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Abstract: We test the 3d-3d correspondence for theories that are labeled by Lens spaces.

We find a full agreement between the index of the 3d N = 2 “Lens space theory” T [L(p, 1)]

and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for

p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from

the index of a free theory. For large p, we find that the index of T [L(p, 1)] becomes a con-

stant independent of p. In addition, we study T [L(p, 1)] on the squashed three-sphere S3
b .

This enables us to see clearly, at the level of partition function, to what extent GC complex

Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact

gauge group G.
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1 Introduction

The 3d-3d correspondence is an elegant relation between 3-manifolds and three-dimensional

field theories [1–4]. The general spirit is that one can associate a 3-manifold M3 with a 3d

N = 2 superconformal field theory T [M3;G], obtained by compactifying the 6d (2,0) theory

on M3

6d (2,0) theory on M3 

3d N = 2 theory T [M3].

(1.1)

In this procedure, the 6d theory is topologically twisted along M3 to preserve N = 2 super-

symmetry. As a consequence, the 3d N = 2 theory T [M3;G] only depends on the topology

of M3 and the simply-laced Lie algebra g = LieG that labels the 6d theory1. Although the

dictionary between the dynamics of T [M3] and topological properties of M3 is incredibly rich

[1, 3–7] and only partially explored, there are two very fundamental relations between M3

and T [M3]. Firstly, the moduli space of supersymmetric vacua of T [M3;G] on R2 × S1 is

expected to be homeomorphic to the moduli space of flat GC-connections on M3:

MSUSY(T [M3;G]) 'Mflat(M3;GC). (1.2)

Second, the partition function of T [M3] on Lens space L(k, 1) should be equal to the partition

function of complex Chern-Simons theory on M3 at level k [7, 8]:

ZT [M3;G][L(k, 1)b] = Z
(k,σ)
CS [M3;GC]. (1.3)

1The theory doesn’t depend on small deformations of the metric, but could, in principle, depend on a set

of discrete variables, and we already know that a choice of “framing” will change T [M3]. In fact, based on

current evidence, it is tempting to conjecture that the topology of M3 and the choice of framing completely

determine T [M3].
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The level of complex Chern-Simons theory has a real part k and an “imaginary part”2 σ, and

σ is related to the squashing parameter b of Lens space L(k, 1)b = S3
b /Zk by

σ = k · 1− b2

1 + b2
. (1.4)

For k = 0, L(k, 1) = S1×S2, and the equation (1.3) maps the superconformal index of T [M3]

to partition function of complex Chern-Simons theory at level (0, σ) [4]

IndexT [M3;G](q) = Tr (−1)F q
E+j3

2 = Z
(0,σ)
CS [M3;GC]. (1.5)

Despite its beauty and richness, the 3d-3d correspondence has been haunted by many

problems since its birth. For example, the theories TDGG[M3] originally proposed in [3] miss

many branches of flat connections and therefore fail even the most basic test (1.2). This

problem was revisited and partially corrected in [10]. As for (1.3) and (1.5), there is simply

no known proposal for T [M3] associated to any M3 that passes these stronger tests. Even the

very first non-trivial example of partition function in Chern-Simons theory found in Witten’s

seminal paper [11],

ZCS[S3;SU(2), k] =

√
2

k + 2
sin

(
π

k + 2

)
, (1.6)

has yet to find its home in the world of 3d N = 2 theories.

In [12], a candidate for the 3d theory T [L(p, 1)] was proposed and studied3:

T [L(p, 1);G] =
3d N = 2 G super-Chern-Simons theory at level p

+ adjoint chiral multiplet Φ
. (1.7)

This theory was used to produce Verlinde formula, the partition function of Chern-Simons

theory on S1 × Σ, along with its “complexification” — the “equivariant Verlinde formula”.

Therefore, one may wonder whether this theory could also give the correct partition function

of Chern-Simons theory on S3 in (1.6) and its complex analog:

ZCS[S3;SL(2,C), τ, τ ] =

√
4

ττ
sin

(
2π

τ

)
sin

(
2π

τ

)
. (1.8)

Here we have used holomorphic and anti-holomorphic coupling constants

τ = k + σ, τ = k − σ. (1.9)

Indeed, according to the general statement of the 3d-3d correspondence, T [L(p, 1)] needs to

satisfy

ZT [L(p,1);G][L(k, 1)b] = Z
(k,σ)
CS [L(p, 1);GC] (1.10)

2We use the quotation mark here because σ can be either purely imaginary or purely real as pointed out

in [9].
3More precisely, this is the UV CFT that can flow to numerous different IR theories labelled by UV R-

charges of Φ. The IR theory relevant for the 3d-3d relation is given by R(Φ) = 2.
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and

IndexT [L(p,1);G](q) = Tr (−1)F q
E+j3

2 = Z
(0,σ)
CS [L(p, 1);GC]. (1.11)

And if we take p = 1, the above relation states that the index of T [S3] should give the S3

partition function of complex Chern-Simons theory. Even better, as there is a conjectured

duality [13, 14] relating this theory to free chiral multiplets, one should be able to obtain

(1.6) and (1.8) by simply computing the index of a free theory! This relation, summarized in

diagrammatic form below,

Chern-Simons

theory on S3
3d-3d←→ Index of

T [S3]

duality←→ free chiral

multiplets
(1.12)

will be the subject of section 2. We start section 2 by proving the duality (at the level of

superconformal index) in (1.12) for G = U(N) and then “rediscover” the S3 partition function

of U(N) Chern-Simons theory from the index of N free chiral multiplets. Then in section 3

we go beyond p = 1 and study theories T [L(p, 1)] with higher p. We check that the index of

T [L(p, 1)] gives precisely the partition function of complex Chern-Simons theory on L(p, 1) at

level k = 0. In addition, we discover that index of T [L(p, 1)] has some interesting properties.

For example, when p is large,

IndexT [L(p,1);U(N)] = (2N − 1)!! (1.13)

is a constant that only depends on the choice of the gauge group. In the rest of section 3, we

study T [L(p, 1)] on S3
b and use the 3d-3d correspondence to give predictions for the partition

function of complex Chern-Simons theory on L(p, 1) at level k = 1.

2 Chern-Simons theory on S3 and free chiral multiplets

According to the proposal (1.7), the theory T [S3] is N = 2 super-Chern-Simons theory at

level p = 1 with an adjoint chiral multiplet. If one takes the gauge group to be SU(2), this

theory was conjectured by Jafferis and Yin to be dual to a free N = 2 chiral multiplet [13].

The Jafferis-Yin duality has been generalized to higher rank groups by Kapustin, Kim and

Park [14]. For G = U(N), the statement of the duality is:

T [S3] =
U(N)1 super-Chern-Simons theory

+ adjoint chiral multiplet

duality←→ N free chiral

multiplets
. (2.1)

In [12], a similar duality was discovered4:

T [L(p, 1)] =
U(N)p super-Chern-Simons theory

+ adjoint chiral multiplet

duality←→ sigma model to

vortex moduli space VN,p
.

(2.2)

4In [12], the adjoint chiral is usually assumed to be massive, which introduces an interesting “equivariant

parameter” β. Here we are more concerned with the limit where that parameter is zero.
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Here,

VN,p ∼=
{

(q, ϕ)
∣∣ζ · Id = qq† + [ϕ,ϕ†]

}
/U(N), (2.3)

with q being an N × p matrix, ϕ an N × N matrix and ζ ∈ R+ the “size parameter,” was

conjectured to be the moduli space of N vortices in a U(p) gauge theory [15]. For p = 1, it

is a well known fact that (see, e.g. [16])

VN,1 ' SymN (C) ' CN . (2.4)

This is already very close to proving that T [L(1, 1);U(N)] = T [S3;U(N)] is dual to N free

chirals, with only one missing step. In order to completely specify the sigma model, one also

needs to determine the metric on this space. A sigma model to CN with the flat metric is

indeed a free theory, but it is not obvious that the metric on VN,1 is flat5. However, as the

superconformal index of a sigma model only depends on topological properties of the target

space, one obtains that

index of T [S3;U(N)] = index of N free chirals, (2.5)

proving the duality in (1.12) at the level of index. Combining (2.5) with the 3d-3d corre-

spondence, one concludes that the index of free chirals equals the S3 partition functions of

Chern-Simons theory. This is what we will explicitly demonstrate in this section.

