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We explore predictive flavor models based on subgroups of the standard-model SU(3)5 flavor
symmetry. Restricting to products of SU(3), we find that a global SU(3)3 flavor symmetry, broken
only by two Yukawa spurions, leads to a relation among down-type quark, up-type quark and
charged-lepton Yukawa matrices: Yd ∝ YuY

†
e . As a result, the charged-lepton mass ratios are

expressed in terms of quark mass ratios and mixing angles. Large leptonic mixing angles appear
to be natural and lead to contributions to flavor-changing neutral currents in the charged-lepton
sector, which can be tested in future precision experiments.

PACS numbers: 12.15.Ff, 11.30.Hv

I. INTRODUCTION

The standard model (SM) of particle physics provides a
very successful description of physics up to the TeV scale.
In particular, the simplest realization of electroweak sym-
metry breaking, in which the Higgs mechanism is im-
plemented via one or more scalar fields, is in excellent
agreement with the properties of the recently discovered
Higgs particle [1, 2]. The masses of all the elementary
fermions arise after electroweak symmetry breaking due
to the presence of Yukawa interactions. The fundamen-
tal origin of the Yukawa couplings remains unknown. All
attempts at deriving them from a more fundamental the-
ory of flavor involve the observation that in the absence
of the Yukawa couplings, the SM Lagrangian possesses
an enlarged G = SU(3)5 global symmetry. 1 This sym-
metry is ultimately responsible for the naturalness of the
Yukawa couplings and fermion masses, and it is the ori-
gin of the suppression of flavor-changing neutral current
(FCNC) transitions.

There exists a vast literature on models of flavor gener-
ation, differing from one another by what subgroup of G
plays a role in the underlying theory of flavor [3, 4], and
what mechanism(s) yield its breaking. At one extreme
sit models with minimal flavor violation (MFV) [5], in
which one assumes that in the ultraviolet (UV) comple-
tion of the SM, the SU(3)5 symmetry is violated only
by the SM Yukawa couplings. Hence all FCNC processes
are suppressed by combinations of the Yukawa couplings
(see for example [6]). An advantage of MFV is that it
yields a restrictive structure for the possible operators
controlling FCNC transitions. As a result the mass scale
associated with these processes can be relatively low, in
the TeV range.

1 The symmetry can be extended to G = SU(3)6 if one assumes
the existence of 3 right-handed neutrinos. We do not do so here.
There are also a set of U(1) symmetries to consider. Among
these, we make direct use of only lepton number and baryon
number conservation.

The MFV framework does not, however, yield any new
testable predictions for the mass and mixing matrices ap-
pearing in the SM. Hence, it does not reveal anything
new about the origin of flavor. The masses, mixing an-
gles, and CP-violating phases are treated as independent
free parameters.
In this paper, we investigate whether it is possible to

gain some insight into the origin of flavor in an MFV-
like framework by constraining more tightly the Yukawa-
coupling matrices that break the flavor symmetry. Our
constrained-flavor-breaking (CFB) approach is presented
as an effective field theory (EFT) valid only up to the
flavor-breaking scale F . We obtain two relations for
charged-lepton mass ratios in terms of the quark masses
and mixing angles. Using the smallness of both CKM
mixing angles and quark mass ratios, the symmetry
structure enforces large off-diagonal entries in the lep-
ton mass matrix, which suggest the natural appearance
of large leptonic mixing angles.
We describe our framework in section II, and our

specific model in section III, focusing on the terms in
the EFT Lagrangian responsible for breaking the un-
derlying flavor symmetry and generating the quark and
charged lepton masses. We then explore the resultant re-
lations among the Yukawa matrices. We discuss higher-
dimension operators responsible for FCNC transitions in
section IV, coming to the conclusion that leptonic FCNC
processes constrain the scale of the higher-dimension op-
erators to be above 104 TeV. We summarize our results
and discuss open questions in section V. In appendix A,
we present some notation and list the measured values of
quark and lepton masses and CKM mixing angles.

