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Abstract In the present paper we obtain an anisotropic analogue of Durgapal-
Fuloria [1] perfect fluid solution. The methodology consists of contraction of anisotropic
factor ∆ by the help of both metric potentials eν and eλ. Here we consider eλ same
as Durgapal-Fuloria [1] whereas eν is that given by Lake [2]. The field equations
are solved by the change of dependent variable method. The solutions set math-
ematically thus obtained are compared with the physical properties of some of
the compact stars, strange star as well as white dwarf. It is observed that all the
expected physical features are available related to stellar fluid distribution which
clearly indicate validity of the model.

Keywords General relativity, anisotropic fluid, compact stars

1 Introduction

Few decades ago a new analytic relativistic model was obtained by Durgapal and
Fuloria [1] for superdense stars in the framework of Einstein’s General Theory of
Relativity. They showed that the model in connection to neutron star stands all the
tests of physical reality with the maximum mass 4.17 M⊙ and the surface redshift
0.63. Very recently Gupta and Maurya [3] presented a class of charged analogues of
superdense star model due to Durgapal and Fuloria [1] under the Einstein-Maxwell
spacetimes. The members of this class have been shown to satisfy various physical
conditions and exhibit features (i) with the maximum mass 3.2860 M⊙ and the
radius 18.3990 km for a particular interval of the parameter 1 < K ≤ 1.7300, and
(ii) with the maximum mass 1.9672 M⊙ and the radius 15.9755 km for another
interval of the parameter 1 < K ≤ 1.1021. Later on a family of well behaved
charged analogues of Durgapal and Fuloria [1] perfect fluid exact solution was also
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obtained by Murad and Fatema [4] where they have studied the Crab pulsar with
radius 13.21 km.

In a similar way we have considered a generalization of Durgapal and Fuloria [1]
with anisotropic fluid sphere such that pr 6= pt, where pr and pt respectively are
radial and tangential pressures of fluid distribution. The present work is a sequel
of the paper [5] where we have developed a general algorithm in the form of
metric potential ν for all spherically symmetric charged anisotropic solutions in
connection to compact stars. However, in the present study without considering
any anisotropic function we can develop algorithm by the help of metric potentials
only and here lies the beauty of the investigation. Another point we would like
to add here that till now, as far as our knowledge is concerned, no alternative
anisotropic analogue of Duragapal-Fuloria [1] solution is available in the literature.

In connection to anisotropy we note that it was Ruderman [6] who argued
that the nuclear matter may have anisotropic features at least in certain very
high density ranges (> 1015 gm/cm3) and thus the nuclear interaction can be
treated under relativistic background. Later on Bowers and Liang [7] specifically
investigated the non-negligible effects of anisotropy on maximum equilibrium mass
and surface redshift. In this regard several recently performed anisotropic compact
star models may be consulted for further reference [8,9,10,11,12,13,14,15,16]. We
also note some special works with anisotropic aspect in the physical system like
Globular Clusters, Galactic Bulges and Dark Halos in the Refs. [17,18].

As a special feature of anisotropy we note that for small radial increase the
anisotropic parameter increases. However, after reaching a maximum in the interior
of the star it becomes a decreasing function of the radial distance as shown by Mak
and Harko [19,20]. Obviously at the centre of the fluid sphere the anisotropy is
expected to vanish.

We would like to mention that algorithm for perfect fluid and anisotropic un-
charged fluid is already available in the literature [2,21,22]. As for example, we
note that in his work Lake [2,21] has considered an algorithm based on the choice
of a single monotone function which generates all regular static spherically sym-
metric perfect as well as anisotropic fluid solutions under the Einstein spacetimes.
It is also observed that Herrera et al. [22] have extended the algorithm to the case
of locally anisotropic fluids. Thus we opt for an algorithm to a more general case
with anisotropic fluid distribution. However, in this context it is to note that in
the Ref. [5] we developed an algorithm in the Einstein-Maxwell spacetimes.

The outline of the present paper can be put as follows: in Sec. 2 the Einstein
field equations for anisotropic stellar source are given whereas the general solutions
are shown in Sec. 3 along with the necessary matching condition. In Sec. 4 we
represent interesting features of the physical parameters which include density,
pressure, stability, charge, anisotropy and redshift. As a special study we provide
several data sheets in connection to compact stars. Sec. 5 is used as a platform for
some discussions and conclusions.

