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Abstract

In a recent paper, Parikh and Boyd describe a method for solving a convex opti-
mization problem, where each iteration involves evaluating a proximal operator and
projection onto a subspace. In this paper we address the critical practical issues of how
to select the proximal parameter in each iteration, and how to scale the original prob-
lem variables, so as the achieve reliable practical performance. The resulting method
has been implemented as an open-source software package called POGS (Proximal
Graph Solver), that targets multi-core and GPU-based systems, and has been tested
on a wide variety of practical problems. Numerical results show that POGS can solve
very large problems (with, say, more than a billion coefficients in the data), to modest
accuracy in a few tens of seconds. As just one example, a radiation treatment planning
problem with around 100 million coefficients in the data can be solved in a few seconds,
as compared to around one hour with an interior-point method.

1 Introduction
We consider the convex optimization problem

minimize  f(y) + g(x) (1)

subject to y = Az,
where x € R" and y € R™ are the variables, and the (extended-real-valued) functions
f:R™ - RU{oco} and g : R" — R U {00} are convex, closed and proper. The matrix
A e R™" and the functions f and g are the problem data. Infinite values of f and g allow
us to encode convex constraints on x and y, since any feasible point (x,y) must satisfy

vef{z|glx) <oo}, ye{ylfly) <oo}

We will be interested in the case when f and ¢ have simple proximal operators, but for now
we do not make this assumption. The problem form (Il is known as graph form [PB13al,
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since the variable (x,%) is constrained to lie in the graph G = {(z,y) € R"™™ | y = Ax} of
A. We denote p* as the optimal value of ([Il), which we assume is finite.

The graph form includes a large range of convex problems, including linear and quadratic
programming, general conic programming [BV04] §11.6], and many more specific applications
such as logistic regression with various regularizers, support vector machine fitting [HTF09],
portfolio optimization [BV04, §4.4.1] [GM75] [BMOW13]|, and radiation treatment planning
[OW06], to name just a few.

In [PB13a], Parikh and Boyd described an operator splitting method for solving the
graph form problem (), based on the alternating direction method of multipliers (ADMM)
[BPCT11]. Each iteration of this method requires a projection (either exactly or approxi-
mately via an iterative method) onto the graph G, and evaluation of the proximal operators of
f and g. Theoretical convergence was established in that paper, and basic implementations
demonstrated. However it has been observed that practical convergence of the algorithm
depends very much on the choice of algorithm parameters (such as the proximal parameter
p), and scaling of the variables (i.e., pre-conditioning).

The purpose of this paper is to explore these issues, and to add some critical variations
on the algorithm that make it a relatively robust general purpose solver, at least for modest
accuracy levels. The algorithm we propose, which is the same as the basic method described
in [PB13a], with modified parameter selection, diagonal pre-conditioning, and modified stop-
ping criterion, has been implemented in an open-source software project called POGS (for
Proximal Graph Solver), and tested on a wide variety of problems. Our CUDA imple-
mentation reliably solves (to modest accuracy) problems 1000x larger than those that can
be handled by interior-point methods; and for those that can be handled by interior-point
methods, 100x faster. As a single example, a radiation treatment planning problem with
more than 100 million coefficients in A can be solved in a few seconds; the same problem
takes around one hour to solve using an interior-point method.

1.1 Outline

In §1.2] we describe related work. In §2] we derive the graph form dual problem, and the
primal-dual optimality conditions, which we use to motivate the stopping criterion and to
interpret the iterates of the algorithm. In §3] we describe the ADMM-based graph form
algorithm, and analyze the properties of its iterates, giving some results that did not appear
in [PB13al. In §we address the topic of pre-conditioning, and suggest novel pre-conditioning
and parameter selection techniques. In §5l we describe our implementation POGS, and in §0]
we report performance results on various problem families.

1.2 Related work

Many generic methods can be used to solve the graph form problem (), including projected
gradient descent [CMS&T7], projected subgradient methods [Pol87, Chap. 5] [Sho98], operator

splitting methods [LM79] [ES08], interior-point methods [NW99, Chap. 19] [BTNOI, Chap.
6] and many more. (Of course many of these methods can only be used when additional



assumptions are made on f and g, e.g., differentiability or strong convexity.) For example,
if f and g are separable and smooth (or have smooth barrier functions for their epigraphs),
the problem ([Il) can be solved by an interior-point method, which in practice always takes
no more than a few tens of iterations, with each iteration involving the solution of a system
of linear equations that requires O(max{m,n} min{m,n}?) flops when A is dense [BV04,
Chap. 11][NW99, Chap. 19].

We now turn to first-order methods for the graph form problem (). In [OV14] O’Connor
and Vandenberghe propose a primal-dual method for the graph form problem where A is the
sum of two structured matrices. They contrast it with methods such as Spingarn’s method of
partial inverses [Spi85], Douglas-Rachford splitting [DR56], and the Chambolle-Pock method
[CP11].

Davis and Yin [DY14] analyze convergence rates for different operator splitting methods,
and in [Gis15] Giselsson proves the tightness of linear convergence for the operator splitting
problems considered |[GB14b]. Goldstein et al. [GOSB14] derive Nesterov-type acceleration,
and show O(1/k?) convergence for problems where f and g are both strongly convex.

