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ENTROPY AND DRIFT IN WORD HYPERBOLIC GROUPS

SÉBASTIEN GOUËZEL, FRÉDÉRIC MATHÉUS, FRANÇOIS MAUCOURANT

Abstract. The fundamental inequality of Guivarc’h relates the entropy and the drift of
random walks on groups. It is strict if and only if the random walk does not behave like
the uniform measure on balls. We prove that, in any nonelementary hyperbolic group
which is not virtually free, endowed with a word distance, the fundamental inequality is
strict for symmetric measures with finite support, uniformly for measures with a given
support. This answers a conjecture of S. Lalley. For admissible measures, this is proved
using previous results of Ancona and Blachère-Haïssinsky-Mathieu. For non-admissible
measures, this follows from a counting result, interesting in its own right: we show that,
in any infinite index subgroup, the number of non-distorted points is exponentially small.
The uniformity is obtained by studying the behavior of measures that degenerate towards
a measure supported on an elementary subgroup.

1. Main results

Let Γ be a finitely generated infinite group. Although the following discussion makes
sense in a much broader context, we will assume that Γ is hyperbolic since all results of
this article are devoted to this setting. There are two natural ways to construct random
elements in Γ:

• Let d be a proper left-invariant distance on Γ (for instance a word distance). For
large n, one can pick an element at random with respect to the uniform measure ρn
on the ball Bn = B(e, n) (where e denotes the identity of Γ).

• Let µ be a probability measure on Γ. For large n, one can pick an element at
random with respect to the measure µ∗n (the n-th convolution of the measure µ).
Equivalently, let g1, g2, . . . be a sequence of random elements of Γ that are distributed
independently according to µ. Form the random walk Xn = g1 · · · gn. Then the
distribution of Xn is µ∗n.

From a theoretical point of view, these methods share a lot of properties. From a compu-
tational point of view, the second method is much easier to implement in general groups
since it does not require the computation of the ball Bn (note however that, in hyperbolic
groups, simulating the uniform measure is very easy thanks to the automatic structure of
the group). It is therefore of interest to find probability measures µ such that these two
methods give equivalent results, in a sense that will be made precise below. This is the
main question of Vershik in [Ver00]. In free groups (with the word distance coming from
the usual set of generators), everything can be computed: if µ is the uniform measure on
the generators, then µ∗n and ρn behave essentially in the same way. The situation is the
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ENTROPY AND DRIFT IN WORD HYPERBOLIC GROUPS 2

same in free products of finite groups, again thanks to the underlying tree structure. How-
ever, in more complicated groups, explicit computations are essentially impossible, and it
is expected that the methods always differ. Our main result confirms this intuition in a
special class of groups: In hyperbolic groups which are not virtually free (i.e., there is no
finite index free subgroup), if d is a word distance, the two methods are always different, in
a precise quantitative way.

Remark 1.1. We emphasize that the question really depends on the choice of the distance
d, since the shape of the balls Bn depends on d. For instance, for any symmetric probability
measure µ on Γ whose support is finite and generates Γ, there exists a distance d (called
the Green distance, see [BHM11]) for which the measures ρn and µ∗n behave in the same
way. A famous open problem (to which our methods do not apply) is to understand what
happens when Γ acts cocompactly on the hyperbolic space H

k, and the distance d is given
by d(e, γ) = dHk(O, γ · O) where O is a base point in H

k. In this case, it is also expected
that the two methods are always different. Here are the main partial results in this context:

(1) The two methods are different for some symmetric measures with finite support
([LP07], see also Theorem 5.9 below).

(2) If, instead of a cocompact lattice, one considers a lattice with cusps, the two methods
are always different [GLJ93].

(3) If, instead of a lattice, one considers a nice dense subgroup, there exist symmetric
measures with finite support for which the two methods are equivalent [Bou12].

This question also makes sense in continuous time, for negatively curved manifolds. A
conjecture of Sullivan asserts that, in this setting, the two methods coincide if and only if
the manifold is locally symmetric, see [Led95].

One can give several meanings to the question “are the two methods equivalent?” Let us
first discuss an interpretation in terms of behavior at infinity. The measures µ∗n converge in
the geometric compactification Γ∪ ∂Γ to a measure µ∞, supported on the boundary, called
the exit measure of the random walk, or its stationary measure. Geometrically, the random
walk (Xn)n>1 converges almost surely to a random point on the boundary ∂Γ, the measure
µ∞ is its distribution. On the other hand, let ρ∞ be the Patterson-Sullivan measure on ∂Γ
associated to the distance d, constructed in [Coo93] in this context. One should think of
it as the uniform measure on the boundary (it is equivalent to the Hausdorff measure of
maximal dimension on the boundary, for any visual distance coming from d). The measures
ρn do not always converge to ρ∞, but all their limit points are equivalent to ρ∞, with a
density bounded from above and from below (this follows from the arguments of [Coo93],
see Lemma 2.13 below). A version of the question is then to ask if the measures µ∞ and
ρ∞ are mutually singular: in this case, the random walk mainly visits parts of the groups
that are not important from the point of view of the uniform measure.

Another version of the same question is quantitative: Does the random walk visit parts of
the groups that are exponentially negligible from the point of view of the uniform measure?
This is made precise through the notions of drift and entropy. Define

(1.1) L(µ) =
∑

g∈Γ

µ(g)|g|, H(µ) =
∑

g∈Γ

µ(g)(− log µ(g)),
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where |g| = d(e, g). The quantity L(µ) is the average distance of an element to the identity.
The quantity H(µ), called the time one entropy of µ, is the average logarithmic weight of
the points. They can both be finite or infinite. The functions L and H both behave in a
subadditive way with respect to convolution: L(µ1 ∗ µ2) 6 L(µ1) +L(µ2) and H(µ1 ∗ µ2) 6
H(µ1) +H(µ2). It follows that the sequences L(µ∗n) and H(µ∗n) are subadditive. Hence,
the following quantities are well defined:

(1.2) ℓ(µ) = limL(µ∗n)/n, h(µ) = limH(µ∗n)/n.

They are called respectively the drift and the asymptotic entropy of the random walk.
They also admit characterizations along typical trajectories. If L(µ) is finite, then almost
surely ℓ(µ) = lim|Xn|/n. In the same way, if H(µ) is finite, then almost surely h(µ) =
lim(− log µ∗n(Xn))/n. The most intuitive characterization of the entropy is probably the
following one: at time n, the random walk is essentially supported by eh(µ)n points (see
Lemma 2.4 for a precise statement). Let us also define the exponential growth rate of the
group with respect to d, i.e.,

(1.3) v = lim inf
n→∞

log|Bn|
n

,

where Bn is the ball of radius n around e. In hyperbolic groups, it satisfies the apparently
stronger inequality C−1env 6 |Bn| 6 Cenv, by [Coo93]. For large n, most points for

µ∗n are contained in a ball B(1+ε)ℓn, which has cardinality at most e(1+2ε)ℓnv . Since the

random walk at time n essentially visits ehn points, we deduce the fundamental inequality
of Guivarc’h [Gui80]

h 6 ℓv.

If this inequality is an equality, this means that the walk visits most parts of the group.
Otherwise, it is concentrated in an exponentially small subset. Another version of our main
question is therefore: Is the inequality h 6 ℓv strict?

In hyperbolic groups, it turns out that the two versions of the question are equivalent,
at least for finitely supported measures, and that they also have a geometric interpretation
in terms of Hausdorff dimension. If µ is a probability measure on a group, we write Γ+

µ

for the semigroup generated by the support of µ, and Γµ for the group it generates. When
µ is symmetric, they coincide. We say that µ is admissible if Γ+

µ = Γ. The following
result is Corollary 1.4 and Theorem 1.5 in [BHM11] (see also [Haï13]) when the measure is
symmetric, and is proved in [Tan14] when µ is not necessarily symmetric and d is a word
distance.

Theorem 1.2. Let Γ be a non-elementary hyperbolic group, endowed with a left-invariant
distance d which is hyperbolic and quasi-isometric to a word distance. Let v be the expo-
nential growth rate of (Γ, d). Let d∂Γ be a visual distance on ∂Γ associated to d. Consider
an admissible probability measure µ on Γ, with finite support. Assume additionally either
that the measure µ is symmetric, or that the distance d is a word distance. The following
conditions are equivalent:

(1) The equality h = ℓv holds.
(2) The Hausdorff dimension of the exit measure µ∞ on (∂Γ, d∂Γ) is equal to the Haus-

dorff dimension of this space.
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(3) The measure µ∞ is equivalent to the Patterson-Sullivan measure ρ∞.
(4) The measure µ∞ is equivalent to the Patterson-Sullivan measure ρ∞, with density

bounded from above and from below.
(5) There exists C > 0 such that, for any g ∈ Γ,

|vd(e, g) − dµ(e, g)| 6 C,

where dµ is the “Green distance” associated to µ, i.e., dµ(e, g) = − log P(∃n,Xn =
g) where Xn is the random walk given by µ starting from the identity (it is an
asymmetric distance in general, and a genuine distance if µ is symmetric).

The different statements in this theorem go from the weakest to the strongest: since
entropy is an asymptotic quantity, an assumption on h seems to allow subexponential fluc-
tuations, so the assumption (1) is rather weak. On the other hand, (3) says that two
measures are equivalent, so most points are controlled. Finally, in (5), all points are uni-
formly controlled. The equivalence between these statements is a strong rigidity theorem.
The equivalence between (1) and (2) follows from a formula for the respective dimensions.
The definition of a visual distance at infinity d∂Γ involves a small parameter ε. In terms of
this parameter, one has HD(µ∞) = h/(εℓ) and HD(ρ∞) = HD(∂Γ) = v/ε, so that these
dimensions coincide if and only if h = ℓv.

In this theorem, the finite support assumption can be weakened to an assumption of
superexponential moment (i.e., for all M > 0,

∑

g∈Γ µ(g)e
M |g| < ∞), thanks to [Gou13].

The assumption that µ is symmetric or that d is a word distance is probably not necessary.
However, the most important assumption in Theorem 1.2 is admissibility: it ensures that
the random walk can see the geometry of the whole group (which is hyperbolic). For a
random walk living in a strict (maybe distorted) subgroup, one would not be expecting the
same nice behavior.

Our main theorem follows. It states that, in hyperbolic groups which are not virtually
free, endowed with a word distance, the different equivalent conditions of Theorem 1.2 are
never satisfied, uniformly on measures with a fixed support.

Theorem 1.3. Let Γ be a hyperbolic group which is not virtually free, endowed with a word
distance d. Let Σ be a finite subset of Γ. There exists c < 1 such that, for any symmetric
probability measure µ supported in Σ,

h(µ) 6 cℓ(µ)v,

where v is the exponential growth rate of balls in (Γ, d).

This theorem gives a positive answer to a conjecture of S. Lalley [Lal14, slide 16]. In the
language of Vershik [Ver00], this theorem says that no finite subset of Γ is extremal. On
the other hand, if one lets Σ grow, h/ℓ can converge to v:

Theorem 1.4. Let Γ be a hyperbolic group, endowed with a left invariant distance d which
is hyperbolic and quasi-isometric to a word distance. Let ρi be the uniform measure on the
ball of radius i. Then h(ρi)/ℓ(ρi) → v, where v is the exponential growth rate of balls in
(Γ, d).

More precisely, we prove that ℓ(ρi) ∼ i and h(ρi) ∼ iv. The only difficulty is to prove the
lower bound on h(ρi): since h is defined in (1.2) using a subadditive sequence, upper bounds
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are automatic, but to get lower bounds one should show that additional cancellations do
not happen later on. This difficulty already appears in [EK13], where the authors prove
that the entropy depends continuously on the measure. Our proof of Theorem 1.4, given
in Paragraph 2.5, also applies to this situation and gives a new proof of their result, under
slightly weaker assumptions. There is nothing special about the uniform measure on balls,
our proof also gives the same conclusion for the uniform measure on spheres, or for the
measures

∑

e−s|g|δg/
∑

e−s|g| when s ց v.

Our main result is Theorem 1.3. It is a consequence of the three following results. Since
their main aim is Theorem 1.3, they are designed to handle finitely supported symmetric
measures. However, these theorems are all valid under weaker assumptions, which we specify
in the statements as they carry along implicit information on the techniques used in the
proofs.

The first result deals with admissible (or virtually admissible) measures.

Theorem 1.5. Let Γ be a hyperbolic group which is not virtually free, endowed with a word
distance. Let µ be a probability measure with a superexponential moment, such that Γ+

µ is a
finite index subgroup of Γ. Then h(µ) < ℓ(µ)v.

The second result deals with non-admissible measures.

Theorem 1.6. Let Γ be a hyperbolic group endowed with a word distance. Let µ be a
probability measure with a moment of order 1 (i.e., L(µ) < ∞). Assume that ℓ(µ) > 0 and
that Γµ has infinite index in Γ. Then h(µ) < ℓ(µ)v.

Finally, the third result is a kind of continuity statement, to get the uniformity.

Theorem 1.7. Let Γ be a hyperbolic group, endowed with a left-invariant distance which is
hyperbolic and quasi-isometric to a word distance. Let Σ be a subset of Γ which does not
generate an elementary subgroup. There exists a probability measure µΣ with finite support
such that ℓ(µΣ) > 0 and

sup{h(µ)/ℓ(µ) : µ probability,Supp(µ) ⊂ Σ, ℓ(µ) > 0} = h(µΣ)/ℓ(µΣ).

The same statement holds if the maximum is taken over symmetric probability measures,
the resulting maximizing measure being symmetric.

Theorem 1.3 is a consequence of these three statements.

Proof of Theorem 1.3 using the three auxiliary theorems. As in the statement of the theo-
rem, consider a finite subset Σ of Γ. If Σ generates an elementary subgroup of Γ, all
measures supported on Σ have zero entropy. Hence, one can take c = 0 in the statement
of the theorem. Otherwise, by Theorem 1.7, there exists a symmetric measure µΣ with
finite support that maximizes the quantity h(µ)/ℓ(µ) over µ symmetric supported by Σ. If
ΓµΣ

= Γ+
µΣ

has finite index, h(µΣ)/ℓ(µΣ) < v by Theorem 1.5. If it has infinite index, the
same conclusion follows from Theorem 1.6. �

The three auxiliary theorems are non-trivial. Their proofs are independent, and use
completely different tools. Here are some comments about them.
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• At first sight, Theorem 1.5 seems to be the most delicate (this is the only one with
the assumption that Γ is not virtually free). However, this is also the setting that
has been mostly studied in the literature. Hence, we may use several known results,
including most notably results of Ancona [Anc87], of Blachère, Haïssinsky and Math-
ieu [BHM11] and Tanaka [Tan14] (Theorem 1.2 above) and of Izumi, Neshveyev and
Okayasu [INO08] on rigidity results for cocycles. The proof relies mainly on the
fact that the word distance is integer valued, contrary to the Green distance (more
precisely, we use the fact that the stable translation length of hyperbolic elements
is rational with bounded denominator).

• In Theorem 1.6, the difficulty comes from the lack of information on the subgroup Γµ.
If it has good geometric properties (for instance if it is quasi-convex), one may use
the same kind of techniques as for Theorem 1.5. Otherwise, the random walk does
not really see the hyperbolicity of the ambient group. The fundamental inequality
always gives h 6 ℓvΓµ , where vΓµ is the growth rate of the subgroup Γµ (for the
initial word distance on Γ). If vΓµ < v, the result follows. Unfortunately, there
exist non-quasi-convex subgroups of some hyperbolic groups with the same growth
as the ambient group. However, a random walk does not typically visit all points
of Γµ, it concentrates on those points that are not distorted (i.e., their distances to
the identity in Γ and Γµ are comparable). To prove Theorem 1.6, we will show that
in any infinite index subgroup of a hyperbolic group, the number of non-distorted
points is exponentially smaller than env.

• Theorem 1.7 is less simple than it may seem at first sight: it does not claim that µΣ is
supported by Σ, and indeed this is not the case in general (see Example 5.4). Hence,
the proof is not a simple continuity argument: We need to understand precisely the
behavior of sequences of measures that degenerate towards a measure supported on
an elementary subgroup. The proof will show that µΣ is supported by K ·(Σ∪{e})·K,
where K is a finite subgroup generated by some elements in Σ.

A natural question is whether Theorem 1.3 holds for non-symmetric measures. For ad-
missible measures, (i.e., Γ+

µ = Γ), Theorem 1.5 holds. For non-symmetric measures such

that Γµ has infinite index, Theorem 1.6 applies directly. However, since Γµ 6= Γ+
µ for general

non-symmetric measures, there is another case to consider: the case of measures µ such that
Γµ = Γ (or Γµ has finite index in Γ), but Γ+

µ is much smaller than Γ. In this case, it seems
that our arguments do not suffice. We give in Section 6 two examples illustrating the new
difficulties:

(1) One can not rely on growth arguments, as for Theorem 1.6. Indeed, there are
subsemigroups Λ+ with bad asymptotic behavior, for instance such that lim inf|Bn∩
Λ+|/|Bn| = 0 and lim sup|Bn ∩ Λ+|/|Bn| > 0.

