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Abstract

In this paper we construct mass, angular momentum and entropy of
black hole solution of Generalized Minimal Massive Gravity (GMMG)
in asymptotically Anti-de Sitter (AdS) spacetimes. The generalized
minimal massive gravity theory is realized by adding the CS deforma-
tion term, the higher derivative deformation term, and an extra term
to pure Einstein gravity with a negative cosmological constant. We
apply our result for conserved charge Q" (€) to the rotating BTZ black
hole solution of GMMG, and find energy, angular momentum and en-
tropy. Then we show our results for these quantities are consistent

with the first law of black holes thermodynamics.
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1 Introduction

We know that the pure Einstein-Hilbert gravity in three dimensions ex-
hibits no propagating physical degrees of freedom [Il, 2]. But adding the
gravitational Chern-Simons term produces a propagating massive graviton
[3]. The resulting theory is called topologically massive gravity (TMG). In-
cluding a negative cosmological constant, yields cosmological topologically
massive gravity (CTMG). In this case the theory exhibits both gravitons
and black holes. Unfortunately there is a problem in this model, with the
usual sign for the gravitational constant, the massive excitations of CTMG
carry negative energy. In the absence of a cosmological constant, one can
change the sign of the gravitational constant, but if A < 0, this will give a
negative mass to the BTZ black hole, so the existence of a stable ground
state is in doubt in this model [4]. Recently an interesting three dimensional
massive gravity introduced by Bergshoeff, et.al [5] which dubbed Minimal
Massive Gravity (MMG), which has the same minimal local structure as
Topologically Massive Gravity (TMG) [3]. The MMG model has the same
gravitational degree of freedom as the TMG has and the linearization of the
metric field equations for MMG yield a single propagating massive spin-2
field. So both models have the same spectrum [6]. However, in contrast
to TMG, there is not bulk vs boundary clash in the framework of this new
model. During last months some interesting works have been done on MMG
model [6]. More recently, this model has been extended to General Minimal
Massive Gravity theory (GMMG) [7]. GMMG is a unification of MMG with
New Massive Gravity (NMG) [8], so this model is realized by adding the
higher derivative deformation term to the Lagrangian of MMG.

In this paper we want to construct mass, angular momentum and entropy of
black hole solution of GMMG in asymptotically Anti-de Sitter (AdS) space-
times. There are several approach to obtain mass and angular momentum
of black holes for higher curvature theories [9]-[25]. Arnowit-Deser-Misner
(ADM) method [I0] uses a linearization of metric around asymptotically flat
spacetime, so this approach fails here because we consider the solution which
are not asymptotically flat. A method to calculate the energy of asymptoti-
cally AdS solution was given by Abbott and Deser [9]. Deser and Tekin have
extended this approach to the calculation of the energy of asymptotically
dS or AdS solutions in higher curvature gravity models and also to TMG
[12]. In contrast to the ADM method, this ADT formalism is covariant. An-
other method is the Brown-York formalism [I3] which is based on quasi-local
concept, but this approach also is not covariant. The authors of [14] have
obtained the quasi-local conserved charges for black holes in any diffeomor-



phically invariant theory of gravity. By considering an appropriate variation
of the metric, they have established a one-to-one correspondence between the
ADT approach and the linear Noether expressions. They have extended this
work to a theory of gravity containing a gravitational Chern-Simons term
in [I5], and have computed the off-shell potential and quasi-local conserved
charges of some black holes in TMG. We should mention that before these
works, the authors of [16] have computed the ADT charges for a solution of
TMG linearized about an arbitrary background and have applied the result
to evaluate the mass and angular momentum of the non-asymptotically flat,
non-asymptotically AdS black hole solution (ACL black hole) of TMG. One
another way to obtain mass and angular momentum of black holes for higher
curvature models in the case of asymptotically AdS space is application of
AdS/CFT correspondence, because the definition of conserved charges in
the dual field theory is clear and no any ambiguities in their construction
[20, 22], 23], 24]. This method is covariant and takes into account the non-
linear effects. However this formalism is applicable only to asymptotically
(warped) AdS space. Moreover to obtain holographic conserved charges,
one needs the boundary stress tensor which depends on the explicit form of
Gibbons-Hawking terms [26] and counter term which are not known in gen-
eral. So this approach becomes complicated for a higher derivative model of
gravity [I7]. Another way is the super angular momentum approach [18, 19],
by this method one can compute the conserved charges with non-linear ef-
fects. In this formalism the non-linear conserved charge obtained by the
first integral of equation of motion. However this method is not completely
covariant, moreover it is inconsistent with the first law of black hole ther-
modynamics for warped AdSs black hole solution of TMG. Here we follow
the method given by Abbott, Deser, and Tekin in [9] 11l 12], which need to
obtain the field equations and linearize them about the (A)dS vacuum of the
model. By this method we obtain conserved charges which are consistent
with the first law of black hole thermodynamics.