Nishihara et al. [NLRT15] introduce a parameter selection framework for ADMM with
over relaxation [EB92]. The framework is based on solving a fixed-size semidefinite program
(SDP). They also make the assumption that f is strongly convex. Ghadimi et al. [GTSJ13]
derive optimal parameter choices for the case when f and g are both quadratic. In [GB14D)]
Giselsson and Boyd show how to choose metrics to optimize the convergence bound, and
in [GB14a] Giselsson and Boyd suggest a diagonal pre-conditioning scheme for graph form
problems based on semidefinite programming. This scheme is primarily relevant in small to
medium scale problems, or situations where many different graph form problems, with the
same matrix A, are to be solved.

It is clear from these papers (and indeed, a general rule) that the practical convergence
of first-order mthods depends heavily on algorithm parameter choices. All of these papers
make additional assumptions about the objective, which we do not.

GPUs are used extensively for training neural networks [NCL™11, ICMM™11), [KSH12|
CHW™13|, and they are slowly gaining popularity in convex optimization as well [PCII]
COPB13|, WB14].

2 Optimality conditions and duality

2.1 Dual graph form problem
The Lagrange dual function of () is given by

inf f(y) + g(z) + Vi(Az —y) = —f*(v) — g (—A"v)

where v € R"™ is the dual variable associated with the equality constraint, and f* and ¢* are
the conjugate functions of f and g respectively [BV04, Chap. 4]. Introducing the variable



pu = —ATv, we can write the dual problem as

maximize — f*(v) — g" () @)
subject to = —ATv.

The dual problem can be written as a graph form problem if we negate the objective and
minimize rather than maximize. The dual graph form problem (2] is related to the primal
graph form problem (d) by switching the roles of the variables, replacing the objective
function terms with their conjugates, and replacing A with —A”.

The primal and dual objectives are p(z,y) = f(y) + g(z) and d(p,v) = —f*(v) — g* (1)
respectively, giving us the duality gap

n=plr,y) —dp,v) = fly)+ fv) +g(x) +g" (1) (3)

We have n > 0, for any primal and dual feasible tuple (z,y, u,v). The duality gap n gives
a bound on the suboptimality of (z,y) (for the primal problem) and also (u,v) for the dual
problem:

fy)+gl@) <p™+n,  —f(v)—g W =p —n
2.2 Optimality conditions

The optimality conditions for (I]) are readily derived from the dual problem. The tuple
(x,y, p, v) satisfies the following three conditions if and only it is optimal.

Primal feasibility:
y = Ax. (4)
Dual feasibility:
p=—A"v. (5)
Zero gap:
)+ ") +g(z) + 9" (n) = 0. (6)

If both (@) and () hold, then the zero gap condition (@) can be replaced by the Fenchel
equalities

f)+ fwv)=vly, gla)+g"(p) =p"z. (7)

We refer to a tuple (z,y, i, v) that satisfies (7)) as Fenchel feasible. To verify the statement,
we add the two equations in (), which yields

FW)+ () +g(@) +g" (1) =y v+a"p=(Az)"v — 2" ATv = 0.



The Fenchel equalities ([7)) are is also equivalent to

vedf(y), nedg(r), (8)

where 0 denotes the subdifferential, which follows because
vedf(y) & suw (v —f(2) =vly—fly) & fly) + f(v) =

In the sequel we will assume that strong duality holds, meaning that there exists a tuple
(x*,y*, pu*, v*) which satisfies all three optimality conditions.

3 Algorithm

3.1 Graph projection splitting

In [PB13a] Parikh et al. apply ADMM [BPCT11, §5] to the problem of minimizing f(y) +
g(x), subject to the constraint (z,y) € G. This yields the graph projection splitting algo-
rithm [

Algorithm 1 Graph projection splitting

Input: A, f, g
1: Initialize (2°,9°,2° 3°) =0, k=0
2: repeat
3 (M2 YY) = (prox (af — i%), prox,(yt — §))
4 (2+1, k+1) ( KH1/2 4k kL2 4 gk
5: ( k+1 ~k+1) ( 4 Ik+1/2 _ ka, ?jk + yk+1/2 _ yk+1>
6 k= k +1
7: until converged

The variable k is the iteration counter, z*t! zFt1/2 € R™ and y**+!, y**1/2, € R™ are pri-
mal variables, 7**! € R™ and ¢**! € R™ are scaled dual variables, IT denotes the (Euclidean)
projection onto the graph G,

prox;(v) = argmin (£(4) +(¢/2) |y — ;)

is the proximal operator of f (and similarly for g), and p > 0 is the proximal parameter.
The projection II can be explicitly expressed as the linear operator

(e, d) = K- {C%“Td} K= L{l iﬂ . (9)

Roughly speaking, in steps 3 and 5, the z (and Z) and y (and g) variables do not mix;
the computations can be carried out in parallel. The projection step 4 mixes the z,z and
Y,y variables.



General convergence theory for ADMM [BPCT11), §3.2] guarantees that (with our as-
sumption on the existence of a solution)

(P M) — (@2 R ) 0, F(yF) + gt = pt, @ 5F) — (@590, (10)

as k — oo.

3.2 Extensions

We discuss three common extensions that can be used to speed up convergence in practice:
over-relaxation, approximate projection, and varying penalty.

Over-relaxation. Replacing /2 by az*+/2 + (1 — a)2* in the projection and dual
update steps is known as over-relaxation if & > 1 or under-relaxation if &« < 1. The algorithm
is guaranteed to converge [EB92] for any a € (0,2); it is observed in practice [OSB13]
[AHW12] that using an over-relaxation parameter in the range [1.5, 1.8] can improve practical
convergence.

Approximate projection. Instead of computing the projection II exactly one can use an
approximation II, with the only restriction that

ZZioHH(kaﬂa yk+1/2) . ﬁ(xk—irl/z7 yk+1/2)||2 < o0,

This is known as approximate projection [OSB13]. This extension is particularly useful if
the approximate projection is computed using an indirect or iterative method.