2 The Einstein field equations

In this work we intend to study a static and spherically symmetric matter distri-
bution whose interior metric is given in Schwarzschild coordinates, xi = (r, θ, φ, t)
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[23,24]

ds2 = −eλ(r)dr2 − r2(dθ2 + sin2θdφ2) + eν(r)dt2. (1)

The functions ν and λ satisfy the Einstein field equations,

κT i
j = Ri

j −
1

2
Rgij . (2)

where κ = 8π is the Einstein constant with G = 1 = c in relativistic geometrized
unit, G and c respectively being the Newtonian gravitational constant and velocity
of photon in vacua.

The matter within the star is assumed to be locally anisotropic fluid in nature
and consequently T i

j is the energy-momentum tensor of fluid distribution defined
by

T i
j = [(ρ+ pr)v

ivj − ptδ
i
j + (pr − pt)θ

iθj ], (3)

where vi is the four-velocity as eλ(r)/2vi = δi4, θ
i is the unit space like vector

in the direction of radial vector, θi = eλ(r)/2δi1 is the energy density, pr is the
pressure in direction of θi (normal pressure) and pt is the pressure orthogonal to
θi (transverse or tangential pressure).

For the spherically symmetric metric (1), the Einstein field equations may be
expressed as the following system of ordinary differential equations [25]

− κT 1
1 =

ν′

r
e−λ − (1− e−λ)

r2
= κpr, (4)

− κT 2
2 = −κT 3

3 =

[

ν′′

2
− λ′ν′

4
+
ν′

2

4
+
ν′ − λ′

2r

]

e−λ = κpt, (5)

κT 4
4 =

λ′

r
e−λ +

(1− e−λ)

r2
= κρ, (6)

where the prime denotes differential with respect to radial coordinate r.
The pressure anisotropy condition for the system can be provided as

∆ = κ (pt − pr) =

[

ν′′

2
− λ′ν′

4
+
ν′

2

4
+
ν′ − λ′

2r

]

e−λ − ν′

r
e−λ +

(1− e−λ)

r2
. (7)

Now let us consider the metric potentials [1] in the following forms:

e−λ =
7− 10Cr2 −C2r4

7 + 14Cr2 + 7C2r4
, (8)

ν = 2 lnψ, (9)

where C is a positive constant and ψ is a function which depends on radial coor-
dinate r. The nature of plots for these quantities are shown in Fig. 1.

The above Eq. (7) together with Eqs. (8) and (9) becomes

∆ =

[

7− 10Cr2 − C2r4

7(1 + Cr2)2

]

ψ′′

ψ
+

[

C3r6 + 19C2r4 − 21Cr2 − 7

7r(1 + Cr2)3

]

ψ′

ψ
+

[

8C2r2(Cr2 + 5)

7(1 + Cr2)3

]

.

(10)
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Fig. 1 Variation of the metric potentials with radial coordinate r/R are shown in the above
figure. Here the legends are as follows: (i) eν is plotted with dotted line for Her X-1 and short-
dashed line for white dwarf, (ii) eλ is plotted with continuous line for Her X-1 and long-dashed
line for white dwarf
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Fig. 2 Variation of the anisotropy factor with radial coordinate r/R are shown in figure. Here
the legends are as follows: (i) ∆ is plotted with short-dashed line for Her X-1, (ii) ∆ is plotted
with continuous line for white dwarf

3 The solutions for the model

Here our initial aim is to find out the pressure anisotropic function∆, which is zero
at the centre and monotonic increasing for suitable choices of ψ. However, Lake
[2] imposes condition that ψ should be regular and monotonic increasing function
of radial coordinate r.

Let us therefore take the form of ψ as follows:

ψ = (1− α+ Cr2)2, (11)

where α > 0.
Substituting the value of ψ from Eq. (11) in Eq. (10), we get

∆ = −8

7

αC2r2[2C2r4 + (16− α)Cr2 − 5α− 2]

(1 + Cr2)3 (1− α+ Cr2)2
. (12)
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For α > 0 and 0 < Cr2 <
√
α2+8α+272−(16−K)

4 , the pressure anisotropy is finite
as well as positive everywhere as can be seen in Fig. 2.

