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Abstract

In view of the recent start of the NA62 experiment at CERN that is expected to
measure the K+ → π+νν̄ branching ratio with a precision of 10%, we summarise the
present status of this promising decay within the Standard Model (SM). We do like-
wise for the closely related KL → π0νν̄, which will be measured by the KOTO exper-
iment around 2020. As the perturbative QCD and electroweak corrections in both
decays are under full control, the dominant uncertainties within the SM presently
originate from the CKM parameters |Vcb|, |Vub| and γ. We show this dependence
with the help of analytic expressions as well as accurate interpolating formulae. Un-
fortunately a clarification of the discrepancies between inclusive and exclusive deter-
minations of |Vcb| and |Vub| from tree-level decays will likely require results from the
Belle II experiment available at the end of this decade. Thus we investigate whether
higher precision on both branching ratios is achievable by determining |Vcb|, |Vub|
and γ by means of other observables that are already precisely measured. In this
context εK and ∆Ms,d, together with the expected progress in QCD lattice calcu-
lations will play a prominent role. We find B(K+ → π+νν̄) = (9.11± 0.72)× 10−11

and B(KL → π0νν̄) = (3.00± 0.30)× 10−11, which is more precise than using aver-
ages of the present tree-level values of |Vcb|, |Vub| and γ. Furthermore, we point out
the correlation between B(K+ → π+νν̄), B(Bs → µ+µ−) and γ within the SM, that
is only very weakly dependent on other CKM parameters. Finally, we update the
correlation of KL → π0νν̄ with the ratio ε′/ε in the SM taking the recent progress
on ε′/ε from lattice QCD and the large N approach into account.
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1 Introduction

The measurements of the branching ratios of the two golden modes K+ → π+νν̄
and KL → π0νν̄ will be among the top highlights of flavour physics in the rest of
this decade. K+ → π+νν̄ is CP conserving while KL → π0νν̄ is governed by CP
violation. Both decays are dominated in the SM and in many of its extensions by
Z penguin diagrams. These decays are theoretically very clean, and the calculation
of their branching ratios within the SM includes next-to-leading order (NLO) QCD
corrections to the top quark contributions [1–3], NNLO QCD corrections to the
charm contribution [4–6] and NLO electroweak corrections [7–9] to both top and
charm contributions. Moreover, extensive calculations of isospin breaking effects
and non-perturbative effects have been performed [10, 11]. Reviews of these two
decays can be found in [12–18] and their power in probing energy scales as high as
several hundreds of TeV has been demonstrated in [19].

In view of the recent start of the NA62 experiment at CERN that is expected
to measure the K+ → π+νν̄ branching ratio with a precision of 10% compared to
the SM prediction [20,21], and the expected measurement of KL → π0νν̄ by KOTO
around 2020 at J-PARC [15, 22], it is the right time to summarise the present
status of these decays within the SM. This is motivated in particular by the fact
that different estimates appear in the literature due to different inputs used for the
Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, which presently constitute
the main uncertainty in the SM predictions for these two branching ratios. This has
been stressed in [23], where the dependence of both branching ratios on the chosen
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values of |Vcb| and |Vub| extracted from tree-level decays has been studied (see Table
3 of that paper).

At this point two strategies for the determination of the contribution of the SM
dynamics to these decays are envisaged:

Strategy A: The CKM matrix is determined using tree-level measurements of

|Vus|, |Vcb|, |Vub|, γ, (1.1)

where γ is an angle of the unitarity triangle (UT). As New Physics (NP) seems to
now be well separated from the electroweak scale, this determination of the CKM
matrix is not expected to be polluted by NP contributions.1 Inserting these inputs
into the known expressions for the relevant branching ratios (see Section 2) then
allows a determination of the SM values for the K → πνν̄ branching ratios inde-
pendently of whether NP is present at short distance scales or not. The departure
of these predictions from future data would therefore allow us to discover whether
NP contributes to these decays independently of whether it contributes to other
decays or not. This information is clearly important for the selection of successful
extensions of the SM through flavour-violating processes.

Unfortunately, this strategy cannot be executed in a satisfactory manner at
present due to the discrepancies between inclusive and exclusive determinations of
|Vcb| and |Vub| from tree-level decays. Moreover, the precision on γ from tree-level
decays is still unsatisfactory for this purpose. While the measurement of γ should be
significantly improved by LHCb in the coming years, discrepancies between inclusive
and exclusive determinations of |Vcb| and |Vub| from tree-level decays are likely to
be resolved only by the time of the Belle II experiment at SuperKEKB at the end
of this decade.

The clarification of the discrepancies between inclusive and exclusive determina-
tions of |Vcb| and |Vub| from tree-level decays is important, but there are reasons to
expect that the exclusive determinations will eventually be the ones to be favoured.
First of all, exclusive measurements are easier to perform than the inclusive ones.
Equally important, due to the significant improvement in the calculations of the
relevant form factors by lattice QCD, exclusive determinations are more straight-
forward than the inclusive ones. This is opposite to the philosophy of ten years ago,
where QCD lattice calculations were still at the early stage and inclusive determi-
nations were favoured.

Yet, from the present perspective it is useful to study the SM predictions for
K+ → π+νν̄ and KL → π0νν̄ in the full range of |Vcb|, |Vub| and γ known from
tree-level decays, as this will clearly demonstrate the need for the reduction of
parametric uncertainties. This will also allow the SM predictions for these decays
to be monitored as the determination of γ will improve in the coming years at the
LHC. This should be of interest in view of the first results on K+ → π+νν̄ from
NA62, which are expected already in 2016. Moreover, it will also be of interest to see
how other observables, like εK , ∆Ms, ∆Md, and rare Bs,d decays are modified when
the parameters in (1.1) are varied, and what their correlations with K+ → π+νν̄
and KL → π0νν̄ are within the SM. As we will see, some of these correlations are
practically independent of |Vcb| and |Vub| and as such are particularly suited for a
precise tests of the SM.

1Recent analyses of the room left for NP in tree-level decays can be found in [24–26].
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Strategy B: Here the assumption is made that the SM is the whole story and
all available information from flavour-changing neutral current (FCNC) processes is
used to determine the CKM matrix. Our strategy here will be to ignore tree-level
determinations of |Vub| and |Vcb|, as the discrepancies mentioned above could also
result from experimental data, which will improve only at the end of this decade.
Similarly, the tree-level determination of γ will be left out. Then the observables to
be used for the determination of the CKM parameters will be 2

εK , ∆Ms, ∆Md, SψKS
, (1.2)

accompanied by lattice QCD calculations of the relevant non-perturbative param-
eters. In this manner also |Vcb|, |Vub| and γ can be determined. This is basically
what the UTfit [27] and CKMfitter [28] collaborations do, except that we ignore
the tree-level determinations of |Vcb|, |Vub| and γ for the reasons stated above. As
the dominant top quark contribution to εK is proportional to |Vcb|4 and ∆Ms,d

are proportional to |Vcb|2, a useful determination of |Vcb| can be obtained from
these quantities.3 The full UT is then constructed by using the ratio ∆Md/∆Ms

and SψKS
. We find that with the most recent lattice QCD input on the parameter

ξ [31], the determination of γ in this manner is impressive, and also the value of |Vcb|
is significantly more accurate than from tree-level decays. In the case of |Vub| the
accuracy is found to be comparable to the most recent exclusive determination [32].

It should be emphasised that while strategy A is ultimately the one to use
to study extensions of the SM, the virtue of strategy B at present is the greater
accuracy of the SM predictions for the observables that we consider. By simply
imposing constraints from several measurements we arrive at narrow ranges for the
parameters in (1.1) – given that the SM is the whole story.

In the present paper we will follow these two strategies using the most recent
inputs relevant for both of them, in particular the ones from lattice QCD. In Sec-
tion 2 we summarise the present status of the K+ → π+νν̄ and KL → π0νν̄ decays
in the SM and discuss the main uncertainties with the help of analytic expressions.
In Sections 3 and 4 we follow strategies A and B, respectively, and present in some
detail our numerical results. In Section 5 we present an updated analysis of the
correlation of KL → π0νν̄ and the ratio ε′/ε in the SM. We conclude in Section 6.
In the appendices we collect a number of additional expressions that we used in our
analysis.

2 Basic formulae

We present here the basic formulae for the branching ratios for the K+ → π+νν̄
and KL → π0νν̄ decays in the SM. This section can be considered as an update to
the analogous section (Section 2) of [12], a review of these decays from 2007. The
main advances in the last eight years are:

• computation of complete NLO electroweak corrections to the charm quark
contribution to K+ → π+νν̄ in [7];

2Note that the present determination of Sψφ has no impact on the CKM parameters in the SM.
3The strategy for the determination of |Vcb| from εK is not new [29] and has been considered recently

in [30]. See in particular formula (29) in that paper.
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• computation of complete NLO electroweak corrections to the top quark con-
tribution to K+ → π+νν̄ and KL → π0νν̄ in [8];

• reduction of uncertainties due to mt(mt), mc(mc) and αs(MZ), with the last
two relevant in particular for the charm contribution to K+ → π+νν̄.

