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Electromagnetic interaction between a sub-wavelength particle (the ‘probe’) and a material sur-
face (the ‘sample’) is studied theoretically. The interaction is shown to be governed by a series
of resonances corresponding to surface polariton modes localized near the probe. The resonance
parameters depend on the dielectric function and geometry of the probe, as well as the surface
reflectivity of the material. Calculation of such resonances is carried out for several types of ax-
isymmetric probes: spherical, spheroidal, and pear-shaped. For spheroids an efficient numerical
method is developed, capable of handling cases of large or strongly momentum-dependent surface
reflectivity. Application of the method to highly resonant materials such as aluminum oxide (by
itself or covered with graphene) reveals a rich structure of multi-peak spectra and nonmonotonic
approach curves, i.e., the probe-sample distance dependence. These features also strongly depend
on the probe shape and optical constants of the model. For less resonant materials such as silicon
oxide, the dependence is weak, so that the spheroidal model is reliable. The calculations are done
within the quasistatic approximation with radiative damping included perturbatively.

PACS numbers: 68.37.Uv, 71.36.+c

I. INTRODUCTION

The problem of electromagnetic interaction between
a material surface and a small external particle is fun-
damental to numerous physical phenomena and spec-
troscopic techniques, including surface-enhanced Raman
scattering, surface fluorescence, adsorbed molecules spec-
troscopy, and near-field microscopy. From the point of
view of electromagnetic theory, it is a special kind of
scattering problem where the scatterer resides in a uni-
form half-space, e.g., vacuum, while the effect of the other
half-space — the sample — is represented by the sur-
face reflectivity rα(q, ω). The reflectivity may depend
on the in-plane momentum q, frequency ω, and polariza-
tion α = P or S. Far-field optics describes the regime
q < ω/c. Momenta q � ω/c, which correspond to in-
plane distances ∆ρ much smaller than the diameter c/ω
of Wheeler’s radian sphere,1 are the domain of near-field
optics.

This work is motivated by recent advancements of
the scattering-type near-field optical microscopy2,3 (s-
SNOM), which has become one of the leading tools
for measuring optical response of diverse materials on
spatial scales as short as 5–20 nm. Thanks to techni-
cal improvements and the development of tunable and
broad-band infrared sources,4–7 the s-SNOM has pro-
vided insights into properties of complex oxides,8–14 or-
ganic monolayers,15 graphene, and other two-dimensional
crystals.5,16–18

The schematics of an s-SNOM experiment is shown
in Fig. 1(a). A sharp elongated probe is brought into
close proximity of a sample and is illuminated by an ex-
ternal electromagnetic wave with electric field Eexte

−iωt.
Its interaction with the probe creates scattered waves

eiqρ+ikzz−iωt, ρ = (x, y), with arbitrary in-plane mo-
mentum q, including large-q evanescent waves, kz =√

(ω/c)2 − q2 ' iq. Multiple reflections of these waves
inside the probe-sample nanogap cause small but impor-
tant changes in the total radiating dipole moment pe−iωt

of the probe. These changes are detected by measuring
the far-field scattering signal as a function of the probe
coordinates. This signal is proportional to the probe po-
larizabilities,

χ⊥ ≡ pz/Ezext , χ‖ ≡ px/Exext , (1)

which have the dimension of volume.
The goal of this paper is to study the properties of

functions χ⊥ and χ‖. For simplicity, we consider only
axisymmetric probes. We are especially interested in
probes of large aspect ratio. In the experiment, strongly
elongated probes are used because of high longitudinal
polarizability χ⊥, which promotes an efficient coupling
between evanescent and far-field radiation modes — the
“antenna” effect — making the detection of the near-field
component possible.

We assume that the length of the probe is much smaller
than the diameter of the radian sphere c/ω, so that the
scattering problem can be treated within the quasistatic
approximation. The probe shape we examine the most
is a prolate spheroid. At first glance both of these as-
sumptions are unrealistic because actual probes are not
spheroidal and their length (typically, tens of µm) can
often exceed c/ω for ω in infrared or optical frequency
domain. Yet this model was previously found to yield
quantitative agreement with the s-SNOM experimental
data for many materials. This apparent agreement can be
expected in cases where the surface reflectivity rα(q, ω)
of the sample is not too large, and the aspect ratio of
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FIG. 1. (Color online) (a) Schematics of an s-SNOM experiment in which a polarizable probe is used to examine a sample
characterized by the surface reflectivity rα(q). The external electric field Eext incident on the system creates evanescent waves
inside the probe-sample gap. This modifies the dipole moment p of the probe, which is detectable by its far-field radiation. (b)
The real-space potential distribution for the first four eigenmodes of the probe polarizability χ⊥ computed numerically for a
spheroidal probe of half-length L = 25a. The axes are the x- and z-coordinates in units of a, the curvature radius of the apex
of the probe. The probe’s location is represented by the uniformly shaded beige area in the upper left corner of each panel.

the probe does not vary greatly from one experiment to
the next. Under such conditions the gross features of the
s-SNOM scattering amplitude should indeed have only
a modest dependence on the exact shape of the probe
and other experimental parameters. However, fine details
of the scattering amplitude are shape-dependent even in
this case19 and they may be discerned as the instrumen-
tal resolution improves. Furthermore, for samples with
high reflectivity, even the gross features become sensitive
to the shape and size of the probe. To demonstrate these
trends in this paper we study the longitudinal and the
transverse polarizabilities in great detail. We will ignore
the S-polarization reflectivity rS(q, ω) because for most
materials it becomes very small at q � ω/c. Hence,
χν are functionals of the remaining reflectivity function
rP(q, ω) and the probe-sample distance ztip. We show
that such functionals can be quite complicated, especially
for strongly momentum-dependent reflectivity typical of
layered and/or ultrathin materials. Therefore, it is good
to start with a simpler case of a bulk medium with a
q-independent reflectivity

β(ω) ≡ rP(q, ω) , (2)

so that for a fixed ztip and ω, the probe polarizabilities
are functions of a single parameter β.

It should be clarified that while the absolute reflectiv-
ity may not exceed unity for the radiative modes q < ω/c
because of energy conservation, for the evanescent ones
q > ω/c it is allowed do so. Large β’s are indicative of
weakly damped surface modes in a material, e.g., sur-
face phonons in dielectrics or surface plasmons in metals.
We use the umbrella term “surface polaritons” for all
such modes. The energy loss due to evanescent modes
is governed not by |β| but by Imβ which must be non-
negative at q > ω/c. (To compute the losses Imβ needs
to be integrated over q with a weight that depends on
the probe-sample distance.20) In the limit of vanishingly
small dissipation, Imβ(ω) tends to a δ-function peak
at the mode frequency. In practice, Imβ (and conse-

quently |β|) as high as 10–20 is possible for well-ordered
crystalline solids, e.g., aluminum oxide Al2O3 possess-
ing sharp phonon modes [Fig. 2(a)]. Therefore, a ro-
bust theoretical formalism must be capable of comput-
ing functions χν(β) in the entire upper complex half-
plane. To meet this requirement such a formalism must
correctly reproduce the analytic properties of functions
χν(β). We adopt a version of the generalized spectral
method (GSM) in which the total field outside the probe
and sample is decomposed into eigenfunctions of an aux-
iliary homogeneous problem, and the role of eigenvalues
are played by the reflectivity β, the so-called β-method
in the terminology of Ref. 21. (Similar formalism is also
known in the theory of conductivity of heterogeneous me-
dia.22,23) We show that for any probe-sample distance
ztip > 0 functions χν(β) are meromorphic. In other
words, they admit the series representations

χν(β) =

∞∑

k=0

Rνk
βνk − β

, ν = ⊥ or ‖ , (3)

where the sequence of poles βνk has no accumulation
points, and so, no upper limit. Additionally, we will show
that if the probe is made of an ideal conductor and no
other sources of dissipation are present, then the poles
βνk > 1 and the residues Rνk > 0 are real. If the dielectric
constant εtip of the probe is considered fixed, Rνk and βνk
depend only on the geometric factors: the probe shape,
size, and its distance ztip to the surface. All these re-
sults comply with the general theory of the β-method
developed in Ref. 21.

Both βνk and Rνk grow exponentially with k but their
ratios remain bounded and satisfy the sum rule

∞∑

k=0

Rνk
βνk

= χν0 . (4)

Here χν0 ≡ χν(β = 0) is the polarizability of an isolated
probe, which does not depend on ztip. These properties
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FIG. 2. (Color online) (a) Near-field reflectivity β(ω) of bulk Al2O3 discussed in Sec. VI. Whenever the condition Reβ(ω) = βνk
is met, a local maximum appears in Imχν . The frequencies of three such resonances are indicated by the dashed lines. (b)
In the complex plane of β, the poles βνk lie on the positive real axis, while real materials trace curves in the upper half plane,
shown in red. (c) A full electrodynamic treatment predicts that the poles shift into the lower half-plane and an additional
nonanalyticity in the form of a branch cut [1,∞) appears.

ensure convergence of the series (3) at any β 6= βνk . On
the other hand, if a material-specific β(ω) approaches
any of βνk , a resonant peak in χν and ultimately, in the
near-field signal, would be observed.

The divergence of χν at a given pole implies that a
nonzero dipole, i.e., free oscillations may exist in the ab-
sence of any external field. Physical intuition about this
regime is aided by the method of images, according to
which real chargesQi on the probe interact with their vir-
tual images −βQi inside the sample and for β > 1 achieve
a runaway positive feedback. However, one must keep in
mind that these eigenmodes arise only in the auxiliary
problem where the sample is substituted by a fictitious
material of reflectivity βνk . The divergence never actually
happens in real materials due to their inherent dissipa-
tion, which enters in the form of a positive imaginary
part in β as shown in Fig. 2(a) and 2(b). The resonances
are further damped due to shifting of the poles βνk to
the lower complex half-plane when radiative corrections
are considered [Fig. 2(c)], as discussed in more detail in
Sec. VIII. For a generic probe that ends in a rounded
tip, the amplitude of the eigenmodes is the greatest near
the tip, as illustrated in Fig. 1(b) for a spheroidal probe.
Overall, this physical picture of tip-localized eigenmodes
is an elegant and economical approach to understanding
the mechanism of probe-sample coupling.

The main objective of the present work is to elucidate
the analytical properties of the coefficients βνk and Rνk.
We focus on the practically interesting case where the
probe length L is much larger than the curvature radius
a of the probe tip. We show that for such strongly elon-
gated probes three regimes can be distinguished. The
first is the short-distance limit ztip � a where the be-
havior of βνk is universal. We show that it can be derived
from the known exact solutions for spherical particles
(Sec. II). The second is the long-distance limit, ztip � L,

where the probe acts as a point-dipole and the functional
form of the resonance parameters is again universal. The
remaining third regime a < ztip < L is the most nontriv-
ial one where βνk and Rνk depend on the probe shape.

For all the probe geometries we study the poles βνk
grows exponentially with k, and so for moderate values
of β it is permissible to truncate the series in Eq. (3) after
one or a few leading terms. This truncation is effectively
done in simplified models6,24–27 of the probe-sample cou-
pling, see Sec. IX. However, this simplification may lead
to qualitatively and quantitatively wrong results at small
ztip and/or for large β. The latter characterize highly
polar materials such as SiO2

28 (a commonly used sub-
strate) and the already mentioned Al2O3 (an important
reference material of infrared optics).

Besides addressing analytical properties of the probe
polarizabilities, we also discuss methods for their numer-
ical computation. For the simplest case of a momentum-
independent reflectivity, the calculation can be made vir-
tually instantaneous with the help of Eq. (3) once the first
few βνk and Rνk are computed and stored. For specific case
of a spheroidal probe, this calculation can be further ac-
celerated using the spheroidal harmonics basis instead
of the standard boundary element method (BEM). Since
the number of relevant poles and residues is relatively
small, for further convenience, they can be fitted to an-
alytical forms, see an example for L = 25a spheroidal
probe in Table I. The speed becomes a crucial consid-
eration if the calculations have to be done repeatedly.
An important example is extracting optical constants of
the sample from near-field spectroscopy data by curve-
fitting algorithms.19 One may anticipate to find a con-
siderable speed-up if this inverse problem were treated
using the GSM. The acceleration occurs because the un-
known physical parameter β = β(ω) of the sample and
the geometric parameters βνk and Rνk of the probe stand
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clearly separated. The GSM also applies for momentum-
dependent rP(q, ω), e.g., for layered samples; however,
in the current implementation the speed-up compared to
the BEM is less significant.

The remainder of the article is organized as follows.
In Sec. II we analyze the universal aspects of the short-
and the long-distance regimes. In Sec. III the spheroidal
probe model is considered. The equations for the poles
and residues are presented and the results of their numer-
ical solution for the case of a q-independent rP are dis-
cussed. In Sec. IV we explore the effects due to a weakly
q-dependent surface reflectivity. In Sec. VI we apply our
numerical method to computing the near-field response
of bulk Al2O3, a strongly polar material. In Sec. VII we
perform the calculation for the same Al2O3 substrate but
covered with graphene, which is a system with a strongly
q-dependent reflectivity. In Sec. VIII we discuss the ef-
fects of the probe shape and retardation on these cal-
culations. We also do a similar comparison for SiO2, a
less polar material. In Sec. IX we discuss prior theoret-
ical work and close with concluding remarks. Technical
details of the derivations are summarized in Appendix.
The source code of our computer program is available as
the online Supplemental Material for this article.