By inserting the above value of ∆ in the Eq. (12), we get

ψ′′ +

[

C3r6 + 19C2r4 − 21Cr2 − 7

r(1 + Cr2)(7− 10Cr2 − C2r4)

]

ψ′

+
1

7− 10Cr2 − C2r4

[

8C2r2(Cr2 + 5)

(1 + Cr2)
+

8αC2r2[2C2r4 + (16− α)Cr2 − (5α+ 2)]

(1 + Cr2)(1− α+ Cr2)2

]

ψ = 0.(13)

Now our next task is to obtain the most general solution of the differential Eq.
(13). Here we shall use the change of dependent variable method. We consider the
differential equation of the form

y′′ + p(r)y′ + q(r)y = 0. (14)

Let y = y1 be the particular solution of the differential Eq. (14). Then y = y1U

will be complete solution of the differential Eq. (14), where

U = a1 + b1

∫

exp

[

−
∫

(p(r) +
2y′

y1
)dr

]

dr,

where a1 and b1 are arbitrary constants.
Again let us consider here that ψ = (1−α+Cr2)2 = ψαr is a particular solution

of Eq. (13). So, the most general solution of the differential Eq. (13) can be given
by

ψ = (1−α+Cr2)2
[

B̃ + Ã

∫

exp

{

−
∫

(

C3r6 + 19C2r4 − 21Cr2 − 7

r(1 + Cr2)(7− 10Cr2 − C2r4)
+

8Cr2

r(1− α+ Cr2)

)

dr

}

dr

]

,

(15)
where Ã and B̃ are arbitrary constants.

After integrating it, we get

ψ = ψαr

[

B −A

{

{ψα1 + ψα2(1− α+ Cr2) + ψα3ψαr}
√

(ψα5 − 2(4 + α)(1− α+ Cr2)− ψαr)

(1− α+ Cr2)3
+W (r)

}]

,

(16)
where

ψαr = (1− α+ Cr2)2, (17)

W (r) =
ψα4√
ψα5

log

[

ψα5 − (4 + α)(1− α+ Cr2) +
√
ψα5

√

(ψα5 − 2(4 + α)(1− α+ Cr2)− ψαr)

(1− α+ Cr2)ψα5

]

,

(18)
and A and B are arbitrary constants with

ψα1 = α
3(16−8α−α2)

,

ψα2 = 24−2α+α2

3(16−8α−α2)2
,

ψα3 = 288+80α−10α2+α3

3(16−8α−α2)3
,
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ψα4 = 1536−384α+48α2−2α3

3(16−8α−α2)3
,

ψα5 = (16− 8α− α2).

Using Eqs. (8), (12) and (16) the expressions for energy-density and pressure
read as

κρ

C
=

8(9+ 2Cr2 + C2r4)

7(1 + Cr2)3
, (19)

7.0

7.4

7.8

8.2

8.6

9.0

9.4

9.8

10.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

�

r/R 

Fig. 3 Variation of the density with radial coordinate r/R are shown in figure. Here the
legends are as follows: (i) ρ is plotted with continuous line for Her X-1 (ii) ρ is plotted with
dashed line for white dwarf
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κpr
C

=
4(7− 10Cr2 − C2r4)

7(1 + Cr2)2

[

ψpr(1− α+ Cr2)3 + 2ψ

ψ(1− α+ Cr2)

]

− 8(Cr2 + 3)

7(1 + Cr2)2
, (20)

where

ψpr =
A(1 + Cr2)

(1− α+ Cr2)4
√

(7− 10Cr2 − Cr2)
. (21)
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Fig. 5 Variation of the density with radial coordinate r/R are shown in figure. Here the
legends are as follows: (i) pr/ρ is plotted with short-dashed line for Her X-1 and continuous
line for white dwarf (left panel), (ii) pt/ρ is plotted with short-dashed line for Her X-1 and
continuous line for white dwarf (right panel)

In the Figs. 3-5 we have plotted the nature of the above physical quantities
which show viable features of the present model.