(2) The arguments of Theorem 1.5 work for finitely supported measures, or for measures
with a superexponential moment, but also more generally for measures with a nice
geometric behavior (they should satisfy so-called Ancona inequalities). In the non-
symmetric situation, we give in Proposition 6.2 explicit examples of (non-admissible)
measures with an exponential moment and a very nice geometric behavior, and such
that nevertheless h = ℓv. So, arguments similar to those of Theorem 1.5 can not
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suffice, one needs a new argument that distinguishes in a finer way between measures
with finite support and measures with infinite support.

This article is organized as follows. In Section 2, we give more details on the notions of
hyperbolic group, drift and entropy. We also prove Theorem 1.4 on the asymptotic entropy
and drift of the uniform measure on large balls. The following three sections are then
devoted to the proofs of the three auxiliary theorems. Finally, we describe in Section 6
what can happen in the non-symmetric setting. In particular, we show that in any torsion-
free group with infinitely many ends, there exist (non-admissible, non-symmetric) measures
with an exponential moment satisfying h = ℓv.

2. General properties of entropy and drift in hyperbolic groups

2.1. Hyperbolic spaces. In this paragraph, we recall classical properties of hyperbolic
spaces. See for instance [GdlH90] or [BH99].

Consider a metric space (X, d). The Gromov product of two points y, y′ ∈ X, based at
x0 ∈ X, is by definition

(2.1) (y|y′)x0
= (1/2)[d(x0, y) + d(x0, y

′)− d(y, y′)].

The space (X, d) is hyperbolic if there exists δ > 0 such that, for any x0, y1, y2, y3, the
following inequality holds:

(y1|y3)x0
> min((y1|y2)x0

, (y2|y3)x0
)− δ.

The main intuition to have is that, in hyperbolic spaces, configurations of finitely many
points look like configurations in trees: for any k, for any subset F of X with cardinality at
most k, there exists a map Φ from F to a tree such that, for all x, y ∈ F ,

d(x, y) − 2kδ 6 d(Φ(x),Φ(y)) 6 d(x, y).

Hence, a lot of distance computations can be reduced to equivalent computations in trees
(which are essentially combinatorial), up to a bounded error. Up to δ, the Gromov product
(y|y′)x0

is, in the approximating tree, the length of the part that is common to the geodesics
from x0 to y and from x0 to y′.

A space (X, d) is geodesic if there exists a geodesic between any pair of points. For such
spaces, there is a convenient characterization of hyperbolicity. A geodesic space (X, d) is
hyperbolic if and only if there exists δ > 0 such that its geodesic triangles are δ-thin, i.e.,
each side is included in the δ-neighborhood of the union of the two other sides.

Assume that (X, dX ) and (Y, dY ) are two geodesic metric spaces, and that they are quasi-
isometric. If (X, dX ) is hyperbolic, then so is (Y, dY ). Note however that this equivalence
only holds for geodesic spaces.

Let (X, d) be a geodesic hyperbolic metric space. A subset Y of X is quasi-convex if
there exists a constant C such that, for any y, y′ ∈ Y , the geodesics from y to y′ stay in the
C-neighborhood of Y .

We will sometimes encounter hyperbolic spaces which are not geodesic, but only quasi-
geodesic: there exist constants C > 0 and λ such that any two points can be joined by a
(λ,C)-quasi-geodesic, i.e., a map f from a real interval to X such that λ−1|t′ − t| − C 6

d(f(t), f(t′)) 6 λ|t′ − t|+C. When the space is geodesic, a quasi-geodesic stays a bounded
distance away from a true geodesic. Most properties that hold or can be defined using
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geodesics (for instance the notion of quasi-convexity) can be extended to this setting, simply
replacing geodesics with quasi-geodesics in the statements.

Let (X, d) be a proper geodesic hyperbolic space. Its boundary at infinity ∂X is by
definition the set of geodesics originating from a base point x0, where two such geodesics
are identified if they remain a bounded distance away. It is a compact space, which does
not depend on x0. The space X ∪ ∂X is also compact. If X is only quasi-geodesic, all these
definitions extend using quasi-geodesics instead of geodesics.

Any isometry (or, more generally, quasi-isometry) of a hyperbolic space extends continu-
ously to its boundary, giving a homeomorphism of ∂X.

The Gromov product may be extended to X ∪∂X: we define (ξ|η)x0
as the infimum limit

of (xn|yn)x0
for xn and yn converging respectively to ξ and η. The choice to take the infimum

is arbitrary, one could also take the supremum or any accumulation point, those quantities
differ by at most a constant only depending on δ. Hence, one should think of the Gromov
product at infinity to be canonically defined only up to an additive constant. Heuristically,
(ξ|η)x0

is the time after which two geodesics from x0 to ξ and to η start diverging.
Let (X, d) be a proper geodesic (or quasi-geodesic) hyperbolic space. For any small

enough ε > 0, one may define a visual distance d∂X,ε on ∂X such that d∂X,ε(ξ, η) ≍ e−ε(ξ|η)x0

(meaning that the ratio between these quantities is uniformly bounded from above and from
below).

Let (X, d) be a proper hyperbolic metric space. One can define another boundary of
X, the Busemann boundary (or horoboundary), as follows. Let x0 be a fixed basepoint
in X. To x ∈ X, one associates its horofunction hx(y) = d(y, x) − d(x0, x), normalized
so that hx(x0) = 0. The map Φ : x 7→ hx is an embedding of X into the space of 1-
Lipschitz functions on X, with the topology of uniform convergence on compact sets. The
horoboundary is obtained by taking the closure of Φ(X). In other words, a sequence xn ∈ X
converges to a boundary point if hxn(y) converges, uniformly on compact sets. Its limit is
the horofunction hξ associated to the corresponding boundary point ξ (it is also called the
Busemann function associated to ξ). We denote by ∂BX the Busemann boundary of X.
There is a continuous projection πB : ∂BX → ∂X, which is onto but not injective in general.
The boundary ∂BX is rather sensitive to fine scale details of the distance d, while ∂X only
depends on its quasi-isometry class.

Any isometry ϕ of X acts on horofunctions, by the formula hϕ(x)(y) = hx(ϕ
−1y) −

hx(ϕ
−1x0). This implies that ϕ extends to a homeomorphism on ∂BX, given by the same

formula hϕ(ξ)(y) = hξ(ϕ
−1y)−hξ(ϕ

−1x0). Note that, contrary to the action on the geometric
boundary, this only works for isometries of X, not quasi-isometries.

2.2. Hyperbolic groups. Let Γ be a finitely generated group, with a finite symmetric
generating set S. Denote by d = dS the corresponding word distance. The group Γ is
hyperbolic if the metric space (Γ, dS) is hyperbolic. Since hyperbolicity is invariant under
quasi-isometry for geodesic spaces, this notion does not depend on the choice of the generat-
ing set S. However, if one considers another left-invariant distance on Γ which is equivalent
to dS but not geodesic, its hyperbolicity is not automatic. Hence, one should postulate its
hyperbolicity if it is needed, as in the statement of Theorem 1.2. We say that the pair (Γ, d)
is a metric hyperbolic group if the group Γ is hyperbolic for one (or, equivalently, for any)
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word distance, and if the distance d is left-invariant, hyperbolic, and quasi-isometric to one
(or equivalently, any) word distance. Such a distance d does not have to be geodesic, but it
is quasi-geodesic since geodesics for a given word distance form a system of quasi-geodesics
for d, going from any point to any point.

Let (Γ, d) be a metric hyperbolic group. The left-multiplication by elements of Γ is
isometric. Hence, Γ acts by homeomorphisms on its compactifications Γ ∪ ∂Γ and Γ ∪ ∂BΓ.
Moreover, any infinite order element g ∈ Γ acts hyperbolically on Γ ∪ ∂Γ: it has two fixed
points at infinity g− and g+, the points in Γ ∪ ∂Γ \ {g−} are attracted to g+ by forward
iteration of g, and the points in Γ ∪ ∂Γ \ {g+} are attracted to g− by backward iteration of
g.

Definition 2.1. Consider an action of a group Γ on a space Z. A function c : Γ× Z → R

is a cocycle if, for any g, h ∈ Γ and any ξ ∈ Z,

(2.2) c(gh, ξ) = c(g, hξ) + c(h, ξ).

The cocycle is Hölder-continuous if Z is a metric space and each function ξ 7→ c(g, ξ) is
Hölder-continuous.

There is a choice to be made in the definition of cocycles, since one may compose with g or
g−1. Our definition is the most customary. With this definition, the map cB : Γ×∂BΓ → R

given by cB(g, ξ) = hξ(g
−1) is a cocycle, called the Busemann cocycle.

A subgroup H of Γ is nonelementary if its action on ∂Γ does not fix a finite set. Equiva-
lently, H is not virtually the trivial group or Z. We say that a probability measure µ on Γ
is nonelementary if the subgroup Γµ generated by its support is itself nonelementary.

Let µ be a probability measure on Γ. Since Γ acts by homeomorphisms on the compact
space ∂Γ, it admits a stationary measure: there exists a probability measure ν on ∂Γ such
that µ ∗ ν = ν, i.e.,

∑

g∈Γ µ(g)g∗ν = ν. If µ is nonelementary, this measure is unique,

and has no atom (see [Kai00]). It is also the exit measure of the corresponding random
walk Xn = g1 · · · gn: almost every trajectory Xn(ω) converges to a point X∞(ω) ∈ ∂Γ, and
moreover the distribution of X∞ is precisely ν.

In the same way, since Γ acts on ∂BΓ, it admits a stationary measure νB there. This
measure is not unique in general, even if µ is nonelementary. However, all such measures
project under πB to the unique stationary measure on ∂Γ.

2.3. The drift. Let (Γ, d) be a metric hyperbolic group. Consider a probability measure
µ on Γ, with finite first moment L(µ) (defined in (1.1)). The drift of the random walk has
been defined in (1.2) as ℓ(µ) = limL(µ∗n)/n. Let Xn = g1 · · · gn be the position at time n
of the random walk generated by µ (where the gi are independent and distributed according
to µ). Then, almost surely, ℓ(µ) = lim|Xn|/n.

The drift also admits a description in terms of the Busemann boundary. The following
result is well-known (compare with [KL11, Theorem 18]).

Proposition 2.2. Let (Γ, d) be a metric hyperbolic group. Let µ be a nonelementary prob-
ability measure on Γ with finite first moment. Let νB be a µ-stationary measure on ∂BΓ.
Then

(2.3) ℓ(µ) =

∫

Γ×∂BΓ
cB(g, ξ) dµ(g) dνB(ξ).



ENTROPY AND DRIFT IN WORD HYPERBOLIC GROUPS 10

Proof. Let Xn be the position of the random walk at time n. Using the cocycle property of
the Busemann cocycle, we have

∫

cB(Xn(ω), ξ) dP(ω) dνB(ξ) =

∫

cB(g1 · · · gn, ξ) dµ(g1) · · · dµ(gn) dνB(ξ)

=

n
∑

k=1

∫

cB(gk, gk+1 · · · gnξ) dµ(gk) · · · dµ(gn) dνB(ξ).

Since the measure νB is stationary, the point gk+1 · · · gnξ is distributed according to νB .
Hence, the terms in the above sum do not depend on k. We get

(2.4)

∫

Γ×∂BΓ
cB(g, ξ) dµ(g) dνB(ξ) =

1

n

∫

cB(Xn(ω), ξ) dP(ω) dνB(ξ).

We have |cB(Xn, ξ)|/n 6 |Xn|/n, which converges in L1 and almost surely to ℓ. Hence,
the sequence of functions cB(Xn(ω), ξ)/n is uniformly integrable on Ω × ∂BΓ. Moreover,
Xn converges almost surely to a point on the boundary ∂Γ, distributed according to the
exit measure, which has no atom. It follows that, for all ξ, the trajectory Xn(ω) converges
almost surely to a point different from πB(ξ). This implies that, almost surely, one has
cB(Xn, ξ) = |Xn|+O(1), giving in particular cB(Xn, ξ)/n → ℓ. The result follows by taking
the limit in n in the equality (2.4). �

This formula easily implies that the drift depends continuously on the measure, as ex-
plained in [EK13].

Proposition 2.3. Let (Γ, d) be a metric hyperbolic group. Consider a sequence of probabil-
ity measures µi with finite first moment, converging simply to a nonelementary probability
measure µ (i.e., µi(g) → µ(g) for all g ∈ Γ). Assume moreover that L(µi) → L(µ). Then
ℓ(µi) → ℓ(µ).

Proof. Let νi be stationary measures for µi on ∂BΓ. Taking a subsequence if necessary, we
may assume that νi converges to a limiting measure ν. By continuity of the action on the
boundary, it is stationary for µ.

For each g ∈ Γ, the quantity
∫

∂BΓ cB(g, ξ) dνi(ξ) converges to
∫

∂BΓ cB(g, ξ) dν(ξ) since

ξ 7→ cB(g, ξ) is continuous. Averaging over g (and using the assumption L(µi) → L(µ) to
get a uniform domination), we deduce that

∑

g∈Γ

µi(g)

∫

∂BΓ
cB(g, ξ) dνi(ξ) →

∑

g∈Γ

µ(g)

∫

∂BΓ
cB(g, ξ) dν(ξ).

Together with the formula (2.3) for the drift, this completes the proof. �

In this proposition, it is important that µ is nonelementary: the result is wrong otherwise.
For instance, in the infinite dihedral group Z ⋊ Z/2, the measures µi = (1 − 2−i)δ(1,0) +

2−iδ(0,1) have zero drift since the Z/2 element symmetrizes everything in Z, while the limiting
measure µ = δ(1,0) has drift 1. The reason is the non-uniqueness of the stationary measure
for µ on the boundary.
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2.4. The entropy. Let Γ be a countable group. Consider a probability measure µ on Γ,
with finite time one entropy H(µ) (defined in (1.1)). The entropy of the random walk has
been defined in (1.2) as h(µ) = limH(µ∗n)/n. Let Xn = g1 · · · gn be the position at time n
of the random walk generated by µ (where the gi are independent and distributed according
to µ). Then, almost surely, h(µ) = lim(− log µ∗n(Xn))/n. The fundamental inequality (1.3)
shows that if h > 0 then ℓ > 0.

The entropy has several equivalent characterizations. The first one is in terms of the size
of the typical support of the random walk: This support has size roughly ehn. The following
lemma follows from [Haï13, Proposition 1.13].

Lemma 2.4. Consider a probability measure µ with H(µ) < ∞ on a countable group. Let
h = h(µ) be its asymptotic entropy. Let η > 0 and ε > 0.

(1) For large enough n, there exists a subset Kn of Γ with µ∗n(Kn) > 1− η and |Kn| 6
e(h+ε)n.

(2) For large enough n, there exists no subset Kn of Γ with µ∗n(Kn) > η and |Kn| 6
e(h−ε)n.

Another description is in terms of the Poisson boundary of the walk. To avoid general def-
initions, let us only state this description for measures on hyperbolic groups. The following
proposition is a consequence of [Kai00].

Proposition 2.5. Let Γ be a hyperbolic group. Let µ be a nonelementary probability measure
on Γ with H(µ) < ∞. Let ν be its unique stationary measure on ∂Γ. Define the Martin
cocycle on Γ× ∂Γ by cM (g, ξ) = − log(dg−1

∗ ν/dν)(ξ). Then

(2.5) h(µ) >

∫

Γ×∂Γ
cM (g, ξ) dµ(g) dν(ξ),

with equality if µ has a logarithmic moment.

When µ has a logarithmic moment, this proposition has a very similar flavor to Proposi-
tion 2.2 expressing the drift of a random walk. Indeed, for symmetric measures, [BHM11]
interprets Proposition 2.5 as a special case of Proposition 2.2, for a distance d = dµ related
to the random walk, the Green distance, which we defined in Theorem 1.2. This distance
is hyperbolic if µ is admissible and has a superexponential moment, by [Anc87, Gou13]. It
is not geodesic in general, but this is not an issue since we were careful enough to state
Proposition 2.2 without this assumption. The Busemann cocycle for the Green distance is
precisely the Martin cocycle.