II. PROBE-SAMPLE INTERACTION IN
SHORT- AND LONG-DISTANCE LIMITS

We start with a qualitative analysis of the short-
distance regime defined by the condition ztip � a. In
this limit the structure of the localized polariton modes
can be understood intuitively by analogy29 to electro-
magnetic modes in an open cavity. The probe-sample
gap can be approximated by a cavity with height z(ρ) '
ztip+(ρ2/2a) gradually increasing as a function of the ra-
dial position ρ. For simplicity, let us assume the surface
reflectivity of the probe is equal to unity, as for an ideal
conductor. To have free oscillations exist in such a cavity
the surface reflectivity β of the sample must exceed unity,
compensating for the exponential decay of the evanescent
waves. The condition of the self-sustained oscillations is
β exp

(
2ikz(ρ)z(r)

)
= 1. Accordingly, the local radial

momentum q(ρ) ' −ikz(ρ) = log β / 2z(ρ). Imposing
the quasiclassical quantization condition

∫∞
0
dρq(ρ) =

π[k +O(1)] for mode number k, we obtain

log βk ' [k +O(1)]

√
8ztip

a
, ztip � a . (5)

The mode is localized at distances ρ .
√
ztipa . The

validity of this qualitative analysis is supported by the
exact results for spherical particles. For the ν = ‖ part,
the following compact formulas for the poles and residues
are available29–31:

β
‖
k(α) = e(2k+3)α , (6)

R
‖
k(α) = 4(k + 1)(k + 2)a3 sinh3 α , (7)

where

α = arccosh
(ztip

a
+ 1
)
. (8)

It is easy to check that Eqs. (5) and (6) agree in the
limit of small α. (Dependence of β⊥k on α is qualitatively
similar; however, the residues scale as R⊥k ∼ ka3α2 at
small α, see Appendix B.) It is reasonable to think that
the behavior of βνk (α) at α � 1 should be common for
any shape ending in a rounded tip. As long as the modes
are localized at ρ� a, they should be affected weakly by
the rest of the probe. This hypothesis is supported by
numerical calculations presented later in this article.

Consider next the long-distance limit ztip � L. In
this case the probe-sample interaction can be analyzed
using the multipole expansion. For the lowest resonance
k = 0 it is sufficient to include only the dipole term. The
dipole moment of the probe is given by pν = χν0E

ν
tot,

where Eνtot = Eνext + Eνind is the total field at the probe
position and Eνind is the field induced by the image dipole.

In particular, E⊥ind = βpz/4z3
tip and E

‖
ind = βp‖/8z3

tip.
Solving these equation for pν and casting the result for
χν = pν/Eνext in the form (3), we get

β⊥0 ' 4z3
tip/χ

⊥
0 , R⊥0 ' 4z3

tip , (9a)

β
‖
0 ' 8z3

tip/χ
‖
0 , R

‖
0 ' 8z3

tip . (9b)

For the sphere χν0 = a3, so that the last pair of equations
agrees with the exact result (6) and (7). The k > 0 res-
onances are dominated by higher-order multipoles. The
principal dependence of the poles and residues on α is
expected to be the same as for the sphere, i.e.,

βνk ∼ z2k+3
tip , Rνk ∼ 4gν(k + 1)(k + 2)z3

tip if ztip � L ,

(10)
where g⊥ = 1/2 and g‖ = 1. The forms for Rνk are
verified numerically in a later section. Equations (9a)–
(10) imply that in the large ztip limit the sum rule (4) is
saturated by the k = 0 mode alone.

The case of a q-dependent reflectivity can be treated
similarly. Thus, for k = 0 one finds26

χν(ω, ztip) =
χν0

1− χν0gν(ω, ztip)
, (11)

gν(ω, ztip) = cν
∞∫

0

rP(q, ω)e−2qztipq2dq , (12)

where c⊥ = 1 and c‖ = 1/2. Note that the integral
in Eq. (12) is dominated by the in-plane momenta q ∼
1/ztip, which we assume to be well outside the light cone,
q � ω/c. At ztip > c/ω this condition no longer holds
and one has to include retardation effects, see Sec. VIII.

In summary, in this section we presented arguments
that the limiting case formulas (5) and (9a)–(12) apply
to perfectly conducting probes of arbitrary shapes. For
the sphere L = a and for probes of modest aspect ratio
L & a, these formulas match by the order of magnitude at



5

TABLE I. Coefficients of the nine-pole rational fits log βk =
5∑
i=0

aiα
i/

4∑
i=0

biα
i and Rka

−3Z−1 =
5∑
i=0

ciZi/
3∑
i=0

diZi for L = 25a

and 0.003 < Z < 10, where Z ≡ ztip/a. The fits for the residues apply only to the first eight poles, k = 0 through 7. The
remaining residue R8 is constrained to obey the sum rule (4).

k a5 a4 a3 a2 a1 a0 b4 b3 b2 b1 b0

0 3 −36.399 234.56 −762.76 1783.1 −0.015667 1 −10.345 83.048 −417.42 1522.2
1 5 −25.733 111.01 −93.002 290.11 0 1 −3.4964 27.841 11.949 87.231
2 7 −33.029 157.55 −118.29 1391.3 0 1 −0.9961 −2.6274 149.14 253.32
3 9 −36.251 173.3 −40.018 1879.9 0 1 −0.12625 −8.2396 185.03 246.31
4 11 −47.517 221.75 −85.286 2292.3 −0.00017314 1 −0.3866 −8.4205 180.3 237.17
5 13 −45.678 233.45 42.551 3435.5 −0.000094847 1 1.0728 −20.329 253.41 291.59
6 15 −46.254 254.23 223.28 2547 0 1 −0.75722 7.941 175.21 185.07
7 17 −27.808 235.93 770.95 1961.3 0 1 −1.8957 34.251 163.71 122.51
8 19 −65.583 251.72 −308.28 402.67 0.000032595 1 1.6624 4.104 −1.1364 23.24

k c5 c4 c3 c2 c1 c0 d3 d2 d1 d0

0 3.9999 303.23 5141.1 4811.1 282.17 1.4941 1 0.77084 0.023552 0.000027594
1 12.001 916.75 17089 33226 2371.9 12.255 1 1.4472 0.11961 0.0003052
2 24.001 1844.7 35207 90005 36.881 11.908 1 1.9006 0.012624 0.00025669
3 40 3166.2 65393 288144 224067 4417.7 1 4.1622 2.6905 0.09134
4 60.028 4584.9 87200 196974 5632.8 28.67 1 1.5802 0.066244 0.00048749
5 84.685 6304.9 122561 226585 4364.5 4.237 1 1.2714 0.044389 0.000077993
6 116.26 8216.9 166927 316568 98948 843.4 1 1.4088 0.44188 0.0087351
7 146.83 10354 214160 350367 77249 334.56 1 1.1606 0.28331 0.0034808

ztip ∼ a. However, for strongly elongated probes L � a
an additional intermediate regime a � ztip � L exists
which requires further study. The simplest example of
such a shape is the prolate spheroid and we discuss it in
the next section.

III. INTERMEDIATE DISTANCES.
SPHEROIDAL PROBE

Unlike the problem of a sphere, that of a spheroidal
probe cannot be solved analytically. However, we can
take advantage of the separation of variables in prolate
spheroidal coordinates (Fig. 3), which enables a more
efficient numerical solution.32 In this coordinate system
the spheroid is a surface of constant ξ = L/F ≡ ξ0. The
focal length F , the major semi-axis L, the minor semi-
axis W , and the curvature radius a of the spheroid apex
are related by

F =
√
L2 −W 2 , a = W 2/L . (13)

This implies ξ0 = [1 − (a/L)]−1/2. We assume that the
major axis of the spheroid is along the z-axis. If the
distance between the spheroid and the sample is ztip, the
sample surface is at z = −L− ztip.

We consider the quasistatic limit where the scalar po-
tential has the harmonic time dependence ∝ e−iωt. Its
spatial part must obey the Laplace equation in the do-
main outside both the spheroid and the sample. There-

fore, it can be expanded into spheroidal harmonics, which
are products of the generalized Legendre functions of
the first and second kind Pml (x) and Qml (x). Here
m = 0,±1,±2, . . . is the z-axis angular momentum and
l must be greater or equal to |m|. As shown in Ap-

ξ0

ξ = const

η = 0

η = −1

η = 1

ρ̂

ẑ

r̂
θ

FIG. 3. The prolate spheroidal coordinate system. Contours
of constant ξ (η) are confocal spheroids (hyperboloids). The
unit vector r̂ and polar angle θ of spherical polar coordinates
and unit vectors ρ̂ and ẑ of cylindrical polar coordinates are
also shown for reference.
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FIG. 4. (Color online) (a) The first four poles βνk of the polarizability χν for perfectly conducting spheroids. The probe-sample
distance is parameterized by α = arccosh(1 + ztip/a) [Eq. (8)]. The solid lines are for a strongly elongated spheroid L = 25a,
the dashed lines are for a nearly spherical one L = 1.01a. The external field is in the z-direction, ν = ⊥. (b) The corresponding
residues R⊥k divided by a3. Poles for different shapes converge at small ztip, while residues converge at large ztip. (c), (d)
Similar plots for the external field in the x-y plane, ν = ‖.

pendix A, the expansion coefficients Aml can be related
to the charge distribution on the spheroid. For exam-
ple, Am0 is proportional to the total oscillating charge
of the spheroid ∝ e−iωt. For a passive probe, Am0 = 0.
The l = 1 terms determine the components of the dipole
moment induced on the probe:

pz = −1

3
F 3A0

1 , px − ipy =
2

3
F 3A1

1 . (14)

For eachm the set of coefficients Aml satisfies the infinite-
order system of linear equations

∞∑

l′=1

(Λmll′ −Hll′)A
m
l′ = bml , (15)

where Λmll′ and Hll′ are defined by Eqs. (21) and (28) be-
low. According to Eq. (14), to find p we need to consider
only m = 0 and m = 1. The requisite coefficients bml on
the right-hand side of Eq. (15) are given by

b01 = −4

3
Ez , (16)

b11 =
4

3
(Ex − iEy) , b−1

1 =
1

3
(Ex + iEy) . (17)

If the external field Eext = Exx̂+Eyŷ+Ezẑ is uniform,
all other bml vanish. Once we solve the system (15) for
m = 0, we can find the transverse polarizability from

χ⊥ =
pz

Ez
=

4

9
F 3 A

0
1

b01
. (18)

In turn, the solution for m = 1 would give us A1
1 and

χ‖ =
px − ipy
Ex − iEy

=
8

9
F 3 A

1
1

b11
. (19)

Equation (15) we wish to solve can be cast in a matrix
form

(Λm −H) Am = bm . (20)

Matrix Λm is diagonal, Λmll′ = Λml δll′ , where

Λml =
(−1)m

2l + 1

4

εtip − 1

[
εtip

Qml (ξ0)

Pml (ξ0)
−

d
dξ0
Qml (ξ0)

d
dξ0
Pml (ξ0)

]
(21)

and εtip is again the dielectric constant of the spheroid.
If the probe is made of an ideal conductor, εtip → ∞,
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then Eq. (21) simplifies to

Λml = (−1)m
4

2l + 1

Qml (ξ0)

Pml (ξ0)
. (22)

All these Λml are actually positive numbers because the
factor (−1)m is compensated by the same factor in the
definition of Qml (ξ0). The behavior of Λml at large l is
approximately exponential, as can be deduced from the
asymptotic formula

(−1)m
Qml (ξ0)

Pml (ξ0)
' πe−(2l+1)α0 , α0 ≡ arccosh ξ0 . (23)

In Sec. VI we also consider the case where εtip is a finite
positive number. In this case the decay of Λml at large l
is also exponential but with a different factor in front.

If the dielectric function of the probe is real and neg-
ative, then Λml can be negative, too. It can also be zero,
which corresponds to a plasmon (or phonon) polariton
resonance of the probe. The resonances occur at discrete
εtip values

εmtip,l =

d
dξ0

lnQml (ξ0)
d
dξ0

lnPml (ξ0)
, l = 1, 2, . . . , (24)

see, e.g., Refs. 33 and 34 (where, in fact, a more gen-
eral case of anisotropic εtip is treated). For each m, the
sequence εmtip,l asymptotically approaches −1 as l → ∞.
The smallest, i.e., the most negative value in each se-
quence is the starting one. It can be alternatively written
as

εmtip,1 = 1− 1

Lν
, (25)

where ν = ⊥ for m = 0, ν = ‖ for m = 1, and Lν are the
depolarization factors of the spheroid35

L⊥ = (ξ2
0 − 1)

[
1

2
ξ0 ln

(
ξ0 + 1

ξ0 − 1

)
− 1

]
, (26)

L‖ =
1− L⊥

2
. (27)

For prolate spheroids, these depolarization factors obey
the inequalities 0 < L⊥ < L‖ < 1

2 , and so ε0tip,1 < ε1tip,1.
For example, if L = 25a, which we use in our calcu-
lations below, then ξ0 =

√
25/24, ε0tip,1 = −16.9, and

ε1tip,1 = −1.11. If the probe is made out of platinum or
iridium, which are common materials for AFM tips, its
dielectric function can indeed be negative. It is in prin-
ciple possible to achieve plasmonic resonances in such
probes somewhere in the near-infrared or visible spectral
range. On the other hand, at mid-infrared frequencies,
for which we do calculations in this paper, the dielec-
tric functions of such metals are in the range of hundreds
or thousands. Such probes are very far from any of the
plasmonic resonances and the approximation of the ideal
conductor, Eq. (22), can be safely used. We do so in the
remainder of this Section.

