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Abstract: We propose a definition of vorticity at inverse temperature β for Gibbs states in quantum

XY spin systems on the lattice by testing exp[−βH] on a complete set of observables (“one-point

functions”). We show in particular that it is independent of the choice of a particular basis. Imposing

a compression of Pauli matrices at the boudary, which stands for the classical environment, we make

some numerical simulations on finite lattices, and exhibit usual vortex patterns.

0. Introduction.

Consider the quantum XY or Heisenberg spin model for S = 1/2 on the 2-D lattice Z2, with

nearest neighbor interactions. Marmin-Wagner, and Hohenberg theorems tell that Gibbs states, for

all inverse temperature β, are invariant under simultaneous rotation of spins (absence of continuous

symmetry breaking in two dimensions). In the classical case, we know a bit more : although there is a

unique Gibbs state, with rotational symmetry, which rules out the existence of first order transitions,

a particular form for phase transition exists, characterized by a change of behavior in the correlation

functions. For the XY system, it has been described by Berezinskii, and Kosterlitz-Thouless in term

of topological excitations, called vortices [FrSp]. For the Heisenberg model, we observe higher order

topological defects, called instantons [BePo]. See also [El-BRo1,2] for the classical Kac’s model.

This paper is a first attempt to answer the natural question : How to define vortices in the

quantum case ? Consider first a system in finite volume Λ ⊂ Z2. The Hamiltonians are of the

form HΛ(Φ) = −
∑

X⊂Λ

Φ(X), where Φ is an “interaction” between sites in Λ. For nearest neighbor

interaction, the contributing X are pairs 〈i, j〉, and the Hamiltonian of the form

(0.1) HΛ = −1

2

∑

〈i,j〉⊂Λ

(σx
i ⊗ σx

i + σy
i ⊗ σy

i )

possibly adding the linear term
∑

i∈Λ

σz
i . We can also glue to Λ a finite boundary ∂Λ and modify HΛ(Φ)

to HΛ∪∂Λ(Φ) accordingly, accounting for an approximate “external field”. In finite volume Λ ∪ ∂Λ,

the only (normalized) Gibbs state is given by

(0.2) A 7→ ωβ(A) =
tr(e−βHΛ∪∂ΛA)

tr(e−βHΛ∪∂Λ)

and called the “canonical Gibbs state”. We shall actually define vorticity at inverse temperature β

by decomposing the linear form ωβ on a canonical (orthonormal) basis of observables.

1

http://arxiv.org/abs/1504.01288v1


Indeed, to favour the existence of vortices in finite volume, we have completed Λ by a finite

volume environment ∂Λ ⊂ Z2 where Pauli matrices σj are “compressed” in given directions (θj)j∈∂Λ.

Thus, measurements of the observable “direction of spin” are deterministic on ∂Λ, which accounts for

the ”classical” aspect of the environment, but the sign of spin still remains a free variable, allowing

for a certain “chessboard symmetry” of the Hamiltonian, and comparison between ferro- and antifer-

romagnetic behaviors. More precisely, for j ∈ ∂Λ we replace σj by σj(θj) = ΠθjσjΠθj where Πθj is

the orthogonal projection in the direction
(
cos θj
sin θj

)
.

One of the main requirements for consistency of our definition is to check co-variance of the

vorticity matrix with respect to the choice of orthonormal basis.

This paper is organized as follows:

In Part 1, we define vorticity matrices as the decomposition of the Gibbs state in a certain

orthonormal basis of 1-point functions; we call quantum vortices the points of the lattice where the

vorticity matrix vanishes.

In Part 2, we study holonomy properties on the Lie group SL(2;R), and show how to define (in

the ideal continuous limit) the class of holonomy of vorticity matrices through the “non-commutative

degree”.

In Part 3, we carry some numerical simulations on constrained quantum anisotropic XY systems,

and provide pictures of vortices at thermal equilibrium.

In the Appendix we show that vorticity matrices are defined intrinsically, i.e. don’t depend, up to

unitary equivalence, on the choice of a specific orthonormal basis within a simple class of observables.

To some extend, our approach can be generalized to Heisenberg model, replacing vortices by

“instantons”, or “skyrmyons” as in Belavin-Polyakov theory. But here the non-commutative calculus

makes difficult to define properly the degree. This will be hopefully investigated in some later work.

Acknowledgments: We thank A.Messager and S.Shlosman for interesting discussions. This work

was initiated in Hicham El-Bouanani’s PhD Thesis [El-Bo] at Toulon University, and results in Ap-

pendix were obtained with Renaud Ruamps in his unpublished Master’s Thesis [Ru] at Aix-Marseille

University, both under supervision of the second author.

1. Vorticity matrices

Gibbs state (0.1) for spin 1/2 systems, as a linear form on the C∗-algebra of observables

O = ⊗j∈Λ∪∂Λoj , oj = M2×2(C)

(“quasi-local observables” if we were to consider the thermodynamical limit, ) can be decomposed in

a canonical basis. The simplest way is to restrict to “one-point functions”, i.e. the set Õ ⊂ O of

2N × 2N , block-diagonal 2× 2 matrices, supported on individual sites of Λ∪∂Λ, N = |Λ∪∂Λ|. More

specifically, let again ÕR ⊂ Õ be a real sub-algebra Õ, of real dimension 4N .