An important difference between the formulas (2.3) for the drift and (2.5) for the entropy
is that, in the latter situation, the cocycle cM depends on the measure ν (and, therefore, on
µ). This makes it more complicated to prove continuity statements such as Proposition 2.3
for the entropy. Nevertheless, Erschler and Kaimanovich proved in [EK13] that, in hyper-
bolic groups, the entropy also depends continuously on the measure. As h(µ) = infH(µ∗n)/n
by subadditivity, it is easy to prove that when µi → µ one has lim suph(µi) 6 h(µ). The
main difficulty to prove the continuity is to get lower bounds. We will need a slightly
stronger (and more pedestrian) version of the results of [EK13] to prove Theorem 1.4. Al-
though our argument may seem very different at first sight from the arguments in [EK13],
the techniques are in fact closely related (an illustration is that we can recover with our
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techniques the result of Kaimanovich that, for measures with finite logarithmic moment,
equality holds in (2.5), i.e., the Poisson boundary coincides with the geometric boundary,
see Remark 2.11). Our main criterion to get lower bounds on the entropy is the following.
We write S

k = {g ∈ Γ : |g| ∈ (k− 1, k]} for the thickened sphere, so that the union of these
spheres covers the whole group.

Theorem 2.6. Let (Γ, d) be a metric hyperbolic group. Let µi be a sequence of nonelemen-
tary probability measures on Γ with H(µi) < ∞. Let νi be the unique stationary measure
for µi on ∂Γ. Assume that:

(1) The limit points of νi have no atom.
(2) The sequence

(2.6) hi =
∑

k

∑

g∈Sk

µi(g)(− log(µi(g)/µi(S
k)))

tends to infinity.

Then lim inf h(µi)/hi > 1.

The quantity hi can be written

hi =
∑

g∈Γ

µi(g)(− log µi(g)) −
∑

k

µi(S
k)(− log µi(S

k)).

The first term is the time one entropy H(µi) of the measure µi. In most reasonable cases,
the second term is negligible. The theorem then states that the asymptotic entropy h(µi) is
comparable to the time one entropy H(µi). In other words, if the measure is supported close
to infinity, and sufficiently spread out in the group (this is the meaning of the assumption
that the limit points of νi have no atom), then there are few coincidences and the entropy
does not decrease significantly with time.

To prove this theorem, we will use the following technical lemma.

Lemma 2.7. On a probability space (X,µ), consider a nonnegative function f with average
1. For any subset A of X,

∫

X
(− log f) > µ(A)

(

− log

∫

A
f

)

− 2e−1.

Proof. As the function x 7→ − log x is convex, Jensen’s inequality gives
∫

(− log f) >

− log(
∫

f). The last quantity vanishes when
∫

f = 1.
Let B ⊂ X. Write a =

∫

B f dµ/µ(B). The measure dµ/µ(B) is a probability measure
on B, and the function f/a has integral 1 for this measure. The previous inequality gives
∫

B(− log(f/a)) dµ/µ(B) > 0, that is,
∫

B
(− log f) dµ > −µ(B) log a = −µ(B) log

(
∫

B
f

)

+ µ(B) log µ(B).

The quantity µ(B) log µ(B) is bounded from below by inf [0,1] x log x = −e−1. Therefore,
∫

B
(− log f) dµ > −µ(B) log

(
∫

B
f

)

− e−1.
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We apply this inequality to the complement Ac of A. As − log
(∫

Ac f
)

> 0, we get a lower

bound −e−1. Let us also apply this inequality to A, and add the results. We obtain

∫

X
(− log f) dµ > −µ(A) log

(
∫

A
f

)

− 2e−1. �

We will use the notion of shadow, due to Sullivan and considered in this context by
Coornaert [Coo93]. Let C > 0 be large enough. The shadow O(g,C) of g ∈ Γ is {ξ ∈ ∂Γ :
(g|ξ)e > |g|−C}. In geometric terms (and assuming the space is geodesic), this is essentially
the trace at infinity of geodesics originating from e and going through the ball B(g,C). We
will use the following properties of shadows [Coo93]:

(1) Their covering number is finite. More precisely, there exists D > 0 (depending on
C) such that, for any integer k, for any ξ ∈ ∂Γ,

|{g ∈ S
k : ξ ∈ O(g,C)}| 6 D.

(2) The preimages of shadows are large. More precisely, for any η > 0, there exists
C > 0 such that, for all g ∈ Γ, the complement of g−1O(g,C) has diameter at most
η (for a fixed visual distance on the boundary).

Proof of Theorem 2.6. Fix ε > 0. As the limit points of νi have no atom, there exists η > 0
such that any ball of radius η in ∂Γ has measure at most ε for νi, for i large enough. We can
then choose a shadow size C so that g−1O(g,C) has for all g a complement with diameter
at most η. This yields νi(g

−1O(g,C)) > 1− ε.
By (2.5), the entropy of µi satisfies

h(µi) >
∑

g∈Γ

µi(g)

∫

∂Γ

(

− log
dg−1

∗ νi
dνi

(ξ)

)

dνi(ξ).

The function fi,g = dg−1
∗ νi
dνi

(ξ) is nonnegative and has integral 1. For any A ⊂ ∂Γ,
Lemma 2.7 gives

∫

∂Γ

(

− log
dg−1

∗ νi
dνi

(ξ)

)

dνi(ξ) > −νi(A) log

(
∫

A

dg−1
∗ νi
dνi

(ξ) dνi(ξ)

)

− 2e−1

= −νi(A) log(g
−1
∗ νi(A)) − 2e−1

= −νi(A) log(νi(gA)) − 2e−1.

Let us take A = g−1O(g,C), so that νi(A) > 1− ε. Summing over g, we get

(2.7) h(µi) > (1− ε)
∑

g∈Γ

µi(g)(− log νi(O(g,C))) − 2e−1.
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We split the sum according to the spheres S
k. Let Σk =

∑

g∈Sk νi(O(g,C)), it is at most
D since the shadows have a covering number bounded by D. We have

∑

g∈Sk

µi(g)(− log νi(O(g,C)))

= −µi(S
k)

∑

g∈Sk

µi(g)

µi(Sk)

[

log

(

νi(O(g,C))

Σkµi(g)/µi(Sk)

)

+ log Σk + log(µi(g)/µi(S
k))

]

.

The point of this decomposition is that the function on S
k given by ϕ : g 7→ νi(O(g,C))

Σkµi(g)/µi(Sk)

has integral 1 for the probability measure µi(g)/µi(S
k). By Jensen’s inequality, the integral

of − logϕ is nonnegative. This yields
∑

g∈Sk

µi(g)(− log νi(O(g,C))) > −µi(S
k) logD +

∑

g∈Sk

µi(g)(− log(µi(g)/µi(S
k)).

Summing over k, we deduce from (2.7) the inequality

h(µi) > (1− ε)hi − 2e−1 − logD.

As hi tends to infinity, this gives h(µi) > (1 − 2ε)hi for large enough i, completing the
proof. �

To apply the previous theorem, we need to estimate hi. In this respect, the following
lemma is often useful.

Lemma 2.8. Let Ri > 1. The quantity hi defined in (2.6) satisfies

hi >
∑

|g|6Ri

µi(g)(− log µi(g)) − log(2 +Ri).

Proof. In the definition of hi, all the terms are nonnegative. Restricting the sum to those g
with |g| 6 Ri, we get

hi >
∑

k6Ri

∑

g∈Sk

µi(g)(− log(µi(g)/µi(S
k)))

=
∑

|g|6Ri

µi(g)(− log µi(g)) −
∑

k6Ri

µi(S
k)(− log µi(S

k)).

A probability measure supported on a set with N elements has entropy at most logN . The
number µi(S

k) for 0 6 k 6 Ri are not a probability measure in general, let us add a last
atom with mass m = µi(

⋃

k>Ri
S
k). We are considering a space of cardinality Rn+2, hence

m(− logm) +
∑

k6Ri

µi(S
k)(− log µi(S

k)) 6 log(2 +Ri),

completing the proof. �

Let us see how Theorem 2.6 implies a slightly stronger version of the continuity result for
the entropy of Erschler and Kaimanovich [EK13].
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Theorem 2.9. Let Γ be a hyperbolic group. Consider a probability measure µ with finite
time one entropy and finite logarithmic moment. Let µi be a sequence of probability measures
converging simply to µ with H(µi) → H(µ). Then h(µi) → h(µ).

The assumption H(µi) → H(µ) ensures that there is no additional entropy in µi coming
from neighborhoods of infinity that would disappear in the limit. It is automatic if the
support of µi is uniformly bounded or if µi satisfies a uniform L1 domination, but it is much
weaker. For instance, it is allowed that the µi have no finite logarithmic moment.

The main lemma for the proof is a lower bound on the entropy, following from Theo-
rem 2.6.

Lemma 2.10. Let Γ be a hyperbolic group. Consider a probability measure µ with finite time
one entropy and finite logarithmic moment. Let µi be a sequence of measures converging
simply to µ. Then lim inf h(µi) > h(µ).

Proof. Since the result is trivial if h(µ) = 0, we can assume that h(µ) > 0.

Let ε > 0. For large n, most atoms for µ∗n have a probability at most e−(1−ε)nh(µ).
Moreover, since µ has a finite logarithmic moment, log|Xn|/n tends almost surely to 0
by [Aar97, Proposition 2.3.1]. Therefore, the set

Kn = {g : µ∗n(g) 6 e−(1−ε)nh(µ), |g| 6 eεn}
has measure tending to 1. In particular µ∗n(Kn) > 1− ε for large n. We get

∑

|g|6eεn

µ∗n(g)(− log µ∗n(g)) >
∑

g∈Kn

µ∗n(g)(− log µ∗n(g)) >
∑

g∈Kn

µ∗n(g)(1 − ε)nh(µ)

= µ∗n(Kn)(1− ε)nh(µ) > (1− ε)2nh(µ).

For each fixed n, the measures µ∗n
i converge to µ∗n when i tends to infinity. Hence, we get

for large enough i the inequality
∑

|g|6eεn

µ∗n
i (g)(− log µ∗n

i (g)) > (1− ε)3nh(µ).

Letting ε tend to 0 (and, therefore, n to infinity), we deduce the existence of sequences
ni → ∞ and εi → 0 such that, for any i,

∑

|g|6eεini

µ∗ni

i (g)(− log µ∗ni

i (g)) > (1− εi)
3nih(µ).

Let µ̃i = µ∗ni

i . Its stationary measure νi is also the stationary measure of µi, by uniqueness.
Any limit point of νi is stationary for µ, and is therefore atomless since µ is nonelementary
as h(µ) > 0. The assumptions of Theorem 2.6 are satisfied by the sequence µ̃i. Moreover,
Lemma 2.8 yields

hi > (1− εi)
3nih(µ)− 2εini > (1− Cεi)nih(µ).

Theorem 2.6 ensures that lim inf h(µ̃i)/hi > 1. As h(µ̃i) = nih(µi), this gives lim inf h(µi) >
h(µ) as desired. �
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Proof of Theorem 2.9. For fixed n, the sequence µ∗n
i converges simply to µ∗n. Moreover,

H(µ∗n
i ) → H(µ∗n) since there is no loss of entropy at infinity by assumption. Choose n

such that H(µ∗n) 6 n(1 + ε)h(µ). We get H(µ∗n
i )/n 6 (1 + 2ε)h(µ) for large enough i. As

h(µi) 6 H(µ∗n
i )/n, this shows that lim suph(µi) 6 h(µ) (this is the classical semi-continuity

property of entropy, valid in any group).
For the reverse inequality lim inf h(µi) > h(µ), we apply Lemma 2.10. �

Remark 2.11. Let h(µ, ∂Γ) =
∫

Γ×∂Γ(− log dg−1
∗ ν/dν)(ξ) dµ(g) dν(ξ) where ν is the sta-

tionary measure for µ on ∂Γ. In general, h(µ) > h(µ, ∂Γ) with equality if and only if (∂Γ, ν)
is the Poisson boundary of (Γ, µ). A theorem of Kaimanovich [Kai00] asserts that, when
µ has finite entropy and finite logarithmic moment, h(µ, ∂Γ) = h(µ). We can recover this
theorem using the previous arguments. Indeed, what the proof of Theorem 2.6 really shows
is that lim inf h(µi, ∂Γ)/hi > 1. Hence, Lemma 2.10 proves that lim inf h(µi, ∂Γ) > h(µ) if
µi converges simply to a measure µ with a logarithmic moment. Taking µi = µ for all i, we
obtain in particular h(µ, ∂Γ) > h(µ), as desired.

2.5. A criterion to bound the entropy from below. In order to prove Theorem 1.4
on the entropy of the uniform measure on balls, we want to apply Theorem 2.6. Thus, we
need a criterion to check that limit points of stationary measures have no atom.

Lemma 2.12. Let Γ be a hyperbolic group. Let µi be a sequence of probability measures
on Γ. Assume that, on the space Γ ∪ ∂Γ, the sequence µi converges to a limit ν which is
supported on ∂Γ. Assume moreover that the limit points of µ̌i (defined by µ̌i(g) = µi(g

−1))
have no atom. Then the stationary measures νi associated to µi also converge to ν.

Proof. We fix a word distance d on Γ. Let f be a continuous function on Γ ∪ ∂Γ. Let us
show that, uniformly in ξ ∈ ∂Γ, the integral

∫

f(gξ) dµi(g) is close to
∫

f(g) dµi(g). We
estimate the difference as

∣

∣

∣

∣

∫

(f(gξ)− f(g)) dµi(g)

∣

∣

∣

∣

6

∫

|f(gξ)− f(g)|1((gξ|g)e > C) dµi(g)

+ 2‖f‖∞
∫

1((gξ|g)e 6 C) dµi(g),

where C is a fixed constant. If C is large enough, |f(x) − f(y)| 6 ε when (x|y)e > C, by
uniform continuity of f . Hence, the first integral is bounded by ε. For the second integral,
we use the formula (gx|g)e = |g| − (x|g−1)e, valid for any x ∈ Γ (it follows readily from the
definition (2.1) of the Gromov product). This equality does not extend to the boundary since
the Gromov product there is only well defined up to an additive constant D. Nevertheless,
we get (gξ|g)e > |g| − (ξ|g−1)e −D. Hence, the second integral is bounded by

(2.8) µi{g : |g| − C −D 6 (ξ|g−1)e}.
If |g| is large, the points g with (ξ|g−1)e > |g| −C −D are such that g−1 belongs to a small
neighborhood of ξ in Γ ∪ ∂Γ. As the limit points of µ̌i are supported on ∂Γ and have no
atom, it follows that (2.8) converges to 0 when i tends to infinity, uniformly in ξ.

We have proved that

sup
ξ∈∂Γ

∣

∣

∣

∣

∫

f(gξ) dµi(g) −
∫

f(g) dµi(g)

∣

∣

∣

∣

→ 0.
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By stationarity,
∫

ξ∈∂Γ
f(ξ) dνi(ξ) =

∫

ξ∈∂Γ

(
∫

f(gξ) dµi(g)

)

dνi(ξ).

Combining these equations, we get
∫

f(ξ) dνi(ξ) −
∫

f(g) dµi(g) → 0. This shows that the
limit points of νi and µi are the same. �

Let us now consider the uniform measure µi on the ball of radius i, as in Theorem 1.4.
The next lemma follows from the techniques of [Coo93].

Lemma 2.13. Let (Γ, d) be a metric hyperbolic group. Let ρi be the uniform measure on
the ball of radius i. Let ρ∞ be the Patterson-Sullivan of (Γ, d) constructed in [Coo93] (it
is supported on ∂Γ and atomless). Then the limit points of ρi are equivalent to ρ∞, with a
density bounded from above and from below.

Proof. Let C be large enough. We will use the shadows O(g,C) as defined before the proof
of Theorem 2.6. The main property of ρ∞ is that it satisfies

(2.9) K−1
0 e−v|g|

6 ρ∞(O(g,C)) 6 K0e
−v|g|,

where K0 is a constant only depending on C and v is the growth of (Γ, d) (Proposition 6.1
in [Coo93]).

Let µi be the uniform measure on thickened spheres Si = {g : i 6 |g| 6 i + L}, where
L is large enough so that the cardinality of Si grows like eiv, see the proof of Theorem
7.2 in [Coo93]. Let us push µi to a measure µ̃i on ∂Γ, by choosing for each g ∈ Si a
corresponding point in its shadow. It is clear that µi and µ̃i have the same limit points,
since the diameter of the shadows tends uniformly to 0 when i → ∞. We will prove that
the limit points of µ̃i are equivalent to ρ∞. The same result follows for µi and then ρi.

The shadows of g ∈ Si have a covering number which is bounded from above by a constant
D, and from below by 1 if C is large enough. Hence, the measures µ̃i satisfy

K−1
1 e−iv 6 µ̃i(O(g,C)) 6 K1e

−iv,

for any g ∈ Si. This is comparable to ρ∞(O(g,C)) by (2.9), up to a multiplicative constant
K2. Consider a limit µ̃ of a sequence µ̃in , let us prove that it is uniformly equivalent to ρ∞.
We will only prove that µ̃ 6 DK2ρ∞, the other inequality is proved in the same way. By
regularity of the measures, it suffices to check this inequality on compact sets.

