proposition. Let {X(s, t) : s, t ∈ R} be a stationary Ornstein-Uhlenbeck field with parameters

(12 ,
1
2 , 1) represented as in Proposition 1.3. Then the random field

U(s, t) :=





√
st(1− s)(1− t)X

(
ln

(
s

1−s

)
, ln

(
t

1−t

))
, if (s, t) ∈ (0, 1)2,

0 if s ∈ {0, 1} or t ∈ {0, 1},

generates the same law on C([0, 1]2) as a tied-down Wiener bridge B∗.

Proof. First, we check that both fields U and B∗ are zero-mean Gauss fields on [0, 1]2 with

continuous sample paths almost surely. The only property that does not follow immediately is that

U has continuous sample paths almost surely. We need to prove that

P
(
{ω ∈ Ω : [0, 1]2 ∋ (s, t) 7→ U(s, t)(ω) is continuous}

)
= 1.

Note that

{ω ∈ Ω : [0, 1]2 ∋ (s, t) 7→ U(s, t)(ω) is continuous}

= {ω ∈ Ω : [0, 1]2 ∋ (s, t) 7→ U(s, t)(ω) is continuous in every point (s0, t0) ∈ [0, 1]2 with s0 ∨ t0 < 1}

∩ {ω ∈ Ω : [0, 1]2 ∋ (s, t) 7→ U(s, t)(ω) is continuous in every point (s0, t0) ∈ [0, 1]2 with s0 ∨ t0 = 1}

=: A1 ∩A2,

hence it is enough to prove that P(A1) = 1 and P(A2) = 1. For all s, t ∈ (0, 1),

U(s, t) =
√

st(1− s)(1− t)X

(
ln

(
s

1− s

)
, ln

(
t

1− t

))

=
√

st(1− s)(1− t) exp
{
− 1

2
ln

(
s

1− s

)
− 1

2
ln

(
t

1− t

)}
W

(
eln(

s
1−s), eln(

t
1−t)

)

=
√

st(1− s)(1− t)

√
1− s

s
· 1− t

t
W

(
s

1− s
,

t

1− t

)

= (1− s)(1− t)W

(
s

1− s
,

t

1− t

)
.

(2.1)

Since the mapping (s, t) 7→
(

s
1−s ,

t
1−t

)
is a continuous homeomorphism of the set {(s, t) ∈ [0, 1]2 :

s ∨ t < 1} onto R
2
+, by (2.1), we have A1 = {ω ∈ Ω : R2

+ ∋ (u, v) 7→ W (u, v)(ω) is continuous},
and hence, using that W has continuous sample paths almost surely, we get P(A1) = 1.

Now we turn to prove that P(A2) = 1. Recall that

lim sup
r→∞

sup
(x,y)∈D

(p)
r

|W (x, y)|√
4r ln(ln(r))

= 1 a.s., ∀ p >
1

2
,(2.2)

where

D(p)
r :=

{
(x, y) ∈ R

2
+ : xy 6 r, 0 6 x 6 rp, 0 6 y 6 rp

}
,
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see, e.g., Theorem 1.12.3 in Csörgő and Révész [5]. Using that a continuous function takes the limits

of sequences to limits of sequences, we get {ω ∈ Ω : lims∨t↑1 U(s, t)(ω) = 0} ⊆ A2. By (2.1), for

s, t ∈ (0, 1),

U(s, t) =

√√√√√
4 ln

(
ln

((
s

1−s + 1
)(

t
1−t + 1

)))

(
s

1−s + 1
)(

t
1−t + 1

)
W

(
s

1−s ,
t

1−t

)

√
4
(

s
1−s + 1

)(
t

1−t + 1
)
ln

(
ln

((
s

1−s + 1
)(

t
1−t + 1

))) ,

where (
s

1− s
,

t

1− t

)
∈ D

(1)

( s
1−s

+1)( t
1−t

+1)
.

Here
(

s

1− s
+ 1

)(
t

1− t
+ 1

)
=

1

(1− s)(1− t)
=

1

(1− s ∧ t)(1− s ∨ t)
>

1

1− s ∨ t
→ ∞ as s ∨ t ↑ 1.

Hence, using (2.2) and limh↑∞
1
h ln(ln(h)) = 0, we have lims∨t↑1 U(s, t) = 0 almost surely, yielding

P(A2) = 1.

