DETECTING ASYMPTOTIC NON-REGULAR VALUES BY POLAR CURVES

ZBIGNIEW JELONEK AND MIHAI TIBAR

Abstract. We locate the Malgrange non-regular values of a given polynomial function $f: \mathbb{C}^n \to \mathbb{C}$ by using a series of affine polar curves. We moreover show that all non-trivial Malgrange non-regular values of f are indicated by a single "super-polar curve" which we introduce here, providing also an effective algorithm of detection.

1. INTRODUCTION

Let $f: \mathbb{C}^n \to \mathbb{C}$ be a polynomial of degree $d \geq 2$. René Thom proved that f is a C [∞]−fibration outside a finite set, where the smallest such set is called the bifurcation set of f and is denoted by $B(f)$. Roughly speaking the set $B_{\infty}(f)$ consists of points at which f is not a locally trivial fibration at infinity (i.e., outside a large ball). Two fundamental questions appear in a natural way: how to characterize the set $B(f)$ and how to estimate the number of points of this set.

Let us recall that the set $B(f)$ contains the set $f(Sing f)$ of critical values of f and the set $B_{\infty}(f)$ of bifurcations points at infinity.

In case $n = 2$ there are well-known criteria to detect $B(f)$, see e.g. [\[Ti4\]](#page-15-0), [\[Du\]](#page-14-0), and there are also estimations of the upper bound of the number $\#B(f)$ in terms of the degree or other data [\[Ha1\]](#page-14-1), [\[Ha2\]](#page-14-2), [\[Jel6\]](#page-14-3), [\[LO\]](#page-15-1), [\[Gw\]](#page-14-4), [\[JT\]](#page-15-2) etc.

Whenever $n > 2$ one has no exact criteria but one defines regularity conditions at infinity that each yield some finite set of values containing $B(f)$ and thus approaching the problem of estimating $#B(f)$. To control the set $B_{\infty}(f)$ one can use the set of asymptotic critical values of f:

$$
K_{\infty}(f) := \{ y \in \mathbb{C} \mid \exists (x_l)_{l \in \mathbb{N}}, ||x_l|| \to \infty, \text{ such that } f(x_l) \to y \text{ and } ||x_l|| ||df(x_l)|| \to 0 \}.
$$

If $c \notin K_{\infty}(f)$, then it is usual to say that f satisfies Malgrange's condition at c (or c is Malgrange regular). The set $K_{\infty}(f)$ naturally decomposes into two pieces: the set $TK_{\infty}(f)$ of trivial Malgrange non-regular values which come from the critical points of f (i.e. there is a sequence $x_l \to \infty$ such that $x_l \in \text{Sing}(f)$ and $f(x_l) \to y$) and the remaining set $NK_{\infty}(f) := K_{\infty}(f) \setminus TK_{\infty}(f)$ of non-trival Malgrange non-regular values. Of course $TK_{\infty}(f) \subset f(\text{Sing} f)$. Since the set $f(\text{Sing} f)$ is relatively easy to compute, the problem which remains is how to compute the set $NK_{\infty}(f)$.

Date: July 17, 2018.

²⁰¹⁰ Mathematics Subject Classification. 32S05, 32S50, 14D06 14Q20, 58K05, 14P10.

Key words and phrases. polar curve, bifurcation locus, Malgrange non-regular values, effectivity.

The authors acknowledge the support of the Labex CEMPI (ANR-11-LABX-0007-01) at Lille, and of the CIRM at Luminy through the RIP program. The first author was partially supported by the NCN grant 2013/09/B/ST1/04162, 2014-2017.

It was proved (cf [\[Pa2\]](#page-15-3), [\[JK1\]](#page-14-5), [\[Jel4\]](#page-14-6)) that one has the inclusion $B_{\infty}(f) \subset K_{\infty}(f)$. Setting $K(f) := f(\text{Sing} f) \cup K_{\infty}(f)$, we get the inclusion $B(f) \subset K(f)$. Estimations of the number of the Malgrange non-regular values have been given in [\[JK1\]](#page-14-5). An algorithmic method for recovering the set $K_{\infty}(f)$ has been produced more recently [\[JK2\]](#page-14-7).

We present here two new methods for detecting $K_{\infty}(f)$ and for estimating the number $#K_{\infty}(f)$, together with an effective algorithm. Our first approach, based on the use of a series of *polar curves* and their relation to Malgrange non-regularity via the *t*-regularity, yields an exact characterisation of the set $NK_\infty(f)$. We shall recall the notions and the relevant preliminary results in §[2,](#page-3-0) but let us introduce already here our first main statement.

Let $\{x_1, \ldots, x_n\}$ be a *generic system of coordinates* of \mathbb{C}^n , after Definition [2.8.](#page-4-0) Let us consider the successive restrictions of f to the affine hyperplanes:

$$
f_0 := f
$$
, $f_1 := f_{|x_1=0}$, ..., $f_{n-2} := f_{|x_1=\dots=x_{n-2}=0}$,

and the corresponding generic polar curves $\Gamma(x_i, f_{i-1})$, for $i = 1, \ldots, n-1$.

