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We study noisy heterogeneous diffusion processes with a position dependent diffusivity of the form
D(x) ∼ D0|x|α in the presence of annealed and quenched disorder of the environment, corresponding
to an effective variation of the exponent α in time and space. In the case of annealed disorder,
for which effectively α = α(t) we show how the long time scaling of the ensemble mean squared
displacement (MSD) and the amplitude variation of individual realizations of the time averaged MSD
are affected by the disorder strength. For the case of quenched disorder, the long time behavior
becomes effectively Brownian after a number of jumps between the domains of a stratified medium.
In the latter situation the averages are taken over both an ensemble of particles and different
realizations of the disorder. As physical observables we analyze in detail the ensemble and time
averaged MSDs, the ergodicity breaking parameter, and higher order moments of the time averages.

PACS numbers: 05.40.-a

I. INTRODUCTION

The motion of individual molecules and submicron
tracer particles of different sizes in the cytoplasm of living
biological cells [1], in artificially crowded environments in
vitro [2], in glass-like systems [3], or in large scale in silico
studies of membrane structures [4] was shown to follow
the anomalous diffusion law

〈x2(t)〉 ' tβ , (1)

with the subdiffusive diffusion exponent mostly in the
range β = 0.4 . . . 0.9 [5, 6]. A number of mathemat-
ical models of different kinds were proposed to unveil the
properties of anomalous diffusion phenomena embodied
in the mean squared displacement (MSD) in Eq. (1) [7].
In most of these models the properties of the stochastic
process are homogeneous in space. Especially for smal-
ler tracers, which may cover longer distances within the
measurement time, or for techniques allowing for full
maps of local diffusivities, it turns out that the diffusion
coefficient becomes a function of the local tracer position.
For both eukaryotic [8] and prokaryotic [9] cells such local
diffusivity maps indeed show significant variations. The
motion of tracer particles through space may also be im-
peded by caging effects when the size of the particle is
comparable to the local mesh size in structured environ-
ments [10, 11]. In such cases the tracer diffusion becomes
characterized by a non-uniform, position-dependent dif-
fusivityD(x). Similarly, spatially varying transport char-
acteristics are ubiquitous in contaminant dispersion in
subsurface water aquifers [12].

In the field of stochastic dynamics anomalous diffusion
in spatially random media, disordered energy landscapes,
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†Electronic address: rmetzler@uni-potsdam.de

weakly chaotic systems, and dynamic maps received con-
siderable attention [13–20]. More specifically, anomalous
diffusion due to micro-domains was investigated [21] and
the influence of environmental Gaussian noise on diffus-
ive particle trajectories in disordered systems was studied
[22]. Moreover, deviations from normal diffusion due to
quenched and annealed disorder of the medium diffusiv-
ity received renewed interest [23, 24]. In such studies one
is mainly interested in the quantitative behavior of the
particle MSD (1) as well as the ergodic properties of the
system: is the information from time averages of physical
observables typically garnered as time series by modern
particle tracking assays equivalent to those of the corres-
ponding ensemble averages known from the theoretical
models? It turns out that a large variety of anomal-
ous diffusion processes involve weak ergodicity breaking
[7, 25–29], the disparity between (long) time averages
and ensemble averages of physical observables such as
the MSD, and that in those cases the Khintchine theorem
needs to be substituted by generalized versions [30, 31].

Here, we study the dynamics and the ergodic prop-
erties of heterogeneous diffusion processes (HDPs) with
position dependent diffusivity D(x), in the presence of
piece-wise deterministic quenched and annealed disorder.
More specifically, we generalize HDPs with power-law dif-
fusivity

D(x) = D0|x|α0 , (2)

for which the anomalous diffusion exponent of the MSD
assumes the form [32–36]

β =
2

2− α0
. (3)

The physical dimension of the coefficient D0 in Eq. (2) is
[D0] = cm2−α0sec−1. The exponent (3) designates sub-
diffusion for α0 < 0 and superdiffusion for 0 < α0 [32–36].
The profiles of the diffusivity for these cases are shown
in Fig. 1a,b. HDPs are weakly non-ergodic and ageing,
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Figure 1: Particle diffusivity for heterogeneous diffusion pro-
cesses: (a) and (b) for, respectively, α0 = −2 and α0 = 1.
Panels (c) and (d) show the diffusivity of HDPs with quenched
disorder for the same values of α0 and for the parameters
σ2 = 0.25 and 2δx = 2 (see text for details). Slight variations
of the diffusivity in panels (c) and (d) indicate the external
noise superimposed in the process.

that is, their dynamics depends explicitly on the time
gap between original initiation of the system and start of
the measurement [32–36]. We note that the ageing prop-
erties of HDPs [35] embodied in the ensemble and time
averaged MSDs are in fact similar to those of subdiffusive
continuous time random walks [37] and scaled Brownian
motion [38].

In the following we unravel how the additional dis-
order in the system modifies the diffusive and ergodic
properties of HDPs. We compute the scaling laws for
the ensemble and time averaged MSDs as well as the
amplitude spread of individual realizations of the process.
The article is structured as follows. In Sec. II we define
the observables, that we will analyze. Sec. III specifies
the model and its implementation in the simulations. In
Sec. IV we then study HDPs with annealed disorder, fol-
lowed by the scenario with quenched disorder in Sec. V.
Sec. VI concludes this work.