Our paper is organized as follows. In Sec.2 we review GMMG briefly. In
Sec.3 we will obtain the formula for the calculation of conserved charges
in this model in asymptotically AdSs spacetime. Then we apply our re-
sult for conserved charge Q*(£) to the rotating BTZ black hole solution of
GMMG, and find energy, angular momentum and entropy. Sec.4 is devoted
to conclusions and discussions.



2 The Generalized Minimal Massive Gravity
We introduce the Lagrangian of GMMG model as [7]
o
Loyvive = Loy + §€.h X h (1)

where 1 1
Leve = Lrve — W(f-R + §€'f X f) (2)

here m is mass parameter of NMG term and f is an auxiliary one-form field.
Ly is the Lagrangian of TMG,

Lryg = —oe.R+ %e.e x e+ hT(w)+ i(w.dw + %w.w xw) (3)
where Ay is a cosmological parameter with dimension of mass squared, and
o a sign. p is mass parameter of Lorentz Chern-Simons term. « is a di-
mensionless parameter, e is dreibein, h is the auxiliary field, w is dualised
spin-connection, T'(w) and R(w) are Lorentz covariant torsion and curvature
2-form respectively. So by adding extra term §e.h X h to the Lagrangian
of generalized massive gravity we obtain Lagrangian of GMMG model. The
equation for metric can be obtained by generalizing field equation of MMG.
Due to this we introduce GMMG field equation as follows [7]

1
O = Nog'" + o GH + —CH + 12,]“” 2 s K" =0, (4)
% 7 2m
where G*" is Einstein’s tensor, the Cotton tensor is
cH = Lguaﬁvagg, (5)
V=9
where S, = RE — i&,‘f R is the Schouten tensor in 3 dimensions,
JH = L o vaBg S 6
= %5 € parof3s (6)

and

1 1 9 13
KM = 2DR‘“’—§V“V”R—59“”DR—8RWR(’;+5RR“”+39“”R°‘BRQB—gg‘“’RZ,
(7)
s is sign, v, 0 Ag are the parameters which defined in terms of cosmological
constant A = %}, m, i, and the sign of Einstein-Hilbert term. Here G,
and C,,, denote Einstein tensor and Cotton tensor respectively. Symmetric

tensors Jy,, and K,,, are coming from MMG and NMG parts respectively

[8, 5.



3 Charges of GMMG

In this section we would like to obtain the conserved charges of GMMG
for asymptotically (A)dS space-times. Here we follow the method given
in [9 1T, 12] (see also [27]), which need to obtain the field equations and
linearize them about the (A)dS vacuum of the model.

The field equations of the model can be written as

., (9, R,V(Rz’emann),R2, ) = 81T (8)

We assume that (A)dS is the background solution ®,,(g) = 0. The lin-
earized form of the above equation can be written symbolically as

O(9) waph®™ = 87T, (9)

where the deviation of background is, h,, = g, — guv- If the field equation
) come from an diffeomorphism invariant action, then we have

V0 =0, (10)
From (@) and (I0) we have
V0" ,ash™® =0, (11)

In order to define globally conserved charges, we use the killing vector £,
and energy-momentum 7T, then we can define conserved current as

V _gvu(guTuV) = %(v _gguTw/) =0, (12)
So we obtain conserved charge by

Q@) = ¢ /M 4PV GE T = /E L, (13)

where we have used Stoke’s theorem, ¢ is an arbitrary constant, and M is a
(D — 1)-dimensional spatial manifold with boundary ¥. We have assumed

3Here we should mention that although we obtain the conserved charges from the
linearization of the field equations around a background, but the method is general. There
is no dependence on background (except that there must be asymptotic Killing vectors
and spatial infinity of course) in the method of [I1]. Multiple vacua are universal features
of all R+ R? etc models, since they clearly allow both flat and (A)dS vacua, but energy
is still definable around each branch, though one is unstable (see for example [28§]).



that &,TH = V,F", where F* is an anti-symmetric tensor. For the
background metric we have:

Ruauﬁ =A (guugaﬁ - g,uﬁguoe) ’ R/u/ = 2Agw/7 R= 6A7 (14)

Now we obtain the linearized form of field equation () around the AdSs
space-time. So at the first order the field equation can be written as

OH(g) + @ = 8T, (15)
where )
v vV v v ’Y 17 S v
O = —Aoh*"” + oG + ;Cﬁ +FJZ‘ + 5 K7 (16)
1
gL, =RL, — §gWRL — 2Ahy,, (17)
Cp = ety ¥, <Rz” ~lgRp 4 2AhW> , (18)
V=g 4

124 1A [ 1A2 nv

T = —5AGL — 1A%h (19)

_ 1 - 1- - 1
K =206 + 3 §ORy, — §V“V”RL —5AGY — AG" Ry, + 5A%W, (20)
Here we have defined that G,,, = G, +Ag,,,. The linear form of Ricci tensor

and Ricci scalar are given by following equation respectively

1 _ o . L
R, =3 (_th ~ V. Voh + VAV ,hyy + VAVuh)\u> : (21)