Varying penalty. Large values of p tend to encourage primal feasibility, while small values
tend to encourage dual feasibility [BPCT11} §3.4.1]. A common approach is to adjust or vary
p in each iteration, so that the primal and dual residuals are (roughly) balanced in magnitude.
When doing so, it is important to re-scale (Z¥+1, g*+1) by a factor p*/pF+L.

3.3 Feasible iterates

In each iteration, algorithm [l produces sets of points that are either primal, dual, or Fenchel
feasible. Define

pE = —pik,  oF = —pgk, V2 = (kU2 gk ghy 2 o k2 gk gk
The following statements hold.

1. The pair (zF*1, **1) is primal feasible, since it is the projection onto the graph G.



2. The pair (p**1, v8+1) is dual feasible, as long as (u°, 1Y) is dual feasible and (z°,4°) is

primal feasible. Dual feasibility implies p**! + ATvf*1 = (0, which we show using the
update equations in algorithm [Ik

Iuk-‘rl + ATVk—i-l — —p(:i’k + 1,19-%—1/2 _ l’k+1 + AT(ﬂk + yk+1/2 _ yk-i-l))
_ —p(i’k+ATgk+$k+1/2—|—ATyk+l/2— (I—i—ATA)SL’]H_l),

where we substituted y**! = Az**'. From the projection operator in (@) it follows
that (I + ATA)zh*l = ok+1/2 4 ATy*+1/2 therefore

,U,k+1+ATVk+1 — —p(i'k—FATgk) :Mk+ATVk :MO+ATVO,
where the last equality follows from an inductive argument. Since we made the as-

sumption that (u°,2°) is dual feasible, we can conclude that (u**!, %) is also dual
feasible.

3. The tuple (xF+1/2 oF+1/2 ) +1/2 1 k+1/2) ig Fenchel feasible. From the definition of the
proximal operator,

P2 — argmin (g(a) + (p/2) 2 — o+ 3]} ) 0 € Og(a %) 4 plat 2 — 0t + )
& 2 e gg(ak ).
By the same argument yrt1/2 ¢ af(yk+1/2)'

Applying the results in (I0) to the dual variables, we find v**1/2 — v* and pF+1/2 — p*,
from which we conclude that (z#+1/2 y*+1/2 k+1/2 1k41/2) i primal and dual feasible in the
limit.

3.4 Stopping criteria

In §3.3] we noted that either (] [, [6) or (l Bl [1) are sufficient for optimality. We present
two different stopping criteria based on these conditions.

Residual based stopping. The tuple (zF+1/2 y#+1/2 [ k+1/2 1k+1/2) i Fenchel feasible in
each iteration, but only primal and dual feasible in the limit. Accordingly, we propose the
residual based stopping criterion

HAl’k+1/2 . yk+1/2H2 < €pri, HATVk+1/2 +:U’k+1/2H2 < 6dual7 (11)

where the e’ and €1 are positive tolerances. These should be chosen as a mixture of

absolute and relative tolerances, such as

P — Eabs + €r01||yk+1/2||27 6dual — 6abs + 6r01’|ﬂk+1/2“2'
Reasonable values for €2 and €™ are in the range [1074,1072].

7



Gap based stopping. The tuple (z*,y*, ¥, v*) is primal and dual feasible, but only
Fenchel feasible in the limit. We propose the gap based stopping criteria

0t = ")+ g(@®) + () + gt (1*) < e,
where €5P should be chosen relative to the current objective value, i.e.,
P = 4 () + 9o

Here too, reasonable values for €*> and €' are in the range [107% 1072].

Although the gap based stopping criteria is very informative, since it directly bounds the
suboptimality of the current iterate, it suffers from the drwaback that f, g, f* and ¢* must
all have full domain, since otherwise the gap 7* can be infinite. Indeed, the gap n* is almost
always infinite when f or g represent constraints.

3.5 Implementation

Projection. There are different ways to evaluate the projection operator II, depending on
the structure and size of A.

One simple method that can be used if A is sparse and not too large is a direct sparse
factorization. The matrix K is quasi-definite, and therefore the LDLT decomposition is
well defined [Van95|]. Since K does not change from iteration to iteration, the factors L
and D (and the permutation or elimination ordering) can be computed in the first iteration
(e.g., using CHOLMOD [CDHRO0S]) and re-used in subsequent iterations. This is known as
factorization caching [BPCT11) §4.2.3] [PB13al §A.1]. With factorization caching, we get a
(potentially) large speedup in iterations, after the first one.

If A is dense, and min(m,n) is not too large, then block elimination [BV04, Appendix
C] can be applied to K [PB13al Appendix A], yielding the reduced update

"= (ATA+ D)7 (e + ATd)
yk—i-l = Axk-‘rl

if m >n, or

Y"1 i=d 4+ (AAT + 1) (Ac — d)
xk—l—l —c— AT<d _ yk—l—l)

if m < n. Both formulations involve forming and solving a system of equations in R™n(mn)xmin(m.n)
Since the matrix is symmetric positive definite, we can use the Cholesky decomposition.
Forming the coefficient matrix AT A+ I or AAT + I dominates the computatation. Here too
we can take advantage of factorization caching.