Chern-Simons theory on the three-sphere

The partition function of U(N) Chern-Simons theory on S3 is

ZCS

(
S3;U(N), k

)
=

1

(k +N)N/2

N−1∏
j=1

[
sin

πj

k +N

]N−j
. (2.6)

For N = 2, this gives back (1.6) for SU(2) (modulo a factor coming from the additional

U(1)). It is convenient to introduce

q = e
2πi
k+N , (2.7)

the variable commonly used for the Jones polynomial, and express (2.6) as (mostly) a poly-

nomial in q1/2 and q−1/2:

ZCS

(
S3;U(N), k

)
= C · (ln q)N/2

N−1∏
j

[
qj/2 − q−j/2

]N−j
. (2.8)

Here C is a normalization factor that does not depend on q and such factors will be dropped

in many later expressions without comment.

5VN,p can be obtained using Kähler reduction from CN(N+p) as in (2.3), and a Kähler metric is also inherited

in this process. However, this metric on VN,p is not protected from quantum corrections. The quantum metric

is yet unknown to the best of our knowledge, but for the JY-KKP duality to be true, it should flow to a flat

metric in the IR for p = 1 — a somewhat surprising prediction.
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One can easily obtain the partition function for GL(N,C) Chern-Simons theory by notic-

ing that it factorizes into two copies of (2.6) at level k1 = τ/2 and k2 = τ/2

ZCS

(
S3;GL(N,C)

)
= (ln q ln q)N/2

N−1∏
j=1

[
qj/2 − q−j/2

]N−j [
q−j/2 − qj/2

]N−j
. (2.9)

Here, in slightly abusive use of notation (cf. (2.7)),

q = e
4πi
τ , q = e

4πi
τ . (2.10)

Notice that the quantum shift of the level k → k+N in U(N) Chern-Simons theory is absent

in the complex theory [9, 17, 18]. Although (2.9) is almost a polynomial, it contains “ln q”

factors. So, at this stage, it is still somewhat mysterious how (2.9) can be obtained as the

index of any supersymmetric field theory.

In (2.9) the level is arbitrary and the k = 0 case is naturally related to superconformal

index of T [S3] (1.11). For k = 0,

q = e
4πi
σ , q = e−

4πi
σ = q−1, (2.11)

and

Z
(0,σ)
CS

(
S3;GL(N,C)

)
= (ln q)N

N−1∏
j=1

[
(1− qj)(1− q−j)

]N−j
. (2.12)

This is the very expression that we want to reproduce from the index of free chiral multiplets.

Index of a free theory

The superconformal index of a 3d N = 2 free chiral multiplet only receives contributions from

the scalar component X, the fermionic component ψ and their ∂+ derivatives. If we assume

the R-charge of X to be r, then the R-charge of ψ is 1− r and the superconformal index of

this free chiral is given by

Ir(q) =

∞∏
j=0

1− q1−r/2+j

1− qr/2+j
. (2.13)

In the j-th factor of the expression above, the numerator comes from fermionic field ∂jψ while

the denominator comes from bosonic field ∂jX. Here q is a fugacity variable that counts the

charge under E+j3
2 = R/2 + j3 and it is the expectation of the 3d-3d correspondence [4] that

this q is mapped to the “q” in (2.12), which justifies our usage of the same notation for two

seemingly different variables. Now the only remaining problem is to decide what are the

R-charges for the N free chiral multiplets.

The UV description of theory T [L(p, 1)] has an adjoint chiral multiplet Φ and in general

one has the freedom of choosing the R-charge of Φ. Different choices give different IR fix points

which form an interesting family of theories. As was argued in [12] using brane construction,

the natural choice — namely the choice that one should use for the 3d-3d correspondence —
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is R(Φ) = 2. For example, in order to obtain the Verlinde formula, it is necessary to choose

R(Φ) = 2 while other choices give closely related yet different formulae. As the N free chirals

in the dual of T [S3;U(N)] are directly related to Tr Φ, Tr Φ2, . . . , Tr ΦN , the choice of their

R-charges should be

rm = R(Xm) = 2m, for m = 1, 2, . . . , N. (2.14)

The index for this assignment of R-charges — out of the unitarity bound — contains negative

powers of q. However, this is not a problem at all because the UV R-charges are mixed with

the U(N) flavor symmetries, and q counts a combination of R- and flavor charges.

One interesting property of the index of a free chiral multiplet (2.13) is that it will vanish

due to the numerator of the (m− 1)-th factor:

1− qm−rm/2 = 0. (2.15)

However, there is a very natural way of regularizing it and obtaining a finite result. Namely,

we multiply the q-independent normalization coefficient (rm/2−m)−1 to the whole expression

and turn the vanishing term above into

lim
rm→2m

1− qm−rm/2

rm/2−m
= ln q. (2.16)

And this is exactly how the “ln q” factors on the Chern-Simons theory side arise. With this

regularization

I2m(q) = ln q
m−1∏
j=1

[(
1− q−j

) (
1− qj

)]
, (2.17)

and the 2m − 1 factors come from the fermionic fields ψm, ∂ψm,. . . , ∂2m−2ψm. The contri-

bution of ∂2m−1+lψm will cancel with the bosonic field ∂lX as they have the same quantum

number. The special log term comes from the field ∂m−1ψm, which has exactly R+ 2j3 = 0.

Then it is obvious that

IndexT [S3;U(N)] =

N∏
m=1

I2m(q) = (ln q)N
N−1∏
j=1

[
(1− qj)(1− q−j)

]N−j
(2.18)

is exactly the partition function of complex Chern-Simons theory on S3 (2.12). For example,

if N = 1,

IndexT [S3;U(1)] = I2(q) = ln q. (2.19)

For N = 2,

IndexT [S3;U(2)] = I2(q) · I4(q) = (ln q)2 (1− q−1)(1− q). (2.20)

To get the renowned S3 partition function of the SU(2) Chern-Simons theory, we just need

to divide the N = 2 index by the N = 1 index and take the square root:√
IndexT [S3;U(2)]

IndexT [S3;U(1)]
=
√
I4(q) = −i · (ln q)1/2

(
q1/2 − q−1/2

)
. (2.21)
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For compact gauge group SU(2), we substitute in

q = e
2πi
k+2 (2.22)

and up to an unimportant normalization factor, (2.21) is exactly

ZCS(S3;SU(2), k) =

√
2

k + 2
sin

π

k + 2
. (2.23)

As almost anything in a free theory can be easily computed, one can go beyond index

and check the following relation

ZN free chirals(L(k, 1)b) = Z
(k,σ)
CS (S3;U(N)). (2.24)

The left-hand side can be expressed as a product of double sine functions [19] and with

the right choice of R-charges it becomes exactly the right-hand side, given by (2.6). As

this computation is almost identical for what we did with index, we omit it here to avoid

repetition.