For a mapping $g: X \to Y$, let J_q denote the non-properness set [\[Jel1\]](#page-14-8), [\[Jel2\]](#page-14-9) (also called the *Jelonek set*) of the mapping g, see §[4,](#page-7-0) Theorem [4.1.](#page-8-0) If $A \subset X$, then by $J_q(A)$ we denote the non-properness set of the restriction $g_{\parallel A}$.

We say that an irreducible algebraic variety $S \subset \mathbb{C}^n$ is *horizontal* if $f(S)$ is not a point (i.e. S is not included in some fibre of f). The union of all horizontal components of the polar curve $\Gamma(x_i, f_{i-1})$ will be called the *horizontal part* and will be denoted by $H\Gamma(x_i, f_{i-1}).$

We prove the following characterisation of the set $NK_{\infty}(f)$:

Theorem 1.1. The set $NK_{\infty}(f)$ of non-trivial Malgrange non-regular regular values of f is included in the union of the non-properness sets of the mapping f restricted to a horizontal part of the polar curves $\Gamma(x_i, f_{i-1})$, more precisely we have the equality:

(1)
$$
NK_{\infty}(f) = \bigcup_{i=1}^{n-1} J_f(H\Gamma(x_i, f_{i-1})) \setminus J_f(\text{Sing}f).
$$

Note that $J_f(\mathrm{Sing} f)$ equals the the set of critical values of f which are images of fibers containing nonisolated singularities.

Let $\text{Sing } f = S_0 \cup S_1 \cup \cdots \cup S_r$ be the decomposition of the singular locus into irreducible components, where S_0 denotes the union of all point-components (i.e. S_0 is the set of isolated singularities of f). For $i > 1$ we denote by $d_i = \deg S_i$ the degree of the positive dimensional component S_i .

Corollary 1.2. For $d > 2$ we have:

(2)
$$
\# NK_{\infty}(f) \le \frac{(d-1)^n - 1}{d-2} - \sum_{i=1}^r d_i \dim S_i,
$$

and for $d = 2$:

$$
\#NK_{\infty}(f) \le n - 1 - \sum_{i=1}^{r} d_i \dim S_i.
$$

According to their definition, the polar curves of the above statement are affine curves, some of them are maybe empty, and they do not detect, in general, values from $TK_{\infty}(f)$. The first polar curve $\Gamma(x_1, f)$ detects some Malgrange non-regular value $c \in NK_\infty(f)$ whenever the fiber $f^{-1}(c)$ has only isolated singularities at infinity in the sense of Definition [2.5,](#page-4-1) cf Theorem [2.9.](#page-5-0) However, the first polar curve may not detect all values from $NK_{\infty}(f)$ and that is why we need more polar curves. We explain this phenomenon by the existence of *non-isolated t-singularities at infinity*, cf $\S3$. For example, if $f(x, y, x) = x + x²y$ then the polar curve of f is empty, but f has a non-trivial Malgrange non-regular value 0. This example also shows that Theorem 3.6 in [\[Sa\]](#page-15-4) is not correct. More precisely, if we use polar curves, then the problem of detecting non-trivial Malgrange non-regular values cannot be done in a single step (as was wrongly claimed in $[Sa]$, but turns out to fall into $n-1$ steps as we describe now in our Theorem [1.1,](#page-1-0) each step being the detection of the non-properness set of a certain generic polar curve.

However, the question "is it possible to recover all non-trivial Malgrange non-regular values in just one single step" subsists as a chalenging problem. We solve it positively in the second part of our paper by introducing a new and different device called "superpolar curve". Let us give here an outline of its construction. We consider the following polynomials:

$$
g_i(a,b) = \sum_j a_{ij} \frac{\partial f}{\partial x_j} + \sum_{j,k} b_{ijk} x_k \frac{\partial f}{\partial x_j}, \ i = 1, \dots, n-1,
$$

where a_{ij}, b_{ijk} are complex constants. Let:

(3)
$$
\Gamma_f(a,b) := \operatorname{closure}\{V(g_1,\ldots,g_{n-1}) \setminus \operatorname{Sing}(f)\},
$$

where we use here the Zariski closure. It turns out that, for general a_{ij}, b_{ijk} the set $\Gamma_f(a, b)$ is a non-empty curve, which we shall call super-polar curve of f. We say that a component $S \subset \Gamma_f(a, b)$ is *horizontal* if $f(S)$ is not a single point. The union of all horizontal components of $\Gamma_f(a, b)$ will be called the *horizontal part of* $\Gamma_f(a, b)$ and will be denoted by $H\Gamma_f(a, b)$. We obviously have the inclusion $J_f(H\Gamma_f(a, b)) \subset J_f(\Gamma_f(a, b))$. We prove the following result:

Theorem 1.3. The set $NK_\infty(f)$ of nontrivial Malgrange non-regular values of f is included in the non-properness set of a mapping f restricted to the horizontal part of a sufficiently general super-polar curve $\Gamma_f(a, b)$, namely one has the following inclusion:

(4)
$$
NK_{\infty}(f) \subset J_f(HT_f(a,b)).
$$

Corollary 1.4. If $n > 2$ and $NK_{\infty}(f) \neq \emptyset$ then:

#NK∞(f) ≤ d ⁿ−¹ − 1 − Xr i=1 di .