The regular structure of dense matrices allows us to analyze the computational complexity
of each step. We define ¢ = min(m,n) and p = max(m,n). The first iteration involves the
factorization and the solve step; subsequent iterations only require the solve step. The

8



computational cost of the factorization is the combined cost of computing ATA (or AAT,
whichever is smaller), at a cost of pg® flops, in addition to the Cholesky decomposition, at a
cost of (1/3)q? flops. The solve step consists of two matrix-vector multiplications at a cost
of 4pq flops and solving a triangular system of equations at a cost of ¢* flops. The total cost
of the first iteration is O(pq?) flops, while each subsequent iteration only costs O(pq) flops,
showing that we obtain a savings by a factor of ¢ flops, after the first iteration, by using
factorization caching.

For very large problems direct methods are no longer practical, at which point indirect
(iterative) methods can be used. Fortunately, as the primal and dual variables converge,
we are guaranteed that (xF1/2 y#+1/2) 5 (251 9#+1) meaning that we will have a good
initial guess we can use to initialize the iterative method to (approximately) evaluate the
projection. One can either apply CGLS (conjugate gradient least-squares) [HS52] or LSQR
[PS82] to the reduced update or apply MINRES (minimum residual) [PS75] to K directly. It
can be shown the latter requires twice the number of iterations as compared to the former,
and is therefore not recommended.

Proximal operators. Since the z,Z and y,y components are decoupled in the proximal
step and dual variable update step, both of these can be done separately, and in parallel for
x and y. If either f or g is separable, then the proximal step can be parallelized further. The
monograph [PB13b] details how proximal operators can be computed efficiently for a wide
range of functions. Typically the cost of computing the proximal operator will be negligible
compared to the cost of the projection. In particular, if f and g are separable, then the cost
will be O(m + n), and completely parallelizable.

4 Pre-conditioning and parameter selection

The practical convergence of the algorithm (i.e., the number of iterations required before it
terminates) can depend greatly on the choice of the proximal parameter p, and the scaling
of the variables. In this section we analyze these, and suggest a method for choosing p and
for scaling the variables that (empirically) speeds up practical convergence.

4.1 Pre-conditioning

Consider scaling the variables x and y in (), by E~! and D respectively, where D € R™*™
and E € R™"™ are non-singular matrices. We define the scaled variables

g=Dy, &=EFE"g,
which transforms () into

minimize  f(D'9) + g(E7)

12
subject to y = DAFEz. (12)



This is also a graph form problem, and for notational convenience, we define
A=DAE. f(§) =f(D7'9), §(&)=g(ED),
so that the problem can be written as
minimize  f(§) + §(2)
subject to y = Az.

We refer to this problem as the pre-conditioned version of (Il). Our goal is to choose D and F
so that (a) the algorithm applied to the pre-conditioned problem converges in fewer steps in
practice, and (b) the additional computational cost due to the pre-conditioning is minimal.

Graph projection splitting applied to the pre-conditioned problem (I2]) can be interpreted
in terms of the original iterates. The proximal step iterates are redefined as

2F 12 — aremin (g(:c) + (p/2)||z — o* + i‘k||%EET)—1)

yk+1/2 — argmin (f(y) + (p/2)||ly — yk + ?ij?DTD)) )
Y

and the projected iterates are the result of the weighted projection

minimize  (1/2)]|z — 252|250+ (1/2)lly — 552200,

subject to y = Az,

where ||z]|p = V2T Px for a symmetric positive-definite matrix P. This projection can be
expressed as

_ o [( _
(e, d) = K 0 K=1"prpa _prp|

EET) lc+ ATDTDd} - l(EET)‘1 ATDTD

Notice that graph projection splitting is invariant to orthogonal transformations of the
variables z and 7, since the pre-conditioners only appear in terms of D'D and FET. In
particular, if we let D = UT and £ = V, where A = UXVT, then the pre-conditioned con-
straint matrix A = DAF = X is diagonal. We conclude that any graph form problem can
be pre-conditioned to one with a diagonal non-negative constraint matrix Y. For analysis
purposes, we are therefore free to assume that A is diagonal. We also note that for orthog-
onal pre-conditioners, there exists an analytical relationship between the original proximal
operator and the pre-conditioned proximal operator. With ¢(x) = ¢(Qx), where @ is any
orthogonal matrix (QTQ = QQT = I), we have

pr0x¢(v) = QTproxsp(Qv).

While the proximal operator of ¢ is readily computed, orthogonal pre-conditioners destroy
separability of the objective. As a result, we can not easily combine them with other pre-
conditioners.

10



Multiplying D by a scalar a and dividing E by the same scalar has the effect of scaling
p by a factor of o®. It however has no effect on the projection step, showing that p can be
thought of as the relative scaling of D and E.

In the case where f and ¢ are separable and both D and E are diagonal, the proximal
step takes the simplified form

7y % = axgnin (g5(25) + (o /2) () — 25 + 73)°) =L
Tj
k : 0 )
Y; B argmin (.fZ(yz) + (p?/?)(y,- - yf + yf)z) t=1...,m,

Yi
where pJE =p/ Ejzj and pP = pDZ. Since only p is modified, any routine capable of computing
prox; and prox, can also be used to compute the pre-conditioned proximal update.
4.1.1 Effect of pre-conditioning on projection
For the purpose of analysis, we will assume that A = ¥, where Y is a non-negative diagonal

matrix. The projection operator simplifies to

H(e.d) (I+XTy)! (I+ETE)—1ZT] m

(I+230)71y (I+ 387~ 1ux?

which means the projection step can be written explicitly as

1
x?—i—l = 7( k+1/2 + + O-Z(yk+1/2 + gf)) 1 S Z S min(mv n)
1+o0?
ot = g;f“/z + ¥ min(m,n) <i<n
0; ~ - . .
gt = @ i oy T ) 1 <4 < min(m,n)
1+ o?
Yt =0 min(m,n) <i < m,
where o; is the ith diagonal entry of ¥ and subscripted indices of x and y denote the ith
entry of the respective vector. Notice that the projected variables xk“ and ka are equally

k+1/2 k+1/2

dependent on (z; + z¥) and o;(y, + §¥). If o; is either significantly smaller or larger
than 1, then the terms xk“ and "+ will be dominated by either (2} 1/2 +7%) or (yf+1/2+yi ).