3.1 Matching condition

The above system of equations is to be solved subject to the boundary condition
that radial pressure pr = 0 at r = R (where r = R is the outer boundary of
the fluid sphere). It is clear that m(r = R) = M is a constant and, in fact, the
interior metric (2.1) can be joined smoothly at the surface of spheres (r = R), to
an exterior Schwarzschild metric whose mass is same as above i.e. m(r = R) =M

[26].
The exterior spacetime of the star will be described by the Schwarzschild metric

given by

ds2 = −
(

1− 2M

r

)−1

dr2 − r2(dθ2 + sin2θdφ2) +
(

1− 2M

r

)

dt2. (22)

Continuity of the metric coefficients gtt, grr across the boundary surface r =
R between the interior and the exterior regions of the star yields the following
conditions:

(

1− 2M

R

)−1

= eλ(R), (23)
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(

1− 2M

r

)

= ψ2
R, (24)

where ψ(r = R) = ψR.
Equations (23) and (24) respectively give

M =
R

2

[

8CR2(3 + CR2)

7(1 + CR2)2

]

, (25)

A =

√
7− 10CR2 − C2R4

√
7(1 + CR2)ψαR(

B
A −Ω(R))

. (26)

The radial pressure pr is zero at the boundary (r = R) provides

B

A
=

(1 + CR2)
√
7− 10CR2 − C2R2

2(1− α+ CR2)3[(1− α+ CR2)(3 + CR2)− (7− 10CR2 − C2R4)]
Ω(R),

(27)
where

ψαR = (1− α+ CR2)2, (28)

Ω(R) =
{ψα1 + ψα2(1− α+ CR2) + ψα3ψαR}

√

ψα5 − 2(4 + α)(1− α+ CR2)− ψαR

(1− α+ CR2)3
+W (R),

(29)

W (R) =
ψα4√
ψα5

log

[

ψα5 − (4 + α)(1− α+ CR2) +
√
ψα5

√

ψα5 − 2(4 + α)(1− α+ CR2)− ψαR

(1− α+ CR2)ψα5

]

.

(30)

4 Some physical features of the model

4.1 Regularity at centre

The density ρ and radial pressure pr and tangential pressure pt should be positive
inside the star. The central density at centre for the present model is

ρ0 = ρ(r = 0) =
72C

7
. (31)

The metric Eq. (22) implies that C = 7ρ0

72 is positive finite.
Again, from Eq. (20), we obtain

pr(r = 0)

C
=

4A√
7(1− α)2ψr=0

− 24

7
, (32)

where pr(r = 0) > 0.
This immediately implies that

B

A
<

√
7

6(1− α)4
+

{ψα1 + ψα2(1− α) + ψα3(1− α)2}
√

ψα5 − 2(4 + α)(1− α)− (1− α)2

(1− α)3

+
ψα4√
ψα5

log

[

ψα5 − (4 + α)(1− α) +
√
ψα5

√

ψα5 − 2(4 + α)(1− α)− (1− α)2

(1− α)ψα5

]

.(33)
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4.2 Causality conditions

Inside the fluid sphere the speed of sound should be less than the speed of light

i.e. 0 ≤ Vsr =
√

dpr

dρ < 1 and 0 ≤ Vst =
√

dpt

dρ < 1. Therefore

V 2
sr = (1+Cr2)

[

4(C2r4 + 10Cr2 − 7)(1 + Cr2)(ψr1 − ψr2 − ψr3)− 8(Cr2 + 5)

8(C2r4 + 2Cr2 + 25)

]

,

(34)
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Fig. 6 Variation of the sound velocity with radial coordinate r/R are shown in figure. Here
the legends are as follows: (i) Vr is plotted with dash line for Her X-1, (ii) Vr is plotted with
marker continuous line for white dwarf (iii) Vt is plotted with continuous line for Her X-1 (iv)
Vt is plotted with dotted line for white dwarf
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V 2
st = (1+Cr2)

[

4(C2r4 + 10Cr2 − 7)(1 + Cr2)(ψr1 − ψr2 − ψr3)− 8(Cr2 + 5)− ψr4

8(C2r4 + 2Cr2 + 25)

]

,

(35)
where

ψpr =
A(1 + Cr2)