II. FRAMEWORK

We consider only the quark and charged-lepton sec-
tors, leaving neutrino mass and mixing for future study.
The maximal global non-Abelian flavor symmetry in the
absence of mass is then SU(3)5. We break the flavor
symmetries with dimensionless spurion fields (Yukawa
matrices) that are bi-fundamentals under two of the
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SU(3)’s. A minimum of three spurions would be re-
quired to break all five of the SU(3)’s: two (Yd and Yu)
to break SU(3)QL

× SU(3)dR
× SU(3)uR

and one (Ye)
to break SU(3)LL

× SU(3)eR . As a result, there are no
predictions for masses and mixing angles with SU(3)5.
A predictive framework can allow at most two bi-

fundamental spurions. This suffices to give mass to all
the fermions if there are at most four global SU(3)’s,
with at least two of the five fermion fields transforming
under the same SU(3). With four SU(3)’s one spurion
can break SU(3)LL

× SU(3)eR , while the other breaks
SU(3)QL

× SU(3)uR,dR
. This model, though, predicts

Yd ∝ Yu, giving incorrect quark mass ratios and vanish-
ing CKM mixing angles. Other assignments for SU(3)4

can also be seen to yield unrealistic results.
We therefore turn to a global SU(3)3 symmetry, with

two spurions for the flavor breaking. To have realistic
quark masses and mixing angles, we assign QL, dR and
uR each to a different one of the SU(3)’s. There are then
six options to assign LL and eR to two different SU(3)’s.
For the four cases with either LL or eR transforming

under SU(3)QL
, one has the unrealistic prediction that

the charged-lepton mass ratios are proportional to either
the up-type or down-up quark mass ratios. The remain-
ing two cases correspond to SU(3)QL

× SU(3)dR,LL
×

SU(3)uR,eR or SU(3)QL
× SU(3)dR,eR × SU(3)uR,LL

.
In this paper, disregarding the neutrinos and focus-

ing on only the charged-lepton mass ratios in the lep-
tonic sector, these two cases are equivalent because the
charged-lepton mass matrices are the Hermitian trans-
pose of each other. We adopt the assignment SU(3)QL

×
SU(3)dR,LL

× SU(3)uR,eR , as shown in the moose dia-
gram of Fig. 1 and in Table I, where the three SU(3)’s
are labeled 1, 2, and 3.

QL

uR

dR

eR

LL

SU(3)1

SU(3)3SU(3)2

Yu

Ye

FIG. 1: A moose diagram for our model.

We next choose the SU(3) assignments for the two bi-
fundamental spurions, which we take to be SM singlets.
The possibility we focus on, shown in Table I, is to em-
ploy a Yu transforming under SU(3)1 × SU(3)3 and a
Ye transforming under SU(3)2 × SU(3)3. This provides

independent mass matrices for the up-type quarks and
charged leptons. The down-type quark mass matrix will
require an EFT term with a product such as YuY

†
e , lead-

ing to a relation among the lepton and up-type quark
mass ratios and CKM mixing angles.

There are two other choices for the two bi-fundamental
spurions. One, with Yu transforming under SU(3)1 ×
SU(3)3 and Yd transforming under SU(3)1 × SU(3)2,
would lead to the charged lepton mass matrix arising

from a product such as Y †
d Yu. In light of the small mix-

ing angles in the CKM matrix, this gives the unrealistic
result of the charged-lepton masses being more hierarchi-
cal than the up-type quark masses. A third choice, with
Yd transforming under SU(3)1 × SU(3)2 and Ye trans-
forming under SU(3)2 × SU(3)3, also has a difficulty of
obtaining a large enough top Yukawa coupling, at least
in models with a single Higgs doublet. 2

A restriction to fewer than three global flavor SU(3)’s
leads to an over constrained flavor structure. In Ref. [7],
for example, two SU(3)’s are employed for the quarks and
charged leptons, allowing for compatibility with SU(5)
grand unification: one for the 5̄ (LL, d

c
R) and one for the

10 (QL, u
c
R, e

c
R). This leads to quark and lepton mass

relations far from the experimental values, addressed in
Ref. [7] by the introduction of additional spurions. Our
approach, with three flavor SU(3)’s provides a more re-
alistic description of fermion masses and mixing angles,
but it isn’t yet clear to us how to embed it into a larger
framework of gauge unification.