Example 1: ÕR is the “canonical” algebra, generated by real matrices (Di)i∈Λ∪∂Λ, whose all non-

diagonal 2× 2 blocks vanish, and all diagonal 2× 2 blocks vanish, except this supported on site i that
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takes values in {δ1, δ2, δ3, δ4}, where

(1.2) δ1 =

(
1 0
0 0

)
, δ2 =

(
0 1
0 0

)
, δ3 =

(
0 0
1 0

)
, δ4 =

(
0 0
0 1

)

So the family of block-diagonal 2N × 2N matrices with 2 × 2 entry δj , 1 ≤ j ≤ 4 at the i:th place,

1 ≤ i ≤ N

(1.3)
(
Di

j

)
i∈Λ∪∂Λ

=
(
0⊕ · · · ⊕ δj ⊕ · · · ⊕ 0

)

gives an orthonormal basis (ONB) of 1-point functions ÕR.

Example 2: ÕR is the algebra generated by Pauli matrices (D̃i)i∈Λ∪∂Λ with diagonal block supported

on site i that takes values in {Id, iσx, iσy , iσz}.
We shall restrict to the canonical algebra, whose generators enjoy the nice property of being real

matrices. Let also oR ⊂ o be the algebra of 2×2 matrices with real coefficients, endowed with the scalar

product (A|B) = Tr(B∗A), which is isometric with R4. By extension, the basis δ = {δ1, δ2, δ3, δ4}
of oR will be called an “elementary basis” of ÕR, since N copies of δ, attached to each site i, give a

basis (Di
j)i∈Λ∪∂Λ,1≤j≤4 of ÕR. We say the same thing of any other ONB b = {b1, b2, b3, b4} of oR,

and of the corresponding basis (Bi
j)i∈Λ,1≤j≤4 of ÕR, where Bi

j is defined as in (1.3), with bj instead

of δj . Actually, the order of the elements of b matters, so we prefer the matrix notation, namely

(1.4) b =

(
b1 b2
b3 b4

)
∈ M4×4(R)

is a 2× 2 block-matrix, where bk is of the form

(1.5) bk =

(
b1k b2k

b3k b4k

)
∈ M2×2(R)

which we identify with the vector bk = t
(
b1k, b2k, b3k, b4k

)
. Actually we will never use the algebraic

structure of oR in this paper.

Consider now b as a linear operator on K1⊗K2, with K1 = K2 = R2, and recall [Si,Sect.II.1] the

partial trace tr1 from L(K1 ⊗K2) to L(K1) is defined by the requirement :

trK1

(
X(tr1(b))

)
= trK1⊗K2

((X ⊗ 1)b), X ∈ L(K1)

where tr = 1
d
Tr, d is the dimension and Tr the ordinary trace. Then with the notations above, we

see easily that :

(1.6) tr1(b) =

(
tr b1 tr b2
tr b3 tr b4

)

So tr1 are the components, in some matrix representation, of the usual trace, or (“tracial state”) on

oR. For simplicity we set T (b) = tr1(b) and call it the “matrix of traces”. An important rôle will be

played with symmetric basis.
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Definition 1.1: We call the ONB b symmetric iff the corresponding matrix b in (1.4) is Hermitian,

i.e. b1 = b∗1, b4 = b∗4, and b3 = b∗2. We call it δ-symmetric if moreover b is real, and T (b) has a

degenerate eigenvalue, that is, is a multiple of identity. We denote by [δ]s the class of δ-symmetric

basis.

Most of the basis are not symmetric, but occasionally we can make them symmetric, by permuting

or multiplying by −1 some elements. Note that {Id, iσx, iσy , iσz} cannot be made symmetric; this

is one of the reasons why we prefer the canonical basis {δ1, δ2, δ3, δ4}. In Appendix, we characterize

δ-symmetric basis, up to such transformation.

So far we have constructed “one point functions”, i.e. a basis of ÕR. In the sequel we content

with Hamiltonians of type (0.1) which are of second order in the interactions; if we were to include the

linear term
∑

i∈Λ

σz
i we would write it as

∑

〈i,j〉

1i⊗σz
j . Embed ÕR into ÕR⊗ÕR by the usual coproduct

∆, and set x̃ = ∆(x) = 1
2(1 ⊗ x + x ⊗ 1) ∈ oR ⊗ oR, for x ∈ oR. So we have “lifted” b̃ = ∆(b) as a

family of ÕR ⊗ ÕR by (B̃i
j)i∈Λ,1≤j≤4, with B̃i

j = ∆(Bi
j). With the notations of (1.4) and (1.6) we

have

(1.8) B̃i =

(
B̃i

1 B̃i
2

B̃i
3 B̃i

4

)
∈ M4N×4N (R), tr1(B̃

i) =

(
tr B̃i

1 tr B̃i
2

tr B̃i
3 tr B̃i

4

)
∈ M2×2(R)

In the same way, we form e−βHB̃i
j , so we can map to each site i ∈ Λ ∪ ∂Λ a 2× 2 matrix :

(1.9) tr1(e
−βHB̃i) = tr(e−βH)

(
ωβ(B̃

i
1) ωβ(B̃

i
2)

ωβ(B̃
i
3) ωβ(B̃

i
4)

)

Definition 1.2: We call vorticity matrix at site i, relative to the basis b, at inverse temperature β,

the matrix :

Ωi
β(b) =

tr1(e
−βHB̃i)

tr(e−βH)

The traceless matrix

(1.10) Ω̂i
β(b) = Ωi

β(b)− tr
(
Ωi

β(b)
)
Id

is called the reduced vorticity matrix at site i.