(1− α+ Cr2)4
√

(7− 10Cr2 − Cr2)
, (36)

ψr1 = [
2

(1− α+ Cr2)2
+

4(3− Cr2)(1− α+ Cr2)2ψpr

ψ(1 + Cr2)(7− 10Cr2 − C2r4)
], (37)

ψr2 = [
2K

(1− α+ Cr2)
+

(1− α+ Cr2)2ψpr

ψ
]2, (38)

ψr3 =
8(3−Cr2)

(7− 10Cr2 − C2r4)(1 + Cr2)
[

2

(1− α+ Cr2)
+

(1− α+ Cr2)2ψpr

ψ
], (39)

ψr4 = [4α
(1 + Cr2)(1− α+ Cr2)ψr5 − Cr2ψr6(5− 3α+ 5Cr2)

(1 + Cr2)(1− α+ Cr2)3
], (40)

ψr5 = [12C2r4 + 4(16− α)Cr2 − (10α+ 4)], (41)

ψr6 = [4C2r4 + 2(16− α)Cr2 − (10α+ 4)]. (42)

The physical quantities related to the above equations are plotted in Figs. 6
and 7.

4.3 Well behaved condition

The velocity of sound is monotonically decreasing away from the centre and it

is increasing with the increase of density i.e. d
dr (

dpr

dρ ) < 0 or ( d
2pr

dρ2 ) > 0 and

d
dr (

dpt

dρ ) < 0 or ( d
2pt

dρ2 ) > 0 for 0 ≤ r ≤ R. In this context it is worth mentioning
that the equation of state at ultra-high distribution has the property that the
sound speed is decreasing outwards [27] as can be observed from Fig. 6.

4.4 Energy conditions

The anisotropic fluid sphere composed of strange matter will satisfy the null en-
ergy condition (NEC), weak energy condition (WEC) and strong energy condition
(SEC), if the following inequalities hold simultaneously at all points in the star:

NEC: ρ ≥ 0,
WEC: ρ+ pr ≥ 0,
WEC: ρ+ pt ≥ 0,
SEC: ρ+ pr + 2pt ≥ 0.
We have shown the energy conditions in Fig. 8 for Her X-1 under (i) and for

white dwarf under (ii).
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Fig. 8 Variation of the energy conditions with radial coordinate r/R are shown in figure.
Here the legends are as follows: (i) NEC is plotted with marker long-dashed line, WECr with
marker short-dashed line and SEC with continuous line (for Her X-1), (ii) NEC is plotted
with marker continuous line, WECr with long-dashed line and SEC with short-dashed line
(for white dwarf)

4.5 Stability conditions

4.5.1 Case-1:

In order to have an equilibrium configuration the matter must be stable against
the collapse of local regions. This requires Le Chateliers principle, also known
as local or microscopic stability condition, that the radial pressure pr must be a
monotonically non-decreasing function of r such that dpr

dρ ≥ 0 [28]. Heintzmann

and Hillebrandt [29] also proposed that neutron star with anisotropic equation of
state are stable for γ > 4/3 as is observed from Fig. 9 and also shown in Tables 1
and 2 of our model related to compact stars.

4.5.2 Case-2:

For physically acceptable model, one expects that the velocity of sound should be
within the range 0 = V 2

si = (dpi/dρ) ≤ 1 [30,31]. We plot the radial and transverse
velocity of sound in Fig. 7 and conclude that all parameters satisfy the inequalities
0 = V 2

sr = (dpi/dρ) ≤ 1 and 0 = V 2
st = (dpi/dρ) ≤ 1 everywhere inside the star

models. Also 0 = V 2
st ≤ 1 and 0 = V 2

sr ≤ 1, therefore |V 2
st − V 2

sr| ≤ 1. Now, to
examine the stability of local anisotropic fluid distribution, we follow the cracking
(also known as overturning) concept of Herrera [30] which states that the region
for which radial speed of sound is greater than the transverse speed of sound is a
potentially stable region.