The origin of the matrices Yu and Ye is not specified
here. One could imagine, for example, that Yu emerges
from an underlying dimension-five operator of the form

ηuH̃Q̄LΦuuR/F , where H̃ is the conjugate of the SM
Higgs doublet, ηu is a dimensionless coupling and Φu is
a dimension-one dynamical field with a vacuum expecta-
tion value (VEV) of order the flavor breaking scale F . A
similar term ηeHL̄LΦeeR/F could lead to the charged-
lepton mass matrix. The down-quark mass matrix could
emerge from an even higher dimension operator, the sim-
plest example being ηdHQ̄LΦuΦ

†
edR/F

2.

III. THE MODEL AND FERMION MASS

The ingredients of our model with their assignments
under the global flavor SU(3)3 are shown in Table I. The
list includes the quark and charged-lepton fields and the
two dimensionless, bi-fundamental spurion fields Yu and
Ye. The SM gauge fields and symmetries are not explic-
itly shown. The focus of this paper is on flavor breaking,

2 All these relations are for (dR, LL) and (uR, eR) having the
same representation. For the model with (dR, LL) and (uR,
eR) having the complex-conjugate representations, one needs to
replace Ye by Y ∗

e . Since this changes only the phases in the lepton
sector, predictions of charged-lepton mass ratios are unaffected.
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SU(3)1 SU(3)2 SU(3)3

H 1 1 1

QL 3 1 1

dR 1 3 1

uR 1 1 3

LL 1 3 1

eR 1 1 3

Yu 3 1 3̄

Ye 1 3 3̄

TABLE I: The global flavor symmetries and field content of
the model.

not electroweak breaking, but for simplicity, for most of
our discussion, we take electroweak breaking to be de-
scribed by a single Higgs doublet H ∼ (1, 2)1/2 under
the SM SU(3)QCD × SU(2)W × U(1)Y gauge symmetry.
In this case, H develops the VEV

〈H〉 =
vW√
2

(
0
1

)
, (1)

where vW ≃ 246 GeV. We could equally well employ two
Higgs doublets which, for large tanβ (the ratio between
the two vacuum expectation values), leads to a bottom-
quark coupling comparable to the top-quark coupling. In
either approach, the important question of the stability
of the electroweak scale arises. We will not discuss it
further in this paper as our focus is on the physics of
flavor-symmetry breaking.
The quark and charged-lepton mass terms of the EFT

are given by

− H Q̄LYddR − H̃ Q̄LYuuR − H L̄LYeeR + · · · , (2)

where the dots represent higher-dimensional operators,
and where the matrix Yd must be constructed from our
two spurion fields Yu and Ye. The simplest structure
based on the flavor symmetry is

Yd = η YuY
†
e , (3)

where η is a parameter to be chosen so that the largest
entry in Yd is O(10−2) in order to fit the b-quark mass.
This relation may appear counter-intuitive given that the
mass hierarchy among the up-type quarks is much larger
than the down-type quarks
An immediate question is whether this relation is sta-

ble in the face of quantum corrections. One-loop and
higher corrections in the SM, for example from emis-
sion and re-absorption of the Higgs boson, will cor-
rect it, generating additive down-quark mass terms with
matrix structures containing additional factors such as
YuY

†
u /(4π)

2. These terms violate the matrix relation
Eq. (3) and they typically enter with logarithmic UV
cutoff dependence. But since no element of Yu is larger
than unity, these are small corrections for any reason-
able cutoff. We return to this discussion in Section IV,

after introducing the higher-dimension operators of our
EFT, which correct the dimension-4 terms of the SM La-
grangian.
After electroweak symmetry breaking, the mass matri-

ces of the quarks and charged leptons are given by

M (d,u,e) =
1√
2
Yd,u,e vW . (4)

We can make SU(3)1 and SU(3)2 transformations to the
basis in which Yd is diagonal. Making further use of
SU(3)3 and using the convention in Eq. (A3), there is a
basis in which we can write

Yd = diag (Yd) , Yu = V †
CKM diag (Yu) . (5)

Using Eq. (3) we then have

Ye =
1

η
diag(Yd)V

†
CKM [diag(Yu)]

−1
. (6)