Example: Λ = {1, 2} is a lattice with 2 sites, ∂Λ = ∅, one has Ω̂1
β(δ) = Ω̂2

β(δ) = 0. This is observed

also numerically for all Λ, with ∂Λ = ∅, although vortices should merge sponteanously in infinite

volume.

If b is a symmetric basis of oR, then Ωi
β(b) and Ω̂i

β(b) are hermitean since H is self-adjoint (and

are real symmetric if H moreover has real coefficients), and

(1.11)
(
Ω̂i

β(b)
)2

= det Ω̂i
β(b) Id

Thus Ωi
β(b) enjoys the nice property, to be diagonalizable with real (opposite) eigenvalues for all sites

i, and all inverse temperature β. Viewing these as a field of matrices over the lattice, we can figure
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out the “vorticity” of the system (whenever this makes sense), by simply looking at their principal

directions. This also gives a measure of vorticity, i.e. numbers (integers) that should be independent

of the choice of “elementary” basis b.

Next we define vortices as the set of sites where the reduced vorticity matrix is singular.

Definition 1.3: We say that ξ ∈ Λ is a vortex at inverse temperature β relative to the δ-symmetric

ONB b iff Ωξ
β(b) has a degenerate eigenvalue, i.e. Ω̂ξ

β(b) = 0. We call regular the other points.

By construction, all sites are vortices when β = 0.

Now we turn to consistency of Definitions 1.2 and 1.3 relatively to the choice of b within δ-

symmetric basis. That b is a δ-symmetric basis is a natural requirement for computing the degree of

Ω̂i(b), see Sect.2. With b written as in (1.4), and P ∈ O(2;R), we set with obvious notations

(1.12) a = tPbP

(i.e. as if bj ’s were numbers). The same holds after taking the co-product ∆ of each term, i.e.

ã = tP b̃P . This defines conjugacy classes, which pass to the partial traces (1.6), i.e. T (a) = tPT (b)P ,

and T (ã) = tP T (̃b)P . Moreover, if X ∈ L(R2), we have

(1.13) (1⊗X)b =

(
Xb1 Xb2
Xb3 Xb4

)
= (1⊗X)Pa tP

After lifting ã and b̃ to ÕR ⊗ ÕR, (1.8) becomes

(1.14) Ãi = tP

(
B̃i

1 B̃i
2

B̃i
3 B̃i

4

)
P ∈ M4N×4N (R), tr1(Ã

i) = tP

(
tr B̃i

1 tr B̃i
2

tr B̃i
3 tr B̃i

4

)
P ∈ M2×2(R)

and (1.13) also extends when taking X ∈ L(R4N ) and replacing a by Ãi, b by B̃i. Let now X = e−βH ,

we obtain that conjugacy classes pass to vorticity matrices, i.e.

(1.15) Ωi
β(a) =

tPΩi
β(b)P, Ω̂i

β(a) =
tP Ω̂i

β(b)P

In Appendix we characterize completely the set of δ-symmetric ONB’s up to the action of the group

G0 acting on M4(R) by permutations, or multiplication by −1, of some vectors bk ∈ R4 (recall from

(1.5) the identification of bk with the 2 × 2 matrix bk). Namely, we show in Appendix that if b is δ-

symmetric, then modulo the action of G0, there exists discrete or one-parameter families Ps ∈ O(2;R)

such that

(1.16) b = bs =
tPsδPs

So we have :

Proposition 1.4: Definitions 1.2 and 1.3 are consistent, i.e. vorticity matrices relative to all δ-

symmetric ONB b are related by (1.15) for some Ps ∈ O(2;R), and in particular ξ is a vortex relative

to δ iff this is a vortex relatively to any δ-symmetric b.
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Moreover we have the numerical evidence that, among all δ-symmetric basis b, the canonical basis

δ is most “faithful”, in the sense that Ωi
β(δ) have on the boundary lattice ∂Λ the same principal direc-

tions as the directions along which Pauli matrices are compressed (associated with the eigenprojector

Πj).

Let us conclude this section by some heuristic remark: In the case of a translation invariant

interaction Φ(X), and free boundary condition (∂Λ = ∅) it is standard to show that Gibbs state

(0.1) converges in the thermodynamical limit, and so do the vorticity matrices. This is already of

interest, because in the framework of Mermin-Wagner and Hohenberg theorems, it is believed that

(quantum) vortices merge spontaneously in infinite volume, without any boundary conditions. In our

case however, the compression of Pauli matrices on ∂Λ 6= ∅ breaks the translation invariance. When

∂Λ = Z2 \ Λ, we could think of the boundary condition as an external field, that we recall from

[Si,Sect.II 3] :

A state is the assignment of an operator ρX for each finite X ⊂ Z2 with Tr(ρX) = 1 and

trHY
(ρX∪Y ) = ρX (partial trace on HY = ⊗i∈Y C

2
i , ) for all disjoint X,Y ⊂ Z2. Given the nearest

neighbor interaction Φ(X), and a state ρ on Z2, we define the Hamiltonian on all Z2

Hρ
Λ(Φ) = −

∑

X∩Λ 6=∅

TrX\Λ

[
(1⊗ ρX\Λ)Φ(X)

]

that couples Λ with the external field ρ through its nearest neighbors at the boundary.