Before ending this section, we comment on deforming the relation (1.12). In the formula-

tion of T [L(p, 1)] in (1.7), there is a manifest U(1) flavor symmetry that can be weakly gauged

to give an “equivariant parameter” β. And the partition function of T [L(p, 1);β] should be

related to β-deformed complex Chern-Simons theory studied in [12]:

ZT [L(p,1);β](L(k, 1)) = Zβ-CS(L(p, 1); k). (2.25)

When p = 1, if the JY-KKP duality is true, this U(1) flavor symmetry is expected to be

enhanced to a U(N) flavor symmetry of T [S3;U(N)] that is only visible in the dual description

with N free chiral multiplets. Then one can deform T [S3] by adding N equivariant parameters

β1, β2, . . . , βN . It is interesting to ask whether the Chern-Simons theory on S3 naturally

admits such an N -parameter deformation and whether one can have a more general matching.

IndexT [S3](q;β1, β2, . . . , βN ) = ZCS(S3; q, β1, β2, . . . , βN ). (2.26)

As Chern-Simons theory on S3 is dual to closed string on the resolved conifold [20, 21],

it would also be interesting to understand whether similar deformation of the closed string

amplitudes Fg exists.

3 3d-3d correspondence for Lens spaces

In the previous section, we focused on T [S3] and found that it fits perfectly inside the 3d-3d

correspondence. This theory is the special p = 1 limit of a general class (1.7) of theories

T [L(p, 1)] proposed in [12]. In this section, we will test this proposal and see whether it

stands well with various predictions of the 3d-3d correspondence. There are several tests to

run on the proposed Lens space theories (1.7). The most basic one is the correspondence

between moduli spaces (1.2) that one can formulate classically without doing a path integral:

MSUSY (T [L(p, 1);U(N)]) 'Mflat (L(p, 1);GL(N,C)) . (3.1)

And our first task in this section is to verify that this is indeed an equality.
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3.1 MSUSY vs. Mflat

The moduli space of flat H-connections on a three manifold M3 can be identified with the

character variety:

Mflat (M3;H) ' Hom(π1(M3), H)/H. (3.2)

As π1(L(p, 1)) = Zp, this character variety is particularly simple. For example, if we take

H = U(N) or H = GL(N,C) — the choice between U(N) or GL(N,C) does not even

matter — this space is a collection of points labelled by Young tableaux with size smaller

than N × p. This is in perfect harmony with the other side of the 3d-3d relation where the

supersymmetric vacua of T [L(p, 1);U(N)] on S1 × R2 are also labelled by Young tableaux

with the same constraint [12]. We will now make this matching more explicit.

If we take the holonomy along the S1 Hopf fiber of L(p, 1) to be A, then

Mflat (L(p, 1);GL(N,C)) ' {A ∈ GL(N,C)|Ap = Id}/GL(N,C). (3.3)

First we can use the GL(N,C) action to cast A into Jordan normal form. But in order to

satisfy Ak = Id, A has to be diagonal, and each of its diagonal entries al has to be one of the

p-th roots of unity:

apl = 1, for all l = 1, 2, . . . , N . (3.4)

One can readily identify this set of equations with the t → 1 limit of the Bethe ansatz

equations that determine the supersymmetric vacua of T [L(p, 1);U(N)] on S1 × R2 [12]:

e2πipσl
∏
m 6=l

(
e2πiσl − te2πiσm

te2πiσl − e2πiσm

)
= 1, for all of l = 1, 2, . . . , N. (3.5)

For t = 1, this equation is simply

e2πipσl = 1, for l = 1, 2, . . . , N . (3.6)

And this is exactly (3.4) if one makes the following identification

al = e2πiσl . (3.7)

Of course this relation between al and σl is more than just a convenient choice. It can be

derived using the brane construction of T [L(p, 1)]. In fact, it just comes from the familiar

relation in string theory between holonomy along a circle and positions of D-branes after

T-duality. Indeed, in the above expression, the al’s on the left-hand side label the U(N)-

holonomy along the Hopf fiber, while the σl’s on the right-hand side are coordinates on the

Coulomb branch of T [L(p, 1)] after reduction to 2d, which exactly correspond to positions of

N D2-branes.
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GC Chern-Simons theory from G Chern-Simons theory

The fact that Mflat is a collection of points is important for us to compute the partition

function of complex Chern-Simons theory. Although there have been many works on complex

Chern-Simons theory and its partition functions, starting from [9, 22] to perturbative invariant

in [17, 23], state integral models in [7, 24, 25] and mathematically rigorous treatment in [26–

28], what usually appear are certain subsectors of complex Chern-Simons theory, obtained

from some consistent truncation of the full theory. In general, the full partition function

of complex Chern-Simons theory is difficult to obtain, and requires proper normalization

to make sense of. Some progress has been made toward understanding the full theory on

Seifert manifolds in [12] using topologically twisted supersymmetric theories. However, if

Mflat(M3;GC) is discrete and happens to be the same asMflat(M3;G), then one can attempt

to construct the full partition function of the GC Chern-Simons theory on M3 from the G

Chern-Simons theory. The procedure is the following. One first writes the partition function

of the G Chern-Simons theory as a sum over flat connections:

Z full =
∑
α∈M

Zα. (3.8)

And because the action of the GC Chern-Simons theory

S =
τ

8π

∫
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+
τ

8π

∫
Tr

(
A ∧ dA+

2

3
A ∧A ∧A

) (3.9)

is simply two copies of the G Chern-Simons theory action at level k1 = τ/2 and k2 = τ/2,

one would have

Zα(GC; τ, τ) = Zα

(
G;

τ

2

)
Zα

(
G;

τ

2

)
, (3.10)

if A and A were independent fields. So, one would naively expect

Z full(GC; τ, τ) =
∑
α∈M

Zα

(
G;

τ

2

)
Zα

(
G;

τ

2

)
. (3.11)

But as A and A are not truly independent, (3.11) is in general incorrect and one needs to

modify it in a number of ways. For example, as mentioned before, the quantum shift of the

level τ and τ in GC Chern-Simons theory is zero, so for Zα(G) on the right-hand side, one

needs to at least remove the quantum shift k → k + ȟ in G Chern-Simons theory, where ȟ is

the dual Coxeter number of g. There may be other effects that lead to relative coefficients

between contributions from different flat connections α and the best one could hope for is

Z full(GC; τ, τ) =
∑
α∈M

eiCαZ ′α

(
G;

τ

2

)
Z ′α

(
G;

τ

2

)
, (3.12)
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where

Z ′α

(
G;

τ

2

)
= Zα

(
G;

τ

2
− ȟ
)
. (3.13)

One way to see that (3.11) is very tenuous, even after taking care of the level shift, is by

noticing that the left-hand side and the right-hand side behave differently under a change of

framing. If the framing of the three-manifold is changed by s units, the left-hand side will

pick up a phase factor

exp
[
ϕfr.
C · s

]
= exp

[
πi(cL − cR)

12
· s
]
. (3.14)

Here cL and cR are the left- and right-moving central charges of the hypothetical conformal

field theory that lives on the boundary of the complex Chern-Simons theory [9]:

(cL, cR) = dimG ·
(

1− 2ȟ

τ
, 1 +

2ȟ

τ

)
. (3.15)

The right-hand side of (3.11) consists of two copies of the Chern-Simons theory with compact

gauge group G, so the phase from change of framing is

exp
[
ϕfr. · s

]
= exp

[
πi

12

(
τ/2− ȟ
τ/2

+
τ/2− ȟ
τ/2

)
dimG · s

]
. (3.16)

The two phases are in general different

ϕfr.
C − ϕfr. =

2πidimG

12
. (3.17)

So (3.11) has no chance of being correct at all and the minimal way of improving it is to add

the phases, Cα, as in (3.12), which also transform under change of framing.