While incorporating these advances in our presentation we will also include

• NLO QCD corrections to the top quark contributions [1–3] and NNLO QCD
corrections to the charm contribution [4–6];

• isospin breaking effects and non-perturbative effects [10,11].

2.1 K+ → π+νν̄

The branching ratio for K+ → π+νν̄ in the SM is dominated by Z0 penguin di-
agrams, with a significant contribution from box diagrams. Summing over three
neutrino flavours, it can be written as follows [3, 11]

B(K+ → π+νν̄) = κ+(1 + ∆EM)·
[(

Imλt
λ5

X(xt)

)2

+

(
Reλc
λ

Pc(X) +
Reλt
λ5

X(xt)

)2
]
, (2.1)

with

κ+ = (5.173± 0.025) · 10−11
[

λ

0.225

]8
, ∆EM = −0.003. (2.2)

Here xt = m2
t /M

2
W , λ = |Vus|, λi = V ∗isVid are the CKM factors discussed below,

and κ+ summarises the remaining factors, in particular the relevant hadronic matrix
elements that can be extracted from leading semi-leptonic decays of K+, KL and KS

mesons [11]. ∆EM describes the electromagnetic radiative correction from photon
exchanges. X(mt) and Pc(X) are the loop functions for the top and charm quark
contributions, which are discussed below. An explicit derivation of (2.1) can be
found in [33]. The apparent large sensitivity of B(K+ → π+νν̄) to λ is spurious as
Pc(X) ∼ λ−4 (see (2.6)) and the dependence on λ in (2.2) cancels the one in (2.1)
to a large extent. Therefore when changing λ it is essential to keep track of all the
λ dependence.

In obtaining the numerical values in (2.2) [11], the MS scheme with

sin2 θw(MZ) = 0.23116, α(MZ) =
1

127.925
, (2.3)

has been used. As their errors are below 0.1% these can currently be neglected.
Note, however, that although the prefactor of the effective Hamiltonian, α/ sin2 θw,
is precisely known in a particular renormalisation scheme (MS in this case) it re-
mains a scheme dependent quantity, with the scheme dependence only removed by
considering higher order electroweak effects in K → πνν̄. An analysis of such ef-
fects in the large mt limit [9] demonstrated that in principle this scheme dependence
could introduce a ±5% correction in the K → πνν̄ branching ratios, and that with
the MS definition of sin2 θW these higher order electroweak corrections are found
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below 2%. However, only the complete analysis of two-loop electroweak contribu-
tions to K → πν̄ν in [8] for the top contribution could put such expectations on firm
footing. The same applies to the NLO electroweak effects in the charm contribution
to K+ → π+νν̄ evaluated in [7].

The short distance function X(xt) relevant for the top quark contribution, in-
cluding NLO QCD corrections [1–3] and two-loop electroweak contributions [8], is

X(xt) = 1.481± 0.005th ± 0.008exp, (2.4)

where the first error comes from the remaining renormalisation scale and scheme
uncertainties, as well as the theoretical error on the MS parameters due to the
matching at the electroweak scale, while the second one corresponds to the combined
experimental error on the top and W masses entering the ratio xt, and on the strong
coupling αs(MZ). The central value and errors in (2.4) have been obtained using
the MS couplings with full NNLO precision [34] – 3-loop running in the SM and
2-loop matching at the weak scale (plus 4-loop QCD running of αs and 3-loop QCD
matching in αs and yt) – and varying the renormalisation scale between Mt/2 and
2Mt. The NLO EW correction has been included, using the result presented in [8],
in order to eliminate the large EW renormalisation scheme dependence of the pure
QCD result. See Appendix A for details about the different contributions to X(xt).

The parameter Pc(X) summarises the charm contribution and is defined through

Pc(X) = P SD
c (X) + δPc,u, δPc,u = 0.04± 0.02, (2.5)

with the long-distance contributions δPc,u calculated in [10]. Future lattice calcu-
lations could reduce the present error in this part [35]. The short-distance part is
given by

P SD
c (X) =

1

λ4

[
2

3
Xe

NNL +
1

3
Xτ

NNL

]
(2.6)

where the functions X`
NNL result from QCD NLO [3, 36] and NNLO calculations

[4,5]. They also include complete two-loop electroweak contributions [7]. The index
“`” distinguishes between the charged lepton flavours in the box diagrams. This
distinction is irrelevant in the top contribution due to mt � m` but is relevant
in the charm contribution as mτ > mc. The inclusion of NLO and NNLO QCD
corrections have reduced considerably the large dependence on the renormalisation
scale µc (with µc = O(mc)) present in the leading order expressions for the charm
contribution. The two-loop electroweak corrections on the other hand reduced the
dependence on the definition of electroweak parameters. An excellent approximation
for P SD

c (X), including all these corrections, as a function of αs(MZ) and mc(mc) is
given in (50) of [7] (see Appendix B). Using this formula for the most recent input
parameters [37,38]

λ = 0.2252(9), mc(mc) = 1.279(13) GeV, αs(MZ) = 0.1185(6) (2.7)

we find
P SD
c (X) = 0.365± 0.012. (2.8)

Adding the long distance contribution in (2.5) we finally find

Pc(X) = 0.404± 0.024, (2.9)
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where we have added the errors in quadratures. We will use this value in our
numerical analysis. In obtaining the error in (2.9) we kept λ fixed at its central
value, as its error is very small and the strong dependence on λ in P SD

c (X) is
canceled by other factors in the formula for the branching ratio as discussed above.

2.2 KL → π0νν̄

The branching ratio for KL → π0νν̄ in the SM is fully dominated by the diagrams
with internal top exchanges, with the charm contribution well below 1%. It can be
written then as follows [39,40]

B(KL → π0νν̄) = κL ·
(

Imλt
λ5

X(xt)

)2

, (2.10)

where [11]

κL = (2.231± 0.013) · 10−10
[

λ

0.225

]8
. (2.11)

We have summed over three neutrino flavours. An explicit derivation of (2.10) can
be found in [33]. Due to the absence of Pc(X) in (2.10), the theoretical uncertainties
in B(KL → π0νν̄) are due only to X(xt) and amount to about 1% at the level of
the branching ratio. The main uncertainty then comes from Imλt, which is by far
dominant with respect to the other parametric uncertainties due to κL and mt, with
the latter present in X(xt).

2.3 Experimental prospects

Experimentally we have [41]

B(K+ → π+νν̄)exp = (17.3+11.5
−10.5) · 10−11 , (2.12)

and the 90% C.L. upper bound [42]

B(KL → π0νν̄)exp ≤ 2.6 · 10−8 . (2.13)

The prospects for improved measurements of B(K+ → π+νν̄) are very good.
One should stress that already a measurement of this branching ratio with an accu-
racy of 10% will give us a very important insight into the physics at short distance
scales. Indeed the NA62 experiment at CERN [20, 21] is aiming to reach this pre-
cision, and it is expected to accumulate 100 SM events with a good signal over
background figure by 2018. In order to achieve a 5% measurement of the branching
ratio, which will be the next goal of NA62, more time is needed. The planned new
experiment at Fermilab (ORKA) could in principle reach the accuracy of 5% [43].4

Concerning KL → π0νν̄, the KOTO experiment at J-PARC aims in the first
step in measuring B(KL → π0νν̄) at SM sensitivity and should provide interesting
results around 2020 on this branching ratio [15,22]. There are also plans to measure
this decay at CERN and one should hope that Fermilab will contribute to these

4Unfortunately the US P5 committee did not recommend moving ahead with ORKA and it appears
that the precision on B(K+ → π+νν̄) will depend in the coming ten years entirely on the progress made
by NA62.
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|εK | 2.228(11)× 10−3 [38] FK 156.1(11) MeV [44]

SψKS
0.682(19) [45] B̂K 0.750(15) [44, 46]

∆MK 0.5292(9)× 10−2 ps−1[38] FBd
190.5(42) MeV [44]

∆Md 0.507(4) ps−1 [45] FBs 227.7(45) MeV [44]

∆Ms 17.761(22) ps−1 [45] FBs

√
B̂Bs 266(18) MeV [44]

γ
(
73.2+6.3

−7.0
)◦

[47] ξ 1.268(63) [44]

|Vus| 0.2252(9) [45]

∆Γs/Γs 0.138(12) [45] ηcc 1.87(76) [48]

τBd
1.519(5) ps [45] ηct 0.496(47) [49]

τBs 1.512(7) ps [45] ηtt 0.5765(65) [50]

αs(MZ) 0.1185(6) [38] ηB 0.55(1) [50,51]

mc(mc) 1.279(13) GeV [37]

Mt 173.34(82) GeV [52]

Table 1: Values of theoretical and experimental quantities used as input parameters.

efforts in the next decade. The combination of K+ → π+νν̄ and KL → π0νν̄ is
particularly powerful in testing NP. Assuming that NA62 and KOTO will reach the
expected precision and the branching ratios on these decays will be at least as high
as the ones predicted in the SM, these two decays are expected to be the superstars
of flavour physics after 2018.