The elements of matrix H in Eq. (20) are given by

Hll′ ≡ 2π

∞∫

0

rP(q, ω)Il+ 1
2
(qF )Il′+ 1

2
(qF )e−2qzp

dq

q
(28)

where Iν(z) are the modified Bessel functions of the first
kind and

zp ≡ ztip + L . (29)

As mentioned in Sec. I, the reflectivity rP(q, ω) may have
strong peaks at the dispersion curves ω(q) of the surface
polaritons of the sample. In practice, rP(q, ω) is always
finite, so that the integrand in Eq. (28) is well-behaved
and exponentially decreasing. A fast method of comput-
ing Hll′ numerically is explained in Supplemental Mate-
rial. In the remainder of this section we will assume that
rP(q, ω) is q-independent. We will show that the polariz-
abilies of the spheroidal probe are meromorphic functions
as stated in Sec. I. We will also present our analytical and
numerical results concerning the behavior of their poles
and residues.

If rP(q, ω) = β = const, then matrix H factorizes H =
β H̄ and Eq. (20) becomes

(
Λm − β H̄

)
Am = bm . (30)

A particular case of this equation for ztip = 0 was previ-
ously derived in Ref. 32. In general, Eq. (30) implies that
Am as a function of β has poles βνk that are the solutions
of the eigenvalue problem

(
Λm − βνk H̄

)
uk = 0 . (31)

The substitution uk = (Λm)−1/2vk transforms it to

vk = βνk Mvk , M = (Λm)−1/2H̄ (Λm)−1/2 . (32)

Since all Λml are assumed to be positive, matrix M is
real and symmetric, and so its eigenvalues (βνk )−1 are real
and its eigenvectors vk can be chosen to be orthonormal.
Assuming vk form a complete basis, the solution Am of
Eq. (30) can be sought as a linear combination of the cor-
responding uk. Taking into account Eqs. (18) and(19),
we arrive at Eq. (3) with

Rνk
βνk

= χν0 |(vk)0|
2
, χν0 =

4

9

m+ 1

Λm1
F 3 , (33)

where, once again, m = 0 for ν = ⊥, m = 1 for ν =
‖, and (vk)0 is the first component of vector vk. The

completeness of the basis entails
∑
k |(vk)0|

2
= 1, leading

to the sum rule (4). The explicit formulas for χν0 that
follow from Eqs. (22), (33), (26), and (27) are

χ⊥0 =
L3

3ξ3
0

[
1

2
ln

(
ξ0 + 1

ξ0 − 1

)
− 1

ξ0

]−1

=
V

4πL⊥
, (34a)

χ
‖
0 =

2L3

3ξ3
0

[
ξ0

ξ2
0 − 1

− 1

2
ln

(
ξ0 + 1

ξ0 − 1

)]−1

=
V

4πL‖
,

(34b)
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where V = (4π/3)L2a is the volume of the spheroid.
These formulas should be familiar from classical electro-
statics or from the theory of light scattering by small par-
ticles.35 For strongly elongated spheroid L � a, ξ0 ' 1,
they yield

χ⊥0 '
2

3

L3

ln(4L/a)
, (35a)

χ
‖
0 '

2

3
L2a . (35b)

In Sec. I we stated that the sequence βνk may not have
accumulation points. For the present case of a spheroidal
probe this can be proven directly from the properties of
matrix M. The first step is to show that the matrix
elements of H̄ obey the asymptotic bound

ln H̄ll′ < −(l + l′ + 1) arccosh
(zp

F

)
(36)

at large l and l′. This can be established using the saddle-
point integration in Eq. (28). Together with Eqs. (22)
and (23), this bound ensures that at ztip > 0 the high-
order matrix elements of M decay exponentially,

lnMll′ < −(l + l′ + 1)
[
arccosh

(
coshα+

ztip

F

)
− α

]
.

Here α [Eq. (8)] parametrizes the probe-sample distance
ztip. Hence, the double series

∑
ll′M

2
ll′ = tr M2 is con-

vergent. Considering the identity

∞∑

k=0

(βνk )−2 = tr M2 <∞ (37)

we see that the accumulation points are ruled out. On the
contrary, tr M2 diverges at ztip = 0 and one accumulation
point does exist: β = 1. For the sphere this can be found
directly from Eq. (7) by setting α = 0.

In the spherical limit ξ0 → ∞ an analytical solution
of our equations exists although it is not obvious. We
deduced the form of this solution from the method of
images, see Appendix B. At finite ξ0 we resorted to solv-
ing the problem numerically. As already mentioned, due
to an exponential growth of βνk with k, only a first few
of such poles are usually needed for evaluating the po-
larizabilities in question χν . To compute such βνk and
the corresponding Rνk we used the following procedure.
Given L/a and α, we would generate an N × N matrix
made of the first N rows and columns of the full infinite
matrix M. We would diagonalize this finite-size matrix
by standard library routines.36 The obtained eigenvalues
approximate the first N poles βνk . We would gradually
increase the matrix size until the poles we are interested
in would show no variation as a function of N within the
desired accuracy. The larger L/a and the smaller α, the
higher N was needed. We found this procedure workable
as long as N did not exceed about 500. As a rule, the
higher eigenvalues of larger matrices would either fail to
reach the accuracy or would show an α-dependence in-
consistent with physical principles. This behavior stems

most likely from roundoff errors. In principle, one can
combat them by utilizing higher-precision arithmetic but
we did not pursue this route. For L = 25a the com-
putation of the first nine poles with at least two-digit
accuracy was possible for α > 0.08, i.e., ztip > 0.003a.
The residues Rνk were obtained from the eigenvectors of
the truncated matrix M using Eqs. (33)–(34b). In the
interval 0 < α < 0.08 we used the linear interpolation
between βνk (α = 0.08) and βνk (α = 0) = 1.

The results of these calculations are presented in Fig. 4
for the first four modes, k = 0 to 3. The solid lines in

panels (a) and (c) show β⊥k and β
‖
k , respectively, as a

function of α. The corresponding quantities for a sphere
are shown by the dashed lines. The residues Rνk/a

3 are
plotted in panels (b) and (d). The first nine pole-residue
pairs of the spheroid for ν = ⊥ have also been fitted with
an error of 5% or smaller to a combination of elementary
functions in the range 0.003a < ztip < 10a. The fitting
formulas and their coefficients are cataloged in Table I.
The residue R⊥8 behaves differently from the others be-
cause it was constrained to satisfy the sum rule (4). Using
these formulas one can find the response χ⊥ with negli-
gible computational cost for any β(ω) as long as its value
is not extremely large. Note that although these results
are for perfectly conducting spheroids εtip =∞, calcula-
tions for arbitrary finite εtip can be done in the same way
except one has to use Eq. (21) instead of Eq. (22).

Let us now compare the obtained dependence of βνk
on ztip with the limiting asymptotic behavior predicted
in Sec. II. First, at ztip � a, the poles of the spheroid
approach that of a sphere, as expected, see Fig. 4(a) and
(c). The other limit is ztip � L, where the point-dipole
formulas (9a)–(9b) should apply. In Fig. 4 it is seen that
the lowest eigenvalue of both shapes indeed have the cor-
rect behavior. The intermediate regime a � ztip � L
is the most nontrivial one. We argue that in this regime
function β⊥0 (ztip) behaves as

β⊥0 (ztip) = c ln(ztip/a) , a� ztip � L , (38)

with some coefficient c ∼ 1 independent of L. To ar-
rive at this formula we first find bounds on β⊥0 using
the following theorem. Consider two perfectly conduct-
ing probes of different sizes. If the surface of one probe
can be inscribed into the other, then the first probe must
have a larger βν0 . This statement is physically natural be-
cause self-sustained oscillations around the smaller body
require a larger compensation from the surface reflectiv-
ity, cf. Sec. II. It can also be proven mathematically from
the variational principle.21,37 To place bounds on β⊥0 of
the spheroid we can consider two other probes, a larger
one and a smaller one. We get

βcone,ν
0 < βν0 < βss,ν

0 , (39)

where βcone,ν
0 is the lowest pole of a cone with a vertex

touching the sample and enveloping the spheroid; βss,ν
0

is the lowest pole of a spheroid of shorter length L =

ztip. It can be shown38 that βcone,⊥
0 ' (1/π) ln(ztip/a).
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As for the smaller spheroid, the point-dipole formula

should apply by order of magnitude, βss,⊥
0 ∼ 6 ln(ztip/a),

cf. Eqs. (9a) and (35a). Since the functional form of
these bounds coincides with Eq. (38) up to numerical co-
efficients, we argue that β⊥0 (ztip) should obey the same
equation as well. The graph shown in Fig. 4(a) is con-
sistent with this prediction. However, due to numerical
limitations L/ztip and ztip/a could not be very large in
our simulation and we could obtain only a crude estimate

1 < c < 3 of the coefficient c. The poles β
‖
k of the in-

plane polarizability, which are plotted in Fig. 4(c) as a
function of α, also show crossovers among three regimes
(short, long, and intermediate distances) and can be un-
derstood in a similar way.

The behavior of the residues Rνk is more difficult to
analyze. At large distances ztip � L, the residues of the
spheroid approach those of the sphere [Eq. (10)]. At small
distances, where the poles behave as lnβνk ∼ (2k + 3)α,
the polarizability is determined by a large number ∼ 1/α
of terms in the pole-residue series. The sum rule (4) im-
plies that the sum of these dominant residues must be
of the order of χν0 for each shape. Indeed, the residues
of the sphere, which have the form R⊥k ∝ ka3α2 and

R
‖
k ∝ (k+1)(k+2)a3α3 (Appendix B), obey this require-

ment. The residues of the spheroid are always larger than
those of the sphere, consistent with the higher χν0 . The
intermediate-distance behavior of Rk defies an obvious
characterization. It is intriguing that at small distances
only the residues are affected by the aspect ratio of the
probe, while at large distances only the poles are altered.

Information about the probe-sample coupling comple-
mentary to the properties of the poles and residues can
be obtained by examining the potential distribution of
the polariton modes in real space. The examples for
the ⊥ modes are depicted in Fig. 1(b). The potential
is strongly peaked near the tip of the spheroid, demon-
strating the localized nature of near-field coupling. Note
that the number of times the potential changes sign along
x is equal to k.

IV. MOMENTUM-DEPENDENCE OF THE
PROBE-SAMPLE COUPLING

A simple physical picture of the s-SNOM that served
as an important insight in the early days of the field
and still remains popular today is the notion that the
probe couples predominantly to momenta q ∼ 1/a. Ac-
cordingly, the s-SNOM signal is collected from a very
small region of size ∼ a directly underneath the tip.
Modern applications of s-SNOM to two-dimensional and
layered systems require going beyond this oversimpli-
fied picture because the q-dependence of the reflectiv-
ity rP(ω, q) of such systems can be very sharp due to
presence of dispersive collective modes (Sec. VII). Recall
that for a momentum-independent reflectivity β [Eq. (2)],
the poles and residues of the polariton eigenmodes are
determined solely by the permittivity and geometry of

the probe. Unfortunately, for a q-dependent reflectivity
such a clean separation of the probe and sample prop-
erties in the eigenproblem is not possible. While one
can still define the eigenmodes by suitably modifying
Eq. (3), the corresponding poles and residues will be,
in general, complicated functionals of rP(ω, q). However,
if the q-dependence of the reflectivity is weak, it can be
treated as a perturbation, and the sample-independent
resonant modes are retained. As we show in this Sec-
tion, in this perturbative case one can precisely define
the probe-sample coupling as a function of q and the
‘dominant’ momentum as a function of ztip.