For any quasi-local observable A on Z2, define the expectation value

〈A〉ρβ,Λ =
TrΛ

(
exp

[
−βHρ

Λ(Φ)
]
A
)

TrΛ exp
[
−βHρ

Λ(Φ)
]

Then it is known that both |Λ|−1 log TrΛ exp
[
−βHρ

Λ(Φ)
]
and |Λ|−1 log TrΛ

(
exp

[
−βHρ

Λ(Φ)
]
A
)
have a

limit as |Λ| → ∞, and so has 〈A〉ρβ,Λ. On that basis we could expect that the vorticity matrices with

a conditional external field have a limit in the thermodynamical limit. However, it is not quite clear

which field ρ could stand for the compression of Pauli matrices at the boundary (see [AscPil] for the

1-D XY chain); our Hamiltonian HΛ∪∂Λ(Φ) is only an approximation for Hρ
Λ(Φ).

2. Holonomy on the Lie group SL(2;R).

We pass here to an idealistic continuous limit, where vorticity matrices would be defined as a

smooth field on R2 (away from vortices) , valued in the Lie algebra sl(2;R), consisting of traceless

matrices. Our purpose is to integrate such fields vanishing at some points, and define the “non-

commutative degree”. For advanced results on Differential Calculus on lattices in the scalar case,

see [Sm]. The non-commutative discrete case, also allowing for an extension of our XY model to

Heisenberg model, has still to be set up.

Let M : D ⊂ R2 → sl(2;R), x 7→ M(x) be a C1 map, such that such that M(x) obeys (1.11),

i.e. M(x)2 = λ(x) Id, λ(x) ≥ 0, and consider ρ ∈ Λ1(R2; sl(2;R)) the 1-form defined by

(2.1) ρ(x) =
1

2
(M−1(x)dM(x)− dM(x)M−1(x))

6



with the property of being antisymmetric if M is symmetric. Since

M−1(x)dM(x) + dM(x)M−1(x)) =
dλ(x)

λ(x)

we have

M−1(x)dM(x) = ρ(x) +
dλ(x)

2λ(x)
, dM(x)M−1(x) = −ρ(x) +

dλ(x)

2λ(x)

If moreover D ⊂ R2 is simply connected and λ(x) > 0 in D, dλ(x)
2λ(x) is exact, and if γ is a loop in D :

(2.3)

∫

γ

M−1(x)dM(x) = −
∫

γ

dM(x)M−1(x) =

∫

γ

ρ(x)

In the general case, using identity M(x)2 = λ(x) Id, we find easily

dρ(x) =
[
M

∂M

∂x1
M

∂M

∂x2
−M

∂M

∂x2
M

∂M

∂x1
− ∂M

∂x2
M

∂M

∂x1
M +

∂M

∂x1
M

∂M

∂x2
M

]dx1 ∧ dx2

λ2(x)

and setting M =

(
a b
c −a

)
, a computation shows that

(2.5) dρ = −λ−2(adb ∧ dc+ bdc ∧ da+ cda ∧ db)M

Thus the form ρ is closed if

(2.6) R(a, b, c) = adb ∧ dc+ bdc ∧ da+ cda ∧ db = 0

and this condition holds if M is symmetric. For such a map M uniformly elliptic at infinity, in the

sense that

|λ(x)| ≥ C > 0, |x| ≥ r0

we can define the number

(2.7) s∞ = det
1

2π

∫

|x|=r

ρ(x)

which, by Stokes’ formula, turns out to be independent of r ≥ r0. In the same way, if ξ is a vortex

(i.e. the map M is singular at ξ) we define the “local degre local”

(2.8) sξ = det
1

2π

∫

γ

ρ(x)

whenever M(x) is invertible for x 6= ξ, integrating on a small contour γ around ξ.

Let us now compute Maurer-Cartan structure equation for the form ρ(x) [Ma,p.165]. The struc-

ture coefficients for the Lie algebra sl(2;R), with basis e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
0 0

)
, e3 =

(
0 0
1 0

)

are given by C2
1,2 = −C2

2,1 = 2, C3
1,3 = −C3

3,1 = −2, C1
2,3 = −C1

3,2 = 1, and Ck
i,j = 0 otherwise. For

[ρ, ρ] =
∑

k

(
∑

i<j

Ck
i,jρ

i ∧ ρj)ek, we find

−[ρ, ρ] = λ−2(adb ∧ dc+ bdc ∧ da+ cda ∧ db)M

7



Under (2.6), this relation together with (2.5) show that ρ verifies

(2.9) dρ+ [ρ, ρ] = 0

Recall that if G is a Lie group, and A its Lie algebra, ω the canonical Maurer-Cartan form on G,

invariant by left translations, we define Darboux differential of the map f ∈ C1(D;G) by πf =

f∗ω. The fundamental existence theorem (“Poincaré lemma”), with a differential form ρ ∈ Λ1(D;A)

verifying dρ + [ρ, ρ] = 0, associates (locally) a map f ∈ C1(D;G), whose Darboux differential is

precisely equal to ρ. Moreover this map is unique when assigning its value on a point x0 ∈ D.