It may appear that the expression (3.12) is not useful unless one can find the values of

the Cα’s. However, as it turns out, for k = 0 (or equivalently τ = −τ), all of the Cα’s are

constant, and (3.12) without the Cα’s gives the correct partition function6. This may be

closely related to the fact that for k = 0,

cL − cR = −2ȟdimG

(
1

τ
+

1

τ

)
= 0. (3.18)

3.2 Superconformal index

We have shown that the proposal (1.7) for T [L(p, 1)] gives the right supersymmetric vacua

and we shall now move to the quantum level and check the relation between the partition

functions:

IndexT [L(p,1);U(N)](q) = ZCS (L(p, 1);GL(N,C), q) . (3.19)

We have already verified this for p = 1 in the previous section. Now we consider the more

general case with p ≥ 1.

6“Correct” in the sense that it matches the index of T [L(p, 1)].
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The superconformal index of a 3d N = 2 SCFT is given by [29]

I(q, ti) = Tr
[
(−1)F e−γ(E−R−j3)q

E+j3
2 tfi

]
. (3.20)

Here, the trace is taken over the Hilbert space of the theory on R × S2. Because of super-

symmetry, only BPS states with

E −R− j3 = 0 (3.21)

will contribute. As a consequence, the index is independent of γ and only depends on q

and the flavor fugacities, ti. For T [L(p, 1)], there is always a U(1) flavor symmetry and we

can introduce at least one parameter t. When this parameter is turned on, on the other

side of the 3d-3d correspondence, complex Chern-Simons theory will become the “deformed

complex Chern-Simons theory”. This deformed version of Chern-Simons theory was studied

on geometry Σ × S1 in [12] and will be studied on more general Seifert manifolds in [30].

However, because in this paper our goal is to test the 3d-3d relation (as opposed to using

it to study the deformed Chern-Simons theory), we will usually turn off this parameter by

setting t = 1, and compare the index I(q) with the partition function of the undeformed

Chern-Simons theory, which is only a function of q, as in (2.12).

Viewing the index as the partition function on S1 ×q S2 and using localization, (3.20)

can be expressed as an integral over the Cartan T of the gauge group G [31]:

I =
1

|W|
∑
m

∫ ∏
j

dzj
2πizj

e−SCS(m)qε0/2eib0(h)tf0 exp

[
+∞∑
n=1

1

n
Ind(znj ,mj ; t

n, qn)

]
. (3.22)

Here h,m ∈ t are valued in the Cartan subalgebra. Physically, eih is the holonomy along S1

and is parametrized by zi, which are coordinates on T.

m =
i

2π

∫
S2

F (3.23)

is the monopole number on S2 and takes value in the weight lattice of the Langlands dual

group LG. |W| is the order of the Weyl group and the other quantities are:

b0(h) = −1

2

∑
ρ∈RΦ

|ρ(m)| ρ(h),

f0 = −1

2

∑
ρ∈RΦ

|ρ(m)| f,

ε0 =
1

2

∑
ρ∈RΦ

(1− r) |ρ(m)| − 1

2

∑
α∈ad(G)

|α(m)| ,

SCS = ip tr(mh),

(3.24)
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and

Ind(eihj = zj ,mj ; t; q) =−
∑

α∈ad(G)

eiα(h)q|α(m)|

+
∑
ρ∈RΦ

[
eiρ(h)t

q|ρ(m)|/2+r/2

1− q
− e−iρ(h)t−1 q

|ρ(m)|/2+1−r/2

1− q

] (3.25)

is the “single particle” index. RΦ is the gauge group representation for all matter fields.

Using this general expression, the index of T [L(p, 1);U(N)] can be expressed in the following

form:

I(q, t) =
∑

m1>···>mN∈Z

1

|Wm|

∫ ∏
j

dzj
2πizj

N∏
i

(zi)
2pmi

N∏
i 6=j

t−|mi−mj |/2q−R|mi−mj |/4
(

1− q|mi−mj |/2 zi
zj

)
N∏
i 6=j

(
zj
zi
t−1q|mi−mj |/2+1−R/2; q

)
∞(

zi
zj
tq|mi−mj |/2+R/2; q

)
∞

×

[
(t−1q1−R/2; q)∞

(tqR/2; q)∞

]N
.

(3.26)

Here we used the q-Pochhammer symbol (z; q)n =
∏n−1
j=0 (1− zqj). Wm ⊂ W is the stabilizer

subgroup of the Weyl group that fixes m ∈ t and R stands for the R-charge of the adjoint

chiral multiplet and will be set to R = 2 — the choice that gives the correct IR theory.

In the previous section, we have found the index for T [S3] to be exactly equal to the S3

partition function of Chern-Simons theory. There, we used an entirely different method by

working with the dual description of T [L(p, 1);U(N)], which is a sigma model to the vortex

moduli space VN,p. For p = 1, this moduli space is topologically CN and the index of the sigma

model is just that of a free theory. For p ≥ 2, such a simplification will not occur and the index

of the sigma model is much harder to compute7. In contrast, the integral expression (3.26)

is easier to compute with larger p than with p = 1, because fewer topological sectors labelled

by the monopole number m contribute. As we will see later, when p is sufficiently large,

only the sector m = (0, 0, . . . , 0) gives non-vanishing contribution. So the two approaches of

computing the index have their individual strengths and are complementary to each other.

Now, one can readily compute the index for any T [L(p, 1);G] and then compare I(q, t = 1)

with the partition function of the complex Chern-Simons theory on L(p, 1). We will first do a

simple example with G = SU(2), to illustrate some general features of the index computation.

7In general, it can be written as an integral of a characteristic class over VN,p that one can evaluate using

the Atiyah-Bott localization formula. Similar computations were done in two dimensions in, e.g. [1] and [32].
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Index of T [L(p, 1);SU(2)]

We will start with p = 1 and see how the answer from section 2 arises from the integral

expression (3.26). In this case, (3.26) becomes

I =
∑
m∈Z

∫
dz

4πiz
eihmq−2|m|

(
1− q|m|eih

)2 (
1− q|m|e−ih

)2
+∞∏
k=0

1− qk+1−R/2

1− qk+R/2

=
∑
m∈Z

∫
dz

4πiz
zmq−2|m|

(
1 + q2|m| − zq|m| − z−1q|m|

)2
[(R− 2) ln q]

=
∑
m∈Z

∫
dz

4πiz
zm
(
q2|m| + q−2|m| + 4− 2

(
z +

1

z

)(
q|m| +

1

q|m|

)
+

(
z2 +

1

z2

))
× [(R/2− 1) ln q] .

(3.27)

As in section 2, the index will be zero if we naively take R = 2 because of the 1 − q1−r/2

factor in the infinite product. When R→ 2, the zero factor becomes

1− q1−R/2 = 1− exp [(1−R/2) ln q] ≈ (R/2− 1) ln q. (3.28)

As in section 2, we can introduce a normalization factor (R/2 − 1)−1 in the index to cancel

the zero, making the index expression finite.

The integral in (3.27) is very easy to do and the index receives contributions from three

different monopole number sectors

I =
1

2
ln q (Im=0 + Im=±1 + Im=±2), (3.29)

with

Im=0 =

∫
dz

2πiz

(
q0 + q−0 + 4

)
= 6, (3.30)

Im=±1 = −2
∑
m=±1

∫
dz

2πiz
zm
(
q|m| + q−|m|

)(
z +

1

z

)
= −4(q + q−1), (3.31)

and

Im=±2 =
∑
m=±2

∫
dz

2πiz
zm
(
z2 +

1

z2

)
= 2. (3.32)

So the index is

I =
1

2
ln q

(
6− 4(q + q−1) + 2

)
= −2 ln q

(
q1/2 − q−1/2

)2
.

(3.33)

Modulo a normalization constant, this is in perfect agreement with results in section 2. Indeed,

the square root of (3.33) is identical to (2.21) and reproduces the S3 partition function of the

SU(2) Chern-Simons theory,

ZCS(S3;SU(2), k) =

√
2

k + 2
sin

π

k + 2
, (3.34)
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once we set

q = e
2πi
k+2 . (3.35)

It is very easy to generalize the result (3.33) to arbitrary p. For general p, the index is

given by

I =
1

2
ln q

∑
m∈Z

∫
dz

2πiz
zpm

×
(
q2|m| + q−2|m| + 4− 2

(
q|m| + q−|m|

)(
z +

1

z

)
+

(
z2 +

1

z2

))
.