II. OBSERVABLES

The central quantity in the study of stochastic pro-
cesses is the ensemble averaged MSD

〈x2(t)〉 =

∫ ∞
−∞

x2P (x, t)dx, (4)

calculated as the spatial average of x2 over the probab-
ility density function P (x, t) to find the particle at po-
sition x at given time t [39]. However, when individual
time series x(t) of the particle position are measured in
experiments or simulations, the typical quantity studied

is the time averaged MSD

δ2(∆) =
1

T −∆

∫ T−∆

0

[
x(t+ ∆)− x(t)

]2
dt. (5)

Here ∆ is the lag time and T is the measurement time
(length) of the trajectory x(t) [7, 27, 28]. Often, also the
additional average〈

δ2(∆)
〉

=
1

N

N∑
i=1

δ2
i (∆) (6)

of the time averaged MSD over N individual trajectories
is taken [7, 27, 28]. A process is called ergodic when we
observe the equality

〈x2(∆)〉 = lim
∆/T→0

δ2(∆). (7)

Examples for ergodic processes are Brownian motion
[7, 27–29] as well as anomalous diffusion processes with
MSD (1) given by random walks on fractals [40] and pro-
cesses driven by fractional Gaussian noise [41–43]. Once a
process is non-stationary, the equality (7) is violated, the
phenomenon of weak ergodicity breaking [7, 25–29]. A
whole range of anomalous diffusion processes with power-
law MSD (1) belongs to this class and specifically exhibits
the linear lag time dependence〈

δ2(∆)
〉
' ∆

T 1−β (8)

of the time averaged MSD [7]. As examples we mention
continuous time random walk processes with scale free
distributions of waiting times [7, 25–29, 31], correlated
continuous time random walks [44], as well as diffusion
processes with space [32–36] and time [32, 38, 45, 46]
dependent diffusion coefficients and their combinations
[47]. We also mention ultraslow diffusion processes with
a logarithmic form for 〈x2(t)〉 and linear lag time de-
pendence (8) of the time averaged MSD [48] as well as
the ultraweak ergodicity breaking of superdiffusive Lévy
walks [49].

For finite measurement time even ergodic processes ex-
hibit a statistical scatter of the amplitude of time aver-
aged observables. This irreproducibility for the case of
the time averaged MSD δ2(∆) can be quantified in terms
of the distribution φ(ξ) as function of the dimensionless
variable [7, 26–28]

ξ =
δ2〈
δ2
〉 . (9)

The variance of φ(ξ) is quantified in terms of the ergodi-
city breaking parameter [7, 26–28]

EB(∆) =
〈
ξ2(∆)

〉
− 〈ξ(∆)〉2 ≡

〈
ξ2
〉
− 1. (10)

For Brownian motion the behavior of the ergodicity
breaking parameter at ∆/T → 0 is

EBBM(∆) =
4∆

3T
. (11)
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Continuous time random walk processes with scale free
waiting time distribution have a finite value for EB even
in the limit ∆/T = 0 [26], similar to HDPs [33–36], while
for scaled Brownian motion the ergodicity breaking para-
meter approaches zero in this limit [45, 46].

For reference in what follows we also mention that the
probability density function of HDPs obeys has the ex-
ponential form [33]

P (x, t) =
|x|−2/α0

√
4πD0t

exp

(
− |x|2−α0

(2− α0)2D0t

)
(12)

which is a stretched (compressed) Gaussian for super-
diffusive (subdiffusive) HDPs with 0 < α0 < 2 (α0 < 0).
Note that, respectively, the shape (12) has a distinct cusp
at the origin or is bimodal with P (0, t) = 0 [33].

III. MODEL

We employ the same tested stochastic algorithm for the
Markovian HDPs as developed in Refs. [33–36], based on
the one-dimensional Langevin equation for the particle
displacement x(t) with the position dependent diffusivity
D(x),

dx(t)

dt
=
√

2D(x)× ζ(t). (13)

The process is driven by the white Gaussian noise ζ(t)
with covariance 〈ζ(t)ζ(t′)〉 = δ(t − t′) and zero mean
〈ζ(t)〉 = 0. We interpret Eq. (13) in the Stratonovich
sense leading to the following implicit mid-point iterative
scheme: at step i+ 1 the particle position is

xi+1 − xi =

√
2D

(
xi+1 + xi

2

)
× (yi+1 − yi), (14)

where the increments (yi+1 − yi) of the Wiener process
represent a δ-correlated Gaussian noise with unit vari-
ance and zero mean. Unit time intervals separate con-
secutive iteration steps. Below we simulate three values
for the exponent α0, corresponding to β = 1/2 (sub-
diffusive MSD), β = 0 (Brownian motion), and β = 2
(superdiffusive MSD). For standard HDPs these cases
were analyzed by us in Refs. [33–36]. To avoid divergen-
cies of the particle motion we regularize the diffusivity at
x = 0 by addition of a small constant, namely D(x) =
D0(|x|α + Doff) where Doff = 10−3 and D0 = 10−2 for
all results shown below. This choice does not affect the
quality of the studied scaling laws [33].

To examine the effect of additional noise due to the
environment we implement a Gaussian distribution of the
scaling exponent of the diffusivity with the mean α0,

p(α) =
1√

2πσ2
exp

(
− (α− α0)2

2σ2

)
. (15)

Generally, the distribution p(α) may be asymmetric, but
we restrict our discussion to symmetric forms. We con-
sider two versions of this additional disorder correspond-
ing to the annealed and quenched limits for the variation
of α. In the annealed case of noisy HDPs, the properties
of the environment change rapidly in time compared to
time scales of the particle motion. Physically, such noise
may be due to the imprecision of the experimental setup
or because of additional thermal agitation in the system.
The diffusing particle thus visits regions in space with
different local exponents α. In this scheme the particle
diffusivity at position x fluctuates in time, and the value
of the diffusivity will be different each time the particle
revisits the same position x. In this annealed case large
diffusivity variations occur in the entire space.