However if o; = 1, then the projection step exactly averages the two quantities

1
PhL = gl 5( gF T2 gk g B P2 gy 1 <i < min(m,n).

As we pointed out in §3] the projection step mixes the variables z and y. For this to
approximately reduce to averaging, we need o; ~ 1.

11



4.1.2 Choosing D and F

The analysis suggests that the algorithm will be fast when the singular values of DAFE are
all near one, 7.e.,

cond(DAE) ~ 1, |DAE|;=~ 1. (13)

(This claim is also supported in [GBI4c], and is consistent with our computational experi-
ence.) Pre-conditioners that exactly satisfy these conditions can be found using the singular
value decomposition of A. They will however be of little use, since such pre-conditioners
generally destroy our ability to evaluate the proximal operators of f and ¢ efficiently.

So we seek choices of D and E for which (I3]) holds (very) approximately, and for which
the proximal operators of f and ¢ can still be efficiently computed. We now specialize to
the special case when f and g are separable. In this case, diagonal D and E are candidates
for which the proximal operators are still easily computed. (The same ideas apply to block
separable f and g, where we impose the further constraint that the diagonal entries within
a block are the same.) So we now limit ourselves to the case of diagonal pre-conditioners.

Diagonal matrices that minimize the condition number of DAFE, and therefore approxi-
mately satisfy the first condition in (I3)), can be found exactly, using semidefinite program-
ming [BEGEFB94, §3.1]. But this computation is quite involved, and may not be worth the
computational effort since the conditions (I3]) are just a heuristic for faster convergence.
(For control problems, where the problem is solved many times with the same matrix A, this
approach makes sense; see [GB144].)

A heuristic that tends to minimize the condition number is to equilibrate the matrix,
1.e., choose D and E so that the rows all have the same p-norm, and the columns all have
the same p-norm. (Such a matrix is said to be equilibrated.) This corresponds to finding D
and F so that

|DAEP1 = o1, 17|DAE]P = p17,

where «, 5 > 0. Here the notation |-|” should be understood in the elementwise sense. Various
authors [OSB13], [COPB13], [Bral(] suggest that equilibration can decrease the number of
iterations needed for operator splitting and other first order methods. One issue that we
need to address is that not every matrix can be equilibrated. Given that equilibration is
only a heuristic for achieving o;(DAFE) & 1, which is in turn a heuristic for fast convergence
of the algorithm, partial equilibration should serve the same purpose just as well.

Sinkhorn and Knopp [SK67] suggest a method for matrix equilibration for p < oo, and A
is square and has full support. In the case p = oo, the Ruiz algorithm |[Rui01] can be used.
Both of these methods fail (as they must) when the matrix A cannot be equilibrated. We
give below a simple modification of the Sinkhorn-Knopp algorithm, modified to handle the
case when A is non-square, or cannot be equilibrated.

Choosing pre-conditioners that satisfy ||[DAFE||s = 1 can be achieved by scaling D and
E by 0max(DAE)™ and o (DAE)I™! respectively for ¢ € R. The quantity oya(DAE)
can be approximated using power iteration, but we have found it is unnecessary to exactly
enforce || DAFE|l2 = 1. A more computationally efficient alternative is to replace o (DAFE)

12



by [|[DAE| p/+/min(m,n). This quantity coincides with o (DAFE) when cond(DAE) =
1. If DAE is equilibrated and p = 2, this scaling corresponds to (DAE)T(DAE) (or
(DAE)(DAE)T when m < n) having unit diagonal.

4.2 Regularized equilibration

In this section we present a self-contained derivation of our matrix-equilibration method. It
is similar to the Sinkhorn-Knopp algorithm, but also works when the matrix is non-square
or cannot be exactly equilibrated.

Consider the convex optimization problem with variables u and v,

minimize Y Y " [Ay[Pe i —n1Tu —m1Tv 4y [(1/m) Y e 4 (1/n) > e,

i=1 j=1 =1 i

(14)

where 7 > 0 is a regularization parameter. The objective is bounded below for any v > 0.
The optimality conditions are

Z | APt —n+ (1/m)ye" =0, i=1,...,m
j=1

S AP —mt (L/n)ye =0, j=1,...,n.

i=1
By defining D;; = e%/? and E;-’j = ¢%/P_ these conditions are equivalent to
|DAEP1 + (1/m)yD1 =nl, 17|DAEP + (1/n)y1TE = m17”.