(3.36)

The only effect of p is to select monopole numbers that contribute. For example, if p = 2,

only m = 0 and m = ±1 contribute to the index and we have

Ip=2 =
1

2
ln q (Im=0 + Ip=2

m=±1) =
1

2
ln q (6 + 2) = 4 ln q. (3.37)

If p > 2, only the trivial sector is selected, and

I(p > 2) =
1

2
ln q Im=0 = 3 ln q. (3.38)

This is a general feature of indices of the “Lens space theory” and we will soon encounter this

phenomenon with higher rank gauge groups.

The test for 3d-3d correspondence

We list the index of T [L(p, 1);U(N)], obtained using Mathematica, in table 1. Due to lim-

itation of space and computational power, it contains results up to N = 5 and p = 6. The

omnipresent (ln q)N factors are dropped to avoid clutter, and after this every entry in table 1

is a Laurent polynomial in q with integer coefficients. Also, when the gauge group is U(N),

monopole number sectors are labeled by an N -tuple of integers m = (m1,m2, . . . ,mN ) and a

given sector can only contribute to the index if
∑
mi = 0.

From the table, one may be able to recognize the large p behavior for U(3) and U(4)

similar to (3.37) and (3.38). Indeed, it is a general feature of the index IT [L(p,1);U(N)] that

fewer monopole number sectors contribute when p increases. In order for a monopole number

m = (m1, . . . ,mN ) to contribute,

|pmi| ≤ 2N − 2 (3.39)

needs to be satisfied for all mi. For large p > 2N − 2, I only receives a contribution from the

m = 0 sector and becomes a constant:

I(U(N), p > 2N − 2) = Im=(0,0,0,...,0) = (2N − 1)!! . (3.40)

For p = 2N − 2, the index receives contributions from two sectors8:

I(U(N), p = 2N − 2) = Im=(0,0,0,...,0) + Im=(1,0,...,0,−1) = [(2N − 1)!! + (2N − 5)!!] . (3.41)

8Here, double factorial of a negative number is taken to be 1.
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p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

U(2) 2(1− q)(1− q−1) 4 3 3 3 3

U(3)
6(1− q)2(1− q2)

(1− q−1)2(1− q−2)

28− 6q−2 − 8q−1

−8q − 6q2
23 + 2q−1 + 2q 16 15 15

U(4)

24(1− q)3(1− q2)2

(1− q3)(1− q−1)3

(1− q−2)2(1− q−3)

504+

84q−4 − 96q−3

−80q−2 − 160q−1

−160q − 80q2

−96q3 + 84q4

204− 30q−3

−48q−2 − 24q−1

−24q − 48q2

−30q3

188 + 10q−2

+24q−1 + 24q

+10q2

121+

2q−1 + 2q

108

U(5)

120(1− q)4(1− q2)3

(1− q3)2(1− q4)

(1− q−1)4(1− q−2)3

(1− q−3)2(1− q−4)

12336+

120q−10 + 192q−9

−1080q−8 + 48q−7

+120q−6 + 3792q−5

−2016q−4 − 1296q−3

−3312q−2 − 2736q−1

−2736q − 3312q2

−1296q3 − 2016q4

+3792q5 + 120q6

+48q7 − 1080q8

+192q9 + 120q10

3988+

180q−6 + 388q−5

−294q−4 − 932q−3

−584q−2 − 752q−1

−752q − 584q2

−932q3 − 294q4

+388q5 + 180q6

2144−

240q−4 − 320q−3

−320q−2 − 192q−1

−192q − 320q2

−320q3 − 240q4

1897+

70q−3 + 192q−2

352q−1 + 352q

+192q2 + 70q3

1188+

14q−2 + 40q−1

40q + 14q2

Table 1. The superconformal index of the “Lens space theory” T [L(p, 1), U(N)], which agrees with the partition

function of GL(N,C) Chern-Simons theory at level k = 0 on Lens space L(p, 1).

While the ln q factors (that we have omitted) are artifacts of our scheme of removing zeros

in I, the constant coefficient (2N − 1)!! in (3.40) is counting BPS states. Then one can ask

a series of questions: 1) What are the states or local operators that are being counted? 2)

Why is the number of such operators independent of p when p is large?

Partition functions ZCS of the complex Chern-Simons theory on Lens spaces can also

be computed systematically. Please see appendix A for details of the method we use. For

k = 0, GC = GL(N,C), the partition functions on L(p, 1) only depend on q = e4πi/τ as

q = e4πi/τ = q−1. After dropping a (ln q)N factor as in the index case, it is again a polynomial.

We have computed this partition function up to N = 5 and p = 6 and found a perfect

agreement with the index in table 1.

From the point of view of the complex Chern-Simons theory, this large p behavior (3.40)
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seems to be even more surprising — it predicts that the partition functions of the complex

Chern-Simons theory on L(p, 1) at level k = 0 are constant when p is greater than twice the

rank of the gauge group. One can then ask 1) why is this happening? And 2) what is the

geometric meaning of this (2N − 1)!! constant?

3.3 T [L(p, 1)] on S3
b

In previous sections, we have seen that the superconformal index of T [L(p, 1)] agrees com-

pletely with the partition function of the complex Chern-Simons theory at level k = 0 given

by (3.12) with trivial relative phases Cα = 0:

Z(GC; τ, τ) =
∑
α∈M

Z ′α

(
G;

τ

2

)
Z ′α

(
G;

τ

2

)
, (3.42)

for G = U(N). But for more general k, one can no longer expect this to be true. We will

now consider the S3
b partition function of T [L(p, 1)], which will give the partition function of

the complex Chern-Simons theory at level [8]

(k, σ) =

(
1,

1− b2

1 + b2

)
. (3.43)

And we will examine for which choices of N and p that setting all phases Cα = 0 becomes a

mistake, by comparing the S3
b partition function of T [L(p, 1)] to the “naive” partition function

(3.42) of the complex Chern-Simons theory at level k = 1 on L(p, 1).

There are two kinds of squashed three-spheres breaking the SO(4) isometry of the round

S3: the first one preserves SU(2)×U(1) isometry while the second one preserves U(1)×U(1)

[33]. However, despite the geometry being different, the partition functions of 3d N = 2

theories that one gets are the same [33–36]. In fact, as was shown in [37, 38], three-sphere

partition functions of N = 2 theories only admit a one-parameter deformation. We will

choose the “ellipsoid” geometry with the metric

ds2
3 = f(θ)2dθ2 + cos2 θdφ2

1 +
1

b4
sin2 θdφ2

2, (3.44)

where f(θ) is arbitrary and does not affect the partition function of the supersymmetric

theory.

Using localization, partition function of a N = 2 gauge theory on such an ellipsoid can

be written as an integral over the Cartan of the gauge group [33, 35]. Consider an N = 2

Chern-Simons-matter theory with gauge group being U(N). A classical Chern-Simons term

with level k contributes

ZCS = exp

(
i

b2
k

4π

N∑
i=1

λ2
i

)
(3.45)

to the integrand. The one-loop determinant of U(N) vector multiplet, combined with the

Vandermonde determinant, gives

Zgauge =
N∏
i<j

(
2 sinh

λi − λj
2

)(
2 sinh

λi − λj
2b2

)
. (3.46)
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A chiral multiplet in the representation R gives a product of double sine functions:

Zmatter =
∏
ρ∈R

sb

(
iQ

2
(1−R)− ρ(λ)

2πb

)
, (3.47)

where Q = b+ 1/b, R is the R-charge of the multiplet and the double sine function is defined

as

sb(x) =
+∞∏
p,q=0

pb+ qb−1 + Q
2 − ix

pb−1 + qb+ Q
2 + ix

. (3.48)

Then we can express the S3
b partition function of T [L(p, 1)] using the UV description in

(1.7) as

Z(T [L(p, 1), U(N)], b) =
1

N !