For this we calculate the difference of velocities as follows:

V 2
st − V 2

sr = α

[

(1 + Cr2)(1− α+ Cr2)ψr5 − Cr2ψr6(5− 3α+ 5Cr2)

2(1 + Cr2)3(1− α+ Cr2)3(C2r4 + 2Cr2 + 25)

]

, (43)

where
ψr5 = [12C2r4 + 4(16− α)Cr2 − (10α+ 4)], (44)
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ψr6 = [4C2r4 + 2(16− α)Cr2 − (10α+ 4)]. (45)
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line for Her X-1, (ii) |V 2
st − V 2

sr | is plotted with continuous line for white dwarf

It can be seen that |V 2
st − V 2

sr| at the centre lies between 0 and 1 (see Fig.

10). This implies that we must have 0 ≤ α(10α+4)
50(1−α)2

≤ 1. Then α should satisfy the

following condition: 0 ≤ α ≤ 52−
√
704

40 .
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4.6 Generalized TOV equation

The generalized Tolman-Oppenheimer-Volkoff (TOV) equation

− MG (ρ+ pr)

r2
e

λ−ν

2 − dpr
dr

+
2

r
(pt − pr) = 0, (46)

where MG =MG(r) is the effective gravitational mass which can be given by

MG(r) =
1

2
r2e

ν−λ

2 ν′. (47)

Substituting the value of MG(r) in Eq. (46), we get

− 1

2
ν′(ρ+ pr)− dpr

dr
+

2

r
(pt − pr) = 0. (48)

Equation (48) basically describes the equilibrium condition for an anisotropic
fluid subject to gravitational (Fg), hydrostatic (Fh) and anisotropic stress (Fa)
which can, in a compact form, be expressed as

Fg + Fh + Fa = 0, (49)

where

Fg = −1

2
ν′(ρ+ pr), (50)

Fh = −dpr
dr

, (51)

Fa =
2

r
(pt − pr) . (52)

The above forces can be expressed in the following explicit forms:

Fg = −1

2
ν′(ρ+ pr) =

C2r

8π

[

8(6− 2Cr2)

7(1 + Cr2)3
[ψpr(1− α+ Cr2)3 + 2ψ]

ψ(1− α+ Cr2)

+
4(7− C2r4 − 10Cr2)

7(1 + Cr2)2

(

ψpr(1− α+ Cr2)3 + 2ψ

ψ(1− α+ Cr2)

)2
]

, (53)

Fh = −dpr
dr

=
C2r

4π

[

4(C2r4 + 10Cr2 − 7)

7(1 + Cr2)2
(ψr1 − ψr2 − ψr3)−

8(Cr2 + 5)

7(1 + Cr2)3

]

,

(54)

Fa =
2

r
(pt − pr) =

C2r

π

[

2α[(5α+ 2)− (16− α)Cr2 − 2C2r4]

7(1 + Cr2)3(1− α+ Cr2)2

]

. (55)

Variation of different forces and attainment of equilibrium has been drawn in
Fig. 11.
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4.7 Effective mass-radius relation and surface redshift

Let us now turn our attention towards the effective mass to radius relationship.
For static spherically symmetric perfect fluid star, Buchdahl [32] has proposed
an absolute constraint on the maximally allowable mass-to-radius ratio (M/R) for
isotropic fluid spheres as 2M/R ≤ 8/9 (in the unit c = G = 1). This basically states
that for a given radius a static isotropic fluid sphere cannot be arbitrarily massive.
However, for more generalized expression for mass-to-radius ratio one may look at
the paper by Mak and Harko [9].

For the present compact star model, the effective mass is written as

Meff = 4π

∫ R

0

ρr2dr =
1

2
R[1− e−λ(R)] =

1

2
R

[

8CR2(3 + CR2)

7(1 + 2CR2 + C2R4)

]

. (56)

The compactness of the star is therefore can be given by

u =
Meff

R
=

1

2

[

8CR2(3 + CR2)

7(1 + 2CR2 + C2R4)

]

. (57)

Therefore, the surface redshift (Z) corresponding to the above compactness
factor (u) is obtained as

Z = [1− 2u]−1/2 − 1 = [1− 8CR2(3 + CR2)

7(1 + 2CR2 + C2R4)
]−1/2 − 1. (58)

We have shown the variation of physical quantities related to Buchdahl’s mass-
to-radius ratio (2M/R) for isotropic fluid spheres and also surface redshift are
plotted in Figs. 12 and 13.