Using the central values of the CKM angles, phase and
quark mass parameters listed in Appendix A (and defined
at the common scale MZ), we find that in this special
basis

|Ye| ≃ 1

η




1.8 0.0011 1.4× 10−7

8.2 0.093 0.000014
6.1 0.19 0.017



 . (7)

The 21 entry of |Ye|, given by (1/η)|V 12
CKM|ms/mu, is the

largest. We thus infer that

mτ ≃ |Ye|21
vW√
2

≃ 1

η
× (1.4× 103GeV) , (8)

requiring η ≃ 103 to fit the experimental τ mass. 3

Despite the smallness of the CKM mixing angles, the
Ye matrix has some very large off-diagonal entries due
to the large ratios ms/mu and mb/mu. The presence of
[diag(Yu)]

−1 in Eq. (6) magnifies the CKM angles. This

3 The large value of η must emerge from a UV completion of this
model. Suppose, within the framework mentioned at the end of
Section II, that Ye = ηe〈Φe〉/F , with the largest entry of 〈Φe〉 of
O(F ) and ηe ≃ 10−2. The matrix Yd would similarly come from

the operator ηd HQ̄LΦuΦ
†
edR/F 2. Then, with the assumption

of vacuum saturation, Yd = ηd〈Φu〉〈Φ
†
e〉. Here, the largest entry

of 〈Φu〉 is of O(F ), but the largest entry of the matrix product

〈Φu〉〈Φ
†
e〉 is of O(10−3F 2). Then ηd ≃ η ηe ≃ O(10).

It is also the case that corrections to Eq. (3) will emerge from
whatever theory UV completes our EFT. Suppose, for example,
that the Φu and Φe fields represent dynamical degrees of freedom
within the UV completion. A naive estimate would lead to a

correction of the form Yd ∝ [Yu + ǫn(YuY
†
u )nYu]Y

†
e , with ǫn =

O

{

[

ηdM

ηu(4π)2F

]2n
}

, where M is the natural mass scale (cutoff)

of the UV completion. This would substantially modify only the
33 element of Yu entering Eq. (3) because of the hierarchical
structure of Yu. As long as M < 4πF , even the 33 element will
receive only a small correction.
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structure provides an unusual source for large mixing an-
gles in a flavor model, and suggests that the large mea-
sured values of the PMNS angles are natural. We haven’t
discussed the neutrino mass matrix here, yet it would re-
quire a fine-tuned relation between Ye and the neutrino
mass matrix to avoid the presence of large mixing angles.
Most importantly, Eq. (6) leads to relations for the

ratios of the charged-lepton masses. Diagonalizing the
matrix Ye and again using the central values of the CKM
angles and quark masses, we obtain

me

mτ
(th) ≃ 2.1× 10−4 , (9)

mµ

mτ
(th) ≃ 0.013 , (10)

to be compared with the experimental values

me

mτ
(exp) ≃ 2.8× 10−4 , (11)

mµ

mτ
(exp) ≃ 0.059 , (12)

computed using the renormalized masses defined at the
common scale MZ (see Appendix A).
The experimental values are quite precise, but the the-

oretical relations are affected by the comparatively large
errors in the measured values of the quark masses, par-
ticularly the light ones, the role of which is quite im-
portant. The central-value relation for me/mτ is well
within these uncertainties, while the central-value pre-
diction of the muon mass appears to be within a factor
of three of the experimental value. To be more precise,
we have numerically varied the masses of the quarks and
the CKM angles within the allowed experimental ranges,
and compared the theoretical relations for the charged
lepton mass ratios with the experimental data. This is
illustrated in Fig. 2.
To provide some insight into our theoretical relations

Eqs. (9,10), in particular their dependence on the quark
mass ratios, we use the Wolfenstein parametrization of
the CKM matrix Eq. (A5). Expressing the parameters
ρ and η as O(1) numbers times λ ≈ 0.23 (approximately
the Cabibbo angle), and taking the quark masses to be
within roughly a factor of 2 of their experimental values,
we find the approximate formulas

me

mτ
≃ md

ms

mu

mt
λ−4 , (13)

mµ

mτ
≃ mb

ms

mu

mc
λ . (14)

We can see that to bring mµ/mτ closer to the experi-
mental value would require increasing mu or decreasing
mc while keeping the product mdmu intact.
We are encouraged by these results. Large leptonic

mixing angles appear to be natural. The charged-lepton
mass ratios emerge from Eq. (6), in which CKM mixing
plays an intricate and prominent role. In the absence of
this mixing, the ratio mµ/mτ would be in good agree-
ment with experiment, but me/mτ would be predicted
to be too large by more than an order of magnitude.