On the other hand we know [Ki,p.117& 321], that the Lie group whose Lie algebra is sl(2;R),

is the universal covering E = S̃L(2;R) of the unimodular group SL(2;R). The unimodular group is

topologically equivalent to the cylinder S1 × R2, its fundamental group equals Z, and E is homeo-

morphic to R3. (It is known however that one cannot parametrize E by matrices, more precisely E

cannot be written as a subgroup of some GL(m;C), with m ∈ N, but rather as a tensor product of

such matrices. )

Relation (2.9) ensures the existence of a local primitive N ∈ C1(D; S̃L(2;R)) of ρ, the “logarithm”

of M . If D is simply connected, this primitive is also global. Otherwise, consider its extension to E,

and let γ ⊂ R2 be a loop at x0 ∈ D, we may define the monodromy opeerator Tγ acting on functions

N : γ → E.

Example 1: For symmetric matrices in sl(2;R)

(2.10) M0(x) =

(
cosnθ sinnθ
sinnθ − cosnθ

)
, Mr(x) =

(
r cosnθ sinnθ
sinnθ −r cosnθ

)

we have (deg∞(M))2 = n2. The 1-form ρ associated wih M0 is simply

(
0 n
−n 0

)
dθ.

Since the fundamental group of E is Z, s∞ and sξ are integers so that we set

(2.11) s∞ = (deg∞(M))2 ∈ {0, 1, 4, 9, · · ·}, sξ = (degx1
(M))2 ∈ {0, 1, 4, 9, · · ·}

Degrees at infinity and at x0 are then invariant by homotopy. In particular, a perturbation theory

can be carried out by expanding M as Fourier series. The degree for matrices M ∈ sl(2;R) verifiant

(2.6) can be also obtained by Brouwer theory [Mi], by considering these matrices as (locally) a 2-D

manifold. If matrices M are symmetric, then ρ is antisymmetric, and

(2.12)
1

2π

∫

γ

ρ =

(
0 −n
n 0

)

with n ∈ Z.

3. Numerical simulations.
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Recall we have completed the lattice Λ with an environment ∂Λ ⊂ Z2 where Pauli matrices are

compressed in directions (θj)j∈∂Λ, i.e. we change σ by ΠθσΠθ, where Πθ =

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)

Thus

(3.1) σx
i (θi) = (sin 2θi)Πθi , σy

i (θi) = 0

Hamiltonian (0.1) with nearest neighbor interaction has a large kernel, so it is not directly suitable

for numerical simulations, even when modified by an external field. In the Classical case, we con-

sider instead the 2-D planar rotator with long range interactions, such as Kac’s model [El-BoRo];

renormalizing the Hamiltonian leads to the free energy functional on macroscopic scales (or coarse

graining), whose critical points are most accessible to numerical analysis. But in the Quantum case,

renormalization procedures for 2-D planar rotator with long range interactions are not yet available

(see however e.g. [ScOr] for Ising model). Changing (0.1) to the anisotropic XY model is in fact a

first attempt to lift the degeneracy of the spectrum of the Hamiltonian, and enhance the effects of

the external field on vorticity even in quite small lattices, so that the predicted vorticity could be

observed with a fairly good accuracy, only using elementary numerical tools (Wolfram Mathematica

on a laptop). We discuss below the rôle of anisotropy. For n, k > 0, consider the Hamiltonian

(3.2)

H(n,k)(σ|∂Λ) = − 1

2(n+ k)

∑

〈i,j〉;i,j∈Λ

(nσx
i ⊗ σx

j + k σy
i ⊗ σy

j )

− 1

2(n+ k)

∑

〈i,j〉;(i,j)∈Λ×∂Λ

n (σx
i ⊗ σx

j (θj) + σx
j (θj)⊗ σx

i )−
1

2(n+ k)

∑

〈i,j〉;i,j∈∂Λ

nσx
i (θi)⊗ σx

j (θj)

so H(n,k)(σ|∂Λ) is self-adjoint and real. When n = k = 1, Λ = Z2, H = H(1,1) is the most natural

(isotropic) model with O+(2) symmetry. It enjoys nice properties, like reflection positivity; its spec-

trum is believed to be absolutely continuous on [−2, 2] as this of the Laplacian on Z2, but this is not

rigorously known, see [DaManTie], [De]. For k 6= 1, we call H(1,k)(σ|∂Λ) the anisotropic XY model.

Only when ∂Λ = ∅, H(1,k) is unitarily equivalent to H(k,1). In general, H(1,k)(σ|∂Λ) has no obvious

symmetry, but it is most suitable for studying vorticity matrices on finite lattices Λ∪ ∂Λ, at least for

small β.

We consider rectangular lattices of minimal sizes to exclude important volume effects, with suf-

ficiently large ∂Λ to constrain the “quantum system” within Λ. We choose θj = dωj + φ where ωj is

the polar angle representing the vector j ∈ ∂Λ. We compare calculations for n = 1 and k = 1, 2, 10.

a) Considerations on spectra.