In superdiffusive HDPs distant particle excursions take
place due to the growth of D(x) away from the origin
and the associated acceleration of the motion, while for
subdiffusive HDPs the walker is increasingly trapped in
the low-diffusivity regions at larger value of the position
|x| [33–36]. With increasing strength σ2 of the annealed
noise given by the distribution (15) the excursions of the
particles in both superdiffusive and subdiffusive cases be-
come more erratic as time evolves. The time interval δt
during which the walker has a given HDP exponent αi
obviously affects the properties of noisy HDPs. These
time spans δt are here taken to be uniformly distributed.
To simulate annealed noisy HDPs we use Eq. (15) with
varying σ2. The particle performs jumps with a given
scaling exponent for the time interval δt, after which a
new exponent is chosen from the distribution (15), and
so on. The particle displacement xi during the time span
(ti, ti + δt) with HDP exponent αi is the starting condi-
tion for the next time interval. Shorter δt intervals imply
more erratic motion, as shown below.

For noisy HDPs in the presence of quenched disorder,
the profile of the particle diffusivity is hard-wired into the
environment. We choose a static periodic arrangement of
domains as shown in Fig. 1c,d. In each domain the ex-
ponent α is drawn from p(α) and the particle performs
a regular HDP. The midpoint of each domain is chosen
as the origin in the local HDP coordinate system, that
is, locally the functional shape of D(x) is centered and
decays or increases with the local scaling exponent α, as
exemplified in Fig. 1c,d. The period δx for the strati-
fication of the environment plays the role of a switch-
ing mechanism affecting the system dynamics. At the
boundary of the domains the diffusivity and its derivat-
ive in general acquire jumps. Physically, the latter occurs
in the presence of some walls, cages, etc.

We simulate quenched noisy HDPs as follows. The en-
tire space is stratified into domains of width 2δx, and
the local HDP exponent is chosen from the distribution
(15). The length δx is a vital parameter of quenched
noisy HDPs. The particle performs an HDP random
walk in each space domain with D(x, α) and it hops
to a neighboring domain once the domain boundary is
reached. The centers of the domains are computed from
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the particle position xi as

xc,i = 2(δx)int
[ xi

2δx

]
+ sign[xi](δx), (16)

see Fig. 1c,d. Here int[x] denotes the integer part of the
argument, and an additional δx shift is used for conveni-
ence. The starting position of the particle is near the
center of the first domain, at x(0) = 0.1 + xc,1. The sub-
sequent position xi+1 is evaluated from xi with the local
exponent αi according to Eq. (14), that is,

xi+1 − xi =

√
2D0

(∣∣∣∣xi+1 + xi
2

− xc,i
∣∣∣∣αi

+Doff

)
×(yi+1 − yi). (17)

We vary the width of p(α) and the mean value of the
scaling exponent α0. Shorter periodicities δx are equi-
valent to stronger external noise, as shown below. We
note here that for subdiffusive HDPs the centers of the
domains xc,i correspond to the regions of maximal diffus-
ivity, while for superdiffusive HDPs these are the spots
of the lowest diffusivity [33, 34].

IV. NOISY HDPS WITH ANNEALED
DISORDER

A. Noisy Brownian motion, α0 = 0

For α0 = 0 and a small value σ2 of the additional noise,
as expected, we observe small discrepancies from the ca-
nonical Brownian motion, as evidenced in Fig. 2b. The
behavior is ergodic, and the ergodicity breaking para-
meter follows the known behavior (11) for Brownian mo-
tion, see Fig. 3. Most importantly, the ensemble aver-
aged MSD equals the time averaged MSD, apart from
very short lag times at which the relaxation from the ini-
tial value x(0) = x0 occurs (compare Ref. [35] for more
details). At longer lag times, the deteriorating statistics

of the δ2 traces give rise to the typical cone-like scatter.
As the noise strength σ2, the variance of the α distri-

bution p(α) is increased, see, for instance, in the panel
for the noise strength σ = 0.5 in Fig. 2b: a more pro-
nounced scatter of the δ2 traces emerges and, import-
antly, persists in the limit ∆/T → 0. The occurrence
of progressively more distant particle excursions caused
by superdiffusive traces with α > 0 gives rise to a larger
spread of the amplitude scatter quantified by the distri-

bution φ(ξ). The value of
〈
δ2
〉

grows somewhat faster

than the ensemble MSD (1) due to these outliers, giving
rise to larger values of the ergodicity breaking parameter
EB (not shown). The time averaged MSD δ2(∆) scales
linearly with the lag time ∆, and, as they should, in the
limit ∆→ T the time averaged MSD settles back to the
ensemble averaged MSD, due to the pole in the definition
(5) of the time average.

For even larger noise strength σ2, the behavior of the
time averaged MSD and the ergodic properties are dom-
inated by extreme events, that is, by single or few traject-
ories in the data set with the largest exponent(s) yielding
extremely distant particle excursions. With an increasing
width of the α distribution p(α), the spread of the time
averaged MSD grows, as well, as evidenced in Fig. 2b.
Similarly, for such large values of the noise strength σ2

the value of the ergodicity breaking parameter becomes
proportional to the number N of recorded traces, wit-
nessing the dominance of single traces, each having the
potential to be more extreme than the others, compare
Fig. 3a. We refer the reader to Ref. [35], in which the
critical properties of HDPs and the effects of the number
of traces are analyzed in the limit α0 → 2.

For narrow distributions p(α) the spread φ(ξ) of indi-

vidual δ2 traces is symmetric at short lag times ∆, de-
veloping a tail at larger lag times ∆. This behavior can
be rationalized in terms of a generalized Gamma distri-
bution (see Ref. [33]). The general features of φ(ξ) are
shown in Fig. 3 in terms of the higher moments of this
distribution. These are the skewness

S(ξ) =
N−1

∑N
i=1(ξ − 1)3(

N−1
∑N
i=1(ξ − 1)2

)3/2
(18)

and the kurtosis

K(ξ) =
N−1

∑N
i=1(ξ − 1)4(

N−1
∑N
i=1(ξ − 1)2

)2 , (19)

which complement the variance of φ(ξ) described by the
ergodicity breaking parameter (10). In Fig. 3a we also ob-
serve that for small noise strengths σ2 the value EB(∆ =
1) for noisy Brownian motion approaches EBBM(∆ = 1)
given by Eq. (11), as expected. The values of the er-
godicity breaking parameter grow with ∆, indicative of a
bigger spread of the value δ2 of individual traces (green
points in Fig. 3a).