To conclude, it is sufficient to check that the covariance functions of U and B∗ coincide. If

0 < s1 6 s2 < 1 and 0 < t1 6 t2 < 1 (which can be supposed without loss of generality), then

Cov(U(s1, t1), U(s2, t2))

=
√

s1t1(1− s1)(1− t1)s2t2(1− s2)(1 − t2)

× exp
{
− 1

2

(
ln

(
s2

1− s2

)
− ln

(
s1

1− s1

))
− 1

2

(
ln

(
t2

1− t2

)
− ln

(
t1

1− t1

))}

=
√

s1s2t1t2(1− s1)(1 − t1)(1− s2)(1 − t2)

√
s1

1− s1
· 1− s2

s2

√
t1

1− t1
· 1− t2

t2

= s1t1(1− s2)(1 − t2)

= Cov(B∗(s1, t1), B∗(s2, t2)),

where we used that the function (0, 1) ∋ x 7→ ln
(

x
1−x

)
is strictly monotone increasing. ✷

In the next remark we present an alternative way for checking that U defined in Proposition 2.1

has continuous sample paths almost surely. We will use this approach in the proof of Proposition 3.1.

2.2 Remark. Let U be defined as in Proposition 2.1. Let C1 := {ω ∈ Ω : R
2
+ ∋ (s, t) 7→

W (s, t)(ω) is continuous}. Then P(C1) = 1. Recall that

lim sup
x→∞, y→∞

|W (x, y)|√
4xy ln(ln(xy))

= 1 a.s.(2.3)

see, e.g., Theorem 1.12.2 in Csörgő and Révész [5], and let C2 be the set of those ω ∈ Ω for

which (2.3) holds (then P(C2) = 1). If (s, t) → (s0, t0) ∈ [0, 1]2 with s0 ∨ t0 < 1, then, by (2.1),

U(s, t)(ω) → U(s0, t0)(ω) for all ω ∈ C1. If (s, t) → (s0, t0) = (1, 1), then, by (2.1) and (2.3), we

5



have

U(s, t)(ω) =

√
4st(1− s)(1− t) ln

(
ln

(
st

(1 − s)(1− t)

)) W
(

s
1−s ,

t
1−t

)
(ω)

√
4 st
(1−s)(1−t) ln

(
ln

(
st

(1−s)(1−t)

)) → 0

for all ω ∈ C2, where we used that limh↑∞
1
h ln(ln(h)) = 0. If (s, t) → (1, t0) with t0 ∈ [0, 1),

then, by (2.1), we have

U(s, t) = s(1− t)

(
t0

1− t0
+ 1

)
√√√√√

4 ln
(
ln

(
s

1−s

(
t0

1−t0
+ 1

)))

s
1−s

(
t0

1−t0
+ 1

)

×
W

(
s

1−s ,
t

1−t

)

√
4 s
1−s

(
t0

1−t0
+ 1

)
ln

(
ln

(
s

1−s

(
t0

1−t0
+ 1

))) ,

where (
s

1− s
,

t

1− t

)
∈ D

(1)
s

1−s

(

t0
1−t0

+1
)

provided that s is sufficiently close to 1 (in fact, s ∈ (1/2, 1) is enough) and t is sufficiently close

to t0. By (2.2), using again limh↑∞
1
h ln(ln(h)) = 0, we have U(s, t)(ω) → 0 as (s, t) → (1, t0)

with t0 ∈ [0, 1) for all ω ∈ C3, where C3 denotes the set of those ω ∈ Ω for which (2.2) holds

(then P(C3) = 1). Similarly, if (s, t) → (s0, t0) with s0 ∈ [0, 1) and t0 = 1, then U(s, t)(ω) → 0

for all ω ∈ C3. To conclude, note that

C1 ∩ C2 ∩ C3 ⊆ {ω ∈ Ω : [0, 1]2 ∋ (s, t) 7→ U(s, t)(ω) is continuous},

and P(C1 ∩ C2 ∩ C3) = 1, yielding that U has continuous sample paths almost surely. ✷

2.3 Remark. In what follows we show that the form of the space-domain transformations used for

representing a tied-down Wiener bridge as a space-domain scaled stationary Ornstein-Uhlenbeck field

is not appropriate in case of a bivariate Wiener bridge. More precisely, one cannot find functions

f, g : (0, 1] → (0,∞) such that f is monotone and the random field

V (s, t) :=

{√
g(s)g(t)X (ln(f(s)), ln(f(t))) , if (s, t) ∈ (0, 1]2,

0 if s = 0 or t = 0,

generates the same law on C([0, 1]2) as a bivariate Wiener bridge B, where X is a stationary