ÅÅ

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
0.00

0.02

0.04

0.06

0.08

0.10

mµ

mτ

me

mτ

FIG. 2: Charged-lepton mass ratios in our model compared
to the experimental data (black). The points are obtained by
randomly choosing 4000 possible values of the masses of the
quarks and CKM angles within the 3σ (green), 2σ (red) and
1σ (blue) ranges. Note that this scatter plot should not be
interpreted as the result of a global fit.

IV. HIGHER DIMENSION SM OPERATORS

AND FLAVOR-CHANGING NEUTRAL

CURRENTS.

In the standard model, FCNC transitions are forbid-
den at the tree level due to the GIM mechanism, and
arise only at the one-loop level. Due to the one-loop,
weak-coupling suppression, the smallness of the CKM off-
diagonal terms, and the quark mass hierarchies, all such
processes are strongly suppressed. The underlying rea-
son for the suppression is SU(3)5 flavor symmetry, the
breaking of which requires diagrams with the insertion
of both the up-type and down-type Yukawa couplings.
While this is an automatic consequence of the SM as-
signments of the fermions, the GIM mechanism is not a
generic feature of extensions of the standard model.
This potential difficulty has been addressed by the

MFV framework [6] in which all breaking of the SU(3)5

flavor symmetry is taken to arise from the SM Yukawa
couplings. The higher-dimension operators incorporating
new physics beyond the SM and breaking the SU(3)5 fla-
vor symmetry, are suppressed by these factors.
In our model, with only an SU(3)3 global flavor sym-

metry and two bi-fundamental spurions to implement
the breaking, we have the special relation Yd ∝ Yu Y

†
e

among the Yukawa matrices for the quarks and charged
leptons. In this section, we examine the resultant EFT
constructed from SM fields, focusing on the higher-
dimension operators that induce flavor-changing neutral
currents. As in MFV, we build these operators from only
the Yukawa matrices.
We construct them from dimension-three building

blocks bilinear in the fermion fields, containing enough
insertions of the Yukawa matrices Ye and Yu to respect
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MFVu MFVd CFB

O1u = Q̄L YuY
†
uQL O1d = Q̄L YdY

†

d
QL O1e = Q̄L YdYeY

†
e Y †

d
QL

O2u = Q̄L YuY
†
uYuuR O2d = Q̄L YdY

†

d
YuuR O2e = Q̄L YdYeuR

O3u = Q̄L YuY
†
u YddR O3d = Q̄L YdY

†

d
YddR O3e = Q̄L Yd YeY

†
e dR

O4u = ūR Y †
uYuuR O4d = ūR Y †

uYdY
†

d
YuuR O4e = ūR Y †

e YeuR

O5d = d̄R Y †

d
YddR O5e = d̄R YeY

†
e dR

O6d = ūR Y †
uYddR O6e = ūR Y †

e dR

O1e = L̄LYeY
†
e LL O1ℓ = L̄LY †

d
YdLL

O2e = L̄LYeY
†
e YeeR O2ℓ = L̄LY †

d
YueR

O3e = ēRY †
e YeeR O3ℓ = ēRY †

uYueR

TABLE II: The building blocks (bilinear in SM quarks and
charged leptons) contributing to higher order operators.

the flavor symmetry. For simplicity, we assume here that
each building block by itself respects baryon and lepton
number symmetry. One could relax this assumption, and
include higher order operators that contain lepto-quark
bilinears. As we will see, the bounds we find are already
quite restrictive, sufficient to reach our main conclusions.
The product YuY

†
e , when encountered, is replaced by Yd

as dictated by Eq. (3) to have a more conservative FCNC
constraint. Each fundamental bilinear is then taken to
enter with no further suppression by small parameters.
We ignore restrictions coming from the SU(2)L ×