B. Subdiffusive noisy HDP, α0 = −2

For the subdiffusive case the time evolution of the en-
semble and time averaged MSDs is illustrated in Fig. 2a
for different noise strengths σ2 of the α distribution. We
observe that for the subdiffusive value α0 = −2 the same
magnitude of the α variation causes a much weaker effect
as compared to the Brownian (α0 = 0) or superdiffusive

(α0 = 1) situations. The scatter of δ2 remains nearly
insensitive to the lag time ∆, similar to canonical HDPs
[33, 35]. The scaling of the ensemble averaged MSD also
agrees with that for HDPs [33]. It is reached after less
than a dozen of steps during which the relaxation of the
initial condition occurs, compare Refs. [33, 35]. The scal-

ing of the time averaged MSD
〈
δ2
〉

remains linear and
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Figure 2: Ensemble and time averaged MSDs 〈x2(t) and
〈
δ2(∆)

〉
(thick blue curves) as well as individual time averaged MSDs

δ2 (red curves) for annealed noisy HDPs. Parameters: the values of α0 and its variance are indicated in the plots, the trace
length is T = 104, and the number of sampled traces is N = 103. The initial position is x0 = x(t = 0) = 0.1. The top panels
correspond to the noisy subdiffusive case, the middle panel represents noisy Brownian motion, and the bottom panels are the
case of superdiffusive noisy HDPs. The asymptotes (1) and (8) for the ensemble and time averaged MSDs of standard HDPs
are shown as the dashed curves. The Brownian asymptote 〈x2(t)〉 = 2D0t is the dashed-dotted line.
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Figure 3: Second, third, and fourth order moments of the amplitude scatter distribution φ(ξ) for annealed noisy HDPs,
computed for the parameters of Fig. 2. Large, medium, and small symbols correspond to lag times ∆ = 1, 10, and 100,
respectively. The dotted line in panel (a) at large σ2 is the ergodicity breaking parameter EB ≈ N = 103, indicative of the
single trace dominance in this case, see text. The dotted lines in panel (a) for small noise strength σ2 stands for EBBM(∆)
given by Eq. (11).

nearly unaffected by changes of σ2. The long time scal-
ing of the MSD is also weakly sensitive to σ2 in the range
considered here.

Physically, for the subdiffusive case the spread of αi
should be & α0 to give rise to fast particle excursions
(outliers). Thus, much larger σ2 values are required to

disturb the spread of δ2 for strongly subdiffusive noisy
HDPs as compared to superdiffusive noisy HDPs shown
in Fig. 2c. This is our first important conclusion.

We rationalize the effects of the α spread further in
terms of the width and higher moments of the amplitude
scatter distribution φ(ξ). The results for α0 = 0, sub-
and superdiffusive annealed noisy HDPs are shown in
Fig. 3a. We observe that all moments are typically smal-
ler for the subdiffusive case reflecting a less pronounced
and asymmetric spread of δ2. The skewness of Brownian

motion (σ2 → 0) tends to vanish, as it should, while
for sub- and superdiffusive noisy HDPs it attains finite
values at σ2 → 0 (Fig. 3b). This is due to the inher-
ent asymmetry of the φ(ξ) scatter even at σ2 → 0: it
features a tail at large ξ values, a maximum at inter-
mediate ξ, and vanishes at ξ → 0 [33]. Both skewness
S(ξ) and kurtosis K(ξ) grow dramatically with σ2 for all
values of α0, as demonstrated in Figs. 3b,c. We checked
that for σ2 → 0 the value of the ergodicity breaking para-
meter in the limit ∆/T � 1 approaches that for standard
HDPs [33], as expected, while for a broad distribution of
α values the ergodicity breaking parameter increases and
eventually approaches the number of traces N in the data
set (single-trace domination), Fig. 3a. The value of the
ergodicity breaking parameter EB for α0 < 0 is nearly
unaffected by variations of σ2 over a wide range, see the
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red symbols in Fig. 3a. This reflects the minor change
in the spread of single traces δ2 when σ2 is varied, see
Fig. 2a.

C. Superdiffusive noisy HDPs, α0 = 1

The ensemble and time averaged MSDs of superdiffus-
ive noisy HDPs with α0 = 1 are shown in Fig. 2c. For
small noise strengths σ2 their scaling agrees with the res-
ults for standard HDPs, Eqs. (1) and (8). With increas-

ing noise strength σ2, the time averaged MSD traces δ2

grow dramatically, and for moderate and large lag times
∆ the time averaged MSD deviates progressively from
the HDP scaling, that is ballistic for α0 = 1 (Fig. 2c).

The scatter of the individual time averaged MSDs δ2 be-
comes progressively larger and asymmetric as the width
of p(α) increases. The amplitude of the time averaged

MSD traces δ2 for large values of σ2 grows significantly
above the asymptote for undisturbed HDPs due to single
trajectory domination. Therefore, the moments of the
scatter distribution φ(ξ) increase, see the blue symbols
in Fig. 3. For the later parts of the trajectories, the en-
semble averaged MSD increases very fast (see the right

panel in Fig. 2c) to meet the value of δ2 in the limit
∆ = T . For superdiffusive HDPs the moments of φ(ξ)
are larger than those for subdiffusive noisy HDPs with
the same σ2, compare the red and blue symbols in Fig. 3.