Let A be a compact subset of ∂Γ, and ε > 0. By regularity of the measure ρ∞, there is an
open neighborhood U of A with ρ∞(U) 6 ρ∞(A) + ε. Consider B a compact neighborhood
of A, included in U , with µ̃(∂B) = 0 (such a set exists, since among the sets Br = {ξ :
d(ξ,A) 6 r}, at most countably of them many have a boundary with nonzero measure).
For large enough i, the shadows O(g,C) with g ∈ Si which intersect B are contained in U .
Therefore,

µ̃i(B) 6
∑

g∈Si,O(g,C)∩B 6=∅

µ̃i(O(g,C)) 6 K2

∑

g∈Si,O(g,C)∩B 6=∅

ρ∞(O(g,C)) 6 DK2ρ∞(U).

As µ̃(∂B) = 0, the sequence µ̃in(B) tends to µ̃(B). We obtain µ̃(B) 6 DK2ρ∞(U). As
A is included in B, we get µ̃(A) 6 DK2(ρ∞(A) + ε). Letting ε tend to 0, this gives
µ̃(A) 6 DK2ρ∞(A), as desired. �
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Proof of Theorem 1.4. Let ρi be the uniform measure on the ball of radius i (which has
cardinality in [C−1eiv, Ceiv]). We wish to apply Theorem 2.6 to this sequence of measures.
First, by Lemmas 2.12 and 2.13, the limit points of the stationary measures νi are equivalent
to the Patterson-Sullivan measure. Therefore, they have no atom. Second, Lemma 2.8 shows
that the quantity hi in (2.6) satisfies hi > iv − logC − log(2 + i). This tends to infinity.
Hence, Theorem 2.6 applies, and gives h(ρi) > (1− ε)iv for large i.

Using the fundamental inequality h 6 ℓv and the trivial bound ℓ(ρi) 6 L(ρi) 6 i, we get

(1− ε)iv 6 h(ρi) 6 ℓ(ρi)v 6 iv.

It follows that h(ρi) ∼ iv and ℓ(ρi) ∼ i. �

Remark 2.14. Our technique also applies to estimate the entropy of other measures, for
instance the measure µs =

∑

e−s|g|δg/
∑

e−s|g| classically used in the construction of the
Patterson-Sullivan measure. Indeed, µs converges when s ց v to ρ∞, which has no atom.
Moreover, writing Zs =

∑

e−s|g|, we have H(µs) = sL(µs) + logZs. One checks that logZs

is negligible with respect to H(µs), and that the quantity hs from (2.6) is also equivalent
to H(µs). Hence, Theorem 2.6 gives

H(µs)(1 + o(1)) 6 hs(1 + o(1)) 6 h(µs) 6 ℓ(µs)v 6 L(µs)v 6 H(µs)(1 + o(1)).

These inequalities show that h(µs)/ℓ(µs) → v.

Remark 2.15. One could imagine another strategy to find finitely supported measures µi

for which h(µi)/ℓ(µi) → v. First, find a nice measure µ for which the stationary measure
ν at infinity is precisely the Patterson-Sullivan measure (which implies that h(µ) = ℓ(µ)v
since the Martin cocycle and the Busemann cocycle coincide). Let µi be a truncation of
µ. Since it converges to µ, the continuity results for the drift and the entropy imply that
h(µi)/ℓ(µi) → h(µ)/ℓ(µ) = v.

We were not able to implement successfully this strategy. Given a measure ν, there is
a general technique due to Connell and Muchnik [CM07] to get a measure µ on Γ with
µ ∗ ν = ν. This technique requires a continuity assumption on ξ 7→ (dg∗ν/dν)(ξ), which is
not satisfied in our setting for ν = ρ∞. However, in nice groups such as surface groups, this
function is, for every g, continuous at all but finitely many points. The technique of [CM07]
can be adapted to such a situation (in the proof of their Theorem 6.2, one should just take
sets Yn that avoid the discontinuities of the spikes we have already used). Unfortunately,
the resulting measure µ (which satisfies µ ∗ ν = ν) has infinite moment and infinite entropy,
and is therefore useless for our purposes.

3. Rigidity for admissible measures

In this section, we prove Theorem 1.5. Assume that (Γ, d) is a hyperbolic group endowed
with a word distance, which is not virtually free. Let µ be a probability measure on Γ, with
a superexponential moment, such that Γ+

µ is a finite index subgroup of Γ. We want to prove
that h(µ) < ℓ(µ)v. We argue by contradiction, assuming that h(µ) = ℓ(µ)v. Assume first
that Γ+

µ = Γ.
Since we are assuming the equality h(µ) = ℓ(µ)v, Theorem 1.2 implies that

|dµ(e, g) − vd(e, g)| 6 C.
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As a warm-up, let us first deal with the baby case C = 0. Then the distances dµ and d are
proportional, hence they define the same Busemann boundary. The Busemann boundary
∂BΓ corresponding to d is totally discontinuous since the distance d takes integer values
(it is a word distance). On the other hand, the Busemann boundary associated to the
Green metric dµ is known as the Martin boundary of the random walk (Γ, µ). By [Anc87]
and [Gou13], it is homeomorphic to the boundary ∂Γ of Γ. Since the group Γ is not
virtually free, its boundary ∂Γ is not totally discontinuous (see [KB02, Theorem 8.1]), hence
a contradiction.

Let us now go back to the general situation, when C is nonzero (but still assuming
Γ+
µ = Γ). The argument is more complicated, but it still relies on the same facts: the

boundary is not totally disconnected, while the word distance is integer valued (we will
not use directly this fact, rather the fact that stable translation lengths are rational, see
Lemma 3.4). These two opposite features will give rise to a contradiction.

In order to get rid of the constant C, we will need an homogenized version of the inequality
|dµ(e, g) − vd(e, g)| 6 C. This is Lemma 3.1 below. The homogenized quantity associated
to the distance d is called the stable translation length. For an element g of Γ, it is defined
by l(g) = lim|gn|/n (it exists by subadditivity).

Recall that we write cM (g, ξ) for the Martin cocycle associated to the random walk,
defined in Proposition 2.5. It satisfies the cocycle relation of Definition 2.1. We will not
use its probabilistic definition, but rather the fact that the Martin cocycle is the Busemann
cocycle associated to the Green distance dµ of Theorem 1.2. In other words, cM (g, ξ) =
limx→ξ dµ(g

−1, x)− dµ(e, x) (and this limit exists).

Lemma 3.1. For g ∈ Γ with infinite order, cM (g, g+) = vl(g).

Proof. Recall that we are assuming that the equality h(µ) = ℓ(µ)v holds, therefore we have
|dµ(e, g)− vd(e, g)| 6 C. It follows that the cocycle cM corresponding to dµ and the cocycle
cB corresponding to the distance d satisfy |cM − vcB | 6 2C. Note that cB is not defined on
the geometric boundary, but on the horoboundary, so the proper way to write this inequality
is |cM (g, πB(ξ)) − vcB(g, ξ)| 6 2C for any g ∈ Γ and any ξ ∈ ∂BΓ.

Let ξ ∈ ∂BΓ with πB(ξ) 6= g−. Then lim cB(g
n, ξ)/n = limhξ(g

−n)/n = l(g). We choose
ξ with πB(ξ) = g+, to get

lim cM (gn, g+)/n = lim vcB(g
n, ξ)/n ± 2C/n = vl(g).

As g+ is g-invariant, the cocycle equation for cM on ∂Γ gives cM (g, g+) = cM (gn, g+)/n.
This converges to vl(g) when n → ∞ by the previous equation. �

The proof of Theorem 1.5 uses the following general result on cocycles.

Proposition 3.2. Let Γ be a hyperbolic group which is not virtually free. Let c : Γ×∂Γ → R

be a Hölder cocycle, such that any hyperbolic element g satisfies c(g, g+) ∈ Z. Then there
exists a hyperbolic element g ∈ Γ with c(g, g−) = c(g, g+).

Applied to the Busemann cocycle, this proposition implies that if a convex cocompact
negatively curved manifold has a fundamental group which is not virtually free, then its
length spectrum is not arithmetic, i.e., the lengths of its closed geodesics generate a dense
subgroup of R. This result is already known, see [Dal99, Page 205]. It is proved in this article
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using crossratios. This argument based on crossratios can be used to prove Proposition 3.2
in full generality. However, we will give a different, more direct, proof.

We will use the following topological lemma.

Lemma 3.3. Let g be a hyperbolic element in a hyperbolic group Λ with connected boundary.
There exists an arc I (i.e., a subset of ∂Λ homeomorphic to [0, 1]) joining g− and g+,
invariant under an iterate gi of g.

Proof. We will use nontrivial results on the topology of ∂Λ. When it is connected, then
it is also locally connected by [Swa96]. Hence, it is also path connected and locally path
connected, see [HY61, Theorem 3-16]. Moreover, for any ξ ∈ ∂Λ, the space ∂Λ \ {ξ} has
finitely many ends by [Bow98b].

Consider g as in the statement of the lemma. Its action permutes the ends of ∂Λ \ {g−}.
Taking an iterate of g, we can assume it stabilizes the ends. If ξ is close to g−, it is also the
case of gξ. As they belong to the same end, one can join them by a small arc J that avoids
g− (and g+). Then

⋃

n∈Z g
nJ joins g− to g+, and it is invariant under g. However, it is not

necessarily an arc if giJ intersects J in a nontrivial way for i 6= 0. To get a real arc, we will
shorten J as follows.

As gnJ converges to g± when n tends to ±∞, the arc J can only intersect finitely many
giJ . Let us fix a parametrization u : [0, 1] → J . The quantity

inf{|t− s| : s, t ∈ [0, 1] and ∃i 6= 0, u(t) = giu(s)}
is realized by compactness (since i remains bounded), for some parameters s, t, i. Replacing
s, t, i with t, s,−i if necessary, we may assume i > 0. As g− and g+ are the only fixed
points of gi, we have s 6= t. Let K = u([s, t]), this is an arc between η = u(s) and
giη = u(t). Moreover, gjK does not intersect K, except maybe at its endpoints for j = ±i:
otherwise, there exists x in the interior of K such that gjx also belongs to K, contradicting
the minimality of |s− t|.

It follows that
⋃

n∈Z g
niK is an arc from g− to g+, invariant under gi. �

Proof of Proposition 3.2. Let us consider the cocycle c̄ = c mod Z. The assumption of the
proposition ensures that c̄(g, g+) = 0 for all hyperbolic elements g. In geometric terms, this
would correspond to an assumption that the cocycle has vanishing average on all closed
orbits. Hence, we may apply a version of Livsic’s theorem, due in this context to [INO08]
(Theorem 5.1). It ensures that the cocycle c̄ is a coboundary: there exists a Hölder contin-
uous function b̄ : ∂Γ → R/Z such that, for all ξ ∈ ∂Γ, for all g ∈ Γ,

(3.1) c̄(g, ξ) = b̄(gξ) − b̄(ξ).

Recall that, since the group Γ is not virtually free, its boundary is not totally discon-
tinuous (see [KB02, Theorem 8.1]). The stabilizer of a nontrivial component L of ∂Γ is a
subgroup Λ of Γ, quasi-convex hence hyperbolic, whose boundary is L (see the discussion
on top of Page 55 in [Bow98a]).

Let us consider an infinite order element g ∈ Λ. Lemma 3.3 constructs an arc I from g−

to g+ in ∂Λ ⊂ ∂Γ, invariant under an iterate gi of g. Replacing g with gi, we may assume
i = 1.

The restriction of the function b̄ to the arc I admits a continuous lift b : I → R, as
I is simply connected. The function F : ξ 7→ c(g, ξ) − b(gξ) + b(ξ) is well defined on
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I, continuous, and it vanishes modulo Z by (3.1). Hence, it is constant. In particular,
c(g, g−) = F (g−) = F (g+) = c(g, g+). �

In order to apply Proposition 3.2, we will need the following result on stable translation
lengths in hyperbolic groups ([BH99, Theorem III.Γ.3.17]).

Lemma 3.4. Let (Γ, d) be a hyperbolic group with a word distance. Then there exists an
integer N such that, for any g ∈ Γ, one has Nl(g) ∈ Z.

The combination of Lemma 3.1 and Lemma 3.4 shows that the cocycle c′ = NcM/v satis-
fies c′(g, g+) ∈ Z for any hyperbolic element g. Moreover, this cocycle is Hölder-continuous
since the Martin cocycle cM is itself Hölder-continuous. This follows from [INO08] if µ has
finite support, and from [Gou13] if it has a superexponential moment. Now, Proposition 3.2
implies the existence of a hyperbolic element g such that cM (g, g+) = cM (g, g−). This is a
contradiction since c(g, g+) = vl(g) > 0 and c(g, g−) = −c(g−1, g−) = −vl(g) < 0 again by
Lemma 3.1. This concludes the proof of Theorem 1.5 when Γ+

µ = Γ.

If Γ+
µ is a finite index subgroup of Γ, the same proof almost works in Γ+

µ to conclude that

Γ+
µ is virtually free if h = ℓv, implying that Γ is also virtually free. The only difficulty is

that the distance we are considering on Γ+
µ is not a word distance for a system of generators

of Γ+
µ . However, the only properties of the distance we have really used are:

(1) It is hyperbolic and quasi-isometric to a word distance (to apply Theorem 1.2).
(2) The stable translation lengths are rational numbers with bounded denominators.

These two properties are clearly satisfied for the restriction of the distance d to Γ+
µ . Hence,

the above proof also works in this case. This completes the proof of Theorem 1.5. �

Remark 3.5. If Λ is a quasi-convex subgroup of a hyperbolic group Γ, then the restriction
to Λ of a word distance on Γ also satisfies the above two properties. Hence, Theorem 1.5
also holds in Λ for such a distance.

4. Growth of non-distorted points in subgroups

Our goal in this section is to prove Theorem 1.6 on the entropy of a random walk on
an infinite index subgroup Λ of a hyperbolic group Γ. Since the geometry of such random
walks is complicated to describe in general, our argument is indirect: we will show that, in
any infinite index subgroup, the number of points that the random walk effectively visits
is exponentially small compared to the growth of Γ. This is trivial if the growth vΛ =

lim infn→∞
log|Bn∩Λ|

n is strictly smaller than v = vΓ. When vΛ = v, on the other hand, we
will argue that the random walk does not typically visit all of Λ, but only a subset made
of non-distorted points. To prove Theorem 1.6, the main step is to show that, even when
vΛ = v, the number of such non-distorted points is exponentially smaller than env. We
introduce the notion of non-distorted points in Paragraph 4.1, prove this main geometric
estimate in Paragraph 4.2, and apply this to random walks in Paragraph 4.4. Paragraph 4.3
is devoted to the case vΛ < v, where unexpected phenomena happen even in distorted
subgroups.
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4.1. Non-distorted points. There are at least two different ways to define a notion of
non-distorted point.

Definition 4.1. Let Γ be a finitely generated group endowed with a word distance d = dΓ,
and let Λ be a subgroup of Γ.

• For ε > 0 and M > 0, we say that g ∈ Λ is (ε,M)-quasi-convex if any geodesic γ
from e to g spends at least a proportion ε of its time in the M -neighborhood of Λ,
i.e.,

|{i ∈ [1, |g|] : d(γ(i),Λ) 6 M}| > ε|g|.

We write ΛQC(ε,M) for the set of points in Λ which are (ε,M)-quasi-convex.
• Assume additionally that Λ is finitely generated, and endowed with a word distance
dΛ. For D > 0, we say that g ∈ Λ is D-undistorted if dΛ(e, g) 6 DdΓ(e, g). We
write ΛUD(D) for the set of D-undistorted points.

Up to a change in the constants, these notions do not depend on the choice of the distance
d. The first definition has the advantage to work for infinitely generated subgroups, but it
may seem less natural than the second one. If Λ is a quasi-convex subgroup of a hyperbolic
group Γ, then all its points are (1,M)-quasi-convex if M is large enough, and all its points
are also D-undistorted for large enough D. In the general case, a quasi-convex point does
not have to be undistorted: it may happen that the times i such that d(γ(i),Λ) 6 M are all
included in [1, |g|/2], while between |g|/2 and |g| one needs to make a huge detour to follow
Λ, making dΛ(e, g) much larger than dΓ(e, g). On the other hand, an undistorted point is
automatically quasi-convex, at least in hyperbolic groups:

Proposition 4.2. Let Γ be a hyperbolic group, let Λ be a finitely generated subgroup of Γ,
and let D > 0. There exist ε > 0 and M > 0 such that any D-undistorted point is also
(ε,M)-quasi-convex, i.e., ΛUD(D) ⊂ ΛQC(ε,M).