U(1)Y gauge symmetry because we are now implement-
ing the EFT below the EW breaking scale (the Kaon or
B-meson scales, for example). We express these build-
ing blocks, without contracting color or spinor indexes.
Thus several new higher-order operators having the same
flavor structure, but different QCD or Lorentz structure,
are treated on the same footing. We do not list here bilin-
ears such as Q̄LQL or Q̄LYddR since it is always possible,
at the low energies considered here, to write the theory in
a basis in which the kinetic and mass terms are diagonal
in flavor space.
The list of possible bilinears includes those that appear

in MFV, such as quark bilinears constructed using only
Yu and Yd. It also includes bilinears that do not appear
in MFV: quark bilinears involving factors of Ye and lep-
ton bilinears involving Yu and Yd. In Table II, we list
these bilinears, using only a minimal number of Yukawa
matrices of each type. Columns 1 and 2 contain quark bi-
linears appearing in MFV. Those in column 2, containing
more factors of Yd (or Ye) in each bilinear, are suppressed
relative to those in column 1 in our single-Higgs-doublet
model. With two Higgs doublets and large tanβ, some of
them can be enhanced to the level of the column-1 bilin-
ears. In column 3, we list bilinears that do not appear in
MFV.
Not all the building blocks induce FCNC processes.

In MFV with a single Higgs doublet, only bilinears
quadratic in Yu are important for FCNC processes (bi-
linears O1u and O3u). It turns out that O1u for example
contributes to all the main FCNC transitions mediated
by operators of dimension 6 —such as ∆mK , ǫK , ∆MBs

,
ACP (Bd → J/ψKS) and ∆MBd

— while O3u is impor-
tant in processes dominated by dimension-5 operators
(such as b → s γ and Bs → µ+µ−). The bilinears O2u

and O4u do not yield FCNC transitions.

All of the bilinears of columns 1 and 2 have been an-
alyzed previously, coming to the conclusion when they
are employed to construct dimension-5 and dimension-
6 FCNC operators, the scale can be as low as the TeV
scale.

A. CFB Quark Bilinears

We next consider the bilinears of column 3, which do
not arise in MFV. The six quark-bilinears involve one
or more factors of Ye, each of which introduces new off-
diagonal structures relative to MFV. One of these op-
erators is harmless since it contributes only to charged
currents: O6e might look unsuppressed, but in practice
it is subdominant in comparison to the SM tree-level con-
tributions that it competes against.

Operators such as O1e, O3e, O4e and O5e each contain
insertions of YeY

†
e , for which

|YeY †
e | =

1

η2




3.4 14.9 11.2
14.9 66.2 49.6
11.2 49.6 37.1



 , (15)

where η2 ≃ 106. They are therefore relatively suppressed.

As an example, consider the K0− K̄0 mixing. The op-
erator to be considered is 1

Λ2O5eO5e, with Λ a parameter
characterising the scale of new physics, while operators
built from O1e and O3e have additional suppression due
to Yd. The scale Λ is expected to be given by the flavor-
breaking scale F of Section II, up to model-dependent
factors.

Assuming the same value for the matrix element as the
SM operator, and the formalism in [8], we find

∆MK(new)

∆MK(SM)
≃

(
44GeV

Λ

)2

·
[
(YeY

†
e )21

10−5

]2
. (16)

Because (YeY
†
e )21 ∼ 10−5, this observable receives small

corrections, negligible for Λ > 1 TeV as generically ex-
pected already from the MFV operators.

The bilinear O2e contributes for example to D0 − D̄0

mixing through O2eO2e. Each bilinear involves the ma-
trix

|YdYe| =
1

η




3× 10−5 2× 10−8 2× 10−12

0.003 3× 10−5 5× 10−9

0.1 0.003 0.0003


 ,(17)

where the 21 entry is very small. Again this process is
adequately suppressed with a scale on the order of 1 TeV.