5 Model parameters and comparison with some of the compact stars

In this Section we prepare several data sheets for the model parameters in the fol-
lowing Tables 1-3 and compare those with some of the compact stars, e.g. Strange
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star Her X-1 and White dwarf in Table 4. In our present investigation we propose a
stable model with the parameters R = 12.5202 Km andM = 0.8882M⊙ (for white
dwarf) whereas R = 7.7214 Km andM = 0.8804M⊙ (Her X-1) type compact star.
The values of these data points have already been used for plotting graphs in the
previous Sections 3 and 4 (See Figs. 1-13) in some way or others.

Practically what we have done in the tables are as follows: In Tables 1-3 values
of different physical parameters of Strange star Her X-1 and White dwarf have
been provided. Under this data set then we calculate some physical parameters
of compact star, say central density, surface density, central pressure etc in Table
4. It can be observed that these data are quite satisfactory for the compact stars
whether it is strange star with central density 1.0913 × 1015 gm/cm−3 or white
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Table 1 Values of different physical parameters of White dwarf star for
α = 0.10, CR2 = 0.068, M = 0.8882 M⊙, R = 12.5202 Km

r pr pt ρ Vr Vt ∆ Z γ

0.0 0.6386 0.6386 10.2857 0.6135 0.6034 0.00000 0.2036 10.4949
0.1 0.6314 0.6316 10.2663 0.6133 0.6033 0.00024 0.2028 10.5863
0.2 0.6096 0.6106 10.2084 0.6127 0.6031 0.00093 0.2003 10.8718
0.3 0.5738 0.5758 10.1129 0.6116 0.6026 0.0020 0.1961 11.3897
0.4 0.5245 0.5278 9.9814 0.6100 0.6019 0.0034 0.1903 12.2191
0.5 0.4624 0.4673 9.8157 0.6079 0.6010 0.0049 0.1830 13.5139
0.6 0.3885 0.3949 9.6185 0.6053 0.5997 0.0064 0.1741 15.5930
0.7 0.3040 0.3118 9.3926 0.6022 0.5980 0.0078 0.1637 19.2098
0.8 0.2101 0.2190 9.1412 0.5985 0.5959 0.0089 0.1519 26.6355
0.9 0.1083 0.1178 8.8676 0.5942 0.5932 0.0095 0.1388 49.2412
1.0 0.0000 0.0096 8.5754 0.5893 0.5899 0.0096 0.1244 ∞

Table 2 Values of different physical parameters of Strange star Her X-1 for
α = 0.11, CR2 = 0.1178, M = 0.8804 M⊙, R = 7.7214 Km

r pr pt ρ Vr Vt ∆ Z γ

0.0 1.2135 1.2135 10.2857 0.6730 0.6624 0.0000 0.4010 4.2917
0.1 1.1984 1.1988 10.2521 0.6726 0.6622 0.0004 0.3991 4.3223
0.2 1.1533 1.1551 10.1523 0.6713 0.6617 0.0018 0.3933 4.4180
0.3 1.0795 1.0833 9.9890 0.6692 0.6607 0.0038 0.3838 4.5919
0.4 0.9790 0.9851 9.7665 0.6662 0.6592 0.0061 0.3707 4.8710
0.5 0.8546 0.8630 9.4906 0.6622 0.6571 0.0084 0.3541 5.3078
0.6 0.7096 0.7197 9.1681 0.6572 0.6541 0.0101 0.3342 6.0116
0.7 0.5475 0.5586 8.8067 0.6510 0.6501 0.0111 0.3113 7.2403
0.8 0.3725 0.3835 8.4143 0.6436 0.6450 0.0110 0.2856 9.7716
0.9 0.1886 0.1982 7.9990 0.6350 0.6385 0.0095 0.2574 17.4995
1.0 0.0000 0.0068 7.5686 0.6249 0.6305 0.0068 0.2271 -

Table 3 Values of the model parameters A, B, C and α for different compact stars

Compact star M R A B C α
candidates (M⊙) (Km)

White dwarf 0.8882 12.5202 -2.1463 0.5533 4.3380× 10−13 0.10
Her X − 1 0.8804 7.7214 -1.6255 0.5301 1.9758× 10−13 0.11