Ornstein-Uhlenbeck field with parameters (12 ,
1
2 , 1). On the contrary, let us suppose that there exist

such functions. Without loss of generality, we may suppose that f is monotone increasing. Then,

due to the covariance structure of X, for all 0 < s1 6 s2 6 1 and 0 < t1 6 t2 6 1, we have

s1t1 − s1s2t1t2 = Cov(B(s1, t1), B(s2, t2)) = Cov(V (s1, t1), V (s2, t2))

=
√

g(s1)g(s2)g(t1)g(t2)

× exp
{
− 1

2
(ln(f(s2))− ln(f(s1)))−

1

2
(ln(f(t2))− ln(f(t1)))

}
,
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and hence

s1t1(1− s2t2) =
√

g(s1)g(s2)g(t1)g(t2)

√
f(s1)

f(s2)

f(t1)

f(t2)
=: F (s1)G(s2)F (t1)G(t2),

with F (s) :=
√

f(s)g(s), s ∈ (0, 1], and G(s) :=
√

g(s)/f(s), s ∈ (0, 1]. Then for all 0 < s1 6 s2 6 1

and 0 < t1 6 t2 6 1, we have

1− s2t2 =
F (s1)

s1
G(s2)

F (t1)

t1
G(t2) =: F̃ (s1)G(s2)F̃ (t1)G(t2).

By substituting s1 = t1 = t2 :=
1
2 , and s1 = t1 :=

1
2 , t2 := 1, we have

1− s2
2

= (F̃ (1/2))2G(1/2)G(s2), s2 ∈ [1/2, 1],

and

1− s2 = (F̃ (1/2))2G(1)G(s2), s2 ∈ [1/2, 1],

respectively. Consequently, (F̃ (1/2))2G(1/2) 6= 0 and (F̃ (1/2))2G(1) 6= 0,

G(s2) =
1− s2/2

(F̃ (1/2))2G(1/2)
and G(s2) =

1− s2

(F̃ (1/2))2G(1)
, s2 ∈ [1/2, 1],

which yields us to a contradiction (by choosing, e.g., s2 = 1). ✷

3 Tied-down scaled Wiener bridges

Let S > 0, T > 0, and α > 0, β > 0, and let us consider a zero-mean Gauss field {X(α,β)(s, t) :

(s, t) ∈ [0, S]× [0, T ]} with continuous sample paths almost surely and with covariance function

Cov(X(α,β)(s1, t1),X
(α,β)(s2, t2)) = R

(α)
S (s1, s2)R

(β)
T (t1, t2)

for (s1, t1), (s2, t2) ∈ [0, S]× [0, T ], where R
(α)
S is the covariance function of a scaled Wiener bridge

X(α) on [0, S] with parameter α given by

R
(α)
S (s1, s2) =





(S−s1)α(S−s2)α

1−2α (S1−2α − (S − (s1 ∧ s2))
1−2α) if α 6= 1

2 ,√
(S − s1)(S − s2) ln

(
S

S−(s1∧s2)

)
if α = 1

2 ,

for s1, s2 ∈ [0, S], and R
(β)
T is the covariance function of a scaled Wiener bridge X(β) on [0, T ]

with parameter β. Here R
(α)
S is defined to be 0 on the line segments between (0, S) and

(S, S), and (S, 0) and (S, S), respectively, as a consequence of lim(s1,s2)→(s,S)R
(α)
S (s1, s2) =

lim(s1,s2)→(S,s)R
(α)
S (s1, s2) = 0, s ∈ [0, S] (for a detailed discussion, see Barczy and Iglói [2]). We

note that scaled Wiener bridges were introduced by Brennan and Schwartz [4], and see also Mansuy

[10]; and the random field X(α,β) has already been introduced in Barczy and Iglói [2, page 5]. Since

for independent scaled Wiener bridges (X(α)(s))s∈[0,S] and (X(β)(t))t∈[0,T ], the random (but not

Gauss) field {X(α)(s)X(β)(t) : (s, t) ∈ [0, S] × [0, T ]} admits the same covariances as X(α,β), there

exists a zero mean Gauss field with the given covariances. Later on (see Proposition 3.1), we will see
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that the continuity assumption can also be fulfilled. Note that X(α,β) is zero on the border of a

rectangle with vertices (0, 0), (0, S), (0, T ), and (S, T ), so we can call it a tied-down scaled Wiener

bridge with parameters (α, β). This class of Gauss processes may deserve more attention since it

would generalize some well-known limit processes in mathematical statistics such as a Kiefer process,

see, e.g., Deheuvels et al. [6, formula (3.8) with γ = δ = 0] or Shorack and Wellner [11, Exercise 12,

page 32]. In Remark 3.3, we detail the case of a Kiefer process.

