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THE FIRST-ORDER THEORY OF GEOMETRIC POINTS OF

SCHEMES: CHEVALLEY’S THEOREM AND QUANTIFIER

ELIMINATION

L. ALEXANDER BETTS

Abstract. Chevalley’s theorem on the images of morphisms of schemes and
the principle of quantifier elimination for the theory of algebraically closed
fields are widely understood to be two perspectives on the same theorem. In
this paper, we demonstrate that both results can easily be proven simultane-
ously, using a mixture of geometric and logical techniques. In doing so, we give
logical meaning to geometric points of schemes and to finitely presented mor-
phisms thereof, in a manner reminiscent of Spencer Breiner’s logical schemes.

Introduction

In his PhD thesis [1], Breiner develops the notion of a logical scheme. To a good
approximation, this is a geometric object which is locally a first-order theory, and
its points correspond to models of these theories.

We can realise a similar idea concretely in the case of (classical) schemes. To
each ring R we can associate a first-order theory ACFR, so that we have a canonical
bijection

{Geometric points of Spec(R)} ←→ {Models of ACFR}

This correspondence induces a bijection between the 0th Stone space of ACFR

and the underlying topological space of Spec(R), which is a homeomorphism when
| Spec(R)| is endowed with the constructible topology.

Using this correspondence we can easily understand the images of (locally)
finitely presented morphisms of schemes: they are just (locally) described by a
sentence in the language of ACFR. Pursuing this idea naturally leads to a straight-
forward proof of Chevalley’s theorem (on the scheme-theoretic side) and quantifier
elimination for the theories ACFR (on the logical side), and the aim of this paper
is to explain these basic applications of the theory.

Remark 1. Although our treatment involves heavy use of the underlying topolog-
ical space of a scheme, for the purely algebraic applications of this theory it is easy
to dispense with this and just work with the functor-of-points instead.

Geometric points of schemes as models of theories

The correspondence for geometric points is very simple. We form the language of
ACFR by taking the language of rings and adjoining constants ca for each element
a ∈ R (we will frequently write ca just as a, for ease of notation). The theory ACFR

is then formed by taking the theory of algebraically closed fields (in the language
of rings) and adjoining axioms c1 = 1 and, for each a, b ∈ R, ca+b = ca + cb and
cab = cacb.

Models of ACFR are then algebraically closed fields k, together with named
elements cka for each a ∈ R, so that the function R → k sending a to cka is a
homomorphism of rings. In other words, models of ACFR can be naturally thought
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of as ring homomorphisms x : R → k from R into an algebraically closed field (or
more accurately, such a homomorphism makes k into a model of ACFR in a natural
way – we will be happy to conflate these concepts).

Since Spec is a contravariant embedding, such homomorphisms are in bijection
with scheme morphisms Spec(k)→ Spec(R), which are precisely geometric points.
Thus the correspondence between geometric points of Spec(R) and models of ACFR

is just transposition across the Spec/global sections adjunction.

The image formula. With this correspondence between geometric points and
models of ACFR in mind, we make the crucial observation that the image of a
finitely presented morphism of affine schemes is described by a particular first-
order formula. It follows that the image will be constructible iff this formula can be
rewritten in an equivalent, quantifier-free form. Of course, elimination of quantifiers
for the theories ACFR makes this immediate, but since we are aiming to prove this,
we use more elementary methods.

Proposition 2. Let S ∼= R[t]/(f) be a finitely presented R-algebra, and Spec(S)→
Spec(R) the structure map. Then a geometric point x : Spec(k)→ Spec(R) lifts to
Spec(S) iff, viewed as a model of ACFR, it satisfies the sentence

(∃y)





∧

j

(fj(y) = 0)





We will refer to this formula as the image formula associated to this presentation
of S as an R-algebra.

Proof. The lifts of x to Spec(S) correspond with homomorphisms R[t]/(f)→ k of
R algebras, and hence with tuples y ∈ kn such that all fj(y) = 0. Thus x lifts to
Spec(S) iff such a tuple exists, which says precisely that x : R → k satisfies the
image formula. �

The preceding proposition gives logical meaning to the collection of geometric
points in Spec(R) lifting to Spec(S), but we should check that this agrees with the
usual topological notion of the image of Spec(S) → Spec(R). This is provided (in
a strong sense) by the following easy proposition, which is also the sole algebraic
input into the theory.

Proposition 3. Let Y → X be a locally finitely presented morphism of schemes,
and x : Spec(k) → X a geometric point with underlying topological point P ∈ |X |.
Then x lifts to Y iff P lies in the image of Y → X. In particular, whether x lifts
to Y depends only on its image in X.

Proof. Let κP be the residue field at P , so that x factors (uniquely) through
Spec(κP ) → X . We know that P lies in the image of Y → X iff the fibre
Spec(κP ) ×X Y is not the empty scheme. Since κP → k is faithfully flat, this
occurs iff Spec(k) ×X Y is not the empty scheme. Yet this is locally finitely pre-
sented over Spec(k), so the Nullstellensatz shows that Spec(k)×X Y is non-empty
iff its structure morphism to Spec(k) has a section. By the universal property of
fibre products, such sections are in bijective correspondence with lifts of x to Y ,
completing the proof. �
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Example 4. If R is any ring and b ∈ R an element, then the (finitely presented)
morphism Spec(Rb) → Spec(R) is just the inclusion of a standard Zariski-open
affine. Under ACFR, its image formula is equivalent to the formula (b 6= 0), so that
the image formula describing D(b) is just the statement that b does not vanish.