3 CKM inputs from tree-level observables

3.1 Determination of the branching ratios

As discussed in the introduction, the CKM matrix can be determined by the tree-
level measurements |Vub|, |Vcb|, |Vus|, and the angle γ of the UT. Although this is in
principle the optimal strategy, it is currently marred by disagreements between the
exclusive and inclusive determinations of both |Vub| and |Vcb| – for recent reviews
see [53–55]. We proceed to present the latest results of both determinations, as well
as our weighted average, with which we will give the SM predictions in what we call
strategy A.

The most recent exclusive determinations from lattice QCD form factors are [32,
44,56]

|Vub|excl = (3.72± 0.14)× 10−3, |Vcb|excl = (39.36± 0.75)× 10−3. (3.1)

The inclusive values are given by [44,57]

|Vub|incl = (4.40± 0.25)× 10−3, |Vcb|incl = (42.21± 0.78)× 10−3. (3.2)

We take a weighted average and scale the errors based on the resulting χ2 (specifi-
cally, we follow the method advocated in [38]), which gives

|Vub|avg = (3.88± 0.29)× 10−3, |Vcb|avg = (40.7± 1.4)× 10−3. (3.3)
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B(K+ → π+νν̄) B(KL → π0νν̄)

Xt0.9%

Pc
SDHXL

1.8%

∆Pc,u

2.9%

ÈVcbÈ
9.9%

Γ

6.7%

other0.5%

Xt1.2%

ÈVcbÈ

7.0%

Γ

7.1%

ÈVubÈ

14.9%

other1.0%

Figure 1: Error budgets for the branching ratio observables B(K+ → π+νν̄) and B(KL →
π0νν̄). The remaining parameters, which each contribute an error of less than 1%, are
grouped into the “other” category.

For the CKM angle γ we take the current world average of direct measurements [47]

γ = (73.2+6.3
−7.0)

◦. (3.4)

Using this, together with |Vus| = λ already given in (2.7), we can determine the full
CKM matrix.

In particular, we can determine the quantities λt and λc, which enter the ex-
pressions for the branching ratios in (2.1) and (2.10), as functions of these input
parameters. These expressions are:

Reλt ' |Vub||Vcb| cos γ(1− 2λ2) + (|Vub|2 − |Vcb|2)λ
(

1− λ2

2

)
, (3.5)

Imλt ' |Vub||Vcb| sin γ, (3.6)

Reλc ' −λ
(

1− λ2

2

)
, (3.7)

which, with respect to their leading order in λ, are accurate up to O(λ4) corrections.
The (exact) numerical values for Reλt and Imλt obtained from our three different
choices of Vub and Vcb in (3.1)-(3.3) are given in Table 2.

These expressions can then be directly inserted into (2.1) and (2.10) in order to
determine the two branching ratios. Using our averages from (3.3) together with
(3.4) gives

B(K+ → π+νν̄) = (8.4± 1.0)× 10−11, (3.8)

B(KL → π0νν̄) = (3.4± 0.6)× 10−11. (3.9)

In Figure 1 we show the error budgets for these two observables, and see that
the CKM uncertainties dominate. In particular in the case of K+ → π+νν̄ we
observe large uncertainties due to |Vcb| and γ, while in the case of KL → π0νν̄ the
uncertainty due to |Vub| dominates but the ones from |Vcb| and γ are also large. The
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Figure 2: Dependence of the branching ratio observables B(K+ → π+νν̄) (left) and
B(KL → π0νν̄) (right) on the CKM parameter inputs |Vcb|, |Vub| and γ. The 95% C.L.
bands in Vub, Vcb and γ are shown in green, blue, and red, respectively.

remaining parameters, which each contribute an error of less than 1%, are grouped
into the “other” category.

For convenience we give the following parametric expressions for the branching
ratios in terms of the CKM inputs:

B(K+ → π+νν̄) = (8.39± 0.30)× 10−11 ·
[ |Vcb|

40.7× 10−3

]2.8[ γ

73.2◦

]0.74
, (3.10)
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B(KL → π0νν̄) = (3.36± 0.05)× 10−11·
[ |Vub|

3.88× 10−3

]2[ |Vcb|
40.7× 10−3

]2[ sin(γ)

sin(73.2◦)

]2
.

(3.11)

The parametric relation for B(KL → π0νν̄) is exact, while for B(K+ → π+νν̄)
it gives an excellent approximation: for the large ranges 37 ≤ |Vcb| × 103 ≤ 45
and 60◦ ≤ γ ≤ 80◦ it is accurate to 1% and 0.5%, respectively. In the case of
B(K+ → π+νν̄) we have absorbed |Vub| into the non-parametric error due to the
weak dependence on it. The exact dependence of both branching ratios on |Vub|,
|Vcb| and γ is shown in Figure 2.

In order to obtain the values of εK , SψKS
, ∆Ms,d and of the branching ratios

for Bs,d → µ+µ− we use the known expressions collected in [16], together with
the parameters listed in Table 1. The “bar” on the Bs → µ+µ− branching ratio,
B(Bs → µ+µ−), denotes an average over the two mass-eigenstates, as measured by
experiment, rather than an average over the two flavour-states, which differs in the
Bs system [58–60].

In Table 2 we show the results for the K+ → π+νν̄ and KL → π0νν̄ branching
ratios and other observables, for three choices of the pair (|Vub|, |Vcb|) correspond-
ing to the exclusive determination (3.1), the inclusive determination (3.2) and our
average (3.3). We use (3.4) for γ in each case. We observe:

• The uncertainty in B(K+ → π+νν̄) amounts to more than 10% and has to
be decreased to compete with future NA62 measurements, but finding this
branching ratio in the ballpark of 15 × 10−11 would clearly indicate NP at
work.

• On the other hand, consistency with B(Bs → µ+µ−) would imply the K+ →
π+νν̄ branching ratio to be in the ballpark of 7 × 10−11. In such a case the
search for NP in this decay will be a real challenge and the simultaneous
measurement of KL → π0νν̄ will be crucial.

• The values of SψKS
are typically above the data but only in the case of the

inclusive determinations of both |Vcb| and |Vub| is a new CP phase required.

• The accuracy on the SM prediction for ∆Ms and ∆Md is far from being
satisfactory. Yet, the prospects of improving the accuracy by a factor of two
to three in this decade are good.

3.2 Correlations between observables

Correlations between K+ → π+νν̄ and Bq → µ+µ−

From inspection of the formulae for the branching ratios for K+ → π+νν̄ and
Bs,d → µ+µ− , each of which in particular depends on |Vcb|, we derive the following
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exclusive inclusive average measured

BR(K+ → π+νν̄) [10−11] 7.62+0.69
−0.70 9.30+0.89

−0.92 8.39+1.06
−1.03 17.3+11.5

−10.5

BR(KL → π0νν̄) [10−11] 2.88+0.30
−0.35 4.64+0.63

−0.68 3.36+0.60
−0.61 ≤ 2600

BR(Bs → µ+µ−) [10−9] 3.18+0.18
−0.18 3.66+0.21

−0.20 3.40+0.28
−0.27 2.8± 0.7

BR(Bd → µ+µ−) [10−10] 1.00+0.11
−0.12 1.17+0.14

−0.14 1.08+0.13
−0.14 3.6+1.6

−1.4

|εK | [10−3] 1.96+0.25
−0.27 2.74+0.36

−0.38 2.23+0.35
−0.36 2.228± 0.011

SSM
ψKS

0.74+0.02
−0.03 0.80+0.03

−0.04 0.75+0.05
−0.05 0.682± 0.019

∆Ms [ps−1] 16.19+2.37
−2.23 18.64+2.73

−2.56 17.34+2.74
−2.58 17.761± 0.022

∆Md [ps−1] 0.52+0.09
−0.09 0.60+0.11

−0.11 0.55+0.10
−0.10 0.510± 0.003

Im(λt) [10−4] 1.40+0.07
−0.09 1.78+0.12

−0.13 1.51+0.13
−0.14 −

Re(λt) [10−4] −2.99+0.19
−0.19 −3.39+0.24

−0.23 −3.20+0.29
−0.29 −

Rb 0.41+0.02
−0.02 0.45+0.03

−0.03 0.41+0.03
−0.03 −

Table 2: Values of B(K+ → π+νν̄), B(KL → π0νν̄) and of other observables within the
SM for the three choices of |Vub| and |Vcb| following strategy A as discussed in the text.

approximate relations

B(K+ → π+νν̄) = (8.39± 0.58)× 10−11 ·
[ γ

73.2◦

]0.81
×
[B(Bs → µ+µ−)

3.4× 10−9

]1.42 [
227.7 MeV

FBs

]2.84
, (3.12)

B(K+ → π+νν̄) = (8.41± 0.77)× 10−11 ·
[B(Bs → µ+µ−)

3.4× 10−9

]0.74 [
227.7 MeV

FBs

]1.48
×
[B(Bd → µ+µ−)

1.08× 10−10

]0.72 [
190.5 MeV

FBd

]1.44
. (3.13)

Note that both relations are independent of |Vcb| and (3.12) depends only on γ. In
particular the correlation (3.12) should be of interest in the coming years due to the
measurement of K+ → π+νν̄ by NA62, of Bs → µ+µ by LHCb and CMS and of γ
by LHCb. Moreover the last factor should also be improved by lattice QCD.