∫ N∏
i

dλi
2π

exp

(
− i

b2
p

4π

N∑
i=1

λ2
i

)

×
N∏
i<j

4

π2

(
sinh

λi − λj
2

)2(
sinh

λi − λj
2b2

)2

,

(3.49)

which is a Gaussian integral. We list our results in table 2 and 3. A universal factor(
b

ip

)N/2
π−N(N−1) (3.50)

is dropped in making these two tables.

If one compares results in table 2 and 3 with partition functions of complex Chern-Simons

theory naively computed using (3.11), one will find a perfect agreement for p = 1 once the

phase factor

exp

[
πi(cL − cR)

12
· (3− p)

]
(3.51)

from the change of framing is added9. This agreement is not unexpected because for p = 1,

Mflat consists of just a single point and there are no such things as relative phases between

contributions from different flat connections. Even for p = 2, the naive way (3.11) of com-

puting partition function of complex Chern-Simons theory seems to be still valid modulo an

overall factor. However, starting from p = 3, the two sides start to differ significantly. See

table 4 for a comparison between the S3
b partition function of T [L(p, 1)] and the “naive”

partition function of the complex Chern-Simons theory on L(p, 1) for G = U(2).

9The complex Chern-Simons theory obtained from the 3d-3d correspondence is naturally in “Seifert fram-

ing”, as the T [L(p, 1)] we used is obtained by reducing M5-brane on the Seifeit S1 fiber of L(p, 1) in [12].

However, the computation in appendix A is in “canonical framing” and differs from Seifert framing by (3− p)
units [39].
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p U(2) U(3) U(4)

1
2e

−2iπb2− 2iπ
b2(

1− e
2iπ
b2

)(
1− e2iπb

2
) 6e

−8iπb2− 8iπ
b2

(
1− e

2iπ
b2

)3 (
1 + e

2iπ
b2

)
(

1− e2iπb
2
)3 (

1 + e2iπb
2
)

24e
−20iπb2− 20iπ

b2

(
1− e

2iπ
b2

)6 (
1 + e

2iπ
b2

)2

(
1 + e

2iπ
b2 + e

4iπ
b2

)(
1− e2iπb

2
)6

(
1 + e2iπb

2
)2 (

1 + e2iπb
2

+ e4iπb
2
)

2
2− 2e

− iπ
b2 − 2e−iπb

2

+2e
−iπb2− iπ

b2

2e−4iπ(b2+b−2)(
1− e

2iπ
b2

)(
1− e2iπb

2
)

(
−6e

iπ
b2 + 3e

2iπ
b2 − 6eiπb

2
+ 3e2iπb

2

−4eiπ(b2+b−2) + 3e2iπ(b2+b−2)

−6e
iπ
(
b2+2b−2

)
− 6e

iπ
(
2b2+b−2

)
+ 3

)

8e
−10iπ

(
b2+b−2

) (
1− e

2iπ
b2

)2 (
1− e2ib

2π
)2

(
3− 9e

iπ
b2 + 9e

2iπ
b2 − 6e

3iπ
b2 + 9e

4iπ
b2 − 9e

5iπ
b2

+3e
6iπ
b2 − 9eib

2π + 9e2ib
2π − 6e3ib

2π

+9e4ib
2π − 9e5ib

2π + 3e6ib
2π − 9e

iπ
(
b2+b−2

)
+27e

2iπ
(
b2+b−2

)
− 4e

3iπ
(
b2+b−2

)
+ 27e

4iπ
(
b2+b−2

)
−9e

5iπ
(
b2+b−2

)
+ 3e

6iπ
(
b2+b−2

)
− 27e

iπ
(
b2+2b−2

)
+27e

2iπ
(
b2+2b−2

)
− 6e

3iπ
(
b2+2b−2

)
− 6e

iπ
(
b2+3b−2

)
+9e

2iπ
(
b2+3b−2

)
− 27e

iπ
(
b2+4b−2

)
− 9e

iπ
(
b2+5b−2

)
−9e

iπ
(
b2+6b−2

)
− 18e

iπ
(
2b2+3b−2

)
+ 9e

2iπ
(
2b2+3b−2

)
−27e

iπ
(
2b2+5b−2

)
− 18e

iπ
(
3b2+2b−2

)
+ 9e

2iπ
(
3b2+2b−2

)
−18e

iπ
(
3b2+4b−2

)
− 6e

iπ
(
3b2+5b−2

)
− 18e

iπ
(
4b2+3b−2

)
−27e

iπ
(
4b2+5b−2

)
− 27e

iπ
(
5b2+2b−2

)
− 6e

iπ
(
5b2+3b−2

)
−27e

iπ
(
5b2+4b−2

)
− 9e

iπ
(
5b2+6b−2

)
− 9e

iπ
(
6b2+5b−2

)
−27e

iπ
(
2b2+b−2

)
+ 27e

2iπ
(
2b2+b−2

)
−6e

3iπ
(
2b2+b−2

)
− 6e

iπ
(
3b2+b−2

)
+ 9e

2iπ
(
3b2+b−2

)
−27e

iπ
(
4b2+b−2

)
− 9e

iπ
(
5b2+b−2

)
− 9e

iπ
(
6b2+b−2

))

3
2− 2e

− 2iπ
3b2 − 2e

− 2
3
iπb2

−e−
2iπ
3

(b2+b−2)

−3e
− 8iπ

3

(
b2+b−2

)
×(

4e
2iπ
3b2 + 2e

2iπ
b2 + 2e

8iπ
3b2

+4e
2
3
iπb2

+ 2e2iπb
2

+ 2e
8
3
iπb2

−8e
2iπ
3

(
b2+b−2

)
+ 4e

2iπ
(
b2+b−2

)

−2e
8iπ
3

(
b2+b−2

)
+ 8e

2iπ
3

(
b2+3b−2

)

−4e
2iπ
3

(
b2+4b−2

)

+4e
2iπ
3

(
3b2+4b−2

)
+ 4e

2iπ
3

(
4b2+3b−2

)

+8e
2πi
3

(
3b2+b−2

)
− 4e

2πi
3

(
4b2+πb−2

)
+ 1

)

−6e
− 20iπ

3

(
b2+b−2

) (
1− e

2iπ
b2

)(
1− e2ib

2π
)