V. NOISY HDPS WITH QUENCHED
DISORDER

We now turn to the situation of quenched disorder in
a stratified environment, in which evenly sized domains
of width δx have a diffusivity of the form (2), centered
within the domain, whose α value is noisy and with dis-
tribution (15). In this quenched scenario, the particle
experiences the same value of α each time it revisits a
given domain. The situation is illustrated in Fig. 1c,d.

A. Noisy Brownian motion, α0 = 0

For quenched, noisy Brownian motion we observe that
for small noise strength σ2 the behavior, as expected,
is very close to standard Brownian motion (not shown).
For a large value of σ2, the spread of the amplitude of
individual time averaged MSDs δ2(∆) is non-negligible
even at short lag times ∆, as shown in Fig. 4c. This
spread is more pronounced for larger periodicities δx of
the stratified medium. For small σ2 the ensemble av-
eraged MSD

〈
(x− xc,1)2

〉
computed with respect to the

center of the starting domain and the time averaged MSD
(thick blue lines) almost coincide for all lag times ∆ (not
shown). Concurrently, the ergodicity breaking parameter
follows the Brownian asymptote (11), as shown by the

green symbols in Fig. 5a. For larger values of the noise
strength σ2 the ergodicity breaking parameter deviates
pronouncedly from Eq. (11) at short lag times ∆, indic-
ating the occurrence of weak ergodicity breaking, along

with the disparity
〈
δ2
〉
6=
〈
x2
〉
, as witnessed by Fig. 5b.

This inequality is particularly pronounced for larger val-
ues of the noise strength σ2 and large periodicity δx, see
the changes for varying δx in Fig. 4c. For wider α dis-
tributions p(α) the ensemble averaged MSD starts close
to that of the asymptote for standard Brownian motion,
while at later times there occurs a crossover to the curve
for the time averaged MSD (left panel, Fig. 4c.) This be-
havior is also typical for sub- and superdiffusive quenched
noisy HDPs, see below. For σ2 = 1 this transition occurs
after ∼ 103 time steps and becomes less pronounced for
smaller periodicities δx of the medium (Fig. 4c).

B. Superdiffusive noisy HDPs, α0 = 1

In standard superdiffusive HDPs there exists a finite
probability of particle trapping in regions of low diffus-
ivity near the origin, as witnessed by the cusp around
x = 0 of the probability density function (12) [33]. For
noisy HDPs we find that for large values of the domain
size δx and small noise strengths σ2 the particle prefer-
entially stays in the domain, in which it was seeded, and
the resulting ensemble averaged MSD is close to that of
the standard HDPs [33, 35]. Here we again computed the
MSD with respect to the center xc,1 of the seed domain in
the form x(t = 0)− xc,1 = 0.1. The time averaged MSD
is equally close to the asymptote (8) of the normal HDP.
Ensemble and time averaged MSDs converge at long lag
times ∆ → T , note that the ensemble averaged MSD
here is below the time averaged MSD, as evidenced by
Figs. 4a,b.

We start with a narrow spread of α in the spatial do-
mains corresponding to σ = 0.03. In this case we find
that with decreasing domain size δx the amplitude scat-
ter of individual time averaged MSDs shrinks and the

amplitude of the trajectory mean
〈
δ2(∆)

〉
drops sub-

stantially (Fig. 4a). The reason is that for a small do-
main size there are almost no regions of fast diffusivity.
For small values of δx the ensemble and time averaged
MSDs converge and drop below the Brownian asymp-
tote, see the dashed-dotted line in the right graph in
Fig. 4a. In such cases of smaller domain size the ergodi-
city breaking parameter attains relatively small values,
as shown in Fig. 5a, indicating a more ergodic behavior.
This effect of the noise is similar to that for noisy CTRWs
[22]. As δx increases, the ergodicity breaking parameter
approaches values close to those of the standard HDP,
EB(∆ = 1) ≈ 0.34 for α0 = −2 and EB(∆ = 1) ≈ 1.1 for
α0 = 1, with T = 104 [33, 35]. This is indicated by the
dashed-dotted lines in Fig. 5a. Thus, frequent hopping
events between individual domains destroys the charac-
teristic of the noise-free HDP scaling and causes the dif-
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Figure 4: Ensemble and time averaged MSDs and amplitude scatter of individual traces δ2 for noisy HDPs with quenched
disorder. The values of α, σ, and domain size δx are indicated in the plots. The panels (a) and (b) are for subdiffusive noisy
HDPs, panel (c) stands for noisy Brownian motion, and panels (d) and (e) represent superdiffusive noisy HDPs. The MSD is
computed with respect to the position of the center of the first domain,

〈
(x(t)− xc,1)2

〉
. Parameters: T = 104, N = 103, and

δx values are the same in each column. The notations for the curves and asymptotes are the same as in Fig. 2.
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Figure 5: Ergodicity breaking parameter of noisy HDPs with quenched disorder. The parameters are the same as in Fig. 4,
the values for α and σ being indicated in the plots. The black dotted lines represent the ergodicity breaking parameter for the
standard HDPs. The large, medium, and small symbols correspond to the lag times ∆ = 1, 10, and 100, respectively.

fusion to be more ergodic. This is our second important
conclusion.

For larger σ values the MSD stops following the HDP
scaling law (1) and instead two nearly Brownian regimes
are detected for short and long diffusion times, see the
left panel in Fig. 4b. Similar to noisy CTRWs [7, 22],
for noisy HDPs we observe a superposition of anomal-
ous scaling for the MSD inherent to HDPs with the lin-
ear MSD increase due to particle jumping between the
stratified domains. The latter term contributes stronger
for smaller δx values: after a given number of steps T
performed the particle visits more D(x) domains and its
diffusion on the length scale � δx becomes effectively
more normal and ergodic.