In the left panel of Figure 3 we show the correlation between K+ → π+νν̄ and
Bs → µ+µ for different fixed values of γ. The dashed regions correspond to a 68%
C.L. that results from including the uncertainties on all the other input parameters,
whereas the inner filled regions are a result of only including the uncertainties of
|Vub|, |Vcb| (we use the averages in (3.3)), and |Vus|.

It should be noticed that the present experimental determination of B(Bs →
µ+µ−) is slightly lower than the SM prediction, and the agreement between the
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Figure 3: Left panel: correlation of B(Bs → µ+µ−) versus B(K+ → π+νν̄) for fixed
values of γ. Right panel: correlation of B(KL → π0νν̄) versus B(K+ → π+νν̄) for fixed
values of β. In both plots the dashed regions correspond to a 68% C.L. resulting from the
uncertainties on all other inputs, while the inner filled regions result from including only
the uncertainties from the remaining CKM inputs of strategy A.

SM and the data can be improved by lowering |Vcb| to values in the ballpark of
its present exclusive determinations. But in this case, as can be seen already from
Table 2, the SM predictions for both B(K+ → π+νν̄) and εK are also reduced. It
can be useful to express B(K+ → π+νν̄) as a function of εK , in a way similar to
(3.12) and (3.13), in order to make the correlation between them explicit. One has

B(K+ → π+νν̄) = (8.39± 1.11)× 10−11 ·
[ |εK |

2.23× 10−3

]1.07
×
[ γ

73.2◦

]−0.11
·
[ |Vub|

3.88× 10−3

]−0.95
. (3.14)

We do not write explicitly the dependence on the hadronic quantities, since here
more parameters are involved. The uncertainty here comes mainly from ηcc and ηct,
while the ones due to FK are smaller than the corresponding ones in the Bs,d meson
systems. It is evident from this formula that a reduction of B(K+ → π+νν̄) implies
also a reduction of εK .

The correlations in (3.12), (3.13) and (3.14) result from the fact that it is possible,
by taking suitable powers of the Bs,d → µ+µ− branching ratios, to eliminate the
dependence on |Vcb|, while the one-loop functions X, Y , and S are fixed by the
top mass in the SM. Both correlations could be broken already in models with
constrained MFV (CMFV) in which the modifications of the functions X and Y are
generally different. In general MFV models new scalar operators could additionally
contribute to Bs,d → µ+µ−, modifying also the factors involving the weak decay
constants. Therefore, these correlations are strictly valid only in the SM, and their
violation would not necessarily rule out (C)MFV.
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K+ → π+νν̄ and KL → π0νν̄ in Minimal Flavour Violation

In models of NP with Minimal Flavour Violation (MFV) there are no flavour-
changing interactions beyond those generated from the SM Yukawa couplings [61].
For K+ → π+νν̄ and KL → π0νν̄ this restricts the operators that can contribute in
most NP models to just the operator already dominant in the SM, (s̄d)V−A(ν̄ν)V−A,
making MFV equivalent to Constrained MFV (CMFV) [62] in this case. Therefore
in MFV the value of X(xt) can be shifted but must stay real. Defining for conve-
nience

B+ =
B(K+ → π+νν̄)

κ+(1 + ∆EM)
, BL =

B(KL → π0νν̄)

κL
, (3.15)

with κ+ and κL given in (2.2) and (2.11), respectively, we have in the case of MFV
the correlation

B+ = BL +

[
Reλt
Imλt

√
BL −

(
1− λ2

2

)
sgn (X(xt))Pc(X)

]2
, (3.16)

which was first given in [63, 64]. Note that in the SM the sign of X(xt) is positive.
Recalling the relation

Reλt
Imλt

' − cotβ

(
1− λ2

2

)2

, (3.17)

accurate to λ4 terms, and solving for β then gives

cotβ =
1(

1− λ2

2

)2
[√

B+ −BL
BL

−
(

1− λ2

2

)
sgn (X(xt))Pc(X)√

BL

]
. (3.18)

In deriving (3.18) from (3.16) and (3.17) one finds that for X(xt) > 0 this
solution is unique, while for X(xt) < 0 a second solution with a minus sign in front
of first square root is allowed [64]. However this solution is excluded if we require
both branching ratios to be larger than 10−11 and we will not consider it here.

In the SM and CMFV we have to a very good approximation the relation [63,64]

SψKS
= sin 2β, (3.19)

which is only spoiled by possible penguin enhancements in the Bd → J/ψKS

mode [65]. Thus (3.19) together with (3.18) give a triple correlation between
K+ → π+νν̄, KL → π0νν̄ and SψKS

in the SM and CMFV.
As demonstrated in the earlier parts of this section, the branching ratios for

K+ → π+νν̄ and KL → π0νν̄ still contain significant parametric uncertainties due
to the uncertainties in |Vcb|, |Vub| and γ, and to a lesser extent in mt. It is therefore
remarkable that within the SM all these uncertainties practically cancel out in this
triple correlation [63]. Moreover, this property turns out to be true for all models
with constrained MFV [64].

We note that the main uncertainty in (3.18) resides in Pc, as the uncertainty in
λ is very small. We stress that this relation is practically immune to any variation of
the function X(xt) within MFV models. This means that once B(K+ → π+νν̄) and
SψKS

will be precisely measured we will know the unique value of B(KL → π0νν̄)
within CMFV models. This relation is analogous to the one between B(Bs,d →



3 CKM inputs from tree-level observables 14

0 5 10 15 20 25 30 35

BR(K+ → π+νν̄) [10−11]

0

5

10

15

20

25

B
R

(K
L
→

π
0
ν
ν̄

)
[1

0−
11

]

G
ro

ss
m

an
-N

ir
bo

un
d

SM

MFV relation − present constraints

|Vub|incl/|Vcb|incl central value

|Vub|excl/|Vcb|excl central value

95% CL using |Vub|avg/|Vcb|avg

95% CL using SψKS
' sin 2β

68% CL K+ → π+νν̄ measurement

0 5 10 15 20 25 30 35

BR(K+ → π+νν̄) [10−11]

0

5

10

15

20

25

B
R

(K
L
→

π
0
ν
ν̄

)
[1

0−
11

]

G
ro

ss
m

an
-N

ir
bo

un
d

SM

MFV relation − future constraints (c. 2025)

95% CL using central |Vub|avg/|Vcb|avg ± 1%, γ ± 1◦

95% CL using central β ± 0.25◦

Example measurement : 10% precision relative to SM

Example measurement : non-MFV NP scenario (same precision)

Figure 4: The MFV relation between K+ → π+νν̄ and KL → π0νν̄ using SψKS
' sin 2β

versus using the various tree-level inputs of |Vcb/Vub| and γ (see text). In the left panel we
show situation from current constraints, and in the right panel the possible situation in
the following decade, including 10% precision on the two branching ratios, for illustration.

µ+µ−) and ∆Ms,d [66], where the present knowledge of ∆Ms,d together with the
future precise value of B(Bs → µ+µ−) will allow us to uniquely predict the branching
ratio B(Bd → µ+µ−) in CMFV models well ahead of its precise direct measurement.

In the right panel of Figure 3 we show the correlation between K+ → π+νν̄ and
KL → π0νν̄ for different fixed values of β (SψKS

). The dashed regions correspond
to a 68% C.L. that results from including the uncertainties on all the other input
parameters, whereas the inner filled regions are a result of only including the un-
certainties of |Vcb| (we use the average in (3.3)), γ (as given in (3.4)) and |Vus| in
(2.7). We observe that in the latter case the dependence on the remaining CKM
parameters, for fixed β, is indeed minimal.

It is also possible to express the ratio in (3.17) as

Reλt
Imλt

=

(
1− λ2

2

)2
sin γ

[
cos γ −

(
λ

1− λ2

2

)∣∣∣∣VcbVub

∣∣∣∣
]
, (3.20)

i.e. in terms of the tree-level CKM inputs discussed in this section, which are gen-
erally assumed to be free of NP effects. We note that in MFV also SψKS

is not
affected by NP and is more accurately determined than γ. On the other hand,
there is a class of models – e.g. models with a U(2)3 flavour symmetry [67] – where
the correlation with SψKS

is no longer true, while (3.16) and the generic relation
(3.20) still hold.

While the virtue of the correlation (3.18) is its very weak dependence on the
CKM parameters, the correlation (3.16) together with (3.20) shares partly this
property as it depends only on the ratio |Vcb/Vub|, equivalent to Rb, and not on
|Vub| and |Vcb| separately. As we can see from the values of Rb given in Table 2,
this avoids some of the trouble with exclusive versus inclusive determinations, as
the ratio of purely exclusive or inclusive determinations, as well as their weighted
average, results in less variation – i.e. only 5% among the cases considered. Note
that combining exclusive |Vub| with inclusive |Vcb|, for example, gives a greater
variation.
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In the left panel of Figure 4 we compare the MFV relation for various values
of |Vcb/Vub|, including a 1σ C.L. region corresponding to our weighted averages.
We also include for comparison the relation corresponding to the current SψKS

measurement, which is seen to be more accurate. In the right panel we repeat this
comparison for possible future constraints in the following decade, where our choice
of errors are based on those collected in [19]. For the branching ratios ofK+ → π+νν̄
and KL → π0νν̄ we assume a 10% precision relative to the SM predictions. Though
this is the realistic target set by the NA62 experiment for K+ → π+νν̄, the KOTO
experiment will likely not reach such a precision for KL → π0νν̄. We observe that
in this possible sketch of the future, the two decays under consideration have the
potential to probe MFV and/or a U(2)3 symmetry.