Chevalley’s theorem

We are now in a position to prove Chevalley’s theorem on the images of finitely
presented scheme morphisms. The argument is essentially a two-pass application of
the compactness theorem from first-order logic, but the niceties can be cut out by
recognising the argument as exactly the same one that proves the transfer lemma
from model theory. For clarity, we recall this here before applying it to prove the
affine case of Chevalley’s theorem.

Lemma 5 (Transfer lemma). Let T0 ⊆ FO0 be some base theory (over some sig-
nature) and F ⊆ FO0 a fragment closed under ∨ and ∧. Suppose that a sentence Φ
has the following property: whenever A and B are two T0-models such that A |= Φ
and F ∩ Th(A) ⊆ Th(B), then B |= Φ also. Then Φ is equivalent under T0 to a
sentence in F .

Theorem 6 (Chevalley’s theorem (affine case)). Let S be a finitely presented R-
algebra. Then the image of the map | Spec(S)| → | Spec(R)| is constructible. Equiv-
alently, the image formula Φ for Spec(S) → Spec(R) is equivalent under ACFR to
a quantifier-free sentence.

Proof. Translating proposition 3 into the language of model theory, we see that
whether a model x : R → k of ACFR satisfies the image formula Φ depends only
on ker(x) E R. In particular, whether a model satisfies Φ depends only on which
quantifier-free sentences it satisfies. Thus Φ and the quantifier-free fragment of
FO0 satisfy the conditions of the transfer lemma, where we take T0 = ACFR. As a
consequence, we see that Φ is equivalent under ACFR to a quantifier-free sentence,
as desired.

To pass back to constructibility is now easy. Φ is equivalent to a sentence of the

form
∨

i

(

(bi 6= 0) ∧
∧

j(aij = 0)
)

. Translating into the language of scheme theory, a

geometric point of Spec(R) lies in the image of Spec(S)→ Spec(R) iff its underlying

topological point lies in
⋃

i

(

D(bi) ∩
⋂

j V (aij)
)

, which is a constructible set. �

Remark 7. Exactly the same method can be used to prove that finitely presented
flat morphisms f : Spec(S) → Spec(R) of affine schemes have Zariski-open image.
A standard result [2, Theorem 5.D] in commutative algebra tells us that the topo-
logical image of f is closed under generisation. In other words, given geometric
points x : R → k and y : R → l such that ker(y) ≤ ker(x), if x lies in the image
of f then so does y. Thus we may apply the transfer lemma immediately, with
respect to the fragment of FO0 consisting of the quantifier-free negative sentences,
to deduce that the image formula Φ of f is equivalent under ACFR to a quantifier-
free negative sentence. In other words, the image is Zariski-open (indeed is a finite
union of basic opens).

Corollary 8 (Chevalley’s theorem). Let f : Y → X be a locally finitely presented,
quasicompact morphism of schemes. Then the image of any locally constructible set
in Y is locally constructible in X.
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Proof. We can immediately reduce to the case when Y = Spec(S) andX = Spec(R)
are affine, so that the morphism is given by a finitely presented ring homomor-
phism R → S. Any constructible set Z in Spec(S) is the image of a finitely pre-
sented morphism Spec(T )→ Spec(S) and thus f(Z) is the image of the composite
Spec(T )→ Spec(R). It is hence constructible by theorem 6. �

Corollary 9 (Quantifier elimination for ACFR). The theory ACFR has quantifier
elimination. Every first-order formula in the language of ACFR is equivalent to a
quantifier-free formula.

Proof. Proceeding by structural induction, we just need to show that existential
formulae are equivalent to quantifier-free formulae. It is easy to see that every
quantifier-free formula Ψ in the language of ACFR is equivalent to one in the form

∨

i



(bi 6= 0) ∧
∧

j

(aij = 0)





for some R-polynomials bi, aij in the free variables of Ψ.
If the formula (∃x)Ψ has no free variables, it is equivalent to the image formula

of some finitely presented morphism of affine schemes (associated to the R-algebra
∏

iR[t]bi/(aij)j), so that we are done by theorem 6. In general, if the formula
(∃x)Ψ has free variables y, we can view it as a sentence in the language of ACFR[y],
whose models can be thought of as models of ACFR with named values for the
variables y. By the previous case, under ACFR[y] it is equivalent to a quantifier-
free sentence, i.e. under ACFR it is equivalent to a quantifier-free formula with free
variables y. This concludes the proof. �

Topological points. To complete the picture, we will now show how our cor-
respondence between models of ACFR and geometric points descends to a bijec-
tion between elementary equivalence classes of models and topological points. Let
S0(ACFR) denote the Stone space of ACFR, with its usual topology. There is a
canonical map p : S0(ACFR)→ | Spec(R)|, taking a model x : R→ k of ACFR to the
prime ker(x) of R. This is easily seen to be well-defined and continuous with respect
to the constructible topology (e.g. the preimage of D(f) is just S0(ACFR∪{f 6= 0}),
which is clopen in the topology on S0(ACFR)).

We demonstrate that p is a homeomorphism. That it is surjective is clear, since
every topological point of Spec(R) arises from a geometric point. To prove injec-
tivity, just note that if x and y are models of ACFR such that p(x) = p(y), then
in particular x and y satisfy the same quantifier-free sentences in the language of
ACFR. Quantifier elimination (corollary 9) tells us that they are elementarily equiv-
alent, and so represent the same point of S0(ACFR). Thus p is a continuous bijection
from a compact space to a Hausdorff space, and hence is a homeomorphism.
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