RY = —0Oh+V,V, 0" — 2Ah, (22)

Using the Ricci tensor and Ricci scalar of AdSs background in ([I4]), it is
easy to see that

. . w1 . 1
G = —Ag, CM =0, W= NG KM =SNG, (23)

Then field equation for AdS3 reduces to an quadratic equation for

vA%  sA?
A()—O'A—I-F—m: ; (24)
so,
(0 + \/02 — Ao(Z — 22))
A= s (25)
3z = )



Since ®,,,(g) = 0, ([I3)) takes following form
BN = 87T, (26)

Substituting (I7)-@0) and 24)) in (26), we have

7A v 1 v S v 1 2 v v

One can show that vygf/ = ?VC“L“' = 0, then by the following identities

2]

, [0 — V¥ + 205 Ry = 0,
v, [06" — Ag™R;] =0, (28)
we conclude that

_ 1
v, (Kg” — 5A2hﬂ”> = 0. (29)

So (21) obeys the Bianchi identities, and we can use ([27)) for definition of
conserved charges. One can check that [12 29]

- v 1 V(& — v 1 1 V= 1 U/~
VGG = 0@, VIO = 30, (S E) 4 5-a©).
VT (K1 - 30 ) = 0, (O - A©). o0)
where

_ o o o o 1 -
¢ (§) = 2v=7 <5Av[“h"“ + £V + TIEN + €V 5W%“> ;

g (&) = M, G Eq + PV, Gl g + M8 GOV Eg,

V(& = A wilZ Ui ¢ clpxov 1 wil¥=4
ay (€)= V=7 [4 (&VPG? + 61V ) + €V IRy + SRV ] :
_ (31)
also, =8 = ﬁsawﬁa@. Using ([30]), we can rewrite ([27)) as

~yA sA
212 2m?2

167/ —g&,T" = 0, [(a —
2p

(32)

= 1 - 1 _ _
) O + 50 C)+ g O+ @)



substituting this result in (I3]), we obtain

= A A iz 1 = - iz
@O =1 [ |(0- 25 - s ) O+ 5t )+ 5O + 550 (©).
(33)

where ¢ denotes the space direction orthogonal to the boundary X.
In the limiting case # — 0, where GMMG reduce to the MMG, our result

for conserved charge Q*(£) in above equation reduce to the result of [29]
for MMG. Now we apply Eq.([33]) to the rotating BTZ black hole solution of
GMMG, in order to obtain the energy, angular momentum and entropy of
this black hole. The BTZ line-element is

(r2 —r2)(r? —1r?) 12r2 ror— o \2
ds? = — + dt? dr? 2<d— dt),
§ 12r2 +(r2 —r2)(r2 —r?) ot (do Ir2
(34)
where A = 2 also v and r_ are outer and inner horizon respectively.
The case of ry = r_ = 0 is correspond to the background. Then, one can
read that
r2 +r2 raT_ P(r2 +1r2
hy = ==, hig = ———, hm:%, (35)
l l r
¥ is a circle and dl; = (d¢,0). )
Energy is correspond to the Killing vector £ = 0; and ¢ = —8 then
I n ¥ n s it 2rpr (36)
= g — s
20212 2m2I2 12 ul?

In the other hand angular momentum of BTZ black hole is correspond to
the Killing vector £ = 0y and ¢ = 8, so we have

v s 2ror_ 4t
_ _ 37
J <” ToeE T 2m2z2> z PR (37)

If one write the metric of rotating BTZ black hole in terms of mass M and
angular momentum parameter a, the above expression for energy E and
angular momentum J can be rewritten as

J:[(J—;ﬁz %) —%] (39)



The above equations reduce to the corresponding results for MMG in the
2 2

limit # — 0, [29]. If we take £ = 8t+;r—;8¢ and ¢ = —327”, where kK = %
is surface gravity, then

_ AL _ =
S—4ﬂ[<a+2#212+2m212>7’+ MJ, (40)

one can check that these results satisfy the first law of thermodynamics,that
is
dE =TydS + QgdJ, (41)

T—

where Ty = 5= and Qp = e

4 Conclusion

In this paper we have investigated the Abbott-Deser-Tekin charge construc-
tion in the framework of Generalized Minimal Massive Gravity in asymp-
totically AdS space-time. We have applied our result for conserved charge

Q*(€) in Eq.(33)) to the rotating BTZ black hole solution of GMMG. In the
limit 4y — 0, where GMMG reduce to the MMG model, our conserved

chargemQ“({T ) reduce to the corresponding result for MMG, which has been
obtained in [29]. By this method and correspond to the Killing vector fields
€=0;and £ = 0y, we have obtained energy and angular momentum of ro-
tating BTZ black hole respectively. After that by considering Killing vector
field € = 0, + ﬁ—;&b we have obtained the entropy of BTZ black hole. Then
we have shown that our result for entropy is consistent with the first law of
black holes thermodynamics.
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