Numerically, we observe that the spectrum of H(1,k) is distributed in an interval I close to

[−2, 2], and looks symmetric around 0, allowing for equivalence between ferromagnetic Hamiltonian

H(1,k)(σ|∂Λ) and antiferromagnetic −H(1,k)(σ|∂Λ). The distribution has smaller density at the edges

of I, and larger near λ = 0. We present below the integrated density (statistical distribution) of

states ρ(λ) = #{λk|λk < λ} in various situations, namely we compare isotropic and anisotropic cases

without boundary (Fig.1 a, b) and anisotropic case with boundary (Fig.1 c).

9



(a) -2 -1 1 2
Λ0

500

1000

1500

2000

ð8Λ: Λ<Λ0<

(b) -2 -1 1 2
Λ0

500

1000

1500

2000

ð8Λ: Λ<Λ0<

(c) -2 -1 1 2
Λ0

500

1000

1500

2000

2500

3000

ð8Λ: Λ<Λ0<

Fig.1. The integrated density of states ρ(λ) = #{λk|λk < λ}: (a) isotropic case H(1,1) without

boundary, |Λ| = 19× 29; (b) anisotropic case H(1,10) without boundary, |Λ| = 19× 29; (c) anisotropic

case H(1,10) with 2 boundary layers, |Λ ∪ ∂Λ| = 23× 33.

The reason for degeneracy at λ = 0 is the following. In the isotropic case n = k = 1 the matrix

σx
i ⊗ σx

j + σy
i ⊗ σy

j is of rank 2, so when ∂Λ = ∅, half of the eigenvalues of H vanish, and also in the

general case there is a big degeneracy of the spectrum near λ = 0. As in QFT we could try to remove

that “artificial” part of KerH by reducing the Hilbert space H = C4N to a “physical space”, but a

difficulty arises because H is not positive in the form sense. The effect of anisotropy is to lift this

degeneracy, and enhance vorticity effects. Another reason for degeneracy is boundary effects as can

be seen from comparison between Fig. 1.b and 1.c. Degeneracy could be also reduced by enlarging

the inner lattice, but at the expense of computational difficulties.

b) Vorticity patterns.

We study Gibbs state at inverse temperature β, with significant results provided β ranges in

10



some interval, for which however, there is no evidence of a second order phase transition.

To visualize monodromy of the vorticity matrices Ωi
β(δ), we plot their principal directions as

“crosses”, of length proportional to their eigenvalues (recall the reduced vorticity matrices are sym-

metric, with eigenvalues ±
√
λi, ) as we would do with arrows in the classical model [El-BRo]. As

expected, their principal directions coincide on ∂Λ, with those of the eigenprojectors Πθi . We expect

also the number of vortices to be equal to the topological degree d = s∞. Indeed, computing 1
2π

∫
γ
ρ

as a discrete integral along a contour γ ∈ Λ, not too far from the boundary (in practice, 2 or 3 layers),

it turns out that the computed degree is close to this we would obtain in example (2.12).

Because of degeneracy in the isotropic case vorticity matrices in all sites that are not the first

neighbors to the boundary are of the form Ωi
β(δ) ≈

(
ci(β) 0
0 ci(β)

)
for some ci(β), and so the reduced

vorticity matrices are zero Ω̃i
β(δ) = 0 in these sites. This fact can be shown by direct calculations of

eigenvectors and vorticity matrices and is illustrated in Fig. 2 below.

(a) 0 5 10 15 20
0

5

10

15

(b) 0 5 10 15 20
0

5

10

15

Fig 2. Principal directions (lengths correspond to sizes of eigenvalues on a logarithmic scale) for

different degree: (a) d = 0, (b) d = 1. Lattice is |∂Λ ∪ Λ| = 15× 19 with 2 boundary layers. Here is

considered the isotropic Hamiltonian H(1,1) with β = 1.

If we consider anisotropic case then matrices σx
i ⊗ σx

j + σy
i ⊗ σy

j are no longer degenerate and so

eigenvalues in the center are no more zeros (see Fig. 3). In this case eigenvalues decay when getting

far from the boundary towards the center of Λ and it seems that the rate of decay is exponential

with distance from the boundary. To make the vorticity patterns more demonstrative we draw the

crosses on a logarithmic scale. All points sufficiently close to the center of Λ look like vortices within

the standard accuracy of computations, but the number of “true” vortices should be equal to the

topological degree d = s∞.
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Fig 3. Principal directions (lengths correspond to sizes of eigen values in logarithmic scale) for

different degree: (a) d = 0, (b) d = 1, (c) d = 2, (d) d = 3. Lattice is |∂Λ ∪ Λ| = 15 × 19 with 2

boundary layers. Here the anisotropic Hamiltonian H(1,10) is considered with β = 1.

To compute the degree we use the discrete approximation based on finite-differences method:

(3.4)

∮

γ

M−1(x)dM(x) ≈
∑

xi∈γ

(
M(xi)√

|detM(xi)|

)−1( M(xi+1)√
|detM(xi+1)|

− M(xi)√
|detM(xi)|

)

and a similar formula for −
∮
γ
dM(x)M−1(x). When angles are close to πn/2, n ∈ Z, eigenvalues of

reduced vorticity matrices are close to zero due to properties of σi
x(θi) on the boundary. Multiplying

matrices with a big discrepancy in their eigenvalues would lead to large computational errors; to

compensate for this effect we use in Eq. (3.4) “normalized” matrices that are divided by square roots

of their Jacobians.