4 CKM inputs from loop-level observables

A different approach is to assume that there are no relevant NP contributions to
all the quantities listed in (1.2), so that we can use them together with the precise
value of |Vus| to determine the best values of

β, |Vcb|, |Vub|, |Vtd|, |Vts|, (4.1)

and predict the branching ratios for K+ → π+νν̄, KL → π0νν̄ and Bs,d → µ+µ−.
Clearly the absence of NP effects in all the loop observables (1.2) requires the SM
to be valid up to a reasonably high energy scale, which is a stronger assumption
with respect to the one of strategy A, where only tree-level determinations of CKM
parameters were assumed to be free of NP effects. We call this approach strategy B.

The relevant SM expressions can be found in [16] and in particular in [30], where
this strategy has been used to determine the correlation between the values of |Vcb|
and |Vub| with the non-perturbative parameters relevant for ∆Ms,d. As the precision
on these parameters resulting from QCD lattice calculations is improving, and the
value of B̂K , relevant for εK , has been known precisely already for some time,5 we
can now use these formulae to extract the values listed in (4.1).

At least three independent observables among the four listed in (1.2) have to
be used in order to fix the three free parameters of the CKM matrix besides |Vus|.
For illustration, we present here the strategy which allows us to determine the
parameters in (4.1) with high precision with the minimal number of measurements.
Schematically this procedure can be described in two steps:

• Step 1: The unitarity triangle can be determined from the experimental values
of SψKS

= sin 2β and the mass ratio

∆Md

∆Ms
=
mBd

mBs

1

ξ2
|Vtd|2
|Vts|2

, ξ ≡
FBs

√
B̂Bs

FBd

√
B̂Bd

. (4.2)

Using the following very accurate expressions for |Vtd| and |Vts|,

|Vtd| ' λ|Vcb|Rt, |Vts| '
(

1 +
λ2

2
(1− 2Rt cosβ)

)
|Vcb|, (4.3)

5We use B̂K = 0.750(15) which takes into account the values obtained by lattice QCD [44] and large
N approach [46].
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where Rt is one of the sides of the UT, and solving (4.2) for Rt one gets

Rt '
ξ

|Vus|

√
∆Md

∆Ms

mBs

mBd

(
1− |Vus|ξ

√
∆Md

∆Ms

mBs

mBd

+
|Vus|2

2
+ · · ·

)
(4.4)

where the dots indicate terms of order O(|Vus|4, |Vus|2∆Md/∆Ms).

With one side, Rt, and one angle, β, known, the full unitarity triangle is
determined by means of purely geometrical relations. In particular one has

Rb =
1− λ2/2

λ

∣∣∣∣VubVcb

∣∣∣∣ =
√

1 +R2
t − 2Rt cosβ, cot γ =

1−Rt cosβ

Rt sinβ
, (4.5)

and the apex (%̄, η̄) of the triangle is given by

%̄ = 1−Rt cosβ, η̄ = Rt sinβ . (4.6)

The very precise value of Rt obtained through ∆Md/∆Ms therefore allows a
very precise determination of γ.

It should be emphasised that the UT constructed in this manner is universal
for all CMFV models as the box function S does not enter the expressions
used in these two steps [62]. Moreover this determination is independent of
|Vcb|.

• Step 2: The measured value of |εK | then allows us to determine the optimal
value of |Vcb|. Indeed we have [68]

|εSMK | =κε
G2
FF

2
KmK0M2

W

6
√

2π2∆MK

B̂K |Vcb|2λ2Rt sinβ,

×
(
|Vcb|2Rt cosβ ηttS0(xt) + ηctS0(xc, xt)− ηccxc

)
(4.7)

where xi = m2
i /M

2
W , S0 is the well known SM box function as defined e.g.

in [16], and κε = 0.94 ± 0.02 [68, 69]. With Rt known from (4.3) and β
determined from SψKS

, the only unknown in (4.7) is |Vcb|. Having found |Vcb|,
Rb, and Rt, also |Vub|, |Vtd| and |Vts| are determined by the previous relations
in a straightforward way.

Alternatively we can also determine |Vcb| by using separately ∆Ms ∝ |Vts|2 and
∆Md ∝ |Vtd|2 instead of εK , as both are proportional to |Vcb|2 via the expressions
given in (4.4). In principle it is also possible to determine the CKM matrix from
∆Md, ∆Ms, and εK , but the precision in this case will be rather limited, due to the
absence of the strong constraint on β from SψKS

. The best accuracy is obtained by
performing a simultaneous fit to all the four observables ∆Md, ∆Ms, SψKS

and εK .
In Table 3 we give the results of fits for the CKM matrix elements using dif-

ferent combinations of the inputs discussed in the steps above. The values for the
experimental and lattice observables used as inputs are listed in Table 1. The fits
were performed using a Bayesian statistical approach: uncorrelated Gaussian priors
were chosen for each of the input parameters and the posterior distribution was
sampled using Markov Chain Monte Carlo with the help of the Bayesian Analysis
Toolkit [70]. A direct minimisation of the χ2, yielding identical results, has also
been performed as a check. We observe that using |εK | in step 2 gives a more
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{|εK |,∆Md/∆Ms, SψKS
}SM {∆Md,∆Ms, SψKS

}SM {|εK |,∆Md,∆Ms, SψKS
}SM

|Vcb| [10−3] 42.59+1.41
−1.26 41.30+2.65

−2.47 42.35+1.25
−1.13

|Vub| [10−3] 3.62+0.15
−0.14 3.51+0.27

−0.25 3.61+0.15
−0.14

|Vtd| [10−3] 8.96+0.28
−0.28 8.68+0.66

−0.62 8.95+0.27
−0.28

|Vts| [10−3] 41.79+1.43
−1.27 40.52+2.60

−2.42 41.55+1.27
−1.14

B(K+ → π+νν̄) [10−11] 9.18+0.79
−0.71 8.39+1.76

−1.41 9.08+0.74
−0.68

B(KL → π0νν̄) [10−11] 3.01+0.33
−0.29 2.66+0.84

−0.63 2.98+0.32
−0.28

B(Bs → µ+µ−) [10−9] 3.69+0.30
−0.26 3.46+0.49

−0.43 3.64+0.27
−0.24

B(Bd → µ+µ−) [10−10] 1.09+0.08
−0.08 1.02+0.17

−0.15 1.09+0.08
−0.08

Im(λt) [10−4] 1.43+0.08
−0.07 1.35+0.20

−0.17 1.42+0.07
−0.07

Re(λt) [10−4] −3.46+0.18
−0.19 −3.25+0.40

−0.45 −3.43+0.17
−0.18

Table 3: Results of the fit to the CKM matrix elements for various combinations of inputs
as detailed in strategy B, and the corresponding observable predictions.

precise result for |Vcb| than the alternative of using ∆Md and ∆Md separately, as
well as favouring a higher central value. The most accurate determination (given in
the last column of the table), follows from including all inputs. The corresponding
CKM matrix elements of interest are:

|Vub| = (3.61± 0.14)× 10−3, |Vcb| = (42.4± 1.2)× 10−3,

|Vtd| = (8.94± 0.27)× 10−3, |Vts| = (41.6± 1.2)× 10−3. (4.8)

For completeness, we give here the sides of the UT as determined from our full
fit, that read

Rt = 0.937± 0.032, Rb = 0.368± 0.013, (4.9)

while its angles are

α = (89.0± 5.0)◦, β = (21.5± 0.8)◦, γ = (69.5± 5.0)◦, (4.10)

and its apex

%̄ = 0.129± 0.030, η̄ = 0.344± 0.017. (4.11)

The precision on Rt, γ and |Vcb| using the above strategy is already impressive,
and will continue to improve with new lattice results. Using for instance the im-

proved error estimates for ξ and fBs

√
B̂Bs from [31] (keeping the central values

from [44]) we find the very precise results:

|Vcb| = (42.0± 0.9)× 10−3, γ = (70.8± 2.3)◦, Rt = 0.945± 0.015. (4.12)

In Figure 5 we show the fitted ranges for |Vub| and |Vcb| and compare them with
the inclusive, exclusive and our averaged values in (3.1)–(3.3). We distinguish be-
tween three different cases: the blue area corresponds to the fitted range of |Vub| and
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Figure 5: Comparison of 68% C.L. regions for |Vub| and |Vcb| in strategy B for various
combinations of inputs versus their reported inclusive and exclusive values, and our aver-
ages of these, as considered in strategy A.

|Vcb| determined by |εK |, ∆Md/∆Ms and SψKS
; for the green area ∆Md, ∆Ms and

SψKS
are used as inputs and the red area combines both and uses |εK |, ∆Md, ∆Ms

and SψKS
as inputs. As noted earlier, one can see that especially |εK | favours large

values of |Vcb|, around the inclusive value, while the rather small |Vub|, around the
exclusive value, is favoured by SψKS

.
It is interesting to compare these results with the indirect fits performed by

UTfit [27] and CKMfitter [28], which give

UTfit: |Vub| = (3.63± 0.12)× 10−3, |Vcb| = (41.7± 0.56)× 10−3 , (4.13)

CKMfitter: |Vub| =
(
3.55+0.17

−0.15
)
× 10−3, |Vcb| =

(
41.17+0.90

−1.14
)
× 10−3 . (4.14)

They are in very good agreement with our results. We note however, that these two
groups included in their analyses the information from tree level decays, which we
have decided not to include in our strategy B because of the discrepancies between
inclusive and exclusive determinations of |Vub| and |Vcb|. Moreover, we also did not
use the tree-level determination of γ contrary to these two groups.