We conclude that the new operators arising in CFB
are such that all quark FCNC processes are adequately
suppressed by flavor scales as low as 1 TeV — just as in
MFV.
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B. CFB Charged-Lepton Bilinears

Of the three lepton bilinears of column-3, O1ℓ is sup-
pressed by at least two powers of the bottom Yukawa cou-
pling and is harmless. The second operator O2ℓ, though,

because of large off-diagonal entries in Y †
d Yu, does intro-

duce a stringent constraint on the flavor scale. Diagonal-
izing Ye via Ye = L(e)diag(Ye)R

(e)† and using the relation
in Eq. (3), we have the flavor-changing matrix among the
lepton mass eigenstates as

η |diag(Ye)R(e)† diag(Yu)
2R(e)|

= η




2.2× 10−6 2.3× 10−7 2.1× 10−9

1.3× 10−5 1.4× 10−6 1.3× 10−8

9.9× 10−6 1.0× 10−6 9.7× 10−9



 . (18)

Dressing this operator with a Lorentz structure, we
have 1.3 × 10−2 vW µ̄Lσ

µνeRFµν/(
√
2Λ2) or 9.9 ×

10−3 vW × τ̄Lσ
µνeRFµν/(

√
2Λ2) or 1.0 × 10−3 vW ×

τ̄Lσ
µνµRFµν/(

√
2Λ2). The currently most stringent con-

straint comes from the rare process µ → eγ, requiring
Λ & 104 TeV [9], 4 far beyond the energy reached by
the Large Hadron Collider. The operator O2ℓ also leads
to a simple relation between the three radiative decays
µ → eγ, τ → µγ and τ → eγ that might become of
relevance for future experimental searches [10].

Another constraint arises from the bilinear O3ℓ. After
rotating to the mass eigenstate basis, we have the flavor-
changing matrix

|R(e)† diag(Yu)
2R(e)|

=




0.99 0.10 1.0× 10−3

0.10 0.01 1.0× 10−4

1.0× 10−3 1.0× 10−4 1.0× 10−6



 . (19)

The relatively large 12 and 21 entries are again a
consequence of large off-diagonal entries in Ye. They
lead to a bound on the flavor scale via the process
µ− → e−e+e−. Employing the dimension-six operator,
0.1 µ̄RγµeR ēγ

µe/Λ2, the constraint is Λ & 320 TeV [9].

Finally we note that the dimension-6 operators formed
by composing the bilinears of Table II can also be used
at the quantum level, where they can lead to loop cor-
rections to Eq. (3). Composing the bilinear O1u with
itself, for example, and employing this operator twice,
produces a two-loop correction to the down-quark mass
operator HQ̄LYddR, and therefore to Eq. (3). It is of or-
der M4/(4πΛ)4 times factors of Yu and Y †

u , where M is
the cutoff (the scale of new physics). As long as M . Λ,
this will amount to a small correction to Eq. (3).

4 Our constraint is fairly conservative in a sense that an operator
constructed from the spurions, Yu and Ye, will not have this
additional factor of η in Eq. (18).

V. DISCUSSION AND CONCLUSIONS

We have searched for predictive flavor models based on
subgroups of SU(3)5, the full flavor group of the quarks
and charged leptons in the standard model. Restricting
to products of SU(3)’s, we were led to a model based on
SU(3)3, with its breaking due to two, rather than three,
independent 3×3 spurion fields (Yukawa matrices). Thus
one of the three Yukawa matrices Yu, Yd and Ye can be
expressed in terms of the other two. Taking Yu and Ye
to be the basic spurion fields, we chose the symmetry
assignments of the fermions and the spurions in such a
way as to realize the relation Yd ∝ YuY

†
e .

This leads to an interesting relation between the
charged-lepton mass ratios and quark mass ratios and
mixing angles, shown in Eqs. (13) and (14). It also
leads to an unusual, strongly off-diagonal structure of
the Yukawa matrix Ye, indicating that large values of
the PMNS angles are natural. While we have not yet
incorporated neutrino mass into our model, it would re-
quire a fine-tuned relation between Ye and the neutrino
mass matrix to avoid the presence of large PMNS angles.
We have provided approximate analytic expressions for
the charged lepton mass ratios in Eqs. (13) and (14),
noting their dependence on quark masses ratios, and
commenting on the adjustments that would be required
to bring mµ/mτ into closer agreement with experiment.
The strongly off-diagonal structure of Ye also plays a role
in making the flavor scale Λ much larger than in MFV.
These results emerge from an EFT incorporating the

standard model and the higher-dimension operators that
correct it. The results follow from the postulated flavor-
symmetry structure Yd ∝ YuY