The following result can be considered as a generalization of the corresponding one for scaled

Wiener bridges in Subsection 3.1 in Barczy and Kern [3].

3.1 Proposition. Let {X(s, t) : s, t ∈ R} be a stationary Ornstein-Uhlenbeck field with parameters

(12 ,
1
2 , 1) represented as in Proposition 1.3. Let S > 0, T > 0, and α > 0, β > 0. Then the random

field

U(s, t) :=





√
g
(α)
S (s)g

(β)
T (t)X

(
ln

(
f
(α)
S (s)

)
, ln

(
f
(β)
T (t)

))
, if (s, t) ∈ (0, S) × (0, T ),

0 if s ∈ {0, S} or t ∈ {0, T},

is a tied-down scaled Wiener bridge with parameters (α, β), where

√
g
(α)
S (s) :=





(S − s)α
√

S1−2α−(S−s)1−2α

1−2α if α 6= 1
2 ,√

(S − s) ln
(

S
S−s

)
if α = 1

2 ,
s ∈ (0, S),

f
(α)
S (s) :=





S2α

1−2α (S
1−2α − (S − s)1−2α) if α 6= 1

2 ,

S ln
(

S
S−s

)
if α = 1

2 ,
s ∈ (0, S),

and

√
g
(β)
T (t) and f

(β)
T (t) are defined similarly as

√
g
(α)
S (s) and f

(α)
S (s), respectively, by replacing

α by β, s by t, and S by T .

Proof. First, we check that both fields U and X(α,β) are zero-mean Gauss fields on [0, S]× [0, T ]

with continuous sample paths almost surely. The only property that does not follow immediately is

that U has continuous sample paths almost surely. For all (s, t) ∈ (0, S) × (0, T ),

U(s, t) =

√
g
(α)
S (s)g

(β)
T (t)X

(
ln

(
f
(α)
S (s)

)
, ln

(
f
(β)
T (t)

))

=

√
g
(α)
S (s)g

(β)
T (t) exp

{
− 1

2
ln

(
f
(α)
S (s)

)
− 1

2
ln

(
f
(β)
T (t)

)}
W

(
e
ln
(

f
(α)
S

(s)
)

, e
ln
(

f
(β)
T

(t)
))

=

√
g
(α)
S (s)g

(β)
T (t)

1√
f
(α)
S (s)f

(β)
T (t)

W
(
f
(α)
S (s), f

(β)
T (t)

)

=
(
1− s

S

)α
(
1− t

T

)β

W
(
f
(α)
S (s), f

(β)
T (t)

)
,

(3.1)

and, by an easy calculation,

lim
s↓0

f
(α)
S (s) = 0, α > 0, and lim

s↑S
f
(α)
S (s) =

{
S

1−2α if 0 < α < 1
2 ,

+∞ if α > 1
2 ,

(3.2)
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and similar expressions hold for limt↓0 f
(β)
T (t) and limt↑T f

(β)
T (t). In what follows, we will proceed

similarly as in Remark 2.2. From Section 2 recall the notations

C1 = {ω ∈ Ω : R2
+ ∋ (s, t) 7→ W (s, t)(ω) is continuous},

C2 = {ω ∈ Ω : (2.3) holds}, C3 = {ω ∈ Ω : (2.2) holds},

and we have P(C1) = P(C2) = P(C3) = 1.

If (s, t) → (s0, t0) ∈ [0, S]× [0, T ] with s0 6= S and t0 6= T and α > 0 and β > 0, then, by (3.1),

we have U(s, t)(ω) → U(s0, t0)(ω) for all ω ∈ C1.

If (s, t) → (S, T ) and 0 < α < 1
2 and 0 < β < 1

2 , then, by (3.1) and (3.2), we have U(s, t)(ω) →
0 ·W (S/(1− 2α), T/(1 − 2β))(ω) = 0 for all ω ∈ C1.