Having determined the full CKM matrix in this manner, predictions for rare
decays branching ratios can be made. These are collected in the last four rows in
Table 3 and again the most precise are the ones in the last column so that our final
results for the four branching ratios are:

B(K+ → π+νν̄) = (9.11± 0.72)× 10−11, (4.15)

B(KL → π0νν̄) = (3.00± 0.31)× 10−11, (4.16)

B(Bs → µ+µ−) = (3.66± 0.26)× 10−9, (4.17)

B(Bd → µ+µ−) = (1.09± 0.08)× 10−10. (4.18)



4 CKM inputs from loop-level observables 19

4 5 6 7 8 9 10 11

BR(K+ → π+νν̄) [10−11]

2

3

4

5

6

B
R

(K
L
→

π
0
ν
ν̄

)
[1

0−
11

]

our average @ 68% CL

incl. |Vub|, |Vcb| @ 68% CL

excl. |Vub|, |Vcb| @ 68% CL

{|εK |,∆Md,∆Ms, SψKS
}SM @ 68% CL

4 5 6 7 8 9 10 11

BR(K+ → π+νν̄) [10−11]

3.0

3.5

4.0

4.5

B
R

(B
s
→

µ
+
µ
−

)
[1

0−
9
]

our average @ 68% CL

incl. |Vub|, |Vcb| @ 68% CL

excl. |Vub|, |Vcb| @ 68% CL

{|εK |,∆Md,∆Ms, SψKS
}SM @ 68% CL

Figure 6: Comparison of 68% C.L. regions for B(KL → π0νν̄) and B(Bs → µ+µ−) versus
B(K+ → π+νν̄), using different inputs from both strategy A and B to fix the CKM matrix
.

In (4.12) we used the new lattice error estimates from [31] for a “sneak preview” of
how the CKM fit in strategy B will improve once the full results will be available.
Using these results for the observable predictions listed above will likewise lead to
reduced uncertainties: δB(K+ → π+νν̄) = 0.65, δB(KL → π0νν̄) = 0.28, δB(Bs →
µ+µ−) = 0.22 and δB(Bd → µ+µ−) = 0.07.

As a comparison, using instead the fit results of (4.13) and (4.14), one gets

UTfit: B(K+ → π+νν̄) =
(
8.64+0.54

−0.53
)
× 10−11, (4.19)

B(KL → π0νν̄) = (2.93± 0.25)× 10−11, (4.20)

CKMfitter: B(K+ → π+νν̄) =
(
8.17+0.61

−0.71
)
× 10−11, (4.21)

B(KL → π0νν̄) =
(
2.65+0.29

−0.28
)
× 10−11. (4.22)

It is also interesting to compare the results in (4.17), (4.18) with the most recent
prediction in the SM [71], with which our SM results are in perfect agreement,6 and
with the most recent averages from the combined analysis of CMS and LHCb [72]
that read

B(Bs → µ+µ−) = (2.8+0.7
−0.6)× 10−9, (4.23)

B(Bd → µ+µ−) = (3.9+1.6
−1.4)× 10−10. (4.24)

Note that the SM value of B(Bs → µ+µ−) is outside one sigma range of the exper-
imental value.

In Figure 6 the correlations of B(KL → π0νν̄) and B(Bs → µ+µ−) versus
B(K+ → π+νν̄) are shown, comparing the best result of strategy B, which in-
cludes all of the available inputs, with the inclusive, exclusive and average cases
of strategy A. We observe that the inclusive case of strategy A is very similar to
strategy B for K+ → π+νν̄ and Bs → µ+µ−, as both have little sensitivity to |Vub|,

6This is not surprising as these authors used the inclusive determination of |Vcb| that is very close to
the value determined by us.



5 The ratio ε′/ε in the Standard Model 20

whereas KL → π0νν̄, which has a stronger |Vub| dependence, can differentiate them.
In both plots our average for |Vub| and |Vcb| is seen to also pick the middle ground
for these observables.

Evidently, the present experimental value for B(Bs → µ+µ−) in (4.23) would
favour the exclusive determination of |Vcb| and a value of B(K+ → π+νν̄) in the
ballpark of 7× 10−11 rather than 9× 10−11. But then also the value of |εK | would
be below the data. It appears then that unless the experimental value for B(Bs →
µ+µ−) moves up by 20% in the coming years, the SM will face some tensions in this
sector of flavour physics.

It is instructive to recall the following formula [3, 73] that summarises the de-
pendence of B(K+ → π+νν̄) on Rt, β and Vcb:

B(K+ → π+νν̄) =
κ+
λ8
|Vcb|4X(xt)

2

[
R2
t sin2 β

(1− λ2/2)2

+
(

1− λ2

2

)2(
Rt cosβ +

λ4Pc(X)

|Vcb|2X(xt)

)2
]
. (4.25)

This can be considered as the fundamental formula for a correlation between B(K+ →
π+νν̄), β and any observable used to determine Rt, and is valid also in all models
with MFV where X(xt) is replaced by a real function X. When this formula was pro-
posed, it contained significant uncertainties in Rt determined through ∆Md/∆Ms,
in Pc(X) known only at NLO, in κ+ and in |Vcb|. The first three uncertainties have
been significantly reduced since then. Moreover, the improved knowledge of the
non-perturbative parameters entering εK and ∆Ms,d allows now within the SM to
determine |Vcb| rather precisely. We stress that in other models with MFV the latter
determination will depend on the NP contributions to εK and ∆Ms,d which modify
the function S. An analysis of this issue is presented in [30].

Finally when γ from tree-level decays will be precisely measured, Rt will be
determined solely by β and γ,

Rt =
sin γ

sin(β + γ)
, (4.26)

and the dependence of B(K+ → π+νν̄) on γ can be directly read off (4.25).

5 The ratio ε′/ε in the Standard Model

The ratio ε′/ε measures the size of direct CP violation in KL → ππ relative to
the indirect CP violation described by εK . In the SM ε′ is governed by QCD
penguins, but receives also an important destructively interfering contribution from
electroweak penguins that is generally much more sensitive to NP than the QCD
contribution.

The ratio ε′/ε is measured to be [38,74–76]

Re(ε′/ε) = (16.5± 2.6)× 10−4, (5.1)

and the imaginary part of ε′/ε is negligible so that we will just write ε′/ε in all
formulae below.
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This result constitutes in principle a strong constraint on theory. However, the
difficulty in making predictions for ε′/ε within the SM and its extensions is the
strong cancellation of QCD penguin contributions and electroweak penguin contri-
butions to this ratio. In the SM QCD penguins give a positive contribution, while
the electroweak penguins a negative one. In order to obtain a useful prediction for

ε′/ε in the SM the corresponding hadronic parameters B
(1/2)
6 and B

(3/2)
8 have to be

known precisely.

In the large N limit one has B
(1/2)
6 = B

(3/2)
8 = 1 [77–79]. While the study of

1/N corrections in [80] indicated that B
(3/2)
8 < 1, no conclusive result has been

obtained for B
(1/2)
6 . Fortunately, very recently significant progress on both B

(1/2)
6

and B
(3/2)
8 has been made by lattice QCD simulations and in the context of the large

N approach. Indeed, from the results of the RBC-UKQCD collaboration [81, 82]
one can extract

B
(1/2)
6 = 0.57± 0.19, B

(3/2)
8 = 0.76± 0.05 , (lattice QCD) (5.2)

as shown in Appendix C in the case of B
(3/2)
8 , and in [83, 84] for B

(1/2)
6 . On the

other hand, the very recent analysis in the large-N approach in [84] allows to derive

a conservative upper bound on both B
(1/2)
6 and B

(3/2)
8 , which reads

B
(1/2)
6 ≤ B(3/2)

8 < 1. (large-N) (5.3)

Moreover, one finds B
(3/2)
8 (mc) = 0.80 ± 0.10 in good agreement with (5.2). The

result for B
(1/2)
6 is less precise but there is a strong indication that B

(1/2)
6 < B

(3/2)
8 ,

also in agreement with (5.2). We refer to [84] for further arguments why B
(1/2)
6 is

expected to be smaller than B
(3/2)
8 .