†
e . This relation is stable in

the presence of SM radiative corrections since these inter-
actions are suppressed by the small couplings of the SM.
It is stable even in the framework of the UV completion
of the EFT, up to the flavor breaking scale F , provid-
ing that these interactions, too, are weakly coupled at
this scale. The important underlying issue of the stabil-
ity of the electroweak scale itself has to be addressed by
additional ingredients that we have not discussed here.
Our study is motivated by minimal flavor violation,

which also is based on symmetry arguments alone with-
out specifying the UV dynamics involved in flavor gen-
eration. Our approach, though, is more restrictive, pos-
tulating a smaller broken symmetry in order to obtain
predictive relations among the quark and charged-lepton
masses and mixing angles. This goal is partly met, with
the conclusion that leptonic FCNC processes constrain
the general flavor-symmetry-breaking scale to be above
104 TeV, well above the energies accessible at the LHC.
This appears to confirm a general lesson: more restric-
tive generalizations of MFV, providing some predictivity
without reference to a UV completion, require such large
scales. We also found an unexpected result: large mixing
angles in the leptonic sector arise naturally, again with-
out explicit reference to the UV completion. In our par-
ticular model, FCNC effects are very small in the quark
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sector but potentially observable in the next generation
of charged-lepton flavor-violating experiments, for exam-
ple the Fermilab Mu2e experiment [10].
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Appendix A: Notation and numerical input

We collect in this Appendix all the relevant expressions
that fix the notation and briefly summarise numerical

values for the experimental quantities of relevance to the
paper, taken from [11].
We write the dimension-3 mass terms for the charged

fermions of the SM in the form −ψ̄(i)
L M (i)ψ

(i)
R , with

i = e, d, u. With these conventions, the diagonalization
of the mass matrices can be done by introducing three
unitary matrices L(i) acting the left-handed fields and
three unitary matrices R(i) acting on the right-handed
fields. We use the conventions according to which

diagM (i) = L(i) †M (i)R(i) , (A1)

which imply that in the mass basis the charged-current
weak interactions contain the CKM mixing matrix

VCKM = L(u) †L(d) . (A2)

These definitions imply for example that if we choose
to write the Lagrangian in a basis in which weak interac-
tion are diagonal (flavour basis), and in which the down-
type quarks are diagonal, then the up-type quark flavour
eigenstates |u〉 are related to the mass eigenstates |û〉 as

|û〉 = VCKM|u〉 . (A3)

The conventional way to parameterise a unitary matrix
VCKM requires to introduce three angles θij and a CP-
violating phase δ. In terms of these, we write

VCKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


 , (A4)

where sij ≡ sin θij and cij ≡ cos θij . The experimental
values are

sin θ12 = 0.2243± 0.0016 ,

sin θ23 = 0.0413± 0.0015 ,

sin θ13 = 0.0037± 0.0005 ,

sin 2β = 0.679± 0.019 .

The angle β ≡ arg[−VcdV ∗
cb/(VtdV

∗
tb)] in the CKM unitar-

ity triangle is related to the phase δ.

For the CKM matrix, one could also use the Wolfen-
stein parametrization,

VCKM =




1− λ2/2 λ Aλ3(ρ− i η)

−λ 1− λ2/2 Aλ2

Aλ3(1 − ρ− i η) −Aλ2 1



 .(A5)

The experimental values are

λ = 0.22535± 0.00065 ,

A = 0.811+0.022
−0.012 ,

ρ̄ ≈ ρ = 0.131+0.026
−0.013 ,

η̄ ≈ η = 0.345+0.013
−0.014 .

Finally, for the masses of the quarks we adopt the con-
vention of considering all of them as defined at the com-
mon scale MZ . We have

mt = 176± 5 GeV ,

mb = 2.95± 0.15 GeV ,

mc = 0.65± 0.12 GeV ,

ms = 0.062± 0.015 GeV ,

mu = 0.0017± 0.0005 GeV ,

md = 0.0032± 0.0009 GeV .

The masses of the charged leptons are affected by smaller
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errors and smaller running effects, both of which we ne-
glect, and are given by

mτ = 1.78 GeV ,

mµ = 0.106 GeV ,

me = 0.511 × 10−3 GeV .
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