Proof. Consider g ∈ Λ which is not (ε,M)-quasi-convex, we have to show that dΛ(e, g) is
much bigger than n = dΓ(e, g). The intuition is that, away from a Γ-geodesic from e to g,
the progress towards g is much slower by hyperbolicity.

Let us consider a geodesic from e to g in Λ, with length dΛ(e, g). Replacing each generator
of Λ by the product of a uniformly bounded number of generators of Γ, we obtain a path
γΛ in the Cayley graph of Γ, remaining in the C0-neighborhood of Λ (for some C0 > 0) and
with length |γΛ| 6 C0dΛ(e, g).

Let us consider a geodesic γΓ from e to g for the distance dΓ. For each x ∈ Γ, we can
consider its projection π(x) on γΓ, i.e., the point on γΓ that is closest to x (if several points
correspond, we take the closest one to e). This projection is 1-Lipschitz. In particular, the
projection of γΛ covers the whole geodesic γΓ. For each xi ∈ γΓ, let us consider the first
point yi ∈ γΛ projecting to xi.

Let us fix an integer L, large enough with respect to the hyperbolicity constant of Γ.
Along γΓ, let us consider the points at distance kL from e, i.e., x0 = e, xL, x2L, . . . , xmL

with m = ⌊n/L⌋. In particular, |γΛ| >
∑

i dΓ(yiL, y(i+1)L). Moreover, a tree approximation
shows that dΓ(yiL, y(i+1)L) > dΓ(yiL, xiL) + L + dΓ(x(i+1)L, y(i+1)L) − C1 (where C1 only
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depends on the hyperbolicity constant of Γ). Choosing L > C1, we get

|γΛ| >
m
∑

i=0

dΓ(xiL, yiL) >

m
∑

i=0

(dΓ(xiL,Λ)− C0).

Since we assume that g is not (ε,M)-quasi-convex, the set of indices i with d(xi,Λ) 6 M
has cardinality at most εn. Taking M > C0, the previous equation is bounded from below
by

(m+ 1− εn)M − (m+ 1)C0 > (n/L− εn)M − nC0/L.

Finally, we get
dΛ(e, g) > |γΛ|/C0 > n(1/L− ε)M/C0 − n/L.

If ε is small enough and M is large enough so that (1/L − ε)M/C0 − 1/L > D, we obtain
dΛ(e, g) > Dn, i.e., g /∈ ΛUD(D), as desired. �

From this point on, we will mainly work with the notion of quasi-convex points, since
counting results on such points imply results on undistorted points by the previous propo-
sition.

4.2. Non-distorted points in subgroups with vΛ = v. In this section, we show that
there are exponentially few quasi-convex points in infinite-index subgroups of hyperbolic
groups.

Theorem 4.3. Let Γ be a nonelementary hyperbolic group endowed with a word distance.
Let Λ be an infinite index subgroup of Γ. Then

(4.1) |Bn ∩ Λ| = o(|Bn|).
Moreover, for all ε > 0 and M > 0, there exists η > 0 such that, for all large enough n,

(4.2) |Bn ∩ ΛQC(ε,M)| 6 e−ηn|Bn|.
One may wonder why we put the estimate (4.1) in the statement of the theorem, while

the main emphasis is on counting quasi-convex points. It turns out that this estimate
is not trivial, and that its proof uses the same techniques as for the proof of (4.2). To
illustrate that it is not trivial, let us remark that this estimate is not true without the
hyperbolicity assumption. For instance, in Γ = F2 × Z (with its canonical generating
system, and the corresponding word distance), the infinite index subgroup Λ = F2 satisfies
|Λ ∩Bn|/|Bn| > c > 0.

Theorem 4.3 is trivial if the growth rate vΛ of Λ is strictly smaller than the growth rate
v of Γ, since in this case |Bn ∩ Λ| itself is exponentially smaller than |Bn|. However, this is
not always the case, even for finitely generated subgroups.

Consider for instance a compact hyperbolic 3-manifold which fibers over the circle, ob-
tained as a suspension of a hyperbolic surface with a pseudo-Anosov. Its fundamental group
Γ surjects into Z = π1(S

1). The kernel Λ of this morphism ϕ is the fundamental group of
the fiber. It is finitely generated, with infinite index, and |Bn ∩Λ| ∼ c|Bn|/

√
n, see [Sha98].

Heuristically, one can understand in this case why there are exponentially few quasi-
convex points in Λ. Let us consider a geodesic of length n in Γ. It projects under ϕ to a
path in Z, which behaves roughly like a random walk. In particular, e−nv|Sn ∩ Λ| behaves
like the probability that a random walk on Z comes back to the identity at time n. This
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is of order 1/
√
n, in accordance with the rigorous results of [Sha98]. Such an element is

quasi-convex if the random walk in Z spends a big proportion of its time close to the origin.
A large deviation estimate shows that this is exponentially unlikely.

The proof of the theorem consists in making this heuristic precise, in the general case
where the subgroup Λ is not normal (so that there is no morphism ϕ at hand). An important
point in the proof is that a hyperbolic group is automatic, i.e., there exists a finite state
automaton that recognizes a system of geodesics parameterizing bijectively the points in
the group. Counting points in the group then amounts to a random walk on the graph of
this automaton, while counting points in Λ amounts to a fibred random walk, on this graph
times Λ\Γ. As this space is infinite, the random walk spends most of its time outside of
finite sets, i.e., far away from Λ.

To formalize this argument, we will reduce the question to Markov chains on graphs,
where we will use the following probabilistic lemma.

Lemma 4.4. Consider a Markov chain (Xn) on a countable set V , with a stationary mea-

sure m (i.e., m(x) =
∑

y m(y)p(y, x) for all x). Let Ṽ be the set of points x ∈ V such that
∑

x→y m(y) = +∞, where we write x → y if there exists a positive probability path from x

to y. Then, for all x ∈ V and x′ ∈ Ṽ ,

(4.3) Px(Xn = x′) → 0 when n → ∞.

Take x ∈ Ṽ and ε > 0. There exists η > 0 such that, for all large enough n,

(4.4) Px(Xn = x and Xi visits x at least εn times in between) 6 e−ηn.

Proof. In countable state Markov chains, a point x can be either transient, or null recurrent,
or positive recurrent. Let us first show that points in Ṽ are not positive recurrent, by
contradiction. Otherwise, the points that can be reached from x form an irreducible class C,
which admits a stationary probability measure p. The restriction of m to C is an excessive
measure. By uniqueness (see [Rev84, Theorem 3.1.9]), the measure m is proportional on C
to p. In particular, it has finite mass there. This contradicts the assumption

∑

x→y m(y) =
+∞.

Let us now show that, for all x ∈ V and x′ ∈ Ṽ , the probability Px(Xn = x′) tends to 0.
Otherwise, conditioning on the first visit to x′, we deduce that Px′(Xn = x′) does not tend
to 0. This implies that x′ is positive recurrent, a contradiction.

Let us now prove (4.4). Consider x ∈ Ṽ , it is either transient or null recurrent. If it is
transient, the probability p to come back to x is < 1. Hence, the probability to come back
εn times is bounded by pεn, and is therefore exponentially small as desired.

Assume now that x is null recurrent: almost surely, the Markov chain comes back to
x, but the waiting time τ has infinite expectation. Let τ1, τ2, . . . be the length of the
successive excursions based at x. They are independent and distributed like τ , by the Markov
property. The probability in (4.4) is bounded by P(

∑εn
i=1 τi 6 n), which is bounded for any

M by P(
∑εn

i=1 τi1τi6M 6 n). The random variables τi1τi6M are bounded, independent and
identically distributed. If M is large enough, they have expectation > 1/ε. A standard large
deviation result then shows that P(

∑εn
i=1 τi1τi6M 6 n) is exponentially small, as desired. �

We will also need the following technical lemma, which was explained to us by B. Bekka.
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Lemma 4.5. Let Λ be a subgroup of a group Γ. Assume that there exists a finite subset B
of Γ such that BΛB = Γ. Then Λ has finite index in Γ.

Proof. We have by assumption Γ =
⋃

i,j biΛbj =
⋃

i,j Λibibj , where Λi = biΛb
−1
i is a conju-

gate of Λ (and has therefore the same index). A theorem of Neumann [Neu54] ensures that
a group is never a finite union of right cosets of infinite index subgroups. Hence, one of the
Λi has finite index in Γ, and so has Λ. �

Let Γ be a hyperbolic group, with a finite generating set S. Consider a finite directed
graph A = (V,E, x∗) with vertex set V , edges E, a distinguished vertex x∗, and a labeling
α : E → S. We associate to any path γ in the graph (i.e., a sequence of edges σ0, σ1, . . . , σm−1

where the endpoint of σi is the beginning of σi+1) a path in the Cayley graph starting from
the identity and following the edges labeled α(σ0), then α(σ1), and so on. The endpoint of
this path is α∗(γ) := α(σ0) · · ·α(σm−1). We always assume that any point can be reached
by a path starting at x∗.

A hyperbolic group is automatic (see, for instance, [Cal13]): there exists such a graph
with the following properties.

(1) For any path γ in the graph, the corresponding path α(γ) is geodesic in the Cayley
graph.

(2) The map α∗ induces a bijection between the set of paths in the graph starting from
x∗ and the group Γ.

In particular, the paths of length n in the graph originating from x∗ parameterize the
sphere S

n of radius n in the group. The existence of such a structure makes it for instance
possible to prove that the growth series of a hyperbolic group is rational. We will use such
an automaton to count the points in the subgroup Λ, and in particular the quasi-convex
points.

We define a transition matrix A, indexed by V . By definition, Axy is the number of edges
from x to y. Hence, (An)xy is the number of paths of length n from x to y. In particular,
the number of paths of length n starting from x∗ is

∑

y(A
n)x∗y. Write u for the line vector

with 1 at position x∗ and 0 elsewhere, and ũ for the column vector with 1 everywhere. This
number of paths reads uAnũ. Therefore, |Sn| = uAnũ, proving the rationality of the growth
function of the group. Let v be the growth rate of balls in Γ. It satisfies |Bn| 6 Cenv,
by [Coo93]. Hence, the spectral radius of A is ev , and A has no Jordan block for this
maximal eigenvalue.

To understand the points of the infinite index subgroup Λ of Γ, we consider an extension
AΛ of A, with fibers Λ\Γ. Its vertex set VΛ is made of the pairs (x,Λg) ∈ V ×Λ\Γ. For any
edge σ in A, going from x to y and with label α(σ), we put for any g ∈ Γ an edge in AΛ

from (x,Λg) to (y,Λgα(σ)). A path γ in A, from x to y, lifts to a path γ̃ in AΛ originating
from (x,Λe). By construction, its endpoint is (y,Λα∗(γ)). This shows that the paths in the
graph AΛ remember the current right coset of Λ.

The next lemma proves that the relevant components of this fibred graph are infinite.

Lemma 4.6. Let x̃0 = (x0,Λg0) belong to AΛ. Let C be the component of x0 in A (i.e., the
set of points that can be reached from x0 and from which one can go back to x0). Let AC be
the restriction of the matrix A to the points in C. Assume that its spectral radius ρ(AC) is



ENTROPY AND DRIFT IN WORD HYPERBOLIC GROUPS 26

equal to ev. Then, starting from x̃0 in the graph CΛ (the restriction of AΛ to C ×Λ\Γ), one
can reach infinitely many different points of CΛ.

Proof. It suffices to show that one can reach infinitely many points whose component in C
is x0. Assume by contradiction that one can only reach a finite number of classes (x0,Λgi).

Given w ∈ Γ and C > 0, let Yw,C be the set of points in Γ that have a geodesic expression
in which, for any subword w̃ of this expression and for any a, b with length at most C, one
has w 6= aw̃b. In other words, the points in Yw,C are those that never see w (nor even a
thickening of w of size C) in their geodesic expressions. Theorem 3 in [AL02] proves the
existence of C0 such that, for any w, the quantity |Bn∩Yw,C0

|/|Bn| tends to 0 (the important
point is that C0 does not depend on w).

The number of paths in C originating from x0 grows at least like c|Bn| since the spectral
radius of AC is ev . These paths give rise to distinct points in Γ. Hence, there exists such a
path γ0 such that α∗(γ0) /∈ Yw,C0

. In particular, there exists a subpath γ1 such that α∗(γ1)
can be written as a1wb1 with |a1| 6 C0 and |b1| 6 C0. We can choose a path from x0 to the
starting point of γ1, with fixed length (since C is finite), and another path from the endpoint
of γ1 to x0. Concatenating them, we get a path γ2 from x0 to itself with α∗(γ2) = a2wb2
and |a2|, |b2| 6 C1 = C0 + 2diam(C). By assumption, Λg0α∗(γ2) is one of the finitely many
Λgi since we are returning to x0. Hence, there exists λ ∈ Λ such that g0a2wb2 = λgi. This
shows that w ∈ BΛB, where B is the ball of radius C1+maxi d(e, gi). As this holds for any
w, we have proved that BΛB = Γ. By Lemma 4.5, this shows that Λ has finite index in Γ,
a contradiction. �

Lemma 4.7. Let K(n, x̃0, ε0) denote the set of paths in AΛ starting at a point x̃0, of length
n, coming back to x̃0 at time n, and spending a proportion at least ε0 of the time at x̃0.
Consider x̃0 ∈ AΛ and ε0 > 0. Then there exist η > 0 and C > 0 such that, for all n ∈ N,

|K(n, x̃0, ε0)| 6 Cen(v−η).

Proof. Write x̃0 = (x0,Λg0), let C be the component of x0 in A. If the spectral radius of
the restricted transition matrix AC is < ev, we simply bound |K(n, x̃0, ε0)| by the number
of paths in C from x0 to itself. This is at most ‖An

C‖, which is exponentially smaller than
env as desired.

Assume now that ρ(AC) = ev. We will understand the number of paths in C (and in its lift
CΛ) in terms of a Markov chain. The matrix AC has a unique eigenvector q corresponding
to the eigenvalue ev, it is positive by Perron-Frobenius’s theorem. By definition, p(x, y) =
e−vAxyq(y)/q(x) satisfies, for any x ∈ C,

∑

y∈C

p(x, y) =
e−v

q(x)

∑

Axyq(y) = 1.

This means that p(x, y) is a transition kernel on C. Denote by (Xn)n∈N the corresponding
Markov chain. By construction,

Px(Xn = y) = e−nv(An)xyq(y)/q(x).

Moreover, (An)xy is the number of paths of length n in A from x to y. Hence, up to a
bounded multiplicative factor q(y)/q(x), the transition probabilities of the Markov chain Xn
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count the number of paths in the graph C. Let m denote the unique stationary probability
for the Markov chain on C.

We lift everything to CΛ, assigning to an edge the transition probability of its projection in
C. The stationary measure m lifts to a stationary measure mΛ, which is simply the product
of m and of the counting measure in the direction Λ\Γ. Denoting by XΛ

n the Markov chain
in CΛ, we have

e−nv|K(n, x̃0, ε0)| = Px̃0
(XΛ

n = x̃0 and XΛ
i visits x̃0 at least ε0n times in between).

By Lemma 4.6, the Markov chain starting from x̃0 can reach infinitely many points. Equiva-
lently, since m is bounded from below, it can reach a set of infinite mΛ-measure. Therefore,
Lemma 4.4 applies, and shows that the above quantity is exponentially small. �

Proof of Theorem 4.3. Let us first prove (4.2). Counting the points in S
n∩ΛQC(ε,M) amounts

to counting the paths of length n in AΛ, starting from (x∗,Λe) and spending a proportion
at least ε of their time in the finite subset F = V × ΛBM ⊂ VΛ. Such a path spends a
proportion at least ε0 = ε/|F | of its time at a given point x̃ ∈ F . Let k and k +m denote
the first and last visits to x̃ (with m > ε0n since there are at least ε0n visits). Such a path
is the concatenation of a path from (x∗,Λe) to x̃ of length k (their number is bounded by
the corresponding number of paths in A, at most ‖Ak‖ 6 Cekv), of a path in K(m, x̃, ε0),
and of a path starting from x̃ of length n − k −m (their number is again bounded by the

number of corresponding paths in A, at most Ce(n−k−m)v). Hence, their number is at most

Ce(n−m)v |K(m, x̃, ε0)|. Summing over the points x̃ ∈ F , over the at most n possible values
of k, and the values of m, we get the inequality

|Sn ∩ ΛQC(ε,M)| 6 Cnenv
∑

x̃∈F

n
∑

m=ε0n

e−mv|K(m, x̃, ε0)|.