When v = 0, these are the conditions for a matrix to be equilibrated. The objective may
not be bounded when v = 0, which exactly corresponds to the case when the matrix cannot
be equilibrated. As v — oo, both D and E converge to the scaled identity matrix (mn/v)I,
showing that ~ can be thought of as a regularizer on the elements of D and E. If D and FE
are optimal, then the two equalities

17|DAE[P1 + (1/m)y1" D1 = mn, 17|DAE[P1 + (1/n)y1TE1 = mn
must hold. Subtracting the one from the other, and dividing by =, we find the relationship
(1/m)1TD1 = (1/n)17E1,

implying that the average entry in D and FE is the same.
There are various ways to solve the optimization problem (I4]), one of which is to apply
coordinate descent. Minimizing the objective in (I4]) with respect to u; yields

S e AP + (v/m)e =n e et = ————
j=1 Zj:1 € |Aij|p + (V/m)

13

n




and equivalently for v;

m
eVt = )

k—1
i€t Ayl + (v/n)
Since the minimization with respect to uf is independent of u¥ |, the update can be done in
parallel for each element of u, and similarly for v. Repeated minimization over v and v will
eventually yield values that satisfy the optimality conditions. Algorithm Pl summarizes the
equilibration routine.

Algorithm 2 Regularized Sinkhorn-Knopp
Input: A,e >0,v>0

1: Initialize €® := 1, k:=0

2: repeat

3 k=k+1
4: d* :=n diag(|A[Pe* + (v/m)1)711
)
6
7

e? .= m diag(|AT|Pd* + (y/n)1)711
. until [[e* — Y|, < eand ||[dF — dF Yy < e
. return D := diag(d*)'/?, E := diag(e*)'/?

4.3 Adaptive penalty update

The projection operator 1I does not depend on the choice of p, so we are free to update p in
each iteration, at no extra cost. While the convergence theory only holds for fixed p, it still
applies if one assumes that p becomes fixed after a finite number of iterations [BPC™11].

As a rule, increasing p will decrease the primal residual, while decreasing p will decrease
the dual residual. The authors in [HYWO00],[BPCT11] suggest adapting p to balance the
primal and dual residuals. We have found that substantially better practical convergence
can be obtained using a variation on this idea. Rather than balancing the primal and dual
residuals, we allow either the primal or dual residual to approximately converge and only
then start adjusting p. Based on this observation, we propose the following adaptive update
scheme.

Once either the primal or dual residual converges, the algorithm begins to steer p in a
direction so that the other residual also converges. By making small adjustments to p, we
will tend to remain approximately primal (or dual) feasible once primal (dual) feasibility has
been attained. Additionally by requiring a certain number of iterations between an increase
in p and a decrease (and vice versa), we enforce that changes to p do not flip-flop between
one direction and the other. The parameter 7 determines the relative number of iterations
between changes in direction.
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Algorithm 3 Adaptive p update

Input: § > 1, 7 € (0,1],
1: Initialize [ := 0, u:=0
2: repeat
3: Apply graph projection splitting
if [|ATYR+Y2 4 k412, < edval and 7k > [ then
P = 5ok
u:=k
else if ||AxF+1/2 — ¢F+1/2||, < €' and 7k > u then
o= (1/8)p"
9: l:=k
10: until ||ATVk+1/2 —I—,uk"'l/2||2 < edual g4 ||A:l?k+1/2 _ yk+1/2||2 < ePri

5 Implementation

Proximal Graph Solver (POGS) is an open-source (BSD-3 license) implementation of graph
projection splitting, written in C4++. It supports both GPU and CPU platforms and includes
wrappers for C, MATLAB, and R. POGS handles all combinations of sparse/dense matrices,
single/double precision arithmetic, and direct/indirect solvers, with the exception (for now)
of sparse indirect solvers. The only dependency is a tuned BLAS library on the respective
platform (e.g., cuBLAS or the Apple Accelerate Framework). The source code is available
at

https://github.com/cvxgrp/pogs

In lieu of having the user specify the proximal operators of f and g, POGS contains a
library of proximal operators for a variety of different functions. It is currently assumed that
the objective is separable, in the form

fly) +g(x) = Z filys) + Zgj(a?j),

where f;,g; : R = R U {oo}. The library contains a set of base functions, and by applying
various transformations, the range of functions can been greatly extended. In particular we
use the parametric representation

fily) = cihi(ay; — b;) + diyi + (1/2)esy?,

where a;,b;,d; € R, ¢;,e; € Ry, and h; : R — R U {co}. The same representation is also
used for g;. It is straightforward to express the proximal operators of f; in terms of the
proximal operator of h; using the formula

1

prox (1) = & (prom, oyt (a 00 = ) e+ 0) =) ),
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where for notational simplicity we have dropped the index 7 in the constants and functions.
It is possible for a user to add their own proximal operator function, if it is not in the current
library. We note that the separability assumption on f and g is a simplification, rather than
a limitation of the algorithm. It allows us to apply the proximal operator in parallel using
either CUDA or OpenMP (depending on the platform).

The constraint matrix is equilibrated using algorithm 2, with a choice of p = 2 and
v = (m—+n)Ve™P, where e is machine epsilon. Both D and E are rescaled evenly, so that
they satisfy |DAFE||r/+/min(m,n) = 1. The projection II is computed as outlined in §3.5
We work with the reduced update equations in all versions of POGS. In the indirect case,
we chose to use CGLS. The parameter p is updated according to algorithm Bl Empirically,
we found that (J, 7) = (1.05, 0.8) works well. We also use over-relaxation with o = 1.7.

POGS supports warm starting, whereby an initial guess for 2° and/or v° may be supplied
by the user. If only 2° is provided, then v will be estimated, and vice-versa. The warm-start
feature allows any cached matrices to be used to solve additional problems with the same
matrix A.

POGS returns the tuple (z#+1/2 yF+1/2 k4172 1 k+1/2) "since it has finite primal and dual
objectives. The primal and dual residuals will be non-zero and are determined by the spec-
ified tolerances.