The time averaged MSD is an approximately linear
function of the lag time ∆. For smaller domain size δx we
observe a more confined amplitude spread of the time av-
eraged MSD traces δ2, see the evolution from left to right
in Figs. 4a,b. A similar behavior occurs for subdiffus-
ive noisy HDPs, as demonstrated in Figs. 4d,e consistent
with smaller values of the ergodicity breaking parameter.
This is our third main result. For superdiffusive noisy
HDPs, given large domain sizes δx, we observe more dis-
tant particle excursions and thus a broader amplitude
spread of individual time traces δ2(∆), particularly for
large values σ2 of the noise strength (Figs. 4e): at larger
σ2 we correspondingly obtain larger values of the ergodi-
city breaking parameter, compare panels (a) and (b) in
Fig. 5.

We find that the distribution φ(ξ) of the amplitude
scatter features a skewed form, which is characterized by
its second, third, and fourth moments corresponding to
the ergodicity breaking parameter, the skewness S, and
the kurtosis K, respectively. For larger values of σ2, S(ξ)
and K(ξ) grow with the domain size δx and are more ir-
regular than the distribution φ(ξ) itself, due to worsening
statistics for higher order moments (not shown). Note
that for short lag times ∆/T � 1 the ergodicity break-
ing parameter for large domain sizes δx approaches the
values of the corresponding normal HDPs [33], compare
Fig. 5a. At small domain size δx the non-ergodic prop-
erties of the standard HDPs are masked by the noise in
the stratified spatial domains.

For superdiffusive HDPs the particles tend to localize
in the center of each domain, while for subdiffusive values
α0 < 0 they tend to spread towards regions of low dif-
fusivity near the domain borders. In the long time limit
the particles spread over many domains, establishing the
shape of the probability density function P (x, t) presen-
ted in Fig. 6. The local minima and maxima of P (x, t)
correspond to the regions of low and fast diffusivity D(x),
respectively, see Figs. 1c,d and 6. For relatively large do-
main size δx the probability density function of the noisy
HDPs becomes dominated by the contribution from the
seed domain. The spreading of particles over superdif-
fusive HDP domains in the long time limit is symmetric
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Figure 6: Probability density functions of noisy HDPs with quenched disorder for noise strength σ2=1 and varying domain size
δx. The other parameters are the same as in Fig. 4. Panel (a) represents superdiffusive noisy HDPs and panel (b) stands for
subdiffusive noisy HDPs. The shift of the peak positions with respect to those of the standard HDPs [33] is due to the shift
(δx) of the domain center positions, see Eq. (16). The dashed curves represent the probability density functions of standard
HDPs, given by Eq. (12), while the dashed-dotted curves are result (20).

and nearly Gaussian,

P (x, t) =
1√

4πDefft
exp

(
− (x− xc,1)2

4Defft

)
(20)

with the effective diffusivity Deff . The mean particle dis-
placement with respect to the center of the seed domain
vanishes, 〈x(t→∞)〉 → 0. To compute Deff analytically
a homogenization procedure and generic concepts of dif-
fusion in random and highly heterogeneous media would
need to be applied [50].

C. Subdiffusive noisy HDPs, α0 = −2

Subdiffusive noisy HDPs in the quenched scenario
share a number of trends with the above descriptions of

the cases α = 0 and α = 1. In particular, as the domain
size δx decreases, the amplitude spread of individual time
averaged MSD traces δ2 decreases (Fig. 4d,e). Because of
the sublinear scaling of the ensemble MSD of the normal
subdiffusive HDPs (α0 < 0) the ensemble averaged MSD

approaches the time averaged MSD
〈
δ2(∆)

〉
from above.

Moreover, the scaling of the ensemble averaged MSD of
subdiffusive noisy HDPs with quenched disorder turns
from subdiffusive to Brownian as the domain size δx de-
creases. The physical reason for this crossover behavior
is the random character of hops between domains with
a varying local exponent α. We find that, similarly to
superdiffusive noisy HDPs, the ensemble averaged MSD
initially follows the scaling (1) of normal HDPs while at
later times a nearly linear scaling is observed. For smal-
ler periodicities δx the linear scaling becomes dominant,
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as demonstrated in Fig. 4e from left to right.
The probability density function of quenched noisy

HDPs in the long time limit is a combination of the super-
imposed local probability densities of the standard HDP.
For large periodicities δx the probability density function
is again dominated by the contribution from the seed do-
main, as can be seen in the right panel of Fig. 6b. Similar
to superdiffusive noisy HDPs we find that the time aver-

aged MSD is linear in the lag time,
〈
δ2(∆)

〉
∼ ∆, while

the amplitude spread of individual time averaged MSDs
grows with the noise strength σ2 and becomes diminished
for smaller medium periodicities δx. We also see that for
subdiffusive noisy HDPs the saturation of the ergodicity
breaking parameter to the values of normal HDPs occurs
at much smaller values of δx as compared to superdiffus-
ive noisy HDPs (Fig. 5a).

VI. CONCLUSIONS

We studied a stochastic process based on a combina-
tion of heterogeneous diffusion processes with multiplic-
ative noise and additional disorder of the environment,
distinguishing annealed and quenched scenarios. The en-
vironment was assumed to be structured into periodic
domains of given periodicity. We investigated the diffus-
ive and ergodic properties of these noisy heterogeneous
diffusion processes. The superposition of the additional
stochasticity onto the standard HDP with its determ-
inistic variation of the diffusivity revealed a variety of
new features, the scaling relations for the ensemble and
time averaged MSD of the noisy HDPs being dramatic-
ally altered as compared to the normal HDP behavior.