The main factor of inaccuracy in degree calculations consists in the discrete approximation of

the integral and the number of points on an integration contour. As a rule, accurate results require

a lot of points on the integration contour; but for larger degrees the variation of the angle increases

from point to point and so do the error due to discrete approximation. This problem can be solved

by enlarging the lattice size. Fig. 4 presents vorticity patterns with different β’s for a lattice with

|∂Λ ∪ Λ| = 23× 33 and two boundary layers.
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Fig 4. The principal directions for different beta: (a) β = 1, (b) β = 8, (c) β = 16 for lattice

|∂Λ ∪ Λ| = 23 × 33 with 2 boundary layers. Lengths of crosses correspond to eigenvalues on the

logarithmic scale (left) or are set equal (right). Here the anisotropic Hamiltonian H(1,10) is considered.

The degree is d = 1. On the figure (a) to the right the eigenvalues in the center that are below the

computational error are set to zero.

Another factor that affects the computations is that eigenvalues are decaying while getting further

from the boundary. This we partially compensate by considering anisotropic model. In principle we

can consider anisotropic model with smaller anisotropy (e.g. k = 2 or even close to 1). As soon as

k > 1 eigenvalues inside the lattice are not zeros and the degree can be computed. But in practice for

small anisotropy the rate of decay of eigenvalues is very high, so the computed degree is more accurate

for large anisotropy. To make our vorticity patterns more demonstrative we consider the case of high

anisotropy with k = 10. In Table 1 below we give the results for degree, computed for a large lattice
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along the cycle γ ⊂ Λ consisting of the rectangle of the first or the second neighbors to the boundary

for different values of the anisotropy parameter k = 2; 10. Inverse temperature is β = 1.

Table 1. Table of calculated degree for different values of anisotropy factor k for the first and the

second neighbors to the boundary. Here the case of 2 boundary layers |Λ∪∂Λ| = 23×33 is considered

with β = 1.

Given k = 2 k = 10 k = 2 k = 10
degree 1st neighbours 1st neighbors 2nd neighbours 2nd neighbours

1 1.05 1.09 0.89 1.05
2 1.98 2.03 1.70 1.78
3 2.76 2.75 2.01 2.50

Increasing the boundary size for the same inner lattice does not almost change anything inside.

This can be explained by the “exponential” decay of the information that propagates from boundary

sites. So the influence of the third boundary layer on the inner points is too small compared with the

effect of the closer sites on the first and the second boundary layers; in simulations it suffices to use

only 2 boundary layers.

Let us consider the influence of the inverse temperature β. As expected, the smaller β the smaller

are the eigenvalues of Ωi
β(δ) when i ∈ Λ, because of disorder at high temperature; but taking larger

β makes Ω̂i
β(δ), everywhere on Λ, very close to

(
0 −bi
bi 0

)
which has principal directions (1,1) and

(1,-1), and the vorticity pattern is destroyed; this is not in contradiction with long range order at low

temperature, but is probably due to volume effects. (a)

Let us finally discuss the antiferromagnetic model. It is known that on Z2, the unitary trans-

formation U consisting in flipping the spins at sites i with i odd (i.e. indices i = (i1, i2) such that

|i| = |i1| + |i2| is odd) intertwines the ferro with the antiferromagnetic models. More precisely,

−H = U∗HU . The reason is that Z2
e and Z2

o (the even and odd lattices) are swapped into each other

by symmetries on the lines x = n+ 1/2 or y = m+ 1/2 (called the “chessboard symmetry”). There

follows that tr exp[βH]A = tr exp[−βH]UAU∗, and if A = D̃i (the canonical basis), we can check

UAU∗ = A so the matrices of vorticity (for the Hamiltonian with free boundary conditions) are the

same. This equivalence holds also in the case of the torus, but not on Λ ⊂ Z2 with an odd number of

sites. Of course, when ∂Λ 6= ∅, H and −H are not so simply related; nevertheless, we may observe

(numerically) that the relation Ωi
β(δ) = Ωi

−β(δ) holds with a very good accuracy.

c) Summary.

The number of vortices is equal to the topological degree and can be calculated by the integral

along some contour. We use discrete approximation of this integral to compute the degree for a finite

lattice Λ∪ ∂Λ. The main factors responsible for computational errors are the small number of points

on the integration contour and the fast decay of eigenvalues inside the lattice. We can use larger

lattices and longer integration contour approaching the boundary to reduce the computational error

related to the number of points, or consider smaller degrees. We deal with anisotropic case to slow

down the decay of eigenvalues near the center of Λ, and take the inverse temperature of order 1.
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Appendix

We provide a proof for the conjugacy relation (1.16) between δ-symmetric basis. Allow for the

action of G0, we can assume the matrix b̂ ∈ O(4) with columns (b1, b2, b3, b4) already has determinant

1, so this is the matrix of a rotation in R4. We recall from [So] the structure of matrices of rotation

in R4. Matrices of the form

(a.1) AG(α,U) =

(
cosα − sinαtU
sinαU cosα+ sinαj(U)

)

with tU = (x, y, z) a unit vector in R3, and

j(U) =




0 −z y
z 0 −x
−y x 0




are called left-quaternions. In the same way,

(a.2) AD(α,U) =

(
cosα sinαtU

− sinαU cosα+ sinαj(U)

)

are called right-quaternions. The point is that any R ∈ O+(R4) can be written as the product of a

left-quaternion and a right-quaternion. More precisely, there are real numbers α, β, and unit vectors

U = (sin θ cosφ, sin θ sinφ, cos θ), V = (sinµ cos ν, sinµ sin ν, cosµ), such thatR = AG(α,U)AD(β, V ).