Consider a small q-dependent correction to the reflec-
tivity:

rP(q) = β + δrP(q) . (40)

The kth pole βνk of the probe-sample eigenmodes is a
functional of rP. The key question is how this pole is
affected by the nonlocal correction to rP. The answer can
be written in terms of −Gνk(q, ztip), the first variational
derivative of βνk [rP(q)] with respect to rP:

δβνk (ztip) = −
∞∫

0

Gνk(q, ztip)δrP(q)dq . (41)

This is the desired relation to the leading order in δrP.
A few general properties of function Gνk at q < 1/ztip can
be established. First, this function decays exponentially
at large q:

Gνk(q, ztip) ∼ e−2qztip . (42)

This is so because the probe-sample interaction is medi-
ated by multiple reflections of evanescent waves (Sec. I)
and the shortest distance such waves have to travel is
2ztip. Next, it is easy to see that Gνk is normalized:

∞∫

0

Gνk(q, ztip)dq = 1 . (43)

Using a variation principle one can also show that for
a perfectly conducting probe Gνk(q, ztip) is nonnegative.
Therefore, functions Gνk(q, ztip) can be considered weight
functions for the perturbation δrP(q). To put it another
way, this set of functions quantifies the momentum de-
pendence of the probe-sample coupling. Below we show
that the properties of these functions paint a much more
nuanced physical picture than the naive idea that the
coupling is maximized at a single momentum q ∼ 1/a.
However, if one insists on characterizing the entire dis-
tribution of relevant momenta by a single number, the
logical candidates are the average momenta

q̄νk =

∞∫

0

Gνk(q, ztip)qdq . (44)
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FIG. 5. (Color online) (a) The weight function G⊥0 (q, ztip) for the spheroid with L = 25a and εtip =∞. The dashed line shows
q̄⊥0 (ztip). (b) G⊥0 (q, ztip) for several ztip, with circles indicating q̄⊥0 . The solid lines are for the spheroid, the dashed lines are
for the sphere. The spheroid is more sensitive to small q compared to the sphere, while both shapes are more sensitive to large
q as ztip decreases. (c) The first three G⊥k (q) for ztip = a, with solid circles indicating q̄⊥k . The number of nodes in G⊥k (q) is
equal to k, while q̄⊥k increases with k. The logarithmic scaling of the horizontal axes is used to show the small-q structure more
clearly.

The idea is that unless Gνk(q, ztip) has a complicated
structure or a slow decay, q̄νk should play the role of a
characteristic momentum that determines kth polariton
pole βνk . Accordingly, we may expect that 1/q̄νk should
give an improved estimate of the spatial resolution of the
probe in the context of near-field imaging by s-SNOM.
Interestingly, q̄νk can be found by differentiating βνk (ztip):

q̄νk(ztip) =
1

2

∂

∂ztip
log βνk . (45)

To obtain this formula consider first a sample with a q-
independent reflectivity β and let the probe-sample sep-
aration be ztip = z + dz. This system is equivalent to
another one: the probe separated by ztip = z from a
fictitious two-component medium composed of a vacuum
layer of thickness dz plus the original sample. The sur-
face reflectivity of such a two-component medium is q-
dependent, rP(q) = βe−2qdz, so that it has the form (40)
with δrP(q) = −2qβdz. Evidently, such a δrP(q) shifts
the resonant pole from β = βνk (z) to β = βνk (z+ δz), i.e.,
causes a differential change δβνk = (∂βνk/∂z)dz. Substi-
tuting these relations into Eq. 41, we get Eq. (45). Note
that as βνk rises more steeply with ztip for larger k, q̄νk
increases with k.

An equivalent description of the effect of a q-dependent
perturbation is that it induces a correction to the surface
reflectivity. The effective reflectivity βeff is different for
each k and ν,

βν,eff
k ≡ β − δβνk =

∞∫

0

Gνk(q, ztip)rP(q)dq . (46)

The corresponding polarizability χν is given by

χν =

∞∑

k=0

Rνk

βνk − β
ν,eff
k

. (47)

In the following we focus on function Gν0(q, ztip) because
k = 0 is the dominant resonance at all but very small
ztip. Actually, the large-distance limit of this function
has the universal form

Gν0(q, ztip) ' 4z3
tipq

2e−2qztip , ztip � L , (48)

same for both ν. Equation (48) follows from Eqs. (11)
and (41) and is consistent with the surmised large-q be-
havior (42). As one can see, Eq. (48) gives Gν0(q, ztip)
that is normalized, nonnegative, and has a single max-
imum at q = 1/ztip. The average momentum is q̄ν0 '
3/(2ztip).

In the intermediate-distance regime functions
Gνk(q, ztip) are not expected to be universal. The
specific example we treat in detail is again the con-
ducting spheroidal probe. Combining Eq. (45) with the
results of Secs. II and III, for the strongly elongated
spheroid we obtain the following:

1

q̄⊥0 (ztip)
∼





(aztip)1/2 , ztip � a ,

2ztip log
(ztip

a

)
, a� ztip � L̃ ,

2ztip

3
, ztip � L .

(49)

Since the left-hand side has the physical meaning of the
spatial resolution of the probe, we expect it to monoton-
ically decrease as ztip decreases. Therefore, the length

scale L̃ appearing on the second line of Eq. (49) should
be of the order of L/ 3 log(L/a). The presence of a
large logarithmic factor log(ztip/a) in the intermediate-

distance regime a � ztip � L̃ indicates that function
G⊥0 (q, ztip) has a considerable weight at q parametrically
smaller than 1/ztip. In other words, a strongly elongated
spheroidal probe senses electric fields beyond its imme-
diate vicinity ρ < ztip. (A similar point was made previ-

ously in Ref. 28.) As L/a decreases, L̃ comes close to a,
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and this intermediate regime disappears. For example,
the sphere acts essentially as a local probe.

The calculation of Gνk(q, ztip) for the spheroid can be
done as follows. Applying the first-order perturbation
theory to the linear system (30), one finds

Gνk(q, ztip) =
u†kH

′uk

u†kH̄uk
, (50)

where H′ is the matrix with elements

H
′

ll′ =
2π

q
Il+ 1

2
(qF )Il′+ 1

2
(qF )e−2qzp . (51)

Once the eigenvectors uk are found, e.g., as described in
Sec. III, function Gνk(q, ztip) can be readily computed.

Our numerical investigation of Gνk(q, ztip) was limited
mainly to k = 0 and ν = ⊥. We observed that the eigen-
vector components approximately followed the geomet-
ric series (u0)j ∼ tj . The quotient t is somewhat larger
than unity for small ztip. As ztip increases, t becomes
less than unity, so that the first component (u0)0 dom-
inates. Neglecting all other components and expressing
the modified Bessel function I3/2(z) in terms of elemen-
tary functions, we obtain the analytical approximation
from Eqs. (50) and (51):

Gν0(q, ztip) =
c0
q4

(qF cosh qF − sinh qF )
2
e−2qzp , (52)

where c0 is a normalization constant. At ztip � L we can
focus on the range of momenta less than 1/L because at
larger q this function is already exponentially small. For
such q the bracketed expression on the right-hand side
can be replaced by (Fq)6/9 and zp = ztip + L by ztip,
which yields the asymptotic form (48).

To examine small and intermediate distances we used
the direct numerical evaluation of u0 and Gν0(q, ztip). As
in Sec. III, we considered two aspect ratios: L/a = 25
and L/a = 1. Only ν = ⊥ part was studied. The re-
sults for L/a = 25 are shown using the false color scale
in Fig. 5(a). It can be seen that as ztip decreases, both
q̄⊥0 (ztip) and the position of the maximum of G⊥0 (q, ztip)
as a function of q shift toward larger values. This implies
that the probe becomes more sensitive to finer spatial
features of the sample, as discussed above. The line plot
of G⊥0 (q, ztip) for several ztip presented in Fig. 5(b) de-
picts the same trend. The average momentum q̄⊥0 and
the position of the G⊥0 (q) maximum are of the same or-
der of magnitude except at very short distances where
q̄⊥0 increases more rapidly as ztip decreases. Note that
Eq. (49) predicts that q̄⊥0 diverges at ztip = 0. From
Fig. 5(b) we also see that for the same ztip the maximum
of G⊥0 (q, ztip) is found at q smaller by a factor of 3–10
for the spheroid compared to the sphere. This confirms
that the spheroid is much more sensitive to small in-plane
momenta than the sphere, i.e., the response of a strongly
elongated spheroid is affected by a relatively wide range
of lengthscales.

For k > 0, G⊥k (q, ztip) has nodes as a function q at fixed
ztip. The number of nodes is equal to k, see Fig. 5(c).
Apparently, at such q near-field coupling between oscil-
latory charge distributions on the probe and the sample
exactly vanishes. Therefore, small perturbations at such
discrete q do not affect the kth resonant mode. Finally,
although q̄⊥k increase with k for the reasons explained
above, the maxima of G⊥k show the opposite trend, which
is presently not understood.

V. FROM NEAR-FIELD POLARIZABILITIES
TO FAR-FIELD OBSERVABLES

In order to apply our theory to simulation of s-SNOM
experiments, we need to include a few more ingredients in
our calculation. The first one is the so-called far-field fac-
tor (FFF) F ν(ω). This factor accounts for the fact that
the probe is illuminated not only by the incident wave
but also by its reflection from the sample. In experiment
P-polarized incident field is usually used, to take advan-
tage of the high transverse polarizability of the probe.
Assuming the sample surface is flat, uniform, and its lin-
ear dimensions are much longer than the radian sphere
diameter c/ω, the reflection of the incident wave is de-
scribed by the coefficient rP(qs, ω), where

qs =
ω

c
sin θ (53)

is the in-plane photon momentum and θ is the angle of
incidence. Hence, the ratio of ν-component of the elec-
tric field at the surface to that of the incident wave is
1 ± rP(qs, ω) for ν = ⊥ and ‖, respectively. The FFF
also takes into account that the field scattered by the
probe reaches the detector in two waves: directly and
after reflection from the sample surface. Usually, the
backscattered field is measured. It has the in-plane mo-
mentum −qs and therefore the same reflection coefficient
rP(−qs, ω) = rP(qs, ω) as the incident wave. The total
FFFs for this setup are given by

F⊥(ω) = [1 + rP(qs, ω)]2 sin2 θ , (54a)

F ‖(ω) = [1− rP(qs, ω)]2 cos2 θ . (54b)

The trigonometric factors on the right-hand side take
care of conversion between the total electric field Eext of
the waves and their ⊥, ‖ components. Note that our as-
sumption of the plane-wave illumination is not entirely
realistic. In experiment, a focused Gaussian beam is typ-
ically used, in which case the FFFs are effectively aver-
aged out over a range of angles θ. Numerical apertures
∼ 0.4 are common. We must also stress that Eq. (54)
should be modified if the system studied by s-SNOM is
nonuniform on scales shorter than c/ω. Typical examples
include a small sample residing on some substrate28 or
measurements done close to a boundary of two different
materials.
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Another point we have to discuss is signal demodu-
lation. In the experiment the probe is made to oscil-
late mechanically, which causes periodic variation of the
probe-sample distance:

ztip(ϕ) = z0 + ∆z (1− cosϕ) , ϕ ≡ Ωt . (55)

The oscillation amplitude is typically ∆z = 20–90 nm,
comparable to the radius of curvature a ∼ 30 nm of the
probe. The minimal approach distance z0 ≥ 0 can be
equal to zero if the probe taps the sample. The tapping
frequency Ω is many orders of magnitude smaller than
the laser frequency ω, and so the motion of the tip does
not affect the electromagnetic response. Effectively, the
experiment consists of measuring the scattered signal for
many static configurations with different ztip. The nth
Fourier harmonic of the backscattered field is referred
to as the demodulated signal sn. (Here we define sn as
a complex number but in experimental literature it is
common to discuss the amplitude and the phase of sn
separately.) The primary purpose of demodulation is to
suppress the far-field background signal created by reflec-
tions from the body of the tip, the cantilever, etc. This
background is large but depends on ztip very weakly (lin-
early) and thus contributes predominantly to the n = 1
harmonic. Unfortunately, demodulation strongly dimin-
ishes the signal amplitude, making it more susceptible to
experimental noise. In practice, n = 2 or 3 usually gives
the best approximation of the true near-field signal.2,3,39

The demodulated signal is related to the polarizabili-
ties χν(ω, ztip) we have been discussing in previous sec-
tions by

sνn(ω) = const × χνn(ω)F ν(ω) , (56)

where χνn(ω) is the nth Fourier harmonic of χν :

χνn(ω) =

π∫

0

dϕ

π
χν
(
ω, ztip(ϕ)

)
cosnϕ . (57)

One more element of the experimental protocol is normal-
ization. What is typically reported is sνn(ω) normalized
against a certain reference material, e.g., Si or Au:

s̄νn(ω) = sνn(ω)/sν, ref
n (ω) . (58)

The normalization eliminates a number of physically un-
interesting or poorly known factors, such as the constant
in Eq. (56) that are related to the optical setup of the
experiment. The FFFs may also be canceled if both the
studied and the reference objects in the experiment are
positioned nearby, so that the data for the two are taken
at points no farther apart than the diameter c/ω of the
radian sphere.

The last point we wish to draw attention to is that the
absolute value of the minimum probe-sample distance z0

[Eq. (55)] cannot be determined very accurately. There-
fore, experimentalists have to measure the so-called ap-
proach curve, which is the s-SNOM response as a function

of z0 at a fixed frequency. They then identify the point
z0 = 0 as a point where a qualitative change in behavior
in s2 or s3 appears. The logic behind this procedure is
that once the probe makes the mechanical contact with
the sample, its oscillations become reduced in amplitude,
marking an unambiguous change. A potential flaw of this
argument is that sharp changes in sn’s may be generated
by a rapid variation of electromagnetic coupling between
the probe sample at short separation even before making
mechanical contact. We will discuss this issue in more
detail in Sec. VI.