Lemma 4.7 shows that this is exponentially smaller than env.
Let us now prove (4.1), using similar arguments. A point in S

n ∩ Λ corresponds to a
path of length n in AΛ, starting from (x∗,Λe) and ending at a point (x,Λe). We say that a
component C in the graph A is maximal if the spectral radius of the corresponding restricted
matrix AC is ev. Since the matrix A has no Jordan block corresponding to the eigenvalue ev ,
a path in the graph encounters at most one maximal component. The paths in AΛ whose
projection in A spends a time k in non-maximal components give an overall contribution
to |Sn ∩ Λ| bounded by Ce(n−k)v+k(v−η) 6 Ce−ηk|Bn|. Given ε > 0, their contribution for
k > k0(ε) is bounded by ε|Bn|. Hence, it suffices to control the paths for fixed k. Let us fix
the beginning of such a path, from (x∗,Λe) to a point (x0,Λg0) where x0 is in a maximal
component C, and its end from (x1,Λg1) with x1 ∈ C to a point (x,Λe). To conclude, one
should show that the number of paths of length n from (x0,Λg0) to (x1,Λg1) is o(env). This
follows from the probabilistic interpretation in the proof of Lemma 4.7 and from (4.3). �

4.3. Non-distorted points in subgroups with vΛ < v. Let Λ be a subgroup of a hy-
perbolic group Γ. Let vΛ and vΓ be their respective growths, for a word distance on Γ. If
vΛ = vΓ, Theorem 4.3 proves that there is a dichotomy:

(1) Either Λ is quasi-convex (equivalently, Λ has finite index in Γ). Then |Bn ∩ Λ| >
cenvΛ , and all points in Λ are quasi-convex.
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(2) Or Λ is not quasi-convex (equivalently, it has infinite index in Γ). Then |Bn ∩ Λ| =
o(envΛ), and there are exponentially few quasi-convex points in Λ.

Consider now a general subgroup Λ with vΛ < vΓ. If it quasi-convex, then (1) above
is still satisfied: |Bn ∩ Λ| > cenvΛ by [Coo93], and all points in Λ are quasi-convex. One
may ask if these properties are equivalent, and if they characterize quasi-convex subgroups.
This question is reminiscent of a question of Sullivan in hyperbolic geometry: Are convex
cocompact groups the only ones to have finite Patterson-Sullivan measure? Peigné showed
in [Pei03] that the answer to this question is negative. His counterexamples adapt to our
situation, giving also a negative answer to our question.

Proposition 4.8. There exists a finitely generated subgroup Λ of a hyperbolic group Γ
endowed with a word distance, which is not quasi-convex, but for which C−1envΛ 6 |Bn∩Λ| 6
CenvΛ . Moreover, most points of Λ are quasi-convex: there exist ε and η such that

(4.5) |Bn ∩ Λ \ ΛQC(ε,0)| 6 Cen(vΛ−η).

Proof. The example is the same as in [Pei03], but his geometric proofs are replaced by
combinatorial arguments based on generating series.

Let G be a finitely generated non-quasi-convex subgroup of a hyperbolic group G̃ (take

for instance for G̃ the fundamental group of a hyperbolic 3-manifold which fibers over the
circle, and for G the fundamental group of the fiber of this fibration). Let H = Fk, with k

large enough so that vH > vG. We take Λ = G ∗H ⊂ Γ = G̃ ∗H. It is not quasi-convex,
because of the factor G. Writing vΛ for its growth, we claim that, for some c > 0,

(4.6) |Sn ∩ Λ| ∼ cenvΛ .

We compute with generating series. Let FG(z) be the growth series for G, given by FG(z) =
∑

n>0|Sn ∩ G|zn. Likewise, we define FH and FΛ. Since any word in Λ has a canonical
decomposition in terms of words in G and H, a classical computation (see [dlH00, Prop.
VI.A.4]) gives

(4.7) FΛ =
FGFH

1− (FG − 1)(FH − 1)
.

Let zG = e−vG > zH = e−vH be the convergence radii of FG and FH . At zH , we have
FH(zH) = +∞, since the cardinality of spheres in the free group is exactly of the order of
envH . When z increases to zH , the function (FG(z) − 1)(FH (z)− 1) takes the value 1, at a
number z = zΛ. Since this is the first singularity of FΛ, we have zΛ = e−vΛ . Moreover, the
function FΛ is meromorphic at zΛ, with a pole of order 1 (since the function (FG−1)(FH−1)
has positive derivative, being a power series with nonnegative coefficients). It follows from
a simple tauberian theorem (see, for instance, [FS09, Theorem IV.10]) that the coefficients
of FΛ behave like cz−n

Λ , proving (4.6).
Let us estimate the number of non-quasi-convex points in Λ. Consider a word w ∈ Λ of

length n, for instance starting with a factor in G and ending with a factor in H. It can be
written as g1h1g2h2 · · · hs. Along a geodesic from e to w, all the words g1h (with h prefix
of h1) belong to Λ. So do all the words g1h1g2h with h prefix of h2, and so on. Therefore,
the proportion of time that the geodesic spends outside of Λ is at most

∑|gi|/n. Such a
point in Λ \ ΛQC(ε,0) satisfies

∑|gi| > (1 − ε)n and
∑|hi| 6 εn. Assuming ε 6 1/2, this
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gives
∑|hi| 6 (ε/2)

∑|gi|. In particular, for any α > 0, we have eα(
∑

|gi|−2ε−1
∑

|hi|) > 1. Let
un = |Sn ∩Λ \ΛQC(ε,0)|, its generating series satisfies the following equation (where we only
write in details the words starting with G and ending in H, the other ones being completely
analogous):

∑

unz
n 6

∑

ℓ>1

∑

a1+b1+a2+···+bℓ=n

eα(
∑

ai−2ε−1
∑

bi)|Sa1 ∩G||Sb1 ∩H| · · · |Sbℓ ∩H|zn + . . .

=
∑

ℓ>1

[

(FG(e
αz)− 1)(FH (e−2αε−1

z)− 1)
]ℓ

+ . . .

=
FG(e

αz)FH(e−2αε−1

z)

1− (FG(eαz)− 1)(FH (e−2αε−1z)− 1)
.

This is the same formula as in (4.7), but the factor z has been shifted in FG and FH . Choose

α > 0 such that eαzΛ < zG, and then ε small enough so that (FG(e
αzΛ)−1)(FH (e−2αε−1

zΛ)−
1) < 1. We deduce that the series

∑

unz
n converges for z = zΛ, and even slightly to its

right. It follows that un is exponentially small compared to z−n
Λ . This proves (4.5). �

4.4. Application to random walks in infinite index subgroups. In this paragraph,
we use Theorem 4.3 to prove Theorem 1.6 on random walks given by a measure µ on a
hyperbolic group Γ, assuming that Γµ has infinite index in Γ.

Before proving Theorem 1.6, we give another easier result, pertaining to the case where
µ has a finite moment for a word distance on Γµ (which should be finitely generated): In
this case, the random walk typically visits undistorted points. This easy statement is not
used later on, but it gives a heuristic explanation to Theorem 1.6.

Lemma 4.9. Let Λ be a finitely generated subgroup of a finitely generated group Γ. Let dΛ
and dΓ be the two corresponding word distances. Consider a probability measure µ on Λ,
with a moment of order 1 for dΛ (and therefore for dΓ), with nonzero drift for dΓ. Let Xn

denote the corresponding random walk. There exists D > 0 such that P(Xn ∈ ΛUD(D)) → 1.

Proof. Almost surely, dΓ(e,Xn) ∼ ℓΓn, for some nonzero drift ℓΓ. In the same way,
dΛ(e,Xn) ∼ ℓΛn. For any D > ℓΛ/ℓΓ, we get almost surely dΛ(e,Xn) 6 DdΓ(e,Xn) for
large enough n, i.e., Xn ∈ ΛUD(D). �

This lemma readily implies Theorem 1.6 under the additional assumption that Λ is finitely
generated and that µ has a moment of order 1 for dΛ. Indeed, for large n, with probability
at least 1/2, the point Xn belongs to B(ℓ+ε)n ∩ ΛUD(D), whose cardinality is bounded by

Ce(ℓ+ε)n(v−η) according to Theorem 4.3. Lemma 2.4 yields h 6 (ℓ + ε)(v − η), hence
h 6 ℓ(v − η) < ℓv, completing the proof.

However, the assumptions of Theorem 1.6 are much weaker: even when Λ is finitely
generated, it is much more restrictive to require a moment of order 1 on Λ than on Γ,
precisely because the Γ-distance is smaller than the Λ-distance on distorted points, which
make up most of Λ. The general proof will not use undistorted points (which are not even
defined when Λ is not finitely generated), but rather quasi-convex points: we will show
that, typically, the random walk concentrates on quasi-convex points. With the previous
argument, Theorem 1.6 readily follows from the next lemma.
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Lemma 4.10. Let Λ be a subgroup of a hyperbolic group Γ endowed with a word distance
d = dΓ. Let us consider a probability measure µ on Λ, with a moment of order 1 for dΓ.
There exist ε > 0 and M > 0 such that P(Xn ∈ ΛQC(ε,M)) > 1/2 for large enough n.

Proof. The lemma is trivial if µ is elementary, since all the elements of Γµ ⊂ Λ are then
quasi-convex. We may therefore assume that µ is non-elementary.

The random walk at time n is given by Xn = g1 · · · gn, where gi are independent and
distributed like µ. We will show that most products g1 · · · gi (which belong to Λ) are within
distance M of a geodesic from e to Xn (this amounts to the classical fact that trajectories
of the random walk follow geodesics in the group), and moreover that they approximate a
proportion at least ε of the points on this geodesic. This will give Xn ∈ ΛQC(ε,M) as desired.
The second point is more delicate: we should for instance exclude the situation where, given
a geodesic γ, one has Xn = γ(a(n)) where a(n) is the smallest square larger than n. In this
case, Xn follows the geodesic γ at linear speed, but nevertheless the proportion of γ it visits
tends to 0. This behavior will be excluded thanks to the fact that, with high probability,
the jumps of the random walk are bounded.

The argument is probabilistic and formulated in terms of the bilateral version of the
random walk. On Ω = ΓZ with the product measure P = µ⊗Z, let gn be the n-th coordinate.
The gn are independent, identically distributed, and correspond to the increments of a
random walk (Xn)n∈Z with X0 = e and X−1

n Xn+1 = gn+1. Almost surely, Xn converges
when n → ±∞ towards two random variables ξ± ∈ ∂Γ, with ξ+ 6= ξ− almost surely since
these random variables are independent and atomless. Following Kaimanovich [Kai00],
denote by S(ξ−, ξ+) the union of all the geodesics from ξ− to ξ+. Let π be the projection
on S(ξ−, ξ+), i.e., π(g) is the closest point to g on S(ξ−, ξ+). It is not uniquely defined, but
two possible choices are within distance C0, for some C0 only depending on Γ.

Let us choose L > 0 large enough (how large will only depend on the hyperbolicity
constant of the space). Any measurable function is bounded on sets with arbitrarily large
measure. Hence, there exists K > 0 such that, with probability at least 9/10,

(1) For every |k| > K, the projections π(Xk) are distant from π(X0) by at least L (and
they are closer to ξ+ if k > 0, and to ξ− if k < 0).

(2) We have d(e, S(ξ−, ξ+)) 6 K.

As everything is equivariant, we deduce that, for all i ∈ Z, the point Xi satisfies the same
properties with probability at least 9/10, i.e.,

(4.8) d(Xi, S(ξ
−, ξ+)) 6 K and, for all |k| > K, d(π(Xi), π(Xi+k)) > L.

Let n be a large integer. Write m = ⌊n/K⌋. Among the integers K, 2K, . . . ,mK 6 n, we
consider the set In(ω) of those i such that Xi satisfies (4.8). We have E(|In|) > m · 9/10.
As |In| 6 m, we get

9m

10
6 E(|In|) 6

m

10
P(|In| < m/10) +mP(|In| > m/10) =

m

10
+

9m

10
P(|In| > m/10).

This gives P(|In| > m/10) > 8/9. Let η = 1/(20K). Let Ωn be the set of ω such that
|In(ω)| > ηn + 1, and X0 and Xn satisfy (4.8), and d(Xn, e) 6 2ℓn (where ℓ is the drift of
µ). It satisfies P(Ωn) > 1/2 if n is large enough. This is the set of good trajectories for
which we can control the position of many of the Xi.
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ξ−
π(X0) π(Xi) π(Xn)

ξ+

X0 Xn

Xi

Yi γ

Figure 1. The projections on γ and S

Let ω ∈ Ωn. We write Yi for a projection of Xi on a geodesic γ from e to Xn. Let
Ĩn = In \ {mK}, so that the elements of Ĩn are at distance at least K of 0 and n. As X0

and Xn satisfy (4.8), the projections π(Xi) for i ∈ Ĩn are located between π(X0) and π(Xn),
and are at a distance at least L of these points (see Figure 1). If L is large enough, we
obtain d(π(Xi), Yi) 6 C1 by hyperbolicity, where C1 only depends on Γ. This gives

d(Yi,Λ) 6 d(Yi, π(Xi)) + d(π(Xi),Xi) 6 C1 +K,

thanks to (4.8) for Xi. When i 6= j belong to Ĩn, we have d(π(Xi), π(Xj)) > L again thanks
to (4.8), hence d(Yi, Yj) > L − 2C1. If L was chosen larger than 2C1 + 1, this shows that
Yi 6= Yj. We have found along γ at least |In| − 1 distinct points, within distance C1 +K of
Λ. Moreover, for large enough n,

|In| − 1 > ηn > 2ℓn · (η/2ℓ) > d(e,Xn) · (η/2ℓ).
Let ε = η/2ℓ and M = C1 +K. We have shown that, for ω ∈ Ωn (whose probability is at
least 1/2), the point Xn(ω) belongs to ΛQC(ε,M). �

5. Construction of maximizing measures

In this section, we prove Theorem 1.7: Given any finite subset Σ in a hyperbolic group Γ,
there exists a measure µΣ maximizing the quantity h(µ)/ℓ(µ) over all measures µ supported
on Σ with ℓ(µ) > 0. To prove this result, we start with a sequence of measures µi supported
on Σ such that h(µi)/ℓ(µi) converges to the maximum M of these quantities. We are looking
for µΣ with h(µΣ)/ℓ(µΣ) = M . Replacing µi with (µi + δe)/2 (this multiplies entropy and
drift by 1/2, and does not change their ratio) and adding e to Σ, we can always assume
µi(e) > 1/2, to avoid periodicity problems.

Extracting a subsequence, we can ensure that µi converges to a limit probability measure
µ. We treat separately the two following cases:

(1) Γµ is non-elementary.
(2) Γµ is elementary.

Let us handle first the easy case, where Γµ is non-elementary. In this case, the entropy
and the drift are continuous at µ, by Proposition 2.3 and Theorem 2.9, both due to Erschler
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and Kaimanovich in [EK13]. Therefore, h(µi)/ℓ(µi) tend to h(µ)/ℓ(µ), since in this case
ℓ(µ) > 0. One can thus take µΣ = µ.

The case where Γµ is elementary is much more interesting. Let us describe heuristically
what should happen, in a simple case. We assume that µi = (1 − ε)µ + εν where ν is a
fixed measure, and ε tends to 0. The random walk for µi can be described as follows. At
each jump, one picks µ (with probability 1 − ε) or ν (with probability ε), then one jumps
according to the chosen measure. After time N , the measure ν is chosen roughly εN times,
with intervals of length 1/ε in between, where µ is chosen. Thus, µ∗N

i behaves roughly like

(µ∗1/ε ∗ ν)εN .

When Γµ is finite, the measure µ∗1/ε is close, when ε is small, to the uniform measure π on
Γµ. Therefore, µ∗N

i is close to (π ∗ ν)εN . We deduce h(µi) ∼ εh(π ∗ ν) and ℓ(µi) ∼ εℓ(π ∗ ν).
In particular, h(µi)/ℓ(µi) → h(π ∗ ν)/ℓ(π ∗ ν). One can take µΣ = π ∗ ν.

When Γµ is infinite, it is virtually cyclic. Assuming that µ is centered for simplicity,

the walk given by µ∗1/ε arrives essentially at distance 1/
√
ε of the origin, by the central

limit theorem. Then, one jumps according to ν, in a direction transverse to Γµ, preventing

further cancellations. Hence, the walk given by (µ∗1/ε ∗ ν)εN is at distance roughly εN/
√
ε

from the origin, yielding ℓ(µi) ∼ √
ε. On the other hand, each step µ∗1/ε only visits 1/ε

points, hence the measure (µ∗1/ε ∗ ν)εN is supported by roughly (1/ε)εN points, yielding
h(µi) ∼ ε|log ε|. In particular, h(µi) = o(ℓ(µi)). This implies that h(µi)/ℓ(µi), which tends
to 0, can not tend to the maximum M . Therefore, this case can not happen.