Table 4 Energy densities, central pressure and Buchdahl condition
for different compact star candidates for the above parameter values of Tables 1 - 3

Compact star Central Density Surface density Central pressure Buchdahl condition
candidates (gm/cm−3) (gm/cm−3) (dyne/cm−2) (2M/R ≤ 8/9)

White dwarf 2.3961 × 1014 2.0× 1014 1.3392 × 1034 0.1418
Her X − 1 1.0913 × 1015 0.8031 × 1015 1.1591 × 1035 0.2280

dwarf with central density 2.3961×1014 gm/cm−3. Likewise this feature of compact
stars can be explored for some other physical parameters also.
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6 Discussion and Conclusion

In the present work we have investigated about an anisotropic analogue of Durgapal-
Fuloria [1] and possibilities of interesting physical properties of the proposed model.
As a necessary step we have contracted the anisotropic factor ∆ by the help of
both metric potentials eν and eλ. However, eλ is considered here same as Durgapal-
Fuloria [1] whereas eν is that given by Lake [2].

The field equations are solved by the change of dependent variable method
and under suitable boundary condition the interior metric (2.1) has been joined
smoothly at the surface of spheres (r = R), to an exterior Schwarzschild metric
whose mass is same as m(r = R) = M [26]. The solutions set thus obtained are
correlated with the physical properties of some of the compact stars which in-
clude strange star as well as white dwarf. It is observed that the model is viable
in connection to several physical features which are quite interesting and accept-
able as proposed by other researchers within the framework of General Theory of
Relativity.

As a detailed discussion we would like to put forward here that several ver-
ification scheme of the model have been performed and extract expected results
some of which are as follows:

(1) Regularity at centre: The density ρ and radial pressure pr and tangential
pressure pt should be positive inside the star. It is shown that the central density
at centre is ρ0 = ρ(r = 0) = 72C

7 and pr(r = 0) > 0. This means that the density ρ
as well as radial pressure pr and tangential pressure pt all are positive inside the
star.

(2) Causality conditions: It is shown that inside the fluid sphere the speed of

sound is less than the speed of light i.e. 0 ≤ Vsr =
√

dpr

dρ < 1, 0 ≤ Vst =
√

dpt

dρ <

1.

(3) Well behaved condition: The velocity of sound is monotonically decreasing
away from the centre and it is increasing with the increase of density as can be
observed from Fig. 6.

(4) Energy conditions: From Fig. 9 we observe that the anisotropic fluid sphere
composed of strange matter satisfy the null energy condition (NEC), weak energy
condition (WEC) and strong energy condition (SEC) simultaneously at all points
in the star.

(5) Stability conditions: Following Heintzmann and Hillebrandt [29] we note
that neutron star with anisotropic equation of state are stable for γ > 4/3 as is
observed in Tables 1 and 2 of our model. Also, it is expected that the velocity of
sound should be within the range 0 = V 2

si = (dpi/dρ) ≤ 1 [30,31]. The plots for
the radial and transverse velocity of sound in Fig. 7 everywhere inside the star
models.

(6) Generalized TOV equation: The generalized Tolman-Oppenheimer-Volkoff
equation describes the equilibrium condition for the anisotropic fluid subject to
gravitational (Fg), hydrostatic (Fh) and anisotropic stress (Fa). Fig. 8 shows that
the gravitational force is balanced by the joint action of hydrostatic and anisotropic
forces to attain the required stability of the model. However, effect of anisotropic
force is very less than the hydrostatic force.

(7) Effective mass-radius relation and surface redshift: For static spherically
symmetric perfect fluid star, the Buchdahl [32] absolute constraint on the maxi-



18

mally allowable mass-to-radius ratio (M/R) for isotropic fluid spheres as 2M/R ≤
8/9 = 0.8888 is seen to be maintained in the present model as can be observed
from the Table 4.

In Sec. 5 we have made a comparative study by using model parameters and
data of two of the compact stars which are, in general, very satisfactory as com-
pared to the observational results. However, at this point we would like to comment
that the sample data used for verifying the present model are to be increased to
obtain more satisfactory and exhaustive features in the realm of physical reality.
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