VI. CASE OF LOCAL REFLECTIVITY:
ALUMINUM OXIDE

In this and the following Sections we discuss the im-
plications of our theory for near-field response of real
materials. We choose bulk α-Al2O3, also known as sap-
phire or corundum, as our first example of highly reso-
nant material with a momentum-independent reflectiv-
ity β [Fig. 2(a)]. Another material with these properties,
silicon carbide, has been a subject of a recent s-SNOM
study co-authored by two of the present authors.19 Mod-
eling results based on the BEM showing good agreement
with the data were also reported in that work. Realis-
tic probe shapes and retardation effects have been taken
into account in order to achieve that. The latter was nec-
essary since the probe length 2L ∼ 20µm in the experi-
ments was in fact larger than the diameter of the radian
sphere c/ω ∼ 11µm. Here we do not aim for a perfect
agreement with a particular experiment but instead wish
to illustrate how the general theory of multiple eigen-
modes formulated in the preceding Sections can generate
novel features in near-field observables. We study mostly
probes of an idealized spheroidal shape but examine some
other shapes as well. We stay within the quasistatic ap-
proximation but we will comment on retardation effects
in Sec. VIII.

We use the following momentum-independent model
for the reflection coefficient of the uniaxial Al2O3 crystal,

β(ω) =
εeff − 1

εeff + 1
, εeff(ω) =

√
εoεe , (59)

where ερ for ρ = o (ordinary) and e (extraordinary) axes
is given by

ερ(ω) = ε∞,ρ
∏

j

ω2
jLO,ρ − ω2 − iγjLO,ρω

ω2
jTO,ρ − ω2 − iγjTO,ρω

. (60)

The optical constants of Al2O3 reported in the litera-
ture40,41 have slight variations, presumably because of
different crystal purity and processing. In our calcula-
tions we adopt the results of Ref. 41 at room temperature,
reproduced in Table. II. (For simplicity, the weak oscilla-
tor at ωTO,o = 634 cm−1 is neglected.) Due to smallness
of the optical phonon linewidths γρ in this material, the
near-field reflectivity of Al2O3 can be as high as β ∼ 10.
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FIG. 6. (Color online) Response of a perfectly conducting spheroidal probe with L = 25a and bulk Al2O3 sample. (a) The
false color plot of Imχ⊥(ω, ztip)/a3. The bright curves correspond to the resonant modes, with k = 0 mode having the lowest
frequency. (b) The polarizability χ⊥ (absolute value and imaginary part) at ztip = 0.02a = 0.6 nm, the smallest distance in
panel (a). (c) The absolute value of the demodulated polarizability |χ̄3| and scattering signal |s̄3| for the tapping amplitude
∆z = 50 nm and z0 = 0.6 nm. The origin of the three peaks is discussed in the text. (d)–(f) The counterparts of panels
(a)–(c) for the parallel component, ν = ‖. The plots again reveal multiple resonances. However, the overall magnitude of

the polarizability is greatly reduced, χ‖ ∼ 10−2χ⊥, and the resonances are more strongly bunched near the surface phonon
frequency ωSP = 818 cm−1.

TABLE II. Parameters of the optical constant of α-Al2O3

used in our calculations, cf. Eq. (60). The frequency unit is
1 cm−1. (From Ref. 41 for temperature T = 300 K.)

ρ ε∞ j ωjLO γjLO ωjTO γjTO

o 3.05 1 908 22.4 569 7.86
2 482 2.96 439 3.23
3 387 5.18 384 6.03

e 2.9 1 885 21.6 582 4.17
2 481 3.21 482 3.42
3 511 1.42 400 4.68

We start by studying the behavior of the probe polar-
izabilities χν as a function of frequency ω. In the mid-
infrared range, the reflection coefficient β of Al2O3 has
a single peak centered at the surface-phonon frequency
ωSP = 818 cm−1, depicted in Fig. 2(a). As ω approaches
ωSP from below, Reβ(ω) steeply rises. Equation (3) im-
plies that whenever Reβ is equal to a pole βνk , Imχν has

a local maximum as long as the damping Imβ(ω) is not
too large. The positions of three such underdamped res-
onances are indicated schematically in Fig. 2(a). Thus,
a single surface mode ωSP of Al2O3 may produce mul-
tiple modes of the coupled probe-sample system. These
localized eigenmodes (resonances) have been discussed at
length in the preceding Sections. For example, they are
depicted in Fig. 1(b) for the case of a spheroidal probe.
Note that all the resonances are red-shifted from the fre-
quency ωSP. Since Imβ increases as ω approaches ωSP,
higher-order resonances are progressively more broad.

The scenario above is described in terms of constant
βνk . However, the poles are functions of ztip, and so
the frequency of each resonance shifts with ztip. This
is clearly seen in a false color plot of Imχ⊥(ω, ztip)
[Fig. 6(a)], where each mode creates a bright curve. All
the curves are red-shifted from ωSP but converge to it at
large ztip. The smallest ztip = 0.02a in Fig. 6(a) is limited
by the accuracy of our numerical calculation. Based on
our analytical results we expect that at smaller ztip the
resonance curves are shaped as parabolas that approach
ωTO = 576 cm−1 where Reβ = 1, cf. Eqs. (5), (59), and
(60). A horizontal line cut through Fig. 6(a) taken at
ztip = 0.6 nm is plotted in Fig. 6(b) along with the ab-
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solute value of χ⊥. The strongest peak in this plot cor-
responds to the k = 0 mode. The multiple weaker peaks
at higher frequencies are produced by k > 0 modes.

Next we consider the effects of demodulation on the
s-SNOM signal, which can be understood as follows. As
the probe oscillates, it spends most time at the mini-
mum and maximum distances from the surface. One
therefore expects peaks in χνn at frequencies near those of
χν(z0, ω) and χν(z0+2∆z, ω). This gives two frequencies
per each resonant mode. Actually, the number of observ-
able peaks is smaller. Indeed, from Figs. 6(a) and 6(d)
one can see that all the resonance curves modes should
merge together at z = z0 + 2∆z for typical ∆z ∼ 50 nm.
Hence, all the modes should produce a single common
peak in the demodulated signal from such z. Further-
more, while the peaks of χν(z0, ω) are distinct, only a
few strongest of them can survive the smearing effect
of the demodulation. These expectations are supported
by Fig. 6(c), where we plot the normalized quantities
χ̄3(ω, z0) ≡ χ3/χ

ref
3 and s̄3 for ν = ⊥, assuming tapping

amplitude ∆z = 50 nm, z0 = 0.6 nm, and Si as the refer-
ence material. In Fig. 6(c) we see only three peaks. The
peak at 650 cm−1 in |s̄3| is produced by the dominant
k = 0 mode. It has the same frequency as the k = 0
peak in Fig. 6(b). The second peak near 725 cm−1 in
|s̄3| (which looks more like a shoulder in χ̄3) is produced
by the k = 1 mode at the ztip = z0 point. The re-
maining third peak at 787 cm−1 is produced collectively
by all the modes. A similar correspondence between the
resonance curves of the polarizability function and the
peaks in the demodulated signal is found in the ν = ‖
component, cf. Figs. 6(d)–(f). However, the lower k = 1
peak is now very weak and is considerably blurred by
the demodulation, Fig. 6(f). Should we have considered
a model with smaller dissipation, this and other high-
order peaks would have been more clearly distinguishable
in |s̄3|. Note that although the normalized and demodu-
lated signal strength is comparable for the two ν compo-
nents, the polarizability for ν = ‖ is orders of magnitude
smaller so its contribution can be safely ignored.

The discussion above pertain to horizontal cuts of
χν(ztip, ω). Taking a fixed-frequency (vertical) cut
through Fig. 6(a), and performing the demodulation for
a range of minimum distances z0, one obtains the ν = ⊥
approach curve for the scattering signal. An intriguing
result of this analysis is the possibility of a nonmonotonic
dependence of the approach curve on z0. The nonmono-
tonicity is due to the crossing of the resonance curves of
χ⊥ by the vertical line cut. Such crossings are found be-
tween ωTO where Reβ = 1 and ωSP where Reβ reaches
its maximum. Near the low-frequency end of this in-
terval, the k = 0 mode should be again dominant. It is
expected to produce a peak in the approach curve, which
would follow the same trajectory as the k = 0 curve in
Fig. 6(a), moving to larger z0 as ω increases. Higher or-
der modes should appear at frequencies closer to ωSP and
produce weaker peaks at smaller z0. The amalgamation
of these peaks give rise to the nonmonotonicity of the

approach curve.

We show in Fig. 7(a) the s3 approach curves for ν = ⊥
for three frequencies. All the curves are normalized to
their value at their left ends, z0 = 0.6 nm. The approach
curve for ω = 600 cm−1 decays monotonically with in-
creasing z0 because the cut at such ω does not cross any
of the resonances. In the approach curve for 700 cm−1,
a strong peak is seen at around 2 nm due to the cross-
ing of the k = 0 resonance. The last approach curve,
for 800 cm−1 contains a series of oscillations at small z0

and a broad hump at large z0, due to the multiple reso-
nance crossings. The approach curves for ν = ‖ plotted
in Fig. 7(b) exhibit the same general trends as those for
ν = ⊥.

The striking multi-peak spectra and anomalous non-
monotonic approach curves we described above stem
from the large rP of Al2O3 and are not found in less
resonant materials, see Sec. VIII and Ref. 19. This rich
structure is also quite sensitive to the choice of z0. If this
parameter is too large, the peaks in the spectrum of the
scattering signal merge together at ω = ωSP. If z0 is too
small, the resonance curves become very flat at ω < ωSP,
so the corresponding peaks are smeared by demodulation
and dwarfed by the ωSP peak. Hence, there exists an op-
timal value of z0 that allows one to resolve multiple peaks
most clearly. For our Al2O3 model this value is actually
not too far from z0 = 0.6 nm used in Fig. 6. For example,
the s3 spectrum for a smaller z0 = 0.06 nm is shown in
Fig. 8 (dashed lines), where the k = 0 peak is much less
pronounced while more higher order peaks become dis-
tinguishable and form small steps. For even smaller z0

the steps are further smoothed, eventually leaving only
one peak near ωSP.

In addition to the value of z0, many other experimen-
tal parameters and procedures can significantly alter the
resultant spectrum. For instance, the experimental de-
termination of z0 based solely on the s-SNOM approach
curve can be inaccurate due to its possible nonmonotonic-
ity, as discussed in the previous Section. It is generally
incorrect to ascribe z0 = 0 to the probe position at which
the near-field signal has the highest amplitude. Such a
protocol effectively yields a frequency-dependent z0. The
difference from the spectra taken for a truly constant z0

can be drastic, as illustrated in Fig. 8. Conversely, the
strong sensitivity of the near-field signal to the value of
probe-sample distance may perhaps be used for a more
accurate measurement of z0 (although this may require
knowing the curvature radius a and perhaps other details
of the probe shape).

The tapping amplitude ∆z is another parameter that
affects the spectrum. When ∆z is small, the demodula-
tion at nth order is roughly equivalent to taking the nth
order derivative of χν(ztip). Therefore, a material with a
sharply varying approach curve yields a stronger demod-
ulated signal than the material with a smoothly varying
one. In our case the signal of Al2O3 is normalized against
Si, whose polarizability decays monotonically with ztip

[Fig. 9(b)]. As ∆z decreases, the polarizability of Al2O3
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become increasingly oscillatory, while that of Si remains
smooth. This results in the increased contrast of the de-
modulated signal for the two materials for smaller ∆z
[Fig. 9(a)].

Other than these controllable parameters, the scatter-
ing signal is also dependent on the dielectric function of
the probe itself. The calculation in the preceding discus-
sion is done for a perfectly conducting probe, εtip = ∞.
In practice, near-field probes often have a Si core and a
layer of metallic coating whose thickness ∼ 20 nm can be
smaller than the skin depth, i.e., the electric field pene-
tration length of the metal. In this case, it may be more
appropriate to set εtip = εSi ≈ 11.7 in Eq. (21). Re-
peating the calculations, we find that while qualitative

features in the signal are retained, there are major quan-
titative differences (Fig. 10).

The discussion above shows that the rich structure of
the s-SNOM signal found for the case of Al2O3 sample
is susceptible to many experimental parameters. (Retar-
dation effects, discussed later in Sec. VIII, introduce fur-
ther significant dependence on the probe geometry.) This
presents a serious challenge to realistic modeling of s-
SNOM experiments. On the other hand, these strong de-
pendences arise only for highly crystalline material with
low dissipation. For other, less resonant materials, the
modeling can be quite robust, as discussed in Sec. VIII.

VII. NONLOCAL REFLECTION FUNCTION

The example material of the previous Section is a bulk
crystal with a local (momentum independent) reflectiv-
ity function. However, in many other systems studied
through s-SNOM, including thin films, graphene, and
multi-layered systems reflection is inherently nonlocal.
Thus, it is imperative to study how the q-dependence of
the reflectivity affects the probe-sample interaction. As
mentioned in Sec. IV, a general description of such inter-
action is challenging because the series representation of
the polarizability

χ =
∑

k

Rk
λk

(61)

has generalized eigenvalues λk and residues Rk that are
now complicated functionals of rP, cf. Eqs. (20) and
(30). Still, we can attempt to analyze these expres-
sions using the simple perturbation theory developed in
Sec. IV, in which λk are computed from the poles of the
q-independent theory, with corrections obtained by in-
tegrating the weighting functions over the momentum.
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same as in Fig. 6(b) and (c). The spectra retain the same structure as for a metallic probe (εtip =∞).