The rigorous argument is considerably more delicate. One difficulty is that µi does not
decompose in general as (1−ε)µ+εν: there can be in µi points with a very small probability
(which are not seen by µ), but much larger than ε, the probability to visit a nonelementary
subset of Γ. These points will play an important role on the relevant time scale, i.e., 1/ε.
Hence, we have to describe the different time scales that happen in µi.

For each a ∈ Σ, we have a weight µi(a), which tends to 0 if a is not in the support of µ.
Reordering the ak and extracting a subsequence, we can assume that Σ = {a1, . . . , ap} with
µi(a1) > · · · > µi(ap) (and a1 = e). Extracting a further subsequence, we may also assume
that µi(ak)/µi(ak−1) converges for all k, towards a limit in [0, 1].

Let Γk be the subgroup generated by a1, . . . , ak. We consider the smallest r such that
Γr is non-elementary. Then, we consider the biggest s < r such that µi(r) = o(µi(s)).
Roughly speaking, the random walk has enough time to spread on the elementary subgroup
Γs, before seeing ar. It turns out that the asymptotic behavior will depend on the nature
of Γs (finite or virtually cyclic infinite).

We will decompose the measure µi as the sum of two components (1− εi)αi+ εiβi, where
εi tends to 0, the measure αi mainly lives on Γs, and the measure βi corresponds to the
remaining part of µi, on {as+1, . . . , ap}. The precise construction depends on the nature of
Γs:

• If Γs is finite. Let β
(0)
i be the normalized restriction of µi to {as+1, . . . , ap}. To

avoid periodicity problems, we rather consider βi = (δe + β
(0)
i )/2. We decompose

µi = (1 − εi)αi + εiβi, where αi is supported on a1, . . . , as. By construction, the
probability of any element in the support of αi is much bigger than εi.
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• If Γs is virtually cyclic infinite. The group Γs contains a hyperbolic element g0, with
repelling and attracting points at infinity denoted by g−0 and g+0 . The elements of
Γs all fix the set {g−0 , g+0 }. We take for αi the normalized restriction of µi to those
elements in Σ that fix {g−0 , g+0 }, and for βi the normalized restriction of µi to the
other elements. Once again, we can write µi = (1− εi)αi + εiβi.

In both cases, εi is comparable to the probability µi(ar), and is therefore negligible with
respect to µi(as). We will write µi = µε (and, in the same way, we will replace all indices i
with ε, since the main parameter is ε = εi). The measure µε converges to µ when ε tends to
0, while βε tends to a probability measure β, supported on e, as+1, . . . , ap. If the measures
µε are symmetric to begin with, the measures αε and βε are also symmetric by construction.

To generate the random walk given by µε, one can first independently choose random
measures ρn: one takes ρn = αε with probability 1 − ε, and ρn = βε with probability ε.
Then, one chooses elements gn randomly according to ρn, and one multiplies them: the
product g1 · · · gn is distributed like the random walk given by µε at time n.

We will group together successive gk, into blocks where the equidistribution on Γs can
be seen. More precisely, denote by t1, t2, . . . the successive times where ρn = βε (and
t0 = 0). They are stopping times, the successive differences are independent and identically
distributed, with a geometric distribution of parameter ε (i.e., P(t1 = n) = (1 − ε)n−1ε),
with mean 1/ε. Write LN = gtN−1+1 · · · gtN . By construction, the Li are independent,
identically distributed, and the random walk they define, i.e., L1 · · ·LN , is a subsequence
of the original random walk g1 · · · gn. Let λε be the distribution of Li on Γ, i.e.,

λε =

∞
∑

n=0

(1− ε)nεα∗n
ε ∗ βε.

Lemma 5.1. The measure λε has finite first moment and finite time one entropy. Moreover,
ℓ(µε) = εℓ(λε) and h(µε) = εh(λε).

Proof. As the mean of t1 is 1/ε, the random walk generated by λε is essentially the random
walk generated by µε, but on a time scale 1/ε. This justifies heuristically the statement.

For the rigorous proof, let us first check that λε has finite first moment (and hence finite
time one entropy). Since all the measures have finite support, we have |L1| 6 Ct1. Since a
geometric distribution has moments of all order, the same is true for |L1|.

The strong law of large numbers ensures that, almost surely, tN ∼ N/ε. Therefore, almost
surely,

ℓ(λε) = lim
|L1 · · ·LN |

N
= lim

|g1 · · · gtN |
N

= lim
|g1 · · · gtN |

tN
· tN
N

= ℓ(µε) · 1/ε.

This proves the statement of the lemma for the drift.
For the entropy, we use the characterization of Lemma 2.4. We will show that h(µε) 6

εh(λε) and h(µε) > εh(λε). Let Kn be a set of cardinality at most e(h(µε)+η)n which contains
g1 · · · gn with probability at least 1/2. Let N = εn. With large probability, tN is close to
n, up to η′n (where η′ is arbitrarily small). Hence, with probability at least 1/3, the point
L1 · · ·LN belongs to the Cη′n-neighborhood of Kn, whose cardinality is at most

|Kn| · eC
′η′n

6 e(h(µε)+η+C′η′)n = e(h(µε)+η+C′η′)N/ε.



ENTROPY AND DRIFT IN WORD HYPERBOLIC GROUPS 34

As η and η′ are arbitrary, this shows that h(λε) 6 h(µε)/ε. The converse inequality is
proved in the same way. �

The previous lemma shows that we should understand λε. We define an auxiliary proba-
bility measure α̃ε so that λε = α̃ε ∗ βε, by

(5.1) α̃ε =

∞
∑

n=0

(1− ε)nεα∗n
ε .

In this formula, most weight is concentrated around those n of the order of 1/ε. Hence, we
have to understand the iterates of αε in time 1/ε. When Γs is finite, we will see that it
has enough time to equidistribute on Γs (even though αε may give a very small weight to
some elements, this weight is by construction much larger than ε, so that 1/ε iterates are
enough to equidistribute). When Γs is virtually cyclic, we will see that the random walk
has enough time to drift away significantly from the identity.

In both cases, we will need quantitative results on basic groups, but in weakly elliptic cases
(i.e., the transition probabilities are not bounded from below). There are techniques to get
quantitative estimates in such settings, especially comparison techniques (due for instance
to Varopoulos, Diaconis, Saloff-Coste): one can compare weakly elliptic walks to elliptic
ones (which we understand well) thanks to Dirichlet forms arguments: these arguments
make it possible to transfer results from the latter to the former (modulo some loss in the
constants, due to the lack of ellipticity). We will rely on such results when Γs is infinite.
When it is finite, such techniques can also be used, but we will rather give a more elementary
argument.

We start with the case where Γs is finite. We need to quantify the speed of convergence
to the stationary measure in finite groups, with the following lemma.

Lemma 5.2. Let Λ be a finite group. Let ΣΛ ⊂ Λ be a generating subset (it does not have
to be symmetric). Let πΛ be the uniform measure on Λ, and let d(µ, πΛ) be the euclidean

distance between a measure µ and πΛ (i.e.,
(
∑

(µ(g) − πΛ(g))
2
)1/2

). For any δ > 0, there
exists K > 0 with the following property. Let η > 0. Consider a probability measure µ on Λ
with µ(σ) > η for any σ ∈ ΣΛ ∪ {e}. Then, for all n > K/η,

d(µ∗n, πΛ) 6 δ.

In other words, the time to see the equidistribution towards the stationary measure is
bounded by 1/η, where η is the minimum of the transition probabilities on ΣΛ.

Proof. Endow the space M(Λ) of signed measures on Λ with the scalar product correspond-

ing to the quadratic form |ν|2 = ∑

ν(g)2. Denote by H = {ν :
∑

ν(g) = 0} the hyperplane
π⊥
Λ of zero mass measures. For any probability ρ, denote by Mρ the left-convolution operator

on M(Λ), that is Mρ(ν) = ρ∗ν. Since convolution preserves mass, H is Mρ-invariant. Let us
prove that the operator norm of Mρ is bounded by 1. Indeed, put uρ(g) =

∑

h∈Λ ρ(h)ρ(hg),
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this is a probability on Λ. We have

|Mρν|2 =
∑

g∈Λ

(Mρν(g))
2 =

∑

(g,h1,h2)∈Λ3

ρ(gh−1
1 )ρ(gh−1

2 )ν(h1)ν(h2)

=
∑

(h1,h2)∈Λ2

ν(h1)ν(h2)uρ(h1h
−1
2 ) =

∑

(g,h)∈Λ2

ν(h)ν(g−1h)uρ(g)

6
∑

g∈Λ

|ν|2uρ(g) = |ν|2.

This proves that ‖Mρ‖ 6 1. Now fix ρo to be the uniform probability on the set ΣΛ ∪ {e}.
Notice that uρo(g) > 0 for any g ∈ ΣΛ ∪ {e}, since ρo(e) > 0. We claim that Mρo restricted
to H has an operator norm c < 1. Would it be not the case, there would exist ν ∈ H − {0}
such that the previous inequalities would be equalities. Thanks to the equality case in the
Cauchy-Schwarz inequality, this implies that, for any g ∈ ΣΛ, the two measures h 7→ ν(h)
and h 7→ ν(g−1h) are positively proportional. Since their norm are equal, they must be
equal. Since ΣΛ generates Λ, ν is Λ-invariant and belongs to H, so it must be zero.

By assumption, the probability µ can be decomposed as

µ = ηρo + (1− η)ν,

where ν is some probability. This implies that Mµ restricted to H has operator norm at
most ηc+ (1− η). Therefore,

d(µ∗n, πΛ) = |µ∗n − πΛ| = |Mn
µ (δe − πΛ)| 6 2(1− (1− c)η)n.

This inequality implies the result. �

We can now describe the asymptotic behavior of µε when the group Γs is finite.

Lemma 5.3. Assume that Γs is finite. Define a new probability measure λ = πΓs ∗ β (it
generates a non-elementary subgroup). When ε tends to 0, we have h(µε) ∼ εh(λ) and
ℓ(µε) ∼ εℓ(λ).

Proof. The random variable t1, being geometric of parameter ε, is of the order of 1/ε with
high probability (i.e., for any δ > 0, there exists u > 0 such that P(t1 > u/ε) > 1 − δ).
Writing Σs = {a1, . . . , as} for the support of αε, we have minσ∈Σs αε(σ) = (1 − ε)−1µε(as),
which is much bigger than ε by definition of s. Lemma 5.2 shows that the measures α∗n

ε

are close to πΓs for n > u/ε. This implies that α̃ε (defined in (5.1)) converges to πΓs when
ε → 0. As βε converges to β, this shows that λε converges to λ.

The support of the measure λ contains Γs and as+1, . . . , ar (as the support of β contains
{e, as+1, . . . , ar} by construction). Hence, Γλ contains the non-elementary subgroup Γr. It
follows that the entropy and the drift are continuous at λ, by Proposition 2.3 and Theo-
rem 2.9. We get h(λε) → h(λ) and ℓ(λε) → ℓ(λ). With Lemma 5.1, this completes the
proof. �

We deduce from the lemma that h(µε)/ℓ(µε) tends to h(λ)/ℓ(λ). Hence, the measure
µΣ = λ satisfies the conclusion of the theorem, at least in the non-symmetric case. In the
symmetric case, where we are looking for a symmetric measure µΣ, the measure λ = πΓs ∗β
is not an answer to the problem. However, λ′ = πΓs ∗ β ∗ πΓs is symmetric, and it clearly
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has the same entropy and drift as λ (since πΓs ∗ πΓs = πΓs). Hence, we can take µΣ = λ′.
This completes the proof of Theorem 1.7 when the group Γs is finite.

Example 5.4. Let Γ = Z/2 ∗ Z/4, with Σ = {a, b, b−1} (where a is the generator of Z/2
and b the generator of Z/4), with the word distance coming from Σ. [MM07, Section 5.1]
shows that the supremum over measures supported on Σ of h(µ)/ℓ(µ) is the growth v of the
group (note that Γ is virtually free), and that it is not realized by a measure supported on
Σ. This shows that, in Theorem 1.7, the fact that µΣ may need a support larger than Σ is
not an artefact of the proof.

In this example, any symmetric measure on Σ is of the form µε = (1−ε)δa+εβ where β is
uniform on {b, b−1}. The above proof shows that, when ε tends to 0, h(µε)/ℓ(µε) converges
to h(λ)/ℓ(λ) where λ = πΓs ∗ β = 1

2 (δe + δa) ∗ 1
2(δb + δb−1) is the uniform measure on

{b, b−1, ab, ab−1}.

It remains to treat the case where Γs is virtually cyclic infinite. Such a group surjects
onto Z or Z⋊Z/2 (the infinite dihedral group), with finite kernel. From the point of view of
the random walk, most things happen in the quotient. Hence, it would suffice to understand
these two groups (separating in the case of Z the centered and non-centered cases). We will
rather give direct arguments which do not use this reduction and which avoid separating
cases. Let t 6 s be the smallest index such that {a1, · · · , at} generates an infinite group.
Let η = η(ε) = µε(at), this parameter governs the equidistribution speed on Γs (or, at least,
on Γt, which has finite index in Γs since these two groups are virtually cyclic infinite). We
will find the asymptotics of the entropy and the drift in terms of η/ε (which tends to infinity
by definition of s). We start with the entropy (for which an upper bound suffices). Note
that the random walk directed by αε does not live on Γs, but on a possibly bigger group
since we have put in αε all the points that fix the set {g−0 , g+0 } (this will be important in

the control of the drift below). Let Γ̃s be the group they generate, it is still virtually cyclic
(see, for instance, [GdlH90, Théorème 37 page 157]), and it contains Γs as a finite index
subgroup.

Lemma 5.5. There exists a constant C such that h(λε) 6 C log(η/ε).

Proof. Let K be the group generated by {a1, . . . , at−1}. It is finite by definition of t. Let Σ′

be the set of points among at, . . . , ap which stabilize {g−0 , g+0 }. The group Γ̃s is generated
by K and Σ′. Let us consider the associated word pseudo-distance d′, where we decide that
elements in K have 0 length. This pseudo-distance is quasi-isometric to the usual distance,
and it satisfies d′(e, xk) = d′(e, x) for all x ∈ Γ̃s and all k ∈ K.

Let us first estimate the average distance to the origin for an element given by α̃ε. We
decompose αε as the average of a measure supported on {a1, . . . , at−1} ⊂ K, and of a
measure supported on Σ′ (the contribution of the latter has a mass m(ε) bounded by (p−
t+ 1)η 6 Cη). The measure α∗n

ε can be obtained by picking at each step one of these two
measures (according to their respective weight), and then jumping according to a random
element for this measure. When we use the first measure, the d′-distance to the origin does
not change by definition. Hence, the distance to the origin is bounded by the number of
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choices of the second measure. We obtain

Eα̃ε(d
′(e, g)) 6

∞
∑

n=0

(1− ε)nε

n
∑

i=0

(

n

i

)

m(ε)i(1−m(ε))n−i · Ci

= Cm(ε)
∞
∑

n=0

(1− ε)nε
n
∑

i=1

n

(

n− 1

i− 1

)

m(ε)i−1(1−m(ε))n−i

= Cm(ε)
∞
∑

n=0

(1− ε)nεn = Cm(ε)(1− ε)/ε 6 Cη/ε.

A measure supported on the integers with first moment A has entropy bounded by
C logA+C (see, for instance, [EK10, Lemma 2]). The proof also applies to virtually cyclic
situations (the finite thickening does not change anything). Therefore, we get H(α̃ε) 6

C log(η/ε) + C.
Finally,

H(λε) = H(α̃ε ∗ βε) 6 H(α̃ε) +H(βε) 6 C log(η/ε) + C,

since the support of βε is uniformly bounded. As η/ε → ∞, this gives H(λε) 6 C log(η/ε).
Finally, we estimate h(λε) = infn>0H(λ∗n

ε )/n 6 H(λε) to get the conclusion of the lemma.
�

For the drift, we need to be more precise since we need a lower bound to conclude. We
will use a lemma giving lower bounds on the equidistribution speed in virtually cyclic infinite
groups, using comparison techniques.

Lemma 5.6. Let Λ be a virtually cyclic infinite group. Let ΣΛ ⊂ Λ be a finite subset
generating an infinite subgroup of Λ. There exists a constant C with the following property.
Let η > 0. Let µ be a probability measure on Λ with µ(e) > 1/2 and µ(σ) > η for any
σ ∈ ΣΛ. Then, for all n > 1,

sup
g∈Λ

µ∗n(g) 6 C(ηn)−1/2.

The interest of the lemma is that C does not depend on the measure µ, and that we obtain
an explicit control on µ∗n just in terms of a lower bound on the transition probabilities of
µ.

Proof. We use the comparison method. Let ρ be the uniform measure on e, ΣΛ and Σ−1
Λ .