For annealed disorder, the scaling exponent α of the
diffusivity profile switches in time and the gradient field
of the particle diffusivity has a single origin at x = 0.
We demonstrated how the Gaussian spread p(α) of the
scaling exponent gives rise to a strongly asymmetric scat-
ter of individual time averaged MSD traces. Rapidly
switching diffusivity profiles in such an annealed environ-
ment cause transient particle trapping in low-diffusivity
regions. For superdiffusive motion the effects of the α
spread are more pronounced. In the case of a quenched
environment, a spatially stratified medium is modeled in
terms of domains of width 2δx with a normal distribution
of the local HDP exponent. Upon particle diffusion, the
averaging is thus performed over ensembles of particle
trajectories generated for different spatial distributions
of the scaling exponents α in the domains. One of the
key findings is that for small periodicity δx the sub- and
superdiffusive scaling of normal HDPs cross over to a lin-
ear growth of the ensemble averaged MSD as function of
time. External noise thus progressively masks the stat-
istics of the underlying HDP.

What could be the physical phenomena captured by

the noisy HDP discussed here? From a biological per-
spective, the diffusion of small molecules in assemblies
of non-identical, interconnected cells is a relevant ex-
ample. The cell-to-cell variations of the diffusivity are
inherent to biological tissues, while every individual cell
features a space dependent diffusivity in its cytoplasm
[8]. At cell-to-cell boundaries the diffusivity likely var-
ies with a jump, as captured by our stratified model of
the quenched disorder, with possibly discontinuous dif-
fusivity across the system. We note that heterogeneous
diffusivities can, for instance, play a role in the formation
of gradients of morphogen molecules in a developing cell
tissue [51], a process known to involve features of anom-
alous diffusion. It also features a division of fluxes of the
molecules into fluxes through cells, across the outer cell
membranes, and transport in extracellular spaces [52].
Heterogeneous diffusion of water molecules in brain tis-
sues [53] and strongly heterogeneous structures of cardiac
muscle tissue with nontrivial cell-cell coupling [54] could
be another example. Similarly, the domains in the noisy
HDP could represent internal compartments in a single
cell. The quenched case would correspond to static en-
vironments whereas the annealed scenario would stand
for environments, which change rapidly compared to the
typical crossing times between domains.

Our results for noisy HDPs could also be useful for the
description of nano-objects trapped in dynamical tem-
perature fields [55] and of particles in strong temper-
ature gradients [56]. Another field of relevance is the
tracer diffusion in heterogeneous assemblies of distrib-
uted obstacles [57] mimicking features of the cell cyto-
plasm [8] and diffusion on chemically and mesoscopically
periodically patterned solid-liquid interfaces [58]. On a
macroscopic scale, water diffusion in subsurface hydro-
logy applications is to be mentioned [12], as well as tracer
motion in porous heterogeneous media [59]. For the latter
there likely exists a distance-dependent diffusivity within
each pore constructing a network governing the diffusion
of water and contaminants in soil specimen [12]. Finally,
in statistical models of financial stock price variations [60]
the terms stochastic versus correlated volatility widely
occur, representing the diffusivity in random walk mod-
els [61]. Some patterns of correlated or clustered volat-
ility observed in financial data thus correspond to a sys-
tematically varying diffusivity in our model of quenched
noisy HDPs. Some repeats of non-Brownian up-and-
down trends in stock price fluctuations [61] can thus be
considered as HDPs repeatedly occurring in time.
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Garćıa-Parako, M. Lewenstein, and G. L. Lapeyre, Jr.,
Phys. Rev. Lett. 112, 150603 (2014).

[24] M. V. Chubynsky and G. W. Slater, Phys. Rev. Lett.
113, 098302 (2014).

[25] J.-P. Bouchaud, J. Phys. I 2, 1705 (1992); G. Bel and E.
Barkai, Phys. Rev. Lett. 94, 240602 (2005); A. Reben-
shtok and E. Barkai, ibid. 99, 210601 (2007); A. Lubel-
ski, I. M. Sokolov and J. Klafter, Phys. Rev. Lett. 100,
250602 (2008); I. M. Sokolov, E. Heinsalu, P. Hänggi,
and I. Goychuk, Europhys. Lett. 86, 041119 (2010); M.
A. Lomholt, I. M. Zaid, and R. Metzler, Phys. Rev. Lett.
98, 200603 (2007); G. Aquino, P. Grigolini, and B. J.
West, Europhys. Lett. 80, 10002 (2007) M. Khoury, A.
M. Lacasta, J. M. Sancho, and K. Lindenberg, Phys. Rev.
Lett. 106, 090602 (2011).

[26] Y. He, S. Burov, R. Metzler, and E. Barkai, Phys. Rev.
Lett. 101, 058101 (2008).

[27] E. Barkai, Y. Garini, and R. Metzler, Physics Today
65(8), 29 (2012).

[28] S. Burov, J.-H. Jeon, R. Metzler and E. Barkai, Phys.
Chem. Chem. Phys. 13, 1800 (2011).

[29] I. M. Sokolov, Soft Matter 8, 9043 (2012).
[30] A. Y. Khinchin, Mathematical foundations of statist-

ical mechanics (Dover Publications Inc., New York, NY,
2003).

[31] S. Burov, R. Metzler, and E. Barkai, Proc. Natl. Acad.
Sci. USA 107, 13228 (2010).

[32] A. Fulinski, J. Chem. Phys. 138, 021101 (2013); Phys.
Rev. E 83, 061140 (2011).

[33] A. G. Cherstvy, A. V. Chechkin, and R. Metzler, New J.



13

Phys. 15, 083039 (2013).
[34] A. G. Cherstvy, A. V. Chechkin, and R. Metzler, Soft

Matter 10, 1591 (2014).
[35] A. G. Cherstvy and R. Metzler, Phys. Rev. E 90, 012134

(2014); A. G. Cherstvy, A. V. Chechkin, and R. Metzler,
J. Phys. A 47, 485002 (2014).

[36] A. G. Cherstvy and R. Metzler, Phys. Chem. Chem.
Phys. 15, 20220 (2013).