If (s, t) → (S, T ) and α >
1
2 and β >

1
2 , then, by (3.1) and (2.3), we have

U(s, t)(ω) =
2

SαT β

√
(S − s)2α(T − t)2βf

(α)
S (s)f

(β)
T (t) ln(ln(f

(α)
S (s)f

(β)
T (t)))

× W (f
(α)
S (s), f

(β)
T (t))(ω)√

4f
(α)
S (s)f

(β)
T (t) ln(ln(f

(α)
S (s)f

(β)
T (t)))

→ 0

for all ω ∈ C2, since

lim
s↑S, t↑T

(S − s)2α(T − t)2βf
(α)
S (s)f

(β)
T (t) ln(ln(f

(α)
S (s)f

(β)
T (t))) = 0, α >

1

2
, β >

1

2
.

Indeed, in case of α > 1
2 and β > 1

2 ,

lim
s↑S, t↑T

(S − s)2α(T − t)2βf
(α)
S (s)f

(β)
T (t) ln(ln(f

(α)
S (s)f

(β)
T (t)))

= lim
s↑S, t↑T

S2αT 2β

(2α− 1)(2β − 1)
(S − s)2α(T − t)2β((S − s)1−2α − S1−2α)

2α
2α−1 ((T − t)1−2β − T 1−2β)

2β
2β−1

×
ln

(
ln

(
S2αT 2β

(2α−1)(2β−1) ((S − s)1−2α − S1−2α)((T − t)1−2β − T 1−2β)
))

((S − s)1−2α − S1−2α)
1

2α−1 ((T − t)1−2β − T 1−2β)
1

2β−1

= 0,

where we used that

lim
s↑S

(S − s)2α((S − s)1−2α − S1−2α)
2α

2α−1 = lim
s↑S

(
1− S1−2α(S − s)2α−1

) 2α
2α−1 = 1,

lim
t↑T

(T − t)2β((T − t)1−2β − T 1−2β)
2β

2β−1 = 1,

and

lim
h→∞

1

hε
ln(ln(h)) = 0, ∀ ε > 0;
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in case of α = 1
2 and β = 1

2 , by L’Hospital’s rule,

lim
s↑S, t↑T

(S − s)(T − t)f
(1/2)
S (s)f

(1/2)
T (t) ln(ln(f

(1/2)
S (s)f

(1/2)
T (t)))

= lim
s↑S, t↑T

ST (S − s)(T − t)

(
ln

(
S

S − s

)
ln

(
T

T − t

))2

×
ln

(
ln

(
ST ln

(
S

S−s

)
ln

(
T

T−t

)))

ln
(

S
S−s

)
ln

(
T

T−t

) = 0,

and the other cases can be handled similarly.

If (s, t) → (S, t0) with t0 ∈ [0, T ) and 0 < α < 1
2 , β > 0, then, by (3.1) and (3.2), we have

U(s, t)(ω) → 0(1 − t0/β)
βW (S/(1− 2α), f

(β)
T (t0))(ω) = 0 for all ω ∈ C1.

If (s, t) → (S, t0) with t0 ∈ [0, T ) and α > 1
2 , β > 0, then, by (3.1), we have

U(s, t) =
(
1− s

S

)α
(
1− t

T

)β √
4f

(α)
S (s)(f

(β)
T (t0) + 1) ln

(
ln(f

(α)
S (s)(f

(β)
T (t0) + 1))

)

× W (f
(α)
S (s), f

(β)
T (t))√

4f
(α)
S (s)(f

(β)
T (t0) + 1) ln

(
ln(f

(α)
S (s)(f

(β)
T (t0) + 1))

) ,

where

(f
(α)
S (s), f

(β)
T (t)) ∈ D

(1)

f
(α)
S

(s)(f
(β)
T

(t0)+1)

provided that s is sufficiently close to S (it is enough to choose s such that f
(α)
S (s) > 1 which

can be done due to (3.2)) and t is sufficiently close to t0. By (2.2), using the calculations for the

case (s, t) → (S, T ) and α >
1
2 , β >

1
2 , as well, we have U(s, t)(ω) → 0 as (s, t) → (S, t0) with

t0 ∈ [0, T ) for all ω ∈ C3.

Similarly, if (s, t) → (s0, T ) with s0 ∈ [0, S), then U(s, t)(ω) → 0 for all ω ∈ C3. Since

C1 ∩ C2 ∩C3 ⊆ {ω ∈ Ω : [0, S]× [0, T ] ∋ (s, t) 7→ U(s, t)(ω) is continuous},

and P(C1 ∩ C2 ∩ C3) = 1, we have U has continuous sample paths almost surely.