As shown below, this scheme produces qualitative agree-
ment with the calculated s-SNOM response for graphene
on bulk Al2O3.

The Al2O3/graphene system has two collective modes
(the upper and the lower one) that emerge from hy-
bridization of the surface phonon of Al2O3, originally at
ωSP ≈ 750 cm−1 with the plasmon of graphene, ω(q) ∝√
µvF q. (Coupling of substrate phonons to graphene

plasmons has been probed by s-SNOM experiments with
graphene/SiO2 systems.5,16 This and related work is re-
viewed in Ref. 42.) The modes share the optical weight
and exhibit a level-repulsion that causes both to be dis-
persive. Both features depend on the chemical potential
µ of graphene. Below we focus on the upper mixed mode
and study its s-SNOM response for a range of µ, and com-
pare the results with the perturbation theory method. To
proceed, we need the formula for the reflectivity of the
composite system. This formula is well-known (see, e.g.,

Ref. 5)

rP(q, ω) =

ε1
kz1
− ε0
kz0

+
4πσ

ω
ε1
kz1

+
ε0
kz0

+
4πσ

ω

. (62)

Here ε1 = εeff [Eq. (59)] is the permittivity of the lower
half-space (Al2O3), ε0 = 1 is that of the upper half-space

(vacuum), kzj =
√
εj
ω2

c2 − q2 is the z-component of the

wave vector in medium j = 0, 1, and σ = σ(q, ω+iτ−1) is
the conductivity of graphene, which we calculate within
the random phase approximation43,44 with a finite re-
laxation time τ−1 = 25 cm−1. For q � ω/c, one finds
kzj ' iq and Eq. (62) reduces to

rP(q, ω) =
ε1 − 1 + 4πq

iσ

ω

ε1 + 1 + 4πq
iσ

ω

, (63)
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FIG. 11. (Color online) (a) Collective mode dispersion of graphene/Al2O3 system. The mode repulsion between the graphene
plasmon and the Al2O3 surface phonons are evident. The false color stands for Re{[1 + rP(q, ω)]q/kz0}, which is a measure of
power dissipation.20 This quantity is additionally raised to power 0.35 to reduce the contrast. The vertical dashed line marks
q = 1/a. The faint curve just below ω = 500 cm−1 is a weak surface phonon41 that we do not discuss. The chemical potential
of graphene is µ = 1200 cm−1. (b) The solid curves are constant momentum q̄ = 1/a line cuts through maps like (a) for several
µ. The particular case of (a) is shown by the red curve (second solid curve from the right). The dashed curve is the same
quantity computed for bulk Al2O3 without graphene. (c) Imχ⊥(ω) and (d) s̄⊥3 (ω) computed using the q-dependent rP(q, ω) at
ztip = 0.02a and z0 = 0.02a, respectively. Graphene chemical potentials µ for (b)–(d) are indicated in the legend of panel (c).

which can be compared to Eq. (59). A convenient way
to visualize the dispersion of the collective modes is to
plot the imaginary part of rP(q, ω), which represents the
power dissipation in the system,20 as a false-color map.
An example for µ = 1200 cm−1 is shown in Fig. 11(a). In
the low-q regime (~vF q � ~ω � µ),43,44 the lower bright
curve is mainly the plasmon with dispersion ω ∝ √µvF q,
while the upper bright curve represents the dispersion-
less Al2O3 surface phonon. (The additional bright curve
around ω = 500 cm−1 is a weaker Al2O3 surface phonon,
which we do not discuss.) An increase in µ leads to a
steeper dispersion of the plasmon, which causes both
hybrid modes to go up in frequency. Decreasing µ
has the opposite effect. Additionally, if µ drops below
~ωSP/ 2 ≈ 380 cm−1, the upper mode falls into the in-
terband transition region of graphene, which results in
strong damping of the surface phonon. As we will see
below, this causes the µ = 300 cm−1 curve to look quali-
tatively different from the rest in Fig. 11(b). Let us now
discuss how the collective modes manifest themselves in
the s-SNOM response.

In the simplistic picture of the s-SNOM response, the

probe-sample interaction is dominated by a single mo-
mentum q̄ = 1/a. If this assumption were accurate, we
could set rP(q̄, ω) as β(ω) and calculate the response us-
ing the set of poles and residues established previously.
We would then see peaks in the response generated by
the upper hybrid mode. However, this crude approx-
imation leads to higher peak frequencies than the cal-
culation using the full rP(q, ω), as seen in Figs. 11(b),
11(c), and 11(d). Indeed, we have shown in Sec. IV
that when the q-dependence in reflection is treated as
a perturbation, each mode has its own range of sensi-
tive momenta due to the inherent length scales in its
potential distribution. The distributions change with an
additional length scale — the tip-sample distance ztip,
so that the momentum weighting functions are depen-
dent on ztip as well, Gk = Gk(q, ztip). For each mode,
these functions provide a means to average over momen-
tum and find an effective q-independent sample reflec-
tion βeff

k (ω), cf. Eq. (46), so that we can again apply the
established pole-residue decomposition. Strictly speak-
ing, the perturbative method cannot be applied here as
the mixed mode may be strongly q-dependent. Even
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so, we find a very reasonable agreement with the com-
puted signal in the range of graphene chemical poten-
tials µ = 600–1800 cm−1 that we study. We first consider
peak frequencies in Imχ⊥, which can be predicted by in-
voking the resonance condition Reβeff

k = βk. For the
lowest mode k = 0 and ztip = 0.02 a, there is a system-
atic overestimate of the peak position by 20–30 cm−1 for
µ = 600–1800 cm−1. The discrepancy is larger for higher
µ at which the q-dependence of the upper hybrid mode
is stronger. This discrepancy is due in part to the well-
known general tendency of the first-order perturbation
theories to overestimate the lowest eigenvalues. Next, for
the k = 1 mode, the resonance condition is satisfied only
for µ = 600 cm−1 at ω = 797 cm−1 and µ=1200 cm−1 at
ω = 823 cm−1, which agree well with the smaller peaks
in Imχ⊥. At these frequencies Imβeff

1 are larger than the
k = 0 case and the peaks have smaller magnitudes. For
µ = 1800 cm−1, the resonance condition is not met and
the very small peak at ω = 827 cm−1 in Imχ⊥ corre-
sponds to where Reβeff

1 is largest and thus closest to β1.
Finally, for k > 1, βk is larger than Reβeff

k for all frequen-
cies and no peaks in Imχ⊥ are found. Seeing qualitative
agreement in the polarizability, we proceed to analyzing
the demodulated signal.

As inferred in Sec. VI, the demodulated signal is
strongest near the peaks in χ⊥(z0, ω) and χ⊥(z0 +
2∆z, ω), where each peak is attributed to a resonant
mode. For the dominant k = 0 mode, we find a set
of corresponding peaks in s⊥3 (z0, ω) at the same frequen-
cies as those in χ⊥(z0, ω), as shown in Fig. 11(c) and
Fig. 11(d). For the other set of peaks in the s3 spectra we
must consider how the situation is changed at z0 + 2∆z.
At such distances ztip itself becomes the primary length
scale and the sensitivity function Gk is shifted toward
smaller momentum, where the upper mode has a flatter
dispersion and its frequency is close to ωSP of the bulk
Al2O3 crystal. Therefore, this set of peaks should all ap-
pear near ωSP, which is indeed the case. Repeating this
procedure for the k = 1 mode, we find that the peaks
it contributes are inseparable from the set of higher fre-
quency peaks produced by the k = 0 mode as both have
frequencies very close to ωSP. Its contributions, however,
alter the heights of these peaks. For instance, the k = 1
peak is strongest in χ⊥(z0, ω) for µ = 600 cm−1 (among
the four we used), so the high frequency peak in s⊥3 for
this chemical potential has the largest relative magni-
tude with respect to the low frequency peak. Thus we
conclude the demodulated s-SNOM signal can be qual-
itatively explained by the perturbative method, albeit
with inaccuracy in the lower peak frequency. However,
as we argued in Sec. VI, the lower frequency peak in the
demodulated signal is mainly an artifact of the finite z0

we are forced to use. If z0 were truly zero, only the peak
near ωSP would survive.

VIII. MODEL-DEPENDENT EFFECTS

The spheroid model differs from real s-SNOM probes
in two important ways: i) the real probe resembles an
inverted pyramid, ii) at infrared wavelengths, the length
∼ 10µm of the probe exceeds several times the diameter
c/ω of the radian sphere. In previous literature it was as-
sumed that these differences can all be neglected as the
probe-sample interaction is focused around the apex of
the probe [Fig. 1(b)], while contribution from the rest of
the probe is canceled out during the process of demod-
ulation and normalization. Hence, the exact shape of
the probe is unimportant and the only relevant physical
quantity is the apex radius of curvature a. Further, since
the characteristic length scale a is well within the ra-
dian sphere, a quasistatic description should suffice. This
simplistic argument is backed by previous agreement be-
tween the spheroid model and experiment.16,18,28 How-
ever, we have shown that different probe shapes exhibit
universal behavior only when ztip/a is of the order of a
few percent (cf. Fig. 4(a)). This range is much smaller
than typical tapping amplitudes, so the majority of the
s-SNOM response lies outside the universality regime and
should indeed be probe shape dependent. Additionally,
recent experiment and modeling have shown that a qua-
sistatic formalism with ad hoc probe shapes is insufficient
for highly resonant materials such as on silicon carbide.19

In this Section we re-examine these issues by exam-
ining two materials, the highly resonant Al2O3 and the
dissipative SiO2, and study the probe shape dependence
of their response as well as electrodynamic corrections.
We find that for dissipative materials shape dependence
is weak and retardation effects are of less importance,
so the spheroid model describes the s-SNOM experiment
reasonably well. This explains the success of our model
in reproducing the response of various materials in ex-
periment. On the other hand, we find the response of
resonant materials to be highly dependent on the probe
shape and less well described within the quasistatic ap-
proximation. For such materials a full electrodynamic
treatment with the exact probe shape may be required.
Common numerical methods suitable for electrodynamic
treatment of light scattering by a spheroid near a surface
include T -matrix method45,46 and BEM.19 For the case
of a sphere near a surface, the calculation of necessary
matrix elements can be done efficiently using recursion
technique similar to what we use here.47

We consider the probe shape dependence and the retar-
dation effects separately. To study the former, we simu-
lated the s-SNOM signal of Al2O3 samples obtained with
spheroidal probes of different length. We also calculated
(using BEM) the results for pear-shaped probes that
may better mimic the inverted pyramids. As shown in
Fig. 12(a), the signal for a pear-shaped probe is qualita-
tively similar to that for the spheroid of the same length,
but there are quantitative differences. For spheroids, we
find that the signal strongly increases and the peak fre-
quencies steadily decrease as the length of the probe in-
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FIG. 12. (Color online) (a) The s-SNOM signal s⊥3 computed for Al2O3 samples. The inset shows the probe shapes used
(spheroidal, with L = 25a, and a pear-shaped). The two types of probes produce qualitatively similar but quantitatively
different results. (b) Spheroids of longer length have drastically increased signal strength. The inset depicts the probe shape
and the values of L/a used. Note that this quasistatic calculation neglects radiative damping and antenna resonances, see
Sec. VIII. If included, such effects are expected to greatly reduce s⊥3 . In all cases ∆z = 50 nm and a = 30 nm. The value of s3
is taken either from the maximum of the approach curves at each frequency (solid lines) or at the closest approach distance
z0 = 0.6 nm (dashed lines).

creases at a fixed apex radius, as shown in Fig. 12(b).
These features can be explained by the scale invariance
of the problem. It implies that an increase in probe
length is equivalent to a simultaneous decrease in tap-
ping amplitude and the apex radius. The decrease in
radius produces changes in both the poles and residues.
The former explains the shift in peak frequencies. The
latter is mostly canceled out by normalization. In turn,
the decrease in tapping amplitude leads to a larger con-
trast between the sample and the reference as discussed
in Sec. VI [see Fig. 9(b)], so the signal strength is dra-
matically increased.

The strong probe-shape dependence found above seem
to suggest that theoretical modeling of the s-SNOM ex-
periments must always be done using the actual shape to
be reliable. In fact, such a sensitivity to the probe shape
pertains only to the highly-resonant, i.e., large β materi-
als. In Al2O3 this parameter reaches the maximum value
of |β| ≈ 12, Fig. 2(a). For comparison, in Fig. 13(b) and
Fig. 13(c), we show that the pear-shaped probe and the
spheroid produced almost identical signals for amorphous
SiO2, a material with |β| ≤ 1.5. (For experimental stud-
ies of this material see, e.g., Refs. 6 and 28.) In this case,
a factor of 16 increase in the probe length leads to only
a doubled signal strength, compared to a nearly tenfold
increase for Al2O3 seen in Fig. 12(b).