Future plans for POGS include extension to block-separable f and ¢ (including general
cone solvers), additional wrappers for Julia and Python, support for a sparse direct solver,
and a multi-GPU extension.

6 Numerical results

To highlight the robustness and general purpose nature of POGS, we tested it on 9 different
problem classes using random data, as well as a radiation treatment planning problem using
real-world data.

All experiments were performed in single precision arithmetic on a machine equipped
with an Intel Core i7-870, 16GB of RAM, and a Tesla K40 GPU. Timing results include the
data copy from CPU to GPU.

We compare POGS to SDPT3 [TTT99], an open-source solver that handles linear, second-
order, and positive semidefinite cone programs. Since SDPT3 uses an interior-point algo-
rithm, the solution returned will be of high precision, allowing us to verify the accuracy of
the solution computed by POGS. Problems that took SDPT3 more than 150 seconds (of
which there were many) were aborted.

6.1 Random problem classes

We considered the following 9 problem classes: Basis pursuit, Entropy maximization, Huber
fitting, Lasso, Logistic regression, Linear programming, Non-negative least-squares, Portfo-
lio optimization, and Support vector machine fitting. For each problem class, reasonable
random instance were generated and solve; details about problem generation can be found
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in Appendix [Al For each problem class the number of non-zeros in A was varied on a loga-
rithmic scale from 100 to 2 Billion. The aspect ratio of A also varied from 1:10 to 10:1, with
the orientation (wide or tall) chosen depending on what was reasonable for each problem.
We report running time averaged over all aspect ratios.

The maximum number of iterations was set to 10%, but all problems converged in fewer
iterations, with most problems taking a couple of hundred iterations. The relative tolerance
was set to 1072, and where solutions from SDPT3 were available, we verified that the solu-
tions produced by both solvers matched to 3 decimal places. We omit SDPT3 running times
for problems involving exponential cones, since SDPT3 does not support them.

Figure [Il compares the running time of POGS versus SDPT3, for problems where the
constraint matrix A is dense. We can make several general observations.

e POGS solves problems that are 3 orders of magnitude larger than SDPT3 in the same
amount of time.

e Problems that take 200 seconds in SDPT3 take 0.5 seconds in POGS.
e POGS can solve problems with 2 Billion non-zeros in 10-50 seconds.

e The variation in solve time across different problem classes was similar for POGS and
SDPT3, around one order of magnitude.

In summary, POGS is able to solve much larger problems, much faster (to moderate preci-
sion).

6.2 Radiation treatment planning

Radiation treatment is used to radiate tumor cells in cancer patients. The goal of radiation
treatment planning is to find a set of radiation beam intensities that will deliver a specified
radiation dosage to tumor cells, while minimizing the impact on healthy cells. The problem
can be stated directly in graph form, with = corresponding to the n beam intensities to
be found, y corresponding to the radiation dose received at the m voxels, and the matrix
A (whose elements are non-negative) giving the mapping from the beams to the received
dosages at the voxels. This matrix comes from geometry, including radiation scattering
inside the patient [AHIMOG]. The objective ¢ is the indicator function of the non-negative
orthant (which imposes the constraint that x; > 0), and f is a separable function of the
form

Filyi) = wy; i corresponds to a non-tumor voxel
iWYi) = w; max(d; — y;, 0) + w;” max(y; — d;,0) i corresponds to a tumor voxel,

where w;” > 0 is the (given) weight associated with overdosing voxel i, where w; > 0 is the
(given) weight associated with underdosing voxel i, and d; > 0 is the target dose, given for
each tumor voxel. We can also add the redundant constraint y; > 0 by defining f;(y;) = oo
for y; < 0.
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POGS vs. SDPT3 time
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Figure 1: POGS (GPU version) vs. SDPT3 for dense matrices (color represents problem class).

We present results for one instance of this problem, with m = 360000 voxels and n = 360
beams. The matrix A comes from a real patient, and the objective parameters are chosen
to achieve a good clinical plan. The problem is small enough that it can be solved (to high
accuracy) by an interior-point method, in around one hour. POGS took a few seconds to
solve the problem, producing a solution that was extremely close to the one produced by the
interior-point method. In warm start mode, POGS could solve problem instances (obtained
by varying the objective parameters) in under one second, allowing for real-time tuning of
the treatment plan (by adjusting the objective function weights) by a radiation oncologist.
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A Problem generation details

In this section we describe how the problems in 6.1l were generated.
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A.1 Basis pursuit

The basis pursuit problem [CDS98] seeks the smallest vector in the f;-norm sense that
satisfies a set of underdetermined linear equality constraints. The objective has the effect of
finding a sparse solution. It can be stated as

minimize ||z
subject to b= Az,

with equivalent graph form representation

minimize I(y =b) + ||z||,
subject to y = Ax.

The elements of A were generated as A;; ~ N(0,1). To construct b we first generated a

vector v € R" as
‘ 0 with probability p = 1/2
Vi N(0,1/n) otherwise,

we then let b = Av. In each instance we chose m > n.

A.2 Entropy maximization

The entropy maximization problem [BV04] seeks a probability distribution with maximum
entropy that satisfies a set of m affine inequalities, which can be interpreted as bounds on
the expectations of arbitrary functions. It can be stated as

maximize — Y . x;logz;
subject to 1Tz =1, Az <,

with equivalent graph form representation
minimize  I(Y1m < b) + (Y1 = 1) + >0 7 log a;

. A
subject to y = 17|

The elements of A were generated as A;; ~ N (0,n). To construct b, we first generated a
vector v € R™ as v; ~ U[0, 1], then we set b = Fv/(17v). This ensures that there exists a
feasible x. In each instance we chose m < n.