To conclude, it is sufficient to check that the covariance functions of U and X(α,β) coincide.

First let us suppose that α 6= 1
2 and β 6= 1

2 . Then for all 0 < s1 6 s2 < S and 0 < t1 6 t2 < T

(which can be supposed without loss of generality), we have

Cov(U(s1, t1), U(s2, t2))

= (S − s1)
α

√
S1−2α − (S − s1)1−2α

1− 2α
(S − s2)

α

√
S1−2α − (S − s2)1−2α

1− 2α

× (T − t1)
β

√
T 1−2β − (T − t1)1−2β

1− 2β
(T − t2)

β

√
T 1−2β − (T − t2)1−2β

1− 2β

× exp

{
−1

2
ln

(
S1−2α − (S − s2)

1−2α

S1−2α − (S − s1)1−2α

)
− 1

2
ln

(
T 1−2β − (T − t2)

1−2β

T 1−2β − (T − t1)1−2β

)}
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=
(S − s1)

α(S − s2)
α

1− 2α

(T − t1)
β(T − t2)

β

1− 2β
(S1−2α − (S − s1)

1−2α)(T 1−2β − (T − t1)
1−2β)

= Cov(X(α,β)(s1, t1),X
(α,β)(s2, t2)),

as desired, where we used that f
(α)
S and f

(β)
T are strictly increasing. Let us suppose now that

α = β = 1
2 . Then for all 0 < s1 6 s2 < S and 0 < t1 6 t2 < T (which can be supposed without

loss of generality), we have

Cov(U(s1, t1), U(s2, t2)) =

√
(S − s1) ln

(
S

S − s1

)√
(S − s2) ln

(
S

S − s2

)

×
√

(T − t1) ln

(
T

T − t1

)√
(T − t2) ln

(
T

T − t2

)

× exp



−1

2
ln



ln

(
S

S−s2

)

ln
(

S
S−s1

)


− 1

2
ln



ln

(
T

T−t2

)

ln
(

T
T−t1

)








=
√

(S − s1)(S − s2)(T − t1)(T − t2) ln

(
S

S − s1

)
ln

(
T

T − t1

)

= Cov(X(α,β)(s1, t1),X
(α,β)(s2, t2)),

as desired. The cases α 6= 1
2 , β = 1

2 , and α = 1
2 , β 6= 1

2 , can be handled similarly. ✷

3.2 Remark. Note that if α = 1, β = 1, and S = T = 1, then g
(α)
S (s) = s(1 − s), s ∈ (0, 1),

g
(β)
T (t) = t(1 − t), t ∈ (0, 1), and f

(α)
S (s) = s

1−s , s ∈ (0, 1), f
(β)
T (t) = t

1−t , t ∈ (0, 1). Hence, in case

of α = 1, β = 1, and S = T = 1, Proposition 3.1 gives back Proposition 2.1 (as expected). ✷

The next remark is devoted to the case of a Kiefer process.

3.3 Remark. Let {W (s, t) : s, t ∈ R+} be a standard Wiener field. Then the random field

{
K(s, t) := W (s, t)− sW (1, t) : s ∈ [0, 1], t ∈ R+

}
,

is a zero-mean Gauss field with continuous sample paths almost surely and with covariance function

Cov(K(s1, t1),K(s2, t2)) = (s1 ∧ s2 − s1s2)(t1 ∧ t2), s1, s2 ∈ [0, 1], t1, t2 ∈ R+.

The random field K is known as a Kiefer process, see, e.g., Deheuvels et al. [6, formula (3.8)

with γ = δ = 0] or Shorack and Wellner [11, Exercise 12, page 32]. Note that, formally, with S = 1,

T = ∞, α = 1 and β = 0, we have Cov(K(s1, t1),K(s2, t2)) = R
(α)
1 (s1, s2)R

(β)
∞ (t1, t2), s1, s2 ∈ [0, 1],

t1, t2 ∈ R+. Further, similarly as in the proof of Proposition 3.1, one can check that the random field

U(s, t) :=





√
s(1− s)tX

(
ln

(
s

1−s

)
, ln(t)

)
, if (s, t) ∈ (0, 1) × (0,∞),

0 if s ∈ {0, 1} or t = 0,

generates the same law on C([0, 1]× [0,∞)) as a Kiefer process. Indeed, both fields U and K are

zero-mean Gauss fields on [0, 1] × [0,∞) with continuous sample paths almost surely (which can be
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checked similarly as in the proof of Proposition 3.1), and for all 0 < s1 6 s2 < 1 and 0 < t1 6 t2 < ∞
(which can be supposed without loss of generality), we have