The results above are obtained within the quasistatic
approximation. In reality, a probe half-length of 200a
already exceeds the diameter c/ω of the radian sphere
and one has to consider retardation effects. Naively, con-
tributions from such effects should be eliminated by de-
modulation, as they pertain to a length scale much larger
than the tapping amplitude. However, we show that one
contribution — the radiative damping — survives de-

modulation. The radiative damping has an effect sim-
ilar to a finite Imβ, i.e., the dissipation in the sample.
Hence, for dissipative materials one can neglect radiative
damping and still find reasonable agreement with exper-
iment, while doing so for highly resonant materials may
lead to qualitatively wrong results. Let us illustrate these
statements using the simplest model for the probe — the
point dipole. The electrodynamic interaction between
the dipole and the sample with the dielectric constant ε
is given20 by a modified version of Eq. (12),

gν = cν
∞∫

0

iq3

kz0(q)

εkz0(q)− kz1(q)

εkz0(q) + kz1(q)
e−2qztipdq , (64)

where the second fraction in the integrand is the full form
of the reflectivity rP(q, ω). [It is obtained from Eq. (62)
by setting σ to zero.]

Suppose ω and ztip are fixed, then the above integral
defines gν as a function of ε, which is generally a complex
number. Alternatively, gν is a function of β = (ε−1)/(ε+
1). The integration domain Eq. (64) includes momenta
q both inside and outside the light-cone. The radiative
damping effect arises from the integration over former,
i.e., the momenta q < kz0 . This part of the integral yields
a negative imaginary contribution to gν , which shifts the
pole of χν [Eq. (11)] to the lower complex half-plane of
β. The real parts of the poles also change but this is
less conceptually important, see below. Consider now
the remaining part of the integral, over momenta q > kz0 .
It is easy to see that if ε = −q2/(q2 − ω2/c2), then

εkz0(q) + kz1(q) = 0 , (65)

so that there is a pole on the integration path. As a
result, functions gν and χν have branch cuts at ε ∈
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FIG. 13. (Color online) (a) The reflection coefficient of SiO2
48 has a larger imaginary part than Al2O3 due to its inherent

dissipation, leading to a weaker shape dependence in the s-SNOM signal. (b) The signal of the pear-shaped probe is very close
to that produced by the spheroid. (c) Increasing the probe length leads to a much smaller increase in the signal strength. The
overall shape of the spectrum is also preserved. All geometric parameters are the same as in Fig. 12.

(−∞,−1] in the complex ε plane or equivalently at
β ∈ [1,∞) in the complex β plane. These additional
features are shown schematically in Fig. 2(c). The phys-
ical origin of both the poles and the branch cut is quite
clear. The discrete poles has been discussed at length
in this article. They correspond to the polariton modes
localized near the tip, Fig. 1(b). In turn, the branch cut
corresponds to the continuum of delocalized surface po-
laritons that exist without the probe. Indeed, Eq. (65),
is the well-known equation for the spectrum of such ex-
citations.49

Of the two features, the branch cut is not expected
to affect the signal as the small-momentum contribution
is greatly diminished by demodulation. Demodulation
should also make less important the change in the real
parts of the poles, because these real parts vary greatly
with ztip on account of the tapping motion of the probe.
However, the shift of the discrete poles away from the
real axis is a qualitative change and its effects remain
after demodulation. Our next objective is therefore to
find this shift for the case of the spheroidal probe.

A free standing spheroid has an effective polarizability
given by

χ0,eff =
χ0

1− i 2
3 (ωc )3χ0

(66)

to the lowest order in ω/c when radiative correction is
considered.50,51 Modifying Λ accordingly [cf. Eq. (33)], it
is easily shown that this formula applies to our geometry
as well. Namely, the s-SNOM polarizability corrected for
the radiative damping is given by

χνrad =
χν

1− i 2
3 (ωc )3χν

, χν =

∞∑

k=0

Rνk
βνk − β

. (67)

Viewed in the complex β plane, this correction is equiva-
lent to the shift of the poles βk into the lower half-plane

by−i(2/3)(ω/c)3Rk (to the leading order in ω/c). There-
fore, both the radiative damping and the intrinsic dissi-
pation in the sample play a similar role: they increase
the distance from the poles to the curve traced by the
surface reflectivity β of the sample as ω varies [Fig. 2(c)].
For a dissipative material, the curve begins far from the
poles, and so further increase in the distance produces
little change. Conversely, for highly resonant materials
the β(ω) curve passes close to the real axis, and so radia-
tive damping may obscure or eliminate the fine features
of the signals, such as multiple resonant peaks discussed
in Sec. VI. It is worth noting however that while it may
be important for s-SNOM in infrared or visible domains,
the radiative damping should be rather weak in the (ex-
perimentally more challenging) terahertz range, where
typical s-SNOM probes would fit well inside the radian
sphere.

Finally, a class of retardation effects we have not ad-
dressed here are antenna resonances arising when the
length of the probe exceeds several times the diameter
of the radian sphere. They give rise to additional peaks
in the s-SNOM signal as a function of ω. For most ma-
terials such resonances are removed once the s-SNOM
signal is normalized to a reference sample; however, for
strongly resonant materials such as SiC and presumably
also Al2O3 we studied here, the cancellation is not com-
plete.19

IX. DISCUSSION AND CONCLUSION

Further progress in the s-SNOM and related areas
of near-field microscopy requires a quantitatively reli-
able procedure for determining the fundamental response
function rP(q, ω) from the amplitude and phase of the s-
SNOM scattering data, from which one can proceed to
the next step of inferring the optical constants of the
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studied sample. Typically, materials with a higher ab-
solute value of rP(q, ω) produce a higher amplitude s-
SNOM signal. However, the peaks in the s-SNOM signal
are often red-shifted with respect to those in |rP(q, ω)| or
Im rP(q, ω).

Given additional information about the system, these
inverse problems can be tackled by fitting the experi-
mental data to the solution of the direct problem with
a trial form of rP(q, ω) as the input.19 Unfortunately,
the direct problem is also difficult to solve. The three-
dimensional nature of this problem and the presence
of widely different length scales make realistic simula-
tions52–54 of s-SNOM experiments very computationally
intensive. This led to popularity of simple ad hoc approx-
imations known as the point-dipole24–26 and the finite-
dipole model,6,27,55,56 in which the actual charge distri-
bution induced on the probe is approximated by a point-
like image dipole or a combination thereof with additional
point charges.

The point-dipole model2 postulates that Eqs. (9a)–(12)
that are rigorous in the asymptotic long-distance limit
ztip � L remain qualitatively correct at much shorter
ztip if the input physical parameters are suitably renor-
malized. Thus, the bare polarizabilities χν0 become the
adjustable parameters of the model. It is customary to

assume that the in-plane polarizability χ
‖
0 is negligible

compared the out-of-plane one, which is taken to be

χ⊥0 = a3, (68)

where a is of the order of the curvature radius of the
tip. Another adjustable parameter5,57 b . 1 specifies the
position of the effective dipole inside the probe:

zp = ba+ ztip . (69)

Clearly, the point-dipole model accounts only for the
sharp tip and ignores the body of the probe, as χν for the
point-dipole in Eq. (11) is much smaller than χν0 for a tip
with L� a. If the point-dipole model were literally cor-
rect, the radiating dipole of the probe in typical s-SNOM
experiments would be so small that no measurable signal
would be observed.

The finite-dipole model improves upon the point-dipole
one by including the missing antenna-like enhancement
approximately. It assumes that the electric field of a
spheroidal probe of length 2L is equivalent to that of
several point charges of total zero charge that are po-
sitioned inside the spheroid near both of its ends. For
small ztip/L, this model55,58 yields the following func-
tional form of the probe polarizability:

χfdp = const+
Rfdp

0

βfdp
0 − β

, βfdp
0 ≈ 1.4+O

(
z3

tip

L3

)
, (70)

where Rfdp
0 ∝ aL2. The finite-dipole model was shown

to give a good qualitative agreement with s-SNOM data
obtained for quartz, amorphous SiO2, and SiC samples

once parameters Rfdp
0 and βfdp

0 are suitably adjusted.6

Thus, the best fit to the data was achieved choosing the
length 2L = 600 nm of the probe, which is about one
third of the diameter c/ω ≈ 1700 nm of the radian sphere.
Interestingly, this is approximately the value of 2L in the
quasistatic calculation for which one obtains, in the case
of SiO2 sample, the same result for s3 as one gets from the
full electrodynamic calculation for a probe of a realistic
(much longer) length.19

Agreement with the data notwithstanding, from the
theory point of view Eq. (70) is unsatisfactory on at

least three counts. First, Rfdp
0 does not follow the correct

scaling L3/ lnL as a function of L, thus underestimating
the probe polarizability. Second, the constant term in
Eq. (70) violates the general requirement that χ → 0
as β → ∞, corresponding to the case when the applied
field is screened completely by the induced charges in

the sample. Third, βfdp
0 goes to ∼ 1.4 when ztip = 0. In-

stead, all smooth probe shapes must behave as a sphere
at ztip � a, and therefore yield β0 = 1 at ztip = 0.
The fact that finite-dipole model violates these general
requirements suggest its limited usability. Figure 14 is
an illustration of how widely different the predictions of
the four discussed s-SNOM models can be for the case
of Al2O3. Additional examples of similarly large differ-
ences for SiO2 and SiC samples can be found in previous
works of the present authors and their collaborators.19,28

All these examples compel us to conclude that the prior
success of the point- and finite-dipole models in fitting ex-
perimental data has to be due to insufficient range of the
data, multitude of adjustable parameters, and also the
demodulation and normalization procedures that mask
the errors in both the functional form and the magni-
tude of the calculated signal.

Another way to explain the difference between the ear-
lier ad hoc models and our GSM is as follows. For the
case of a sample with a local reflectivity β, the exact
scattering problem of a dielectric probe near a surface
reduces to a generalized eigenproblem,21 that has an in-
finite number of eigenmodes, as we discussed in Sec. I. In
contrast, both the point- and the finite-dipole models at-
tempt to approximate the infinite number of eigenmodes
by a single one.

Since the real-space potential distribution of the eigen-
modes [Fig. 1(b)] depends on the shape and size of the
probe and probe-sample distance but not on β, we can
describe interaction of the probe with an arbitrary sam-
ple efficiently using the precalculated basis of such eigen-
modes. This allows one to use our GSM approach to
model s-SNOM response for a wide range of materials.
However, calculations for realistic probe shapes are not
always practical. In search of a broadly applicable yet
simple model, we have chosen the prolate spheroid to be
our probe shape, as it captures the essential features of
the actual probes — a sharp apex and a strongly elon-
gated shaft. We quantified the eigenmodes of the probe-
sample system in the form of poles and residues of the
polarizability functions χν (Table I), allowing an expe-
dient, in fact, instantaneous calculation of the s-SNOM
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FIG. 14. (Color online) The spectrum of the probe polariz-
ability |χ⊥| for Al2O3 sample according to four different mod-
els. The point- and the finite-dipole models each predict a sin-
gle peak in |χ⊥|. The calculations for spherical and spheroidal
probes reveal multiple peaks. The sphere and the point-dipole
models produce χ⊥/a3 ∼ 1. The L = 25a spheroidal probe
yields χ⊥ ∼ 103–104; the finite-dipole of the same L gives
about an order of magnitude lower χ⊥. These dramatic dif-
ferences in both the form and the absolute magnitude of χ⊥

can however be significantly reduced in the usually reported
s̄⊥3 , the normalized demodulated signal.

reponse. The point-dipole, finite-dipole and other ad hoc
models no longer have the advantage of computational
speed and should now be considered obsolete.