The random walk it generates does not have to be transitive (since ΣΛ does not necessarily
generate the whole group Λ), but Λ is partitioned into finitely many classes where it is
transitive (and isomorphic to the random walk on the group generated by ΣΛ). Moreover,
it is symmetric, and therefore reversible for the counting measure m on Λ. The Dirichlet
form associated to ρ is by definition

Eρ(f, f) =
1

2

∑

x,y

|f(x)− f(y)|2ρ(x−1y),

for any f : Λ → C. As Λ has linear growth, the following Nash inequality holds (see, for
instance, [Woe00, Proposition 14.1]).

‖f‖6L2 6 C‖f‖4L1Eρ(f, f),
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where all norms are defined with respect to the measure m on Λ. Let Pµ be the Markov
operator associated to µ. It satisfies

‖f‖2L2 − ‖Pµf‖2L2 = 〈f, f〉 − 〈Pµf, Pµf〉 = 〈(I − P ∗
µPµ)f, f〉.

The operator P ∗
µPµ is the Markov operator associated to the symmetric probability measure

ν = µ̌ ∗ µ, which satisfies ν(σ) > η/2 for σ ∈ ΣΛ ∪ Σ−1
Λ and ν(e) > 1/4 (since µ(e) > 1/2).

Therefore, ρ(g) 6 Cη−1ν(g) for all g. We deduce

‖f‖2L2 − ‖Pµf‖2L2 =
∑

f(x)(f(x)− f(y))ν(x−1y) =
1

2

∑

|f(x)− f(y)|2ν(x−1y)

>
η

2C

∑

|f(x)− f(y)|2ρ(x−1y) =
η

C
Eρ(f, f).

Combining this inequality with Nash inequality, we obtain

‖f‖6L2 6 Cη−1‖f‖4L1(‖f‖2L2 − ‖Pµf‖2L2).

The operator P ∗
µ satisfies the same inequality, for the same reason. Composing these in-

equalities, we obtain an estimate for the norm of Pn
µ from L1 to L∞ (this is [VSCC92,

Lemma VII.2.6]), of the form

‖Pn
µ ‖L1→L∞ 6 (C ′η−1/n)1/2.

Applying this inequality to the function δe, we get the desired result. �

The previous lemma implies that, if C ′ is large enough, a neighborhood of size (ηn)1/2/C ′

of the identity has probability for µ∗n at most 1/2. Hence, the average distance to the origin

is at least of the order of (ηn)1/2.
Now, we study the stationary measure for βε ∗ α̃ε on ∂Γ. We recall that g0 is a hyperbolic

element in Γs, fixed once and for all.

Lemma 5.7. There exists a neighborhood U of {g−0 , g+0 } in ∂Γ such that the stationary
measure νε of βε ∗ α̃ε satisfies νε(U) → 0.

Proof. Let us first show that, for any neighborhood U of {g−0 , g+0 }, then (α̃ε ∗ δz)(U c) tends
to 0, uniformly in z ∈ ∂Γ. This is not surprising since a typical element for α̃ε is large in the
virtually cyclic group Γ̃s, and sends most points into U . To make this argument rigorous, we
will use Lemma 5.6. The definition (5.1) shows that it suffices to prove that (α∗n

ε ∗ δz)(U c)
is small for n > u/ε.

The subgroup generated by g0 has finite index in Γ̃s. Hence, any element in Γ̃s can be
written as gk0γi, for γi in a finite set. Thus, the measure α∗n

ε can be written as
∑

cn(k, i)δgk
0
γi

,

for some coefficients cn(k, i). Lemma 5.6 (applied to Λ = Γ̃s with ΣΛ = {a1, . . . , at}) ensures

that supk,i cn(k, i) 6 C/(ηn)1/2. When n > u/ε, this quantity tends to 0 since ε = o(η). We
have

(α∗n
ε ∗ δz)(U c) =

∑

k,i

cn(k, i)1(g
k
0γiz /∈ U).

As the element g0 is hyperbolic, there exists C such that, for any w ∈ ∂Γ,

|{k ∈ Z : gk0w /∈ U}| 6 C.
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The uniformity in w follows from the compactness of (∂Γ \ {g−0 , g+0 })/〈g0〉. We obtain

(α∗n
ε ∗ δz)(U c) 6

(

sup
k,i

cn(k, i)
)

∑

i

|{k ∈ Z : gk0γiz /∈ U}| 6 C sup
k,i

cn(k, i) 6 C/(ηn)1/2.

This shows that (α∗n
ε ∗ δz)(U c) is small, as desired.

As α̃ε ∗ δz(U
c) tends to 0 uniformly in z, we deduce that (α̃ε ∗ νε)(U c) also tends to 0,

and therefore that (α̃ε ∗ νε)(U) tends to 1.
Let A = {g−0 , g+0 }. We claim that, for all g such that gA∩A 6= ∅, then gA = A. Indeed, if

g(g−0 ) ∈ A for instance, then g−1g0g is a hyperbolic element stabilizing g−0 . It also stabilizes
g+0 , by [GdlH90, Théorème 30 page 154], i.e., g0g(g

+
0 ) = g(g+0 ). Hence, g(g+0 ) is a fixed point

of g0, i.e., g(g+0 ) ∈ A.
By definition of βε, the finitely many elements of its support do not fix A. They even

satisfy gA∩A = ∅ for all g in this support, by the previous argument. If U is small enough,
we get gU ∩ U = ∅, i.e., g(U) ⊂ U c.

Finally,

νε(U
c) = (βε ∗ α̃ε ∗ νε)(U c) > (α̃ε ∗ νε)(U),

which tends to 1 when ε tends to 0. �

Lemma 5.8. The drift ℓ(λε) satisfies ℓ(λε) > c · (η/ε)1/2.
Proof. Let ρε be a stationary measure for λε, on the Busemann boundary ∂BΓ. By Propo-
sition 2.2,

ℓ(λε) =

∫

cB(g, ξ) dρε(ξ) dλε(g),

where cB(g, ξ) = hξ(g
−1) is the Busemann cocycle. As λε = α̃ε ∗ βε, this gives

ℓ(λε) =

∫

cB(Lb, ξ) dρε(ξ) dα̃ε(L) dβε(b).

With the cocycle relation (2.2), this becomes

ℓ(λε) =

∫

cB(L, bξ) dρε(ξ) dα̃ε(L) dβε(b) +

∫

cB(b, ξ) dρε(ξ) dα̃ε(L) dβε(b).

The second integral is bounded independently of ε since the support of βε is finite. In the
first integral, ξ′ = bξ is distributed according to the measure ρ̃ε := βε∗ρε, which is stationary
for βε∗α̃ε. Lemma 5.7 implies that its projection (πB)∗ρ̃ε on the geometric boundary, which
is again stationary for βε ∗ α̃ε, gives a small measure to a neighborhood U of {g−0 , g+0 }.

As the limit set of Γ̃s is {g−0 , g+0 }, there exists a constant C such that, for all ξ /∈ π−1
B U

and g ∈ Γ̃s, we have |hξ(g−1)− d(e, g)| 6 C. For ξ ∈ π−1
B U , we only use the trivial bound

hξ(g
−1) > −d(e, g), since horofunctions are 1-Lipschitz and vanish at the origin. We get

ℓ(λε) >

∫

(L,ξ)∈Γ×π−1

B
Uc

d(e, L) dα̃ε(L) dρ̃ε(ξ)−
∫

(L,ξ)∈Γ×π−1

B
U
d(e, L) dα̃ε(L) dρ̃ε(ξ)−C

=

(
∫

d(e, L) dα̃ε(L)

)

(ρ̃ε(π
−1
B U c)− ρ̃ε(π

−1
B U))− C.
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For small enough ε, we have ρ̃ε(π
−1
B U) 6 1/4 (and therefore ρ̃ε(π

−1
B U c) > 3/4). Moreover,

Lemma 5.6 ensures that the average distance to the origin for the measure α̃ε is at least
c · (η/ε)1/2. Hence, the previous formula completes the proof. �

Combining Lemmas 5.5 and 5.8, we get

h(λε)/ℓ(λε) 6 C log(η/ε)/(η/ε)1/2 .

This tends to 0 since η/ε tends to infinity. We deduce from Lemma 5.1 that h(µε)/ℓ(µε)
tends to 0. This is a contradiction since we were assuming that it converges to the maximum
M , which is positive.

This concludes the proof of Theorem 1.7. �

The study of the case where Γs is virtually cyclic infinite gives in particular the following
result.

Theorem 5.9. Let (Γ, d) be a metric hyperbolic group. Let Σ be a finite subset of Γ which
generates a non-elementary group. Let µi be a sequence of measures on Σ, with h(µi) >
0, converging to a probability measure µ such that Γµ is infinite virtually cyclic. Then
h(µi)/ℓ(µi) → 0.

Note that the precise value of ℓ(µi) depends on the choice of the distance, but if two
distances are equivalent then the associated drifts vary within the same constants. Hence,
the convergence h(µi)/ℓ(µi) → 0 does not depend on the distance.

We recover results of Le Prince [LP07]: In any metric hyperbolic group, there exist
admissible probability measures with h/ℓ < v. The construction of Le Prince is rather
similar to the examples given by Theorem 5.9.

Example 5.10. We can use the above proof to also find an example where h(µε)/ℓ(µε) → 0
although µε tends to a measure µ for which Γµ is finite and nontrivial. Consider Γ =
Z/2× F2 = {0, 1} × 〈a, b〉, endowed with the probability measure µε given by

µε(0, e) = µε(1, e) = 1/2− ε− ε2, µε(0, a) = µε(0, a
−1) = ε, µε(0, b) = µε(0, b

−1) = ε2.

The measure µε converges to µ = (δ(0,e)+δ(1,e))/2. With the above notations, Γµ = Z/2×{e}
but Γs = Z/2× 〈a〉 is virtually cyclic infinite (so that h(µε)/ℓ(µε) → 0) and Γr = Γ.

6. Examples for non-symmetric measures

In this section, we describe the additional difficulties that arise if one tries to prove
Theorem 1.3 for non-symmetric measures. The main problem is that the random walk lives
on the subsemigroup Γ+

µ , which is not a subgroup any more. While many cases can be
handled with the tools we have described in this article, one case can not be treated in this
way: when the subsemigroup Γ+

µ has no nice geometric properties (it is not quasi-convex, it
is not a subgroup), but Γµ = Γ.

Let us first show that the growth properties of such a subsemigroup can be more com-
plicated than what happens for subgroups. If Λ is a subgroup of Γ, either |Bn ∩ Λ| ≍ env,
or |Bn ∩ Λ| = o(env) (the first case happens if and only if Λ has finite index in Γ, see the
discussion at the beginning of Paragraph 4.3). Unfortunately, the behavior of semigroups
can be more complicated.
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Proposition 6.1. In F2, there exists a subsemigroup Λ+ such that lim inf|Bn∩Λ+|/|Bn| = 0
and lim sup|Bn ∩ Λ+|/|Bn| > 0.

Proof. Let S
n
a,a denote the geodesic words in F2 = 〈a, b〉 of length n which start and end

with a. Let nj be a sequence tending very quickly to infinity. Let Λ+ be the subsemigroup

generated by
⋃

S
nj
a,a. Then |Bnj

∩ Λ+| > c|Bnj
|. We claim that

|Bnj−1 ∩ Λ+|/|Bnj−1| → 0.

Indeed, the subsemigroup Λ+
j−1 generated by

⋃

k<j S
nk
a,a has a growth rate which is < env,

since some subwords such as bnj−1 are forbidden in this subsemigroup. Hence, if nj is large

enough with respect to nj−1, we have |Snj−1 ∩ Λ+| = |Snj−1 ∩ Λ+
j−1| = o(e(nj−1)v). �

In this example, most points in S
nj ∩Λ+ are introduced by S

nj
a,a. This shows that Λ+ is far

from being quasi-convex. In particular, techniques based only on non-quasi-convexity and
sub- or super-multiplicativity will never show that |Bn ∩ Λ+| = o(|Bn|) for subsemigroups.

Now, we give an example of a well-behaved measure (apart from the fact that it is not
symmetric, not admissible and not finitely supported) for which h = ℓv. The construction
is done in free products. The idea is to forbid simplifications, so that we have an explicit
control on the random walk at time n. To enforce this behavior, we will work in a free
product Γ1 ∗Γ2, and consider a probability measure supported on elements of the form g1g2
with gi ∈ Γi \{e}. The next statement applies to some non virtually free hyperbolic groups,
for instance the free product of two surface groups. It also applies to some non-hyperbolic
groups, more precisely to all finitely generated groups without torsion and with infinitely
many ends, by Stallings’ theorem. It would be of interest to extend it to all groups with
infinitely many ends. For this, we would need to also handle amalgamated free products
and HNN extensions.

Proposition 6.2. Let Γ1 and Γ2 be two nontrivial groups, generated respectively by finite
symmetric sets S1 and S2. Let Γ = Γ1 ∗ Γ2 with the generating set S = S1 ∪ S2 and the
corresponding word distance. There exists on Γ a (nonsymmetric, nonadmissible) probability
measure µ, with an exponential moment and nonzero entropy, satisfying h(µ) = ℓ(µ)v.

Proof. For i = 1, 2, let Γ∗
i = Γi \ {e}. We claim that

(6.1)
∑

g1∈Γ∗

1
,g2∈Γ∗

2

e−v|g1g2| = 1,

where v is the growth rate of Γ.
Let Fi(z) be the growth series of Γi, i.e., Fi(z) =

∑

g∈Γi
z|g|. The spheres S

n
i ∈ Γi satisfy

S
n+m
i ⊂ S

n
i · Smi . Hence, the sequence log|Sni | is subadditive. This implies that log|Sni |/n

converges to its infimum vi, and moreover that |Sni | > envi . We deduce that the radius of
convergence of Fi is e−vi , and moreover Fi(e

−vi) = +∞.
Let F (z) be the growth series of Γ. As in the proof of Proposition 4.8, it is given by

F (z) =
F1(z)F2(z)

1− (F1(z)− 1)(F2(z)− 1)
.
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Assume for instance v1 > v2. As F1(e
−v1) = +∞, the function (F1(z)− 1)(F2(z)− 1) takes

the value 1 when z increases to e−v1 , at a point which is precisely the radius of convergence
e−v of F . This shows that (F1(e

−v)−1)(F2(e
−v)−1) = 1 . This is precisely the equality (6.1).

We define a probability measure µ on Γ as follows: for (g1, g2) ∈ Γ∗
1 × Γ∗

2, let

µ(g1g2) = e−v|g1g2|.

Since there is only one way to generate the word g11g
1
2 · · · gn1 gn2 using µ, we have

µ∗n(g11g
1
2 · · · gn1 gn2 ) = e−v

∑
i|g

i
1
gi
2
|.

Denoting by Xn the position of the random walk at time n, it follows that − log µ∗n(Xn) =
v|Xn|. Dividing by n and letting n tend to infinity, this gives h(µ) = ℓ(µ)v. �

If one is interested in measures with finite support, one can only get the following approx-
imation result. It has the same flavor as Theorem 1.4, but it is both stronger since it also
applies to some non-hyperbolic groups, and weaker since the measures it produces are not
admissible nor symmetric.

Proposition 6.3. Let Γ1 and Γ2 be two nontrivial groups, generated respectively by finite
symmetric sets S1 and S2. Let Γ = Γ1 ∗ Γ2 with the generating set S = S1 ∪ S2 and the
corresponding word distance. Then

sup
{

h(µ)/ℓ(µ) : µ finitely supported probability measure in Γ, ℓ(µ) > 0
}

= v.

Proof. Any element in Γ can be canonically decomposed as a word in elements of Γ1 and
Γ2. Let Spi,j be the set of elements of length p that start with an element in Γi and end with
an element in Γj . We have the decomposition

S
p = S

p
1,1 ∪ S

p
1,2 ∪ S

p
2,1 ∪ S

p
2,2.

One term in this decomposition has cardinality at least |Sp|/4. Hence, there exist i, j such
that lim sup log|Spi,j|/p = v. Multiplying by fixed elements at the beginning and at the end
to go from Γ1 to Γi, and from Γj to Γ2, we get

(6.2) lim sup log|Sp1,2|/p = v.

Let µp be the uniform probability measure on S
p
1,2. By construction, there are no simpli-

fications when one iterates µp. Hence, µ∗n
p is the uniform probability measure on (Sp1,2)

∗n,

whose cardinality is |Sp1,2|n. We get H(µ∗n
p ) = n log|Sp1,2| and L(µ∗n

p ) = np. Therefore,

h(µp) = log|Sp1,2| and ℓ(µp) = p, giving

h(µp)/ℓ(µp) = log|Sp1,2|/p.
Together with (6.2), this proves the proposition. �
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