Cov(U(s1, t1), U(s2, t2)) =
√

s1(1− s1)t1
√

s2(1− s2)t2

× exp

{
−1

2

(
ln

(
s2

1− s2

)
− ln

(
s1

1− s1

))
− 1

2
(ln(t2)− ln(t1))

}

=
√

s1t1s2t2(1− s1)(1 − s2)

√
s1

1− s1

1− s2
s2

t1
t2

= s1t1(1− s2) = Cov(K(s1, t1),K(s2, t2)),

as desired. Note that, formally, this result is nothing else but Proposition 3.1 with S = 1, T = ∞,

α = 1 and β = 0. ✷

4 (F,G)-Wiener bridges

Let f : R+ → R+ and g : R+ → R+ be probability density functions on R+ and let us consider the

corresponding cumulative distribution functions F : R+ → [0, 1], F (s) :=
∫ s
0 f(u) du, s ∈ R+, and

G : R+ → [0, 1], G(t) :=
∫ t
0 g(u) du, t ∈ R+. Further, let

S := inf{s ∈ R+ : F (s) = 1} ∈ (0,∞], T := inf{t ∈ R+ : G(t) = 1} ∈ (0,∞],

with the convention inf ∅ := ∞. Let us assume that f and g are continuous on [0, T ) and [0, S),

respectively, and that there exist δ1 ∈ (0, S) and δ2 ∈ (0, T ) such that f(t) 6= 0 for all t ∈ (0, δ1),

and g(t) 6= 0 for all t ∈ (0, δ2).

Let us consider a zero-mean Gauss field {X(F,G)(s, t) : (s, t) ∈ [0, S) × [0, T )} with continuous

sample paths almost surely and with covariance function

Cov(X(F,G)(s1, t1),X
(F,G)(s2, t2)) := (F (s1 ∧ s2)− F (s1)F (s2))(G(t1 ∧ t2)−G(t1)G(t2))

for (si, ti) ∈ [0, S) × [0, T ), i = 1, 2, which we call an (F,G)-Wiener bridge. Next we check that for

independent F - and G-Wiener bridges (Y
(F )
s )s∈[0,S) and (Z

(G)
t )t∈[0,T ), the (non-Gauss) random

field {Y (F )
s Z

(G)
t : (s, t) ∈ [0, S) × [0, T )} admits the same covariances as X(F,G), and hence there

exists a zero-mean Gauss field with the given covariances. For the existence and properties of an

F -Wiener bridge (Y
(F )
s )s∈[0,S) under the given conditions on f , see Subsection 3.3 in Barczy and

Kern [3], Shorack and Wellner [11, page 838], van der Vaart [12, page 266] or Khmaladze [8, equation

(4)]. Here we only recall that (Y
(F )
s )s∈[0,S) is a zero-mean Gauss process having continuous sample

paths almost surely and covariance function F (s ∧ t) − F (s)F (t), s, t ∈ [0, S), satisfying Y
(F )
0 = 0

and P(lims↑S Y
(F )
s = 0) = 1. Then for (si, ti) ∈ [0, S) × [0, T ), i = 1, 2, we have

Cov(Y (F )
s1 Z

(G)
t1 , Y (F )

s2 Z
(G)
t2 ) = E(Y (F )

s1 Z
(G)
t1 Y (F )

s2 Z
(G)
t2 ) = E(Y (F )

s1 Y (F )
s2 )E(Z

(G)
t1 Z

(G)
t2 )

= (F (s1 ∧ s2)− F (s1)F (s2))(G(t1 ∧ t2)−G(t1)G(t2)).

We will see that the continuity assumption on the sample paths of X(F,G) can also be fulfilled, and

we will give a possible motivation of the name (F,G)-Wiener bridge as well, see Proposition 4.1 and

paragraph just after it, respectively.
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The following result can be considered as a generalization of the corresponding one for F -Wiener

bridges in Subsection 3.3 in Barczy and Kern [3].

4.1 Proposition. Let {X(s, t) : s, t ∈ R} be a stationary Ornstein-Uhlenbeck field with parameters

(12 ,
1
2 , 1) represented as in Proposition 1.3. Then the random field

U(s, t) :=
√

F (s)(1− F (s))G(t)(1 −G(t))X

(
ln

(
F (s)

1− F (s)

)
, ln

(
G(t)

1−G(t)

))

for (s, t) ∈ (0, S) × (0, T ), and U(s, t) := 0 for s = 0 or t = 0 is an (F,G)-Wiener bridge.