(
1 + 6e

2iπ
3b2 + 5e

2iπ
b2 + 8e

8iπ
3b2 + 3e

4iπ
b2 + 4e

14iπ
3b2

+6e
2
3
ib2π

+ 5e2ib
2π + 8e

8
3
ib2π

+ 3e4ib
2π

+4e
14
3
ib2π − 18e

2iπ
3

(
b2+b−2

)
− 2e

4iπ
3

(
b2+b−2

)
+25e

2ipi
(
b2+b−2

)
− 28e

8iπ
3

(
b2+b−2

)
− 2e

10iπ
3

(
b2+b−2

)
+9e

4iπ
(
b2+b−2

)
− 4e

14iπ
3

(
b2+b−2

)
− 4e

4iπ
3

(
b2+2b−2

)
+15e

2iπ
(
b2+2b−2

)
+ 30e

2iπ
3

(
b2+3b−2

)
− 24e

2iπ
3

(
b2+4b−2

)
+18e

2iπ
3

(
b2+6b−2

)
− 12e

2iπ
3

(
b2+7b−2

)
+24e

4iπ
3

(
2b2+3b−2

)
+ 2e

2iπ
3

(
2b2+5b−2

)
+ 4e

2iπ
3

(
2b2+7b−2

)
+24e

4iπ
3

(
3b2+2b−2

)
+ 40e

2iπ
3

(
3b2+4b−2

)
+ 20e

2iπ
3

(
3b2+7b−2

)
+40e

2iπ
3

(
4b2+3b−2

)
+ 4e

2iπ
3

(
4b2+5b−2

)
− 20e

2iπ
3

(
4b2+7b−2

)
+2e

2iπ
3

(
5b2+2b−2

)
+ 4e

2iπ
3

(
5b2+4b−2

)
− 4e

2iπ
3

(
5b2+7b−2

)
+12e

2iπ
3

(
6b2+7b−2

)
+ 4e

2iπ
3

(
7b2+2b−2

)
+ 20e

2iπ
3

(
7b2+3b−2

)
−20e

2iπ
3

(
7b2+4b−2

)
− 4e

2iπ
3

(
7b2+5b−2

)
+ 12e

2iπ
3

(
7b2+6b−2

)
−4e

4iπ
3

(
2b2+b−2

)
+ 15e

2iπ
(
2b2+b−2

)
+ 30e

2iπ
3

(
3b2+b−2

)
−24e

2iπ
3

(
4b2+b−2

)
+ 18e

2iπ
3

(
6b2+b−2

)
− 12e

2iπ
3

(
7b2+b−2

))

Table 2. The S3
b partition function of T [L(p, 1), U(N)]. In this table p ranges from 1 to 3.
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p U(2) U(3)

4 2− 2e
− iπ

2b2 − 2e−
1
2
iπb2 − 2e−

iπ
2 (b2+b−2)

−2e−2iπ(b2+b−2)×(
−3− 2e

iπ
2b2 + 2e

3iπ
2b2 + 3e

2iπ
b2 − 2e

1
2
iπb2 + 2e

3
2
iπb2 + 3e2iπb2 + 4e

iπ
2 (b2+b−2)

+4e
3iπ
2 (b2+b−2) − 3e2iπ(b2+b−2) + 4e

iπ
2 (b2+3b−2) − 6e

iπ
2 (b2+4b−2)

+6e
iπ
2 (3b2+4b−2) + 6e

iπ
2 (4b2+3b−2) + 4e

iπ
2 (3b2+b−2) − 6e

iπ
2 (4b2+b−2)

)

5
2− 2e

− 2iπ
5b2 − 2e−

2
5
iπb2 + 2 cos 4π

5
e−

2iπ
5 (b2+b−2)

6− 12e
− 2iπ

5b2 + 12e
− 6iπ

5b2 − 6e
− 8iπ

5b2 − 12e−
2
5
iπb2

+12e−
6
5
iπb2 − 6e−

8
5
iπb2 + 4

(
cos 8π

5
+ e

4iπ
5

)
e−

2iπ
5

(4b2+b−2)

4
(
cos 8π

5
+ 2 cos 4π

5

)
e−

2iπ
5

(b2+4b−2) + 8
(
cos 4π

5
+ 2 cos 2π

5

)
e−

2iπ
5 (b2+b−2)

+8
(
cos 12π

5
+ 2 cos 6π

5

)
e−

6iπ
5 (b2+b−2) + 2

(
cos 16π

5
+ 2 cos 8π

5

)
×e−

8iπ
5 (b2+b−2) − 8e−

2iπ
5 (b2+3b−2) − 8e−

2iπ
5 (b2−3+3b−2) − 8e−

2iπ
5 (b2+3+3b−2)

−8e−
2iπ
5 (3b2+b−2) − 4e−

2iπ
5 (3b2+4b−2) − 4e−

2iπ
5 (3b2−6+4b−2)

−8e−
2iπ
5 (3b2−3+b−2) − 8e−

2iπ
5 (3b2+3+b−2) − 4e−

2iπ
5 (3b2+6+4b−2)

−4e−
2iπ
5 (4b2+3b−2) − 4e−

2iπ
5 (4b2−6+3b−2) − 4e−

2iπ
5 (4b2+6+3b−2)

6
2− 2e

− iπ
3b2 − 2e−

1
3
iπb2 + e−

iπ
3

(b2+b−2)

e−
4iπ
3 (b2+b−2)×(

−12e
iπ
3b2 − 6e

iπ
b2 − 6e

4iπ
3b2 − 12e

1
3
iπb2 − 6eiπb

2

− 6e
4
3
iπb2 − 8e

iπ
3 (b2+b−2)

+4eiπ(b2+b−2) + 6e
4iπ
3 (b2+b−2) + 8e

iπ
3 (b2+3b−2) + 12e

iπ
3 (b2+4b−2)

−12e
iπ
3 (3b2+4b−2) − 12e

iπ
3 (4b2+3b−2) + 8e

iπ
3 (3b2+b−2) + 12e

iπ
3 (4b2+b−2) − 3

)
Table 3. The S3

b partition function of T [L(p, 1), U(N)]. This table, with p ranging from 4 to 6, is the

continuation of the previous table 2. Due to the limitation of space, only partition functions for U(2) and

U(3) are given.
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p S3
b partition function of T [L(p, 1);U(2)] “naive” partition function of GL(2,C) Chern-Simons theory

1 2− 2q−1 − 2q−1 + 2 (qq)−1 2− 2q−1 − 2q−1 + 2 (qq)−1

2 2 + 2q−
1
2 + 2q−

1
2 + 2 (qq)−

1
2 2i(2 + 2q−

1
2 + 2q−

1
2 + 2 (qq)−

1
2 )

3 2 +
(
1−
√

3i
)
q−

1
3 +

(
1−
√

3i
)
q−

1
3 + 1

2

(
1 +
√

3i
)

(qq)−
1
3 2 +

(
1− 3

√
3i
)
q

1
3 +

(
1− 3

√
3i
)
q

1
3 + 1

2

(
1 + 3

√
3i
)

(qq)
1
3

4 2− 2iq−
1
4 − 2iq−

1
4 + 2 (qq)−

1
4 8i (qq)

1
2

(
1 + iq

1
4 + iq

1
4 + (qq)

1
4

)

5 2− 2e
2πi
5 q−

1
5 − 2e

2πi
5 q−

1
5 + 2 cos 4π

5
e

4πi
5 (qq)−

1
5

qq
(

2− 2
(
e

3πi
5 + 2e

4πi
5

)
q

1
5 − 2

(
e

3πi
5 + 2e

4πi
5

)
q

1
5

+
(

1 + 2e
πi
5 + 3e

2πi
5 − 4e

3πi
5 − 4e

4πi
5

)
(qq)

1
5

)
6 2−

(
1 +
√

3i
)
q−

1
6 −

(
1 +
√

3i
)
q−

1
6 − 1

2

(
1−
√

3i
)

(qq)−
1
6 6i (qq)

3
2

(
2 + (−1 + i

√
3)q

1
6 + (−1 + i

√
3)q

1
6 + 1

2

(
1 + i

√
3
)

(qq)
1
6

)

Table 4. The comparison between the S3
b partition function of T [L(p, 1), U(2)] and the “naive” partition

function of the GL(2,C) Chern-Simons theory, obtained by putting together two copies of the U(2) Chern-

Simons theory using (3.42), on Lens space L(p, 1) in “Seifert framing.” Notice that when p increases, the

difference between the two columns becomes larger and larger.
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A Complex Chern-Simons theory on Lens spaces

Lens space L(p, q) can be obtained by gluing two solid tori S1 × D2 along their boundary

T 2’s using an element in MCG(T 2) = SL(2,Z):−q ∗
p ∗


m

l

 =

m′

l′

 . (A.1)

Here (m, l) and (m′, l′) are meridian and longitude circles of the two copies of T 2 = ∂(S1×D2).