A.3 Huber fitting

Huber fitting or robust regression [Hub64] performs linear regression under the assumption
that there are outliers in the data. The problem can be stated as

minimize Y ;- huber(b; — a!z),
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where the Huber loss function is defined as

(1/2)a? lz] <1

huber(x) :{ x| = (1/2) |z > 1

The graph form representation of this problem is

minimize >  huber(b; — y;)
subject to y = Az,

The elements of A were generated as A;; ~ N (0,n). To construct b, we first generated a
vector v € R™ as v; ~ N (0,1/n) then we generated a noise vector € with elements

' N(0,1/4) with probability p = 0.95
! U|0,10] otherwise.

Lastly we constructed b = Av + €. In each instance we chose m > n.

A.4 Lasso

The lasso problem [Tib96] seeks to perform linear regression under the assumption that the
solution is sparse. An ¢; penalty is added to the objective to encourage sparsity. It can be
stated as

minimize ||Az — b||3 + A||z||1,
with graph form representation

minimize ||y — blls + Al|z1

subject to y = Ax.

The elements of A were generated as A;; ~ N(0,1). To construct b we first generated a
vector v € R", with elements

o with probability p = 1/2
Vi N(0,1/n) otherwise.

We then let b = Av + e, where ¢ represents the noise and was generated as &; ~ N(0,1/4).
The value of A was set to (1/5)||ATb]|s. This is a reasonable choice since ||ATb||s is the
critical value of A above which the solution of the Lasso problem is x = 0. In each instance
we chose m < n.

20



A.5 Logistic regression

Logistic regression [HTF09) fits a probability distribution to a binary class label. Similar to
the Lasso problem ([A.4]) a sparsifying ¢; penalty is often added to the coefficient vector. It
can be stated as
minimize Y., (log(1 + exp(z’a;)) — biz"a;) + A|z|),

where b; € {0, 1} is the class label of the ith sample, and a! is the ith row of A. The graph
form representation of this problem is

minimize Y. (log(1 + exp(y;)) — biyi) + Aljz]|1,

subject to y = Ax.

The elements of A were generated as A;; ~ N(0,1). To construct b we first generated a
vector v € R, with elements

4 0 with probability p = 1/2
vi N(0,1/n) otherwise.
We then constructed the entries of b as
b { 0 with probability p = 1/(1 + exp(—alv))

1 otherwise.

The value of A was set to (1/10)[|AT((1/2)1 — b)||eo- (|AT((1/2)1 —b)|| is the critical of A
above which the solution is x = 0.) In each instance we chose m > n.

A.6 Linear program

Linear programs [BV04] seek to minimize a linear function subject to linear inequality con-
straints. It can be stated as
minimize ¢’
subject to Ax <b,
and has graph form representation
minimize ¢’z + I(y < b)
subject to y = Ax.
The elements of A were generated as A;; ~ N(0,1). To construct b we first generated a
vector v € R", with elements

We then generated b as b = Av + ¢, where ¢; ~ UJ0,1/10]. The vector ¢ was constructed in
a similar fashion. First we generate a vector u € R, with elements

Uy ~ U[O, ]_],

then we constructed ¢ = —ATw. This method guarantees that the problem is bounded. In
each instance we chose m > n.
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A.7 Non-negative least-squares

Non-negative least-squares [CP09| seeks a minimizer of a least-squares problem subject to
the solution vector being non-negative. This comes up in applications where the solution
represents real quantities. The problem can be stated as

minimize ||Az — b2
subject to x >0,

and has graph form representation

minimize ||y — b||3 + I(z > 0)
subject to y = Ax.

The elements of A were generated as A;; ~ N(0,1). To construct b we first generated a
vector v € R, with elements

v; ~ N(1/n,1/n).

We then generated b as b = Av+e¢, where ¢; ~ N(0,1/4). In each instance we chose m > n.

A.8 Portfolio optimization

Portfolio optimization or optimal asset allocation seeks to maximize the risk adjusted return
of a portfolio. A common assumption is the k-factor risk model [CK93|, which states that
the return covariance matrix is the sum of a diagonal plus a rank k& matrix. The problem

can be stated as
maximize p’2 — 2 (FFT + D)x

subject to x >0, 172 =1
where F' € R™* and D is diagonal. An equivalent graph form representation is given by
minimize — 27 p+y2" Dz + I(x > 0) + vy, v1m + I (Yme1 = 1)
FT
subject to y = {171] x.
The elements of A were generated as A;; ~ N (0,1). The diagonal of D was generated as

Dy; ~ U[0,Vk] and the the mean return p was generated as u; ~ N(0,1). The risk aversion
factor v was set to 1. In each instance we chose n > k.

A.9 Support vector machine

The support vector machine [CV95] problem seeks a separating hyperplane classifier for a
problem with two classes. The problem can be stated as

minimize 2”2 + AY_ ", max(0, balx + 1),
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where b; € {—1,+1} is a class label and a! is the ith row of A. It has graph form represen-

tation

minimize  AY_ ;- max(0,y; + 1) + 2’z

subject to y = diag(b)Ax.

The vector b was chosen to so that the first m/2 elements belong to one class and the second

m/2 belong to the other class. Specifically

b +1 i<m/2
‘1 —1 otherwise.

Similarly, the elements of A were generated as

Aij’\’{ N(+1/n,1/n) zgm/Q

N(=1/n,1/n) otherwise.

This choice of A causes the rows of A to form two distinct clusters.

chose m > n.
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