Proof. First, we check that both fields U and X(F,G) are zero-mean Gauss fields on [0, S)× [0, T )

with continuous sample paths almost surely. The only property that does not follow immediately is

that U has continuous sample paths almost surely. For all (s, t) ∈ (0, S) × (0, T ),

U(s, t) =
√

F (s)(1− F (s))G(t)(1 −G(t))X

(
ln

(
F (s)

1− F (s)

)
, ln

(
G(t)

1−G(t)

))

=
√

F (s)(1− F (s))G(t)(1 −G(t)) exp
{
− 1

2
ln

(
F (s)

1− F (s)

)
− 1

2
ln

(
G(t)

1−G(t)

)}

×W

(
e
ln
(

F (s)
1−F (s)

)

, e
ln
(

G(t)
1−G(t)

))

=
√

F (s)(1− F (s))G(t)(1 −G(t))

√
1− F (s)

F (s)
· 1−G(t)

G(t)
W

(
F (s)

1− F (s)
,

G(t)

1−G(t)

)

= (1− F (s))(1−G(t))W

(
F (s)

1− F (s)
,

G(t)

1−G(t)

)
.

(4.1)

Since F and G are continuous, F (0) = G(0) = 0, we get

C1 = {ω ∈ Ω : R2
+ ∋ (s, t) 7→ W (s, t)(ω) is continuous}

⊆ {ω ∈ Ω : [0, S) × [0, T ) ∋ (s, t) 7→ U(s, t)(ω) is continuous},

and consequently, due to P(C1) = 1, the sample paths of U are continuous almost surely. To

conclude, it is enough to check that the covariance functions of U and X(F,G) coincide. For all

0 < s1 6 s2 < S and 0 < t1 6 t2 < T (which can be assumed without loss of generality), we have

Cov(U(s1, t1), U(s2, t2)) =
√

F (s1)(1 − F (s1))G(t1)(1−G(t1))

×
√

F (s2)(1− F (s2))G(t2)(1−G(t2))

× exp

{
−1

2
ln

(
F (s2)(1 − F (s1))

F (s1)(1 − F (s2))

)
− 1

2
ln

(
G(t2)(1 −G(t1))

G(t1)(1 −G(t2))

)}

= F (s1)(1− F (s2))G(t1)(1−G(t2)),

as desired, where we used that the functions (0, S) ∋ s 7→ F (s)
1−F (s) and (0, T ) ∋ t 7→ G(t)

1−G(t) are

monotone increasing. ✷

Concerning the name (F,G)-Wiener bridge for {X(F,G)(s, t) : (s, t) ∈ [0, S) × [0, T )}, we point

out that X(F,G)(s, t) → 0 almost surely as s
S ∨ t

T → 1, which can be seen using (4.1) and similar

arguments as in Remark 2.2.
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4.2 Remark. Let {U(s, t) : s, t ∈ R+} be a zero-mean Gauss field with continuous sample paths

almost surely and with covariance function of product type

Cov(U(s1, t1), U(s2, t2)) = c(s1, s2)c̃(t1, t2), s1, s2, t1, t2 ∈ R+,

where c : R+ → R and c̃ : R+ → R are some (appropriately) given functions. Similarly as in

Remark 2.3, one can ask whether there exist functions f, f̃ : R+ → (0,∞) and g, g̃ : R+ → R+ such

that f and f̃ are monotone and the random field

√
g(s)g̃(t)X

(
ln(f(s)), ln(f̃(t))

)
, s, t ∈ R+,

generates the same law on C(R2
+) as U , where X is a stationary Ornstein-Uhlenbeck field with

parameters (12 ,
1
2 , 1). Supposing that f and f̃ are monotone increasing, a necessary condition for

this (following from the equality of the covariance functions of the random fields in question) is

c(s1, s2)c̃(t1, t2) =
√

g(s1)g(s2)g̃(t1)g̃(t2)

√
f(s1)

f(s2)
· f̃(t1)
f̃(t2)

=: F (s1)G(s2)F̃ (t1)G̃(t2)

for 0 6 s1 6 s2 and 0 6 t1 6 t2, which can be checked similarly as in Remark 2.3. Note that all

the examples presented in Propositions 2.1, 3.1 and 4.1 are of this type. ✷
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