So the meridian m′ of one torus is mapped to −qm + pl of the other torus. As for l, we do

not need to track what it is mapped into as the choice only affects the framing of L(p, q). A

canonical choice of an SL(2,Z) element in (A.1) is given by

ST c1ST c2S . . . T cnS, (A.2)

where (c1, c2, . . . , cn) are coefficients in continued fraction expansion of p/q. For q = 1, the

element that gives L(p, 1) is

ST pS. (A.3)

As SL(2,Z) naturally acts on the Hilbert space HCS(T 2;G) of the Chern-Simons theory

on the two-torus, one has

ZCS(L(p, q);G) = 〈0|ST c1ST c2S . . . T cnS|0〉. (A.4)

Here |0〉 ∈ H is the state associated to the solid torus while S and T give the action of

S, T ∈ SL(2,Z) on H. When G is compact, S and T are known from the study of the 2D

WZW model and affine Lie algebra [40] and can be directly used to evaluate (A.4). Partition

functions of Chern-Simons theory on Lens spaces were first obtained precisely in this manner

in [41] for SU(2) and in [42, 43] for higher rank gauge groups. Define k̂ = k + ȟ, then the

partition function of the G Chern-Simons theory on L(p, q) is given by

Z(L(p, q), k̂) =
1

(k̂|p|)N/2
exp

(
iπ

k̂
s(q, p)|ρ|2

)
×
∑
w∈W

det(w) exp

(
−2πi

pk̂
〈ρ, w(ρ)〉

)
×

∑
m∈Y ∨/pY ∨

exp

(
iπ
q

p
k̂|m|2

)
exp

(
2πi

1

p
〈m, qρ− w(ρ)〉

)
.

(A.5)

Here s(q, p) is the Dedekind sum:

s(q, p) =
1

4p

p−1∑
n=1

cot

(
πn

p

)
cot

(
πqn

p

)
, (A.6)
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ρ the Weyl vector of the Lie algebra g, W the Weyl group, Y ∨ the coroot lattice, N the rank

of the gauge group, and the inner product, 〈·, ·〉, is taken with respect to the standard Killing

form of g.

Now we start computing the partition function of complex Chern-Simons theory using

(3.12) for GC = GL(N,C). The first step is to separate (A.5) into contributions from different

flat connections. As discussed in section 3.1, the moduli spaceMflat of U(N) flat connections

of L(p, q) — whose foundamental group is Zp — consists of discrete points. Each point can

be labelled by (a1, a2, . . . , aN ), where the aj ’s are the p-th roots of unity. For convenience we

use a different set of labels, α = (α1, α2, . . . , αN ) ∈ g∗, with the αj ’s being integers between

0 and p− 1 that satisfy

e2πiαj/p = aj . (A.7)

Then (A.5) can be rewritten as [44]:

Z(L(p, q), k̂) =
1

N !

∑
α

Zα(L(p, q), k̂),

Zα(L(p, q), k̂) =
1

(k̂|p|)l/2
exp

(
iπ

k̂
N(N2 − 1)s(q, p)

)
exp

(
iπ
q

p
k̂|α|2

)
∑

w,w̃∈SN

det(w) exp

(
−2πi

pk̂
〈ρ, w(ρ)〉

)
exp

(
2πi

1

p
〈w̃(α), qρ− w(ρ)〉

)
.

(A.8)

The set {α} is redundant for labelling flat connections in Mflat because the Weyl group

W = SN ⊂ U(N) acts on {α} by permuting the αj ’s. We will use α̃ to denote equivalence

classes of α under Weyl group action and each α̃ corresponds to one flat connection modulo

gauge transformations. A canonical representative of α̃ is given by (α1, α2, . . . , αN ) with

α1 ≥ α2 ≥ . . . ≥ αN . Using α̃, (A.5) can be written as

Z(L(p, q), k̂) =
∑
α̃

1

|Wα̃|
Zα̃(L(p, q), k̂), (A.9)

where Wα̃ ⊂ W is the stabilizer subgroup of α̃ ∈ g∗.

Using the naive way (3.11) of computing the partition function of complex Chern-Simons

theory when Mflat is zero-dimensional, one has

Z(GC; τ, τ) =
1

N !

∑
α

Zα

(
G;

τ

2
− ȟ
)
Zα

(
G;

τ

2
− ȟ
)
. (A.10)

Notice that using α̃ labels, this is

Z(GC; τ, τ) =
∑
α̃

1

|Wα̃|
Zα̃

(
G;

τ

2
− ȟ
)
Zα̃

(
G;

τ

2
− ȟ
)
, (A.11)

and the 1
|Wα̃|

factor should not be squared. This is because GC and G have the same Weyl

group W and in complex Chern-Simons theory W acts simultaneously on A and A.
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(A.11), together with (A.8), is the equation we use to compute the partition function of

the complex Chern-Simons theory. In the making of the table 1, we have dropped a universal

factor (
4

ττ

)N/2
∝ (ln q)N . (A.12)

This matches the factor that is also omitted on the supersymmetric index side.
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Pavel Putrov, Kung-Yi Su and Wenbin Yan for stimulating discussions. This work is funded

by the DOE Grant DE-SC0011632 and the Walter Burke Institute for Theoretical Physics.

– 23 –



References

[1] T. Dimofte, S. Gukov, and L. Hollands, Vortex Counting and Lagrangian 3-manifolds,

Lett.Math.Phys. 98 (2011) 225–287, [arXiv:1006.0977].

[2] Y. Terashima and M. Yamazaki, SL(2,R) Chern-Simons, Liouville, and Gauge Theory on

Duality Walls, JHEP 1108 (2011) 135, [arXiv:1103.5748].

[3] T. Dimofte, D. Gaiotto, and S. Gukov, Gauge Theories Labelled by Three-Manifolds,

Commun.Math.Phys. 325 (2014) 367–419, [arXiv:1108.4389].

[4] T. Dimofte, D. Gaiotto, and S. Gukov, 3-Manifolds and 3d Indices, Adv.Theor.Math.Phys. 17

(2013) 975–1076, [arXiv:1112.5179].

[5] C. Beem, T. Dimofte, and S. Pasquetti, Holomorphic Blocks in Three Dimensions, JHEP 1412

(2014) 177, [arXiv:1211.1986].

[6] T. Dimofte, M. Gabella, and A. B. Goncharov, K-Decompositions and 3d Gauge Theories,

arXiv:1301.0192.

[7] T. Dimofte, Complex Chern-Simons theory at level k via the 3d-3d correspondence,

arXiv:1409.0857.

[8] C. Cordova and D. L. Jafferis, Complex Chern-Simons from M5-branes on the Squashed

Three-Sphere, arXiv:1305.2891.

[9] E. Witten, Quantization of Chern-Simons Gauge Theory With Complex Gauge Group,

Commun.Math.Phys. 137 (1991) 29–66.

[10] H.-J. Chung, T. Dimofte, S. Gukov, and P. Sulkowski, 3d-3d Correspondence Revisited,

arXiv:1405.3663.

[11] E. Witten, Quantum Field Theory and the Jones Polynomial, Commun.Math.Phys. 121 (1989)

351.

[12] S. Gukov and D. Pei, Equivariant Verlinde formula from fivebranes and vortices,

arXiv:1501.0131.

[13] D. Jafferis and X. Yin, A Duality Appetizer, arXiv:1103.5700.

[14] A. Kapustin, H. Kim, and J. Park, Dualities for 3d Theories with Tensor Matter, JHEP 1112

(2011) 087, [arXiv:1110.2547].

[15] A. Hanany and D. Tong, Vortices, instantons and branes, JHEP 0307 (2003) 037,

[hep-th/0306150].

[16] A. Jaffe and C. Taubes, Vortices and monopoles: structure of static gauge theories, vol. 2.
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