Thus R is a matrix depending on 6 variables α, β, θ, φ, µ, ν.

Recall from Definition 1.1 the conditions for R to be a δ-symmetric basis, R ∈ [δ]s; after taking

some linear combinations between the original equations, this gives the following system:

sin β{sin µ[cos α(cos ν− sin ν) + sin α cos θ(cos ν + sin ν)]

− sin α sin θ cos µ(cos φ+ sin φ)}
− cos β sin α sin θ(cos φ− sin φ) = 0(a.3)

sin α sin β sin θ sin µ cos(ν + φ) = 0(a.4)

sin α cos β cos θ + cos α sin β cos µ = 0(a.5)

sin α sin θ[sin β cos µ cos φ− cos β sin φ] = 0(a.6)

sin β sin µ[cos α cos ν + sin α cos θ sin ν] = 0(a.7)

sin α[2 cos β cos θ + sin β cos(ν − φ) sin θ sin µ] = 0(a.8)

This system turns out to be overdetermined, which allows for discrete or 1-parameter families of

solutions, which can be found with the help of a symbolic computer program.

Equation (a.4) yields the set of congruence mod π: (a) α = 0 [π] or (b) β = 0 [π] or (c) θ = 0 [π]

or (d)µ = 0[π] or (e) ν + φ = π
2
[π].

In cases (a) or (b), we find α = 0 [π] and β = 0 [π]. In case (c), α = β = π
2
[π] and µ = 0 [π]. In

case (d), µ = 0[π], α = 0 [π] and β = 0 [π]. So in cases (a) to (d), the solution to the system (a.3)-(a.8)

consists in a discrete set.
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Case (e) splits into two sub-cases: (e’) ν + φ = π
2
[π] with α 6= π

2
[π] and β 6= π

2
[π], or (e”)

ν + φ = π
2
[π] with α 6= π

2
[π] or β 6= π

2
[π].

In case (e’), we find
(
α = π

4
[π] and β = −π

4
[π]

)
, or

(
α = −π

4
[π] and β = π

4
[π]

)
. So in cases (e’),

the solution to the system (a.3)-(a.8) consists again in a discrete set.

In case (e”) we find the solutions we obtained before, in addition to a one-parameter set defined

by α ≡ β ≡ φ = π
2
[π], ν = 0 [π], and µ = θ = t ∈ R. Summing up:

Lemma a.2: The solutions of R ∈ [δ]s consist in a discrete set, comprising R0 = ± Id, and

(a.9)

R5 = ±




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 , R6 = ±




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0




R1 = ±1

2




1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1


 , R2 = ±1

2




1 −1 1 −1
1 1 1 1
−1 1 1 −1
−1 −1 1 1




R3 = ±1

2




1 1 −1 −1
−1 1 1 −1
1 1 1 1
−1 1 −1 1


 , R4 = ±1

2




1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1




and 4 one-parameters families, with 0 ≤ s ≤ 1 :

(a.10)

R10(s) = ±




s
√
s(1− s)

√
s(1− s) 1− s√

s(1− s) −s 1− s −
√
s(1− s)√

s(1− s) 1− s −s −
√
s(1− s)

1− s −
√

s(1− s) −
√
s(1− s) s


 ,

R11(s) = ±




−s
√

s(1− s) −
√
s(1− s) 1− s√

s(1− s) s 1− s
√
s(1− s)

−
√
s(1− s) 1− s s −

√
s(1− s)

1− s
√

s(1− s) −
√
s(1− s) −s




R12(s) = ±




−s −
√

s(1− s)
√
s(1− s) 1− s

−
√
s(1− s) s 1− s −

√
s(1− s)√

s(1− s) 1− s s
√
s(1− s)

1− s −
√

s(1− s)
√
s(1− s) −s




R13(s) = ±




s −
√

s(1− s) −
√
s(1− s) 1− s

−
√
s(1− s) −s 1− s

√
s(1− s)

−
√
s(1− s) 1− s −s

√
s(1− s)

1− s
√
s(1− s)

√
s(1− s) s




Now according to (1.5), we identify each column bk of these matrices with a 2× 2 matrix bk; it turns

out that we can always relate the resulting b with δ by the conjugacy relation (1.16) for some P . For

instance, R10(s) gives the δ-symmetric basis b =

(
b1 b2
b3 b4

)
with

b1 =

(
s

√
s(1− s)√

s(1− s) 1− s

)
, b2 =

(√
s(1− s) −s

1− s −
√
s(1− s)

)

b3 =

(√
s(1− s) 1− s

−s −
√

s(1− s)

)
, b4 =

(
1− s −

√
s(1− s)

−
√
s(1− s) s

)
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and moreover, b = tPsδPs, with

Ps =

( √
s

√
1− s√

1− s −√
s

)

If we do no more allow for the action of G0, we can look for a δ-symmetric basis associated with an

isometry R ∈ O−(4), its product with an element of G0 being again a rotation. This readily gives

(1.16) and Proposition 1.4 is proved.
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