The most recent analysis of ε′/ε has been given in [83]. Using the results in (5.2)
and determining the remaining contributions to ε′/ε by imposing the agreement of
the SM with CP-conserving data one finds7 [83]

Re(ε′/ε) = (1.9± 4.5)× 10−4 , (5.4)

significantly below the experimental value in (5.1). This result differs by roughly
3σ from the data, but, as stressed in [83], larger values can be obtained if only the
absolute large N upper bound on both parameters in (5.3) is used. Yet, as found
there and confirmed here by us, even with more generous values of Imλt the SM
has serious difficulty in describing the data for ε′/ε.

In spite of this it is of interest to study the correlation of ε′/ε with KL → π0νν̄
in the SM as this correlation has been already studied in various extensions of the

SM [23,85–90]. Within the SM this correlation depends only on the values of B
(1/2)
6

and B
(3/2)
8 and the CKM parameters which we determined in the previous sections

using strategies A and B.
All the relevant details on ε′/ε within the SM including the relevant references

are given in [83]. Here we collect only the relevant information necessary to perform
the numerical analysis. The basic analytic formula for ε′/ε reads [83](

ε′

ε

)
SM

= Imλt · Fε′(xt), (5.5)

7To this end Imλt = (1.4± 0.1)× 10−4 has been used.
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where

Fε′(xt) = P0 + PX X0(xt) + PY Y0(xt) + PZ Z0(xt) + PE E0(xt) , (5.6)

with the first term dominated by QCD-penguin contributions, the next three terms
by electroweak penguin contributions, and the last term being totally negligible.
The xt dependent functions have been collected in Appendix C.

The coefficients Pi are given in terms of the non-perturbative parameters R6 and
R8 defined in (5.8) as follows:

Pi = r
(0)
i + r

(6)
i R6 + r

(8)
i R8 . (5.7)

The coefficients r
(0)
i , r

(6)
i and r

(8)
i comprise information on the Wilson-coefficient

functions of the ∆S = 1 weak effective Hamiltonian at NLO. Their numerical values
are given in the NDR renormalisation scheme for µ = mc and three values of αs(MZ)
in Table 4 in Appendix C.

The parameters R6 and R8 are directly related to the parameters B
(1/2)
6 and

B
(3/2)
8 representing the hadronic matrix elements of Q6 and Q8, respectively. They

are defined as

R6 ≡ B(1/2)
6

[
114.54 MeV

ms(mc) +md(mc)

]2
, (5.8)

R8 ≡ B(3/2)
8

[
114.54 MeV

ms(mc) +md(mc)

]2
. (5.9)

We stress that both B
(1/2)
6 and B

(3/2)
8 depend very weakly on the renormalisation

scale [91].
In Figure 7 we show the correlation between ε′/ε and KL → π0νν̄ in the SM.

The central value from the RBC-UKQCD collaboration in (5.2) has been used for

B
(3/2)
8 . The different colours correspond to different choices of the parameter B

(1/2)
6 :

B
(1/2)
6 = 1.0 (blue), (5.10)

B
(1/2)
6 = 0.76 (green), (5.11)

B
(1/2)
6 = 0.57 (red) . (5.12)

The first choice is motivated by the upper limit from large N approach in (5.3),

although the bound B
(1/2)
6 < B

(3/2)
8 is violated, and gives an idea of the largest

possible values of ε′/ε attainable in the SM. The second choice assumes that B
(1/2)
6 =

B
(3/2)
8 is saturating the previous bound. Finally, the third choice uses the central

values (5.2) from the RBC-UKQCD collaboration for both B
(1/2)
6 and B

(3/2)
8 . We

observe that even for the first choice of B
(1/2)
6 and B

(3/2)
8 the ratio ε′/ε in the SM

is below the data, and only for the largest values of Imλt it is within 2σ from the
central experimental value. For such values also the branching ratio for KL → π0νν̄
is largest.
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Figure 7: Correlation of B(KL → π0νν̄) versus |ε′/ε| for fixed values of B
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0.76 (green), and 1.00 (blue). The hatched regions correspond to a 68% C.L. resulting
from the uncertainties on all other inputs, for strategy A using our average values of |Vub|
and |Vcb|, and strategy B. The yellow band shows the experimental result at 1σ.

6 Summary and outlook

In this paper we have performed a new analysis of the rare decays K+ → π+νν̄ and
KL → π0νν̄ within the SM. The prime motivations for this study were:

• The start of the NA62 experiment that should in the coming years reach a
precision of 10% relative to the SM prediction for B(K+ → π+νν̄).

• The soon to improve value of ξ, for which preliminary error estimates are
already given in [31], which will allow a much more precise determination of
the elements of the CKM matrix, in particular of the angle γ, |Vub| and |Vcb|,
without the use of present tree-level determinations of these parameters that
are presently subject to significant uncertainties.

• The observation of the correlation between B(K+ → π+νν̄), B(Bs → µ+µ−)
and γ within the SM that only weakly depends on |Vcb|. This correlation should
be of interest in particular for CERN experimentalists who in the coming years
will significantly improve the measurements on these three quantities.

Our main results are illustrated with several plots in Sections 3 and 4. Our analy-
sis demonstrates that in the coming years the SM will undergo an unprecedented test
due to the measurements of the rates for the decays K+ → π+νν̄ and Bs → µ+µ−

and improved determinations of the CKM parameters either through the strategies
A or B, accompanied by improved lattice QCD calculations of the relevant non-
perturbative parameters. Around 2020 these studies will be enriched through precise
measurements of the rates for KL → π0νν̄, Bd → µ+µ− and Bd → K(K∗)νν̄ [92].

Also improved knowledge of the parameters B
(1/2)
6 and B

(3/2)
8 , accompanied

with improved values of CKM parameters, will allow a more precise prediction for
the important ratio ε′/ε. Calculating this ratio using strategies A and B we find,
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in accordance with the recent analysis in [83], that the SM prediction for ε′/ε is
significantly below the data leaving large room for NP contributions. A recent
analysis of ε′/ε in simplified NP models has shown which NP models could move
the theory prediction for ε′/ε to agree with data [89]. Needless to say, in order to
be sure that the SM indeed fails in the description of data, a big effort in clarifying
various uncertainties will be required, as discussed in [83].

It should be observed that the agreement of the SM prediction for B(Bs →
µ+µ−) with the data can be significantly improved by lowering |Vcb| to the values in
the ballpark of its present exclusive determinations using lattice QCD form factors.
But then automatically εK is found significantly below the data. Interestingly in
this case B(K+ → π+νν̄) is also predicted to be in the ballpark of 7 × 10−11, that
is more than a factor of two below its present experimental average. No doubt, the
coming years will be exceptional for quark flavour physics.
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A Expression for Xt

The loop function Xt of (2.4) can be written as

X(xt) = X0(xt) +
αs
4π
X1(xt) +

α

4π
XEW(xt), (A.1)

where X0 is the leading order result, and X1, XEW are the NLO QCD and EW
corrections, respectively. The coupling constants αs and α, as well as the parameter
xt = m2

t /m
2
W = 2y2t /g

2
2, have to be evaluated at a given renormalisation scale

µ ∼ O(Mt).
The LO expression is

X0(xt) =
xt
8

[
xt + 2

xt − 1
+

3xt − 6

(xt − 1)2
log xt

]
. (A.2)

The NLO QCD correction [1–3] reads, in the MS scheme,

X1(xt) = −29xt − x2t − 4x3t
3(1− xt)2

− xt + 9x2t − x3t − x4t
(1− xt)3

log xt

+
8xt + 4x2t + x3t − x4t

2(1− xt)3
log2 xt −

4xt − x3t
(1− xt)2

Li2(1− xt)

+ 8xt
∂X0

∂xt
log

µ2

M2
W

,

(A.3)
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where µ is the renormalisation scale. The 2-loop EW correction XEW has been
calculated in [8], but no explicit result has been presented. Approximate formulae,
one of which accurate to more than 0.05%, as well as a plot of the contribution
(α/4π)XEW can however be found in [8].

The left panel of Figure 8 shows a plot of the scale- and scheme-independent
quantity

X̃(µ) =
α(µ)

sin2 θw(µ)

sin2 θw(MZ)

α(MZ)
X(xt(µ), µ) (A.4)

as a function of the renormalisation scale µ, together with the 1σ bands correspond-
ing to the theoretical error in the matching of the top Yukawa coupling yt at the
weak scale, and the experimental error on the top mass Mt. The MS couplings at
full NNLO – 2-loop matching at the weak scale (3-loop QCD for αs and yt) and
3-loop running (4-loop QCD for αs) – as determined in [34] have been used. The
remaining scale dependence shown in the figure comes from higher order corrections,
mainly from QCD, and accounts for an error of 0.004 on Xt. An additional error of
0.002 comes from the ambiguity in the choice of the renormalisation scheme for the
EW prefactor, as shown in [8]. A comparison of the different errors contributing to
Xt is shown in the right panel of Figure 8. The experimental error on the top quark
pole mass Mt is by far the dominant contribution at present.