Recent work19 has shown that in the strong-coupling
regime of the probe-sample interaction a fully electro-
dynamic treatment using the BEM and realistic probe
shape is necessary in order to reproduce the measure-
ments. This regime is realized experimentally6,19 when
using samples of SiC, a material for which |β| can be as
high as 15. The same considerations apply for Al2O3

for which |β| can reach 12, see Fig. 2(a). Our GSM
theory gives analytical insight into near-field response of
such materials. We have shown that due to simultaneous
excitation of multiple eigenmodes, novel features of the
s-SNOM signal such as multi-peaked spectra and non-
monotonic approach curves can appear. These features
are however very sensitive to experimental parameters
such as tapping amplitude, minimum approach distance,
and even the data collection protocol. Retardation ef-
fects, especially radiative damping can also qualitatively
alter the signal and must be considered. In order to
observe the predicted anomalous approach curves and
multi-peak spectra, it may be necessary to make efforts to
minimize the radiative damping, which requires working
with shorter probes or at lower frequencies. In contrast,
in the weak- and moderate-coupling regimes, which are
relevant for the vast majority of samples, the lowest-order
eigenmode is dominant. Hence, the approach curves
should be monotonic in ztip, while the spectra should
be mostly insensitive to experimental details and retar-
dation effects. This is the regime where our spheroidal

probe model can be used with the greatest confidence.
Our GSM theory also applies to a more complicated

problem where the sample reflectivity is nonlocal, i.e.,
momentum-dependent. Here the salient advantages of
our method are two-fold. First, in the case of a weak
nonlocality, our GSM provides a mapping of the nonlocal
problem to a local one. Thereby the sample-independent
eigenmode decomposition is retained, providing an in-
tuitive interpretation of the scattering signal. Second,
our numerical algorithm (see Supplementary online ma-
terials) is much more efficient than the standard BEM
because the number of necessary matrix element calcu-
lations scales linearly instead of quadratically with the
matrix size. It will be worthwhile to compare the ac-
tual computational speed of our algorithm with that of a
recently developed and significantly more efficient BEM
that utilizes pre-calculated matrix elements.19

We hope that the improved physical understanding of
near-field probe-sample coupling enabled by the gener-
alized spectral method advanced in this work as well as
the numerical procedures we developed for its implemen-
tation can be of use for modeling and analysis of future
s-SNOM and other near-field experiments.
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Appendix A: The electrostatic problem of a
spheroidal probe

The electric field created by a spheroidal object is most
conveniently described in the prolate spheroidal coordi-
nates (ξ, η, φ) where the origin of the coordinate system is
located at the center of the probe, as shown in Fig. 3. The
relationships to the cylindrical polar coordinates (ρ, φ, z)
are

z = F ξη , ρ = F
√
ξ2 − 1

√
1− η2 . (A1)

In the spheroidal coordinate each spatial position is spec-
ified by ξ ∈ [1,∞), η ∈ [−1, 1], and φ is the usual
azimuthal angle. Contours of constant ξ are a series
of concentric spheroids centered at the origin, with the
major axis along the z direction and common foci at
z = ±F . For each such spheroid, ξ is equal to the ra-
tio of its major semi-axis and focal length. We consider
the case when the surface of the probe coincides with
one of the spheroidal surfaces ξ = ξ0 = L/F , where L
is the half-length or major semi-axis of the probe. Re-
lated quantities such as the minor semi-radius W of the
probe or the radius of curvature a at the apex are given
by W =

√
L2 − F 2 and a = W 2/L.
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It is well known that Laplace’s equation ∇2Φ = 0 has
separable solutions in the prolate spheroidal coordinates.
In particular, we are interested in solutions outside a
spheroidal probe that decay at large ξ. Their most gen-
eral form is written in terms of a linear combination of
spheroidal harmonics as follows:

Φsphd (ξ, η, φ) =

∞∑

l=0

l∑

m=−l
Bml Pml (η)eimφ

Pml (ξ<)Qml (ξ>)

Pml (ξ0)
,

(A2)
where Bml are coefficients to be determined from bound-
ary condition, Pml (ζ) is the associated Legendre polyno-
mial defined on the interval [−1, 1] and Pml (ζ) and Qml (ζ)
are the associated Legendre function of the first kind and
second kind (See, e.g. Ref. 59) with

ξ< ≡ min(ξ, ξ0) , ξ> ≡ max(ξ, ξ0) . (A3)

With the above definition of ξ>,<, Eq. (A2) covers both
inside and outside the surface of the probe at ξ0.

For the geometry considered in this paper [Fig. 1(a)],

the total potential Φ can be written as

Φ = Φ0 + Φplane + Φsphd , (A4)

where

Φ0(r) = −E0r (A5)

is the potential of the external uniform field, and Φplane

is the potential due to charges in the sample, which can
be decomposed into evanescent plane wave as

Φplane(r) =

∫
B(q)e−qzeiqρ

d2q

4π2
, (A6)

where the position vector r = ρ+zẑ is broken up into its
cylindrical polar coordinate components. We determine
B(q), as well as Bml from boundary conditions.

To do that we quote two well-known mathematical re-
sults: the decompositions of evanescent plane waves in
terms of spheroidal harmonics and vice versa. The first
reads

eiqρ−qz =

∞∑

l=0

l∑

m=−l

2l + 1

2
(−)lim

(l −m)!

(l +m)!

√
2π

qF
Il+ 1

2
(qF )Pml (ξ)Pml (η)eim(φ−φq) , (A7)

with φ and φq being the azimuthal angles of ρ and q, respectively. The reverse is:

Qml (ξ)Pml (η) = (−)lim
(l +m)!

(l −m)!

∫
πF

q

√
2π

qF
Il+ 1

2
(qF )eiqρ+qze−im(φ−φq) d2q

4π2
, (A8)

where Iν(z) is the modified Bessel function of the first
kind.37 These two relations follow easily from addition
theorems of general Legendre functions such as those in
Ref. 59 and 60.

Near the sample surface z = −zp, the boundary con-
dition is

Φ̃ = B(q)e−qzp +Φ̃sphd(q, zp) ∝ eqzp−rP(q)e−qzp , (A9)

where we use the notation

f̃(q, z) =

∫
f(r)e−iqρd2ρ (A10)

for a partial Fourier transformation. Eq. (A9) implies:

B(q) = −rPe
−qzpΦ̃sphd(q, zp) . (A11)

The other boundary condition for a uniform spheroidal
probe with dielectric constant εtip is:

∂Φ

∂ξ

∣∣∣∣
ξ→ξ+0

= εtip
∂Φ

∂ξ

∣∣∣∣
ξ→ξ−0

. (A12)

Boundary conditions in Eqs. (A11) and (A12) with the
decompositions in Eqs. (A7) and (A8) allow one to com-
pute the unknown coefficients Bml . The result can be

summarized by first defining an infinite matrix:

Hll′ ≡ 2π

∞∫

0

rP(q)Il′+ 1
2
(q F )Il+ 1

2
(q F )e−2qzp

dq

q
, (A13)

whose elements are integrals of rP(q). Then for each
integer m a quantity related to Bml , a column vector
defined by:

Aml ≡ (−)l+m
(l +m)!

(l −m)!

Bml
F

, (A14)

is the solution to the linear system of equations

∞∑

l=1

(Λm −H)ll′ A
m
l′ = bml . (A15)

The diagonal matrix elements Λmll′ = Λml δll′ are defined
by Eq. (21), and the numbers on the right-hand side of
the equations are given by

bml =
4

3

(1 +m)!

(1−m)!
Cmδl1 , (A16)
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where C0 = −Ez and C±1 = (Ex ∓ iEy)/2. Thus, the
form of matrix Λ is determined completely by the ge-
ometry of the probe (in terms of ξ0) and its dielectric
constant εtip, while H describes the interaction between
the sample reflection function rP and the momentum se-
lectivity of the modes. The column vector b describes
the uniform external field.

The coefficients Bml can be obtained directly from
Eq. (A14) after one solves for Aml from Eq. (A15). But
for the purpose of determining the induced probe dipole
moment, only |m| ≤ 1 cases are important. By examin-
ing the asymptotic behavior of the electrostatic potential
Φ(r), one obtains the total dipole moment of the spheroid
probe. Its Cartesian components are related to the com-
ponents of (Am)l by

psp,0 = psp,z = −F
3

3
A0

1 , psp,1 =
psp,x − ipsp,y

2
=
F 3

3
A1

1 .

(A17)

Appendix B: The spherical probe limit

The spheroidal probe model presented in Appendix A
is quite general and can be a good model for tips of any
aspect ratio L/a. Here we explore a particular limit of
F → 0 and ξ → ∞ while keeping the product Fξ → a
constant. This corresponds to the problem of a spherical
probe of radius a. The derivation in Appendix A sim-
plifies to that in Sec. 4.1 of Ref. 20, and by using the
following asymptotic forms of various special functions:

√
2π

qF
Il+ 1

2
(qF ) ' 22l+1l!

(2l + 1)!

(
qF

2

)l
, (B1a)

Qml (ξ) ' (−)m
2ll!(l +m)!

(2l + 1)!
ξ−l−1 , (B1b)

Pml (ξ) ' (2l)!

2ll!(l −m)!
ξl , (B1c)

one can show that the decompositions Eqs. (A7) and (A8)
reduce to Eq. (4.9) and (4.10) of Ref. 20. The character-
istic equation Eq. (A15) for Bml reduces to:

∞∑

l′=1

{
δll′

αla2l+1
− (l + l′)!

(l +m)!(l′ −m)!
Fl+l′

}
B̄ml′

=
δl1

(l −m)!
Cm , (B2)

where

B̄ml = (−)l+m(l +m)!
2ll!

(2l + 1)!
F l+1Bml (B3)

is similarly related to the induced charge distribution of
the probe,

αl =
l(εtip − 1)

l(εtip + 1) + 1
(B4)

is the multipole polarizability of the probe, and

Fl =
1

l!

∞∫

0

rP(q)qle−2qd0dq (B5)

is the integral that characterizes the interaction between
the spherical probe and the sample with d0 = a + ztip.
Eq. (B2), the characteristic equation for a spherical
probe, is derived in Ref. 20 as Eq. (4.20). The solution to
Eq. (B2) has some of the same properties as the spheroid
case: B̄ml = 0 for all l and |m| > 1; B̄0

l is related to the
charge distribution due to the z component of the elec-
tric field and B̄±1

l are related to the charge distribution
due to the x-y component of the electric field.

For the case of q independent rP(q, ω) = β(ω), in which
the integrals Fl reduces to:

Fl =
β

(2d0)l+1
, (B6)

there is an exact solution to the spherical characteristic
equation. Let

α = arccosh
d0

a
= arccosh

(
1 +

ztip

a

)
, (B7)

be a dimensionless parameter that characterizes the
sphere-to-sample distance relative to its size, and let

σk(β;α) =

∞∑

m=0

(2m+ 1)k

e(2m+1)α − β . (B8)

Using the following quantities:

p0 = χ0Ez , χ0 = a3 , (B9a)

q0 =
p0

a

(
coshα− sinhα

σ1

σ0

)
, (B9b)

pn = p0β
n

(
sinhα

sinh(n+ 1)α

)3

, (B9c)

qn =
βn sinhα

sinh(n+ 1)α

[
q0 −

p0

a

sinhnα

sinh(n+ 1)α

]
, (B9d)

it can be shown that for a metallic sphere

B̄0
l = (−)l

∞∑

n=0

qn(d0 − dn)l − pnl(d0 − dn)l−1 , (B10)

where

d0 − dn = a
sinhnα

sinh(n+ 1)α
. (B11)

The physical meaning of Eq. (B10) becomes clear when
one treats the problem with method of images (Fig. 15).
Suppose that an external electric field Ez would have
induced a bare dipole moment p0 in the sphere. This
would induce an image dipole in the dielectric half-space,
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rP(q) = β

a

ztip

p0 q0

p′0 q′0

d0

d0

pn−1 qn−1

p′n−1 q′n−1

dn−1

dn−1

pn qn

p′n q′n

dn

dn

a2 = (d0 + dn−1)(d0 − dn)

0 =

∞∑

n=0

qn

p′n = βpn

q′n = −βqn

FIG. 15. The method-of-images solution of the problem of a
metallic sphere above a dielectric half-space with the external
field normal to the interface. The method involves an infinite
series of dipoles pn and point charges qn located inside the
sphere at distances dn above the interface. The total charge
inside the sphere is zero.

which would in turn induce an image dipole and an im-
age charge in the sphere. The position and strength of
each successive image dipole and charge can be solved
by recursion. Setting the sample surface to z = 0, the
position of the center of the sphere is at z = d0. At each
position z = dn given by Eq. (B11) there is a point dipole
pn and a point charge qn. Charge q0 is determined by the
neutrality condition

∑
n qn = 0, which yields Eq. (B9b).

Summing up all the contributions to the total dipole mo-
ment from both the dipoles and the point charges inside
the sphere, we get:

χsph,⊥

χ0
≡ ptotal

z

p0
=

1

p0

∞∑

n=0

[
pn + qn(dn − d0)

]

= 2 sinh3 α

(
σ2 −

σ2
1

σ0

)
.

(B12)

with σk given by Eq. (B8).

The above analysis resulting in Eq. (B12) is for the case
where the electric field is perpendicular to the sample.
For the case where the electric field is parallel to the
sample, the analysis is simpler in that the positions of
the image dipoles and their strength are the same, but
no image point charges are present. Therefore, in this
polarization:

χsph,‖

χ0
≡ ptotal

xy

p0
= sinh3 α (σ2 − σ0) . (B13)

Both Eq. (B12) and (B13) conforms to our earlier as-
sertion that χ has the form of Eq. (3):

χsph,‖ =

∞∑

k=0

R
sph,‖
k

β
sph,‖
k − β

, χsph,⊥ =

∞∑

k=0

Rsph,⊥
k

βsph,⊥
k − β

.

(B14)
For horizontal electric fields, χsph,‖ is singular whenever
σ2 or σ0 is, so that

β
sph,‖
k = e(2k+3)α . (B15)

The corresponding residues are:

R
sph,‖
k = 4(k + 1)(k + 2)χ0 sinh3 α . (B16)

For electric fields perpendicular to the sample, the paren-

thesis in Eq. (B12) vanishes at each β
sph,‖
k , so they are

not poles of χsph,⊥. Instead, βsph,⊥
k occur at the zeros of

σ0 which has no simple analytic form. The poles of the
two polarizations, however, interleave:

β
sph,‖
k < βsph,⊥

k . β
sph,‖
k+1 . (B17)
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