[37] E. Barkai, Phys. Rev. Lett. 90, 104101 (2003); E. Barkai
and Y. C. Cheng, J. Chem. Phys. 118, 6167 (2003); J.
H. P. Schulz, E. Barkai, and R. Metzler, Phys. Rev. Lett.
110, 020602 (2013); Phys. Rev. X 4, 011028 (2014).

[38] H. Safdari, A. V. Chechkin, G. R. Jafari, and R. Metzler,
E-print arXiv:1501.04810.

[39] N. G. van Kampen, Stochastic processes in physics and
chemistry (Elsevier, Amsterdam, 2007).

[40] Y. Meroz, I. M. Sokolov, and J. Klafter, Phys. Rev. E
81, 010101(R) (2010).

[41] W. Deng and E. Barkai, Phys. Rev. E 79, 011112 (2009).
J.-H. Jeon and R. Metzler, Phys. Rev. E 81, 021103
(2010).

[42] G. Kneller, J. Chem Phys. 141, 041105 (2014); I.
Goychuk, Phys. Rev. E 80, 046125 (2009); Adv. Chem.
Phys. 150, 187 (2012).

[43] Note, however, that transient deviations from the ergodic
behavior exist in confinement: J.-H. Jeon and R. Metzler,
Phys. Rev. E 85, 021147 (2012); J.-H. Jeon, N. Leijnse,
L. B. Oddershede, and R. Metzler, New J. Phys. 15,
045011 (2013); J. Kursawe, J. Schulz, and R. Metzler,
Phys. Rev. E 88, 062124 (2013).

[44] V. Tejedor and R. Metzler, J. Phys. A 43, 082002
(2010); M. Magdziarz, R. Metzler, W. Szczotka, and P.
Zebrowski, Phys. Rev. E 85, 051103 (2012).

[45] J.-H. Jeon, A. V. Chechkin and R. Metzler, Phys. Chem.
Chem. Phys. 16, 15811 (2014).

[46] F. Thiel and I. M. Sokolov, Phys. Rev. E 89, 012115
(2014).

[47] A. G. Cherstvy and R. Metzler, E-print
arXiv:1502.01554.

[48] A. Godec, A. V. Chechkin, E. Barkai, H. Kantz, and R.
Metzler, J. Phys. A 47, 492002 (2014); L. P. Sanders, M.

A. Lomholt, L. Lizana, K. Fogelmark, R. Metzler, and
T. Ambjörnsson, New J. Phys. 16, 113050 (2014); M.
A. Lomholt, L. Lizana, R. Metzler, and T. Ambjörnsson,
Phys. Rev. Lett. 110, 208301 (2013).

[49] D. Froemberg and E. Barkai, Phys. Rev. E 87, 030104(R)
(2013); Phys. Rev. E 88, 024101 (2013); Euro. Phys.
J. B 86, 331 (2013); A. Godec and R. Metzler, Phys.
Rev. Lett. 110, 020603 (2013); Phys. Rev. E 88, 012116
(2013); G. Zumofen and J. Klafter, Physica D 69, 436
(1993).

[50] R. E. Showalter and D. B. Visarraga, J. Math. Anal.
Appl. 295, 191 (2004).

[51] K. Kruse and A. Iomin, New J. Phys. 10, 023019 (2008).
[52] H. Berry and H. A. Soula, Front. Physiol. 5, 437 (2014);

H. Berry and H. Chate, Phys. Rev. E 89, 022708 (2014).
[53] C. Nicholson, Rep. Prog. Phys. 64, 815 (2001); E. Sykova

and C. Nicholson, Physiol. Reviews 88, 1277 (2008); D. S.
Novikov, J. H. Jensen, J. A. Helpern, and E. Fieremans,
Proc. Natl. Acad. Sci. U.S.A. 111, 5088 (2014).

[54] A. Bueno-Orovio et al., J. R. Soc. Interface 11, 20140352
(2014).

[55] M. Braun, A. Wuerger and F. Cichos, Phys. Chem.
Chem. Phys. 16, 15207 (2014).

[56] C. B. Mast, S. Schink, U. Gerland, and D. Braun, Proc.
Natl. Acad. Sci. U.S.A. 110, 8030 (2013).

[57] S. K. Ghosh, A. G. Cherstvy, and R. Metzler, Phys.
Chem. Chem. Phys. 17, 472 (2015); S. K. Ghosh, A.
G. Cherstvy, and R. Metzler, work in preparation.

[58] M. J. Skaug, A. M. Lacasta, L. Ramirez-Piscina, J. M.
Sancho, K. Lindenberg, and D. K. Schwartz, Soft Matter
10, 753 (2014).

[59] D. L. Koch and J. F. Brady, Phys. Fluids 31, 965 (1988).
[60] J.-P. Bouchaud and M. Potters, ”Theory of Finan-

cial Risks”, Cambridge University Press, (2000); R. N.
Mantegna and H. E. Stanley, ”Introduction to Econo-
physics: Correlations and Complexity in Finance”, Cam-
bridge University Press, (2000).

[61] K. Yamasaki, L. Muchnik, S. Havlin, A. Bunde, and H. E.
Stanley, Proc. Natl. Acad. Sci. U.S.A. 102, 9424 (2005).

http://arxiv.org/abs/1501.04810
http://arxiv.org/abs/1502.01554

	I Introduction
	II Observables
	III Model
	IV Noisy HDPs with Annealed Disorder
	A Noisy Brownian motion, 0=0
	B Subdiffusive noisy HDP, 0=-2
	C Superdiffusive noisy HDPs, 0=1

	V Noisy HDPs with quenched disorder
	A Noisy Brownian motion, 0=0
	B Superdiffusive noisy HDPs, 0=1
	C Subdiffusive noisy HDPs, 0=-2

	VI Conclusions
	 Acknowledgments
	 References