B Expression for Pc(X)

An approximate formula for P SD
c (X) taken from [7] reads

P SD
c (X) = 0.38049

(
mc(mc)

1.30 GeV

)0.5081(αs(MZ)

0.1176

)1.0192
1 +

∑
i,j

κijL
i
mc
Ljαs


± 0.008707

(
mc(mc)

1.30 GeV

)0.5276(αs(MZ)

0.1176

)1.8970
1 +

∑
i,j

εijL
i
mc
Ljαs

 ,

(B.1)

where

Lmc = ln

(
mc(mc)

1.30 GeV

)
, Lαs = ln

(
αs(MZ)

0.1176

)
(B.2)

and

κ10 = 1.6624, κ01 = −2.3537, κ11 = −1.5862, κ20 = 1.5036, κ02 = −4.3477,

ε10 = −0.3537, ε01 = 0.6003, ε11 = −4.7652, ε20 = 1.0253, ε02 = 0.8866.
(B.3)

C More details on ε′/ε

The basic one-loop functions entering (5.6) are given by (A.2) and

Y0(xt) =
xt
8

[
xt − 4

xt − 1
+

3xt
(xt − 1)2

lnxt

]
, (C.1)
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orders in the matching at the weak scale. Right: different sources of error affecting Xt.

Z0(xt)= − 1

9
lnxt +

18x4t − 163x3t + 259x2t − 108xt
144(xt − 1)3

+

+
32x4t − 38x3t − 15x2t + 18xt

72(xt − 1)4
lnxt (C.2)

E0(xt) = − 2

3
lnxt +

x2t (15− 16xt + 4x2t )

6(1− xt)4
lnxt +

xt(18− 11xt − x2t )
12(1− xt)3

, (C.3)

where xt = m2
t /M

2
W .

The coefficients r
(0)
i , r

(6)
i and r

(8)
i entering (5.7) are given in the NDR renormal-

isation scheme for µ = mc and three values of αs(MZ) in Table 4.

The parameters B
(1/2)
6 and B

3/2
8 are related to the hadronic matrix elements Q6

and Q8 as follows

〈Q6(µ)〉0 = − 4

[
m2

K

ms(µ) +md(µ)

]2
(FK − Fπ)B

(1/2)
6 , (C.4)

〈Q8(µ)〉2 =
√

2

[
m2

K

ms(µ) +md(µ)

]2
Fπ B

(3/2)
8 . (C.5)

It should be emphasised that the overall factor in these expressions depends on the
normalisation of the amplitudes A0,2. The matrix elements given above correspond
to the normalisation used in [23, 46, 93]. On the other hand the RBC-UKQCD
collaboration [82, 94] uses a different normalisation adopted in [91]. By comparing
(C.4) and (C.5) with Eqs. (5.10) and (5.18) of the latter paper we find that the
matrix elements in [91] have and additional factor of

√
3/2. While ε′/ε clearly does

not depend on this difference, it is crucial to take it into account when extracting

the value of B
(3/2)
8 from the results obtained by RBC-UKQCD collaboration. To

this end we use Eq. (30) for A2 in [94], adjust to our normalisation, and compare
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αs(MZ) = 0.1179 αs(MZ) = 0.1185 αs(MZ) = 0.1191

i r
(0)
i r

(6)
i r

(8)
i r

(0)
i r

(6)
i r

(8)
i r

(0)
i r

(6)
i r

(8)
i

0 -3.392 15.293 1.271 -3.421 15.624 1.231 -3.451 15.967 1.191
X0 0.655 0.029 0. 0.655 0.030 0. 0.655 0.031 0.
Y0 0.451 0.114 0. 0.449 0.116 0. 0.447 0.118 0.
Z0 0.406 -0.022 -13.435 0.420 -0.022 -13.649 0.435 -0.023 -13.872
E0 0.229 -1.760 0.652 0.228 -1.788 0.665 0.226 -1.816 0.678

Table 4: The coefficients r
(0)
i , r

(6)
i and r

(8)
i of formula (5.7) in the NDR-MS scheme for

three values of αs(MZ). From [83].

to A2 expressed in terms of 〈Q8(µ)〉2 in (C.5). This allows us to related 〈Q8(µ)〉2
to the hadronic matrix element MMS−NDR

(8,8)mix
used in [82,94]:

〈Q8(µ)〉2 =
1

3
√

2
MMS−NDR

(8,8)mix
(C.6)

In this manner we find

B
(3/2)
8 (µ) =

1

6Fπ

[
ms(µ) +md(µ)

m2
K

]2
MMS−NDR

(8,8)mix
(µ) . (C.7)

The µ dependence of MMS−NDR
(8,8)mix

(µ) is practically cancelled by the one of quark

masses so that B
(3/2)
8 is practically µ-independent. In particular in the MS–NDR

scheme the µ-dependence is very weak [91].
Using the QCD lattice value from [82]8

MMS−NDR
(8,8)mix

(3 GeV) = 4.55± 0.27, (C.8)

together with the light quark mass values [44]

ms(2 GeV) = (93.8± 2.4) MeV, md(2 GeV) = (4.68± 0.16) MeV, (C.9)

we find

B
(3/2)
8 (3 GeV) = 0.75± 0.05, B

(3/2)
8 (mc) = 0.76± 0.05. (C.10)
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[83] A. J. Buras, M. Gorbahn, S. Jäger, and M. Jamin, Improved anatomy of ε′/ε
in the Standard Model, arXiv:1507.06345.

[84] A. J. Buras and J.-M. Gerard, Upper Bounds on ε′/ε Parameters B
(1/2)
6 and

B
(3/2)
8 from Large N QCD and other News, arXiv:1507.06326.

[85] A. J. Buras and L. Silvestrini, Upper bounds on K → πνν̄ and KL → π0e+e−

from ε′/ε and KL → µ+µ−, Nucl. Phys. B546 (1999) 299–314,
[hep-ph/9811471].

http://arxiv.org/abs/0805.3887
http://arxiv.org/abs/1002.3612
http://arxiv.org/abs/0808.2552
http://arxiv.org/abs/1311.0903
http://arxiv.org/abs/1411.4413
http://arxiv.org/abs/hep-ph/0112135
http://arxiv.org/abs/hep-ex/0208009
http://arxiv.org/abs/hep-ex/0208007
http://arxiv.org/abs/0909.2555
http://arxiv.org/abs/hep-ph/9802300
http://arxiv.org/abs/1505.07863
http://arxiv.org/abs/1502.00263
http://arxiv.org/abs/1507.06345
http://arxiv.org/abs/1507.06326
http://arxiv.org/abs/hep-ph/9811471


References 33

[86] A. J. Buras, G. Colangelo, G. Isidori, A. Romanino, and L. Silvestrini,
Connections between ε′/ε and rare kaon decays in supersymmetry, Nucl. Phys.
B566 (2000) 3–32, [hep-ph/9908371].

[87] M. Blanke, A. J. Buras, S. Recksiegel, C. Tarantino, and S. Uhlig,
Correlations between ε′/ε and Rare K Decays in the Littlest Higgs Model with
T-Parity, JHEP 06 (2007) 082, [0704.3329 ].

[88] M. Bauer, S. Casagrande, U. Haisch, and M. Neubert, Flavor Physics in the
Randall-Sundrum Model: II. Tree-Level Weak-Interaction Processes, JHEP
1009 (2010) 017, [arXiv:0912.1625].

[89] A. J. Buras, D. Buttazzo, and R. Knegjens, K → πνν̄ and ε′/ε in Simplified
New Physics Models, arXiv:1507.08672.

[90] M. Blanke, A. J. Buras, and S. Recksiegel, Quark flavour observables in the
Littlest Higgs model with T-parity after LHC Run 1, arXiv:1507.06316.

[91] A. J. Buras, M. Jamin, and M. E. Lautenbacher, The Anatomy of ε′/ε beyond
leading logarithms with improved hadronic matrix elements, Nucl. Phys. B408
(1993) 209–285, [hep-ph/9303284].

[92] A. J. Buras, J. Girrbach-Noe, C. Niehoff, and D. M. Straub, B → K(∗)νν̄
decays in the Standard Model and beyond, JHEP 1502 (2015) 184,
[arXiv:1409.4557].

[93] V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, and J. Portoles, Kaon Decays in
the Standard Model, Rev. Mod. Phys. 84 (2012) 399, [arXiv:1107.6001].

[94] T. Blum, P. Boyle, N. Christ, N. Garron, E. Goode, et al., Lattice
determination of the K → (ππ)I=2 Decay Amplitude A2, Phys. Rev. D86
(2012) 074513, [arXiv:1206.5142].

http://arxiv.org/abs/hep-ph/9908371
http://arxiv.org/abs/0704.3329 
http://arxiv.org/abs/0912.1625
http://arxiv.org/abs/1507.08672
http://arxiv.org/abs/1507.06316
http://arxiv.org/abs/hep-ph/9303284
http://arxiv.org/abs/1409.4557
http://arxiv.org/abs/1107.6001
http://arxiv.org/abs/1206.5142