In particular if $NK_{\infty}(f) \neq \emptyset$, then:

#K∞(f) ≤ d ⁿ−¹ − 1 − Xr i=1 (dⁱ − 1).

In case $n = 2$, if $NK_{\infty}(f) \neq \emptyset$, then:

#NK∞(f) ≤ d − 2 − Xr i=1 di , and #K∞(f) ≤ d − 2 − Xr i=1 (dⁱ − 1).

The plan of the paper goes as follows: in $\S2$ $\S2$ and $\S4$ $\S4$ we develop some preliminary results in order to prepare the proofs of Theorem [1.1](#page-1-0) in $\S3$, and of Theorem [1.3](#page-2-0) in $\S5$, together with their corollaries, respectively. In §[6](#page-12-0) we sketch the algorithm to detect the set $NK_{\infty}(f)$ effectively.

2. Regularity conditions at infinity

2.1. Malgrange regularity condition at a point at infinity. Pham formulated in [\[Ph,](#page-15-5) 2.1] a regularity condition which he attributed to Malgrange. We recall the localized version at infinity, after [\[Ti2\]](#page-15-6), [\[Ti4\]](#page-15-0).

We identify \mathbb{C}^n to the graph of f, namely $X := \{(x, \tau) \in \mathbb{C}^n \times \mathbb{C} \mid f(x) = \tau\}$, and consider its algebraic closure in $\mathbb{P}^n \times \mathbb{C}$, which is the hypersurface:

(5)
$$
\mathbb{X} = \{ \tilde{f}(x_0, x) - \tau x_0^d = 0 \} \subset \mathbb{P}^n \times \mathbb{C},
$$

where x_0 denotes the variable at infinity, $d = \deg f$ and $\tilde{f}(x_0, x)$ denotes the homogenization of degree d of f by the variable x_0 . Let $t : \mathbb{X} \to \mathbb{C}$ denote the restriction to X of the second projection $\mathbb{P}^n \times \mathbb{C} \to \mathbb{C}$, a proper extension of the map f. We denote by $\mathbb{X}^{\infty} = \mathbb{X} \setminus X$ the divisor at infinity defined in each affine chart by the equation $x_0 = 0$.

Definition 2.1. [\[Ti4\]](#page-15-0) Let $\{x_i\}_{i\in\mathbb{N}} \subset \mathbb{C}^n$ be a sequence of points with the following properties:

- $(L_1) \quad ||\mathbf{x}_i|| \to \infty \text{ and } f(\mathbf{x}_i) \to \tau \text{, as } i \to \infty.$
- (L_2) $\mathbf{x}_i \to p \in \mathbb{X}^\infty$, as $i \to \infty$.

One says that the fibre $f^{-1}(\tau)$ verifies the *Malgrange condition* if there is $\delta > 0$ such that, for any sequence of points with property $(L₁)$ one has

(M) $\|\mathbf{x}_i\| \cdot \|\text{grad } f(\mathbf{x}_i)\| > \delta.$

We say that f verifies *Malgrange condition at* $p \in \mathbb{X}^{\infty}$ if there is $\delta_p > 0$ such that one has (M) for any sequence of points with property (L_2) .

REMARK 2.2. It follows from the definition that $f^{-1}(\tau)$ verifies the Malgrange condition if and only if f verifies Malgrange condition (M) at any point $p = (z, \tau) \in \mathbb{X}^{\infty} \cap t^{-1}(\tau)$ and for the same positive constant $\delta_p = \delta$.

2.2. Characteristic covectors and t -regularity. We recall the notion of t -regularity from [\[Ti1\]](#page-15-7), [\[Ti4\]](#page-15-0). Let $H^{\infty} = \{ [x_0 : x_1 : \ldots : x_n] \in \mathbb{P}^n \mid x_0 = 0 \}$ denote the hyperplane at infinity and let $\mathbb{X}^{\infty} := \mathbb{X} \cap (H^{\infty} \times \mathbb{C})$.

We consider the affine charts $U_j \times \mathbb{C}$ of $\mathbb{P}^n \times \mathbb{C}$, where $U_j = \{x_j \neq 0\}$, $j = 0, 1, \ldots, n$. Identifying the chart U_0 with the affine space \mathbb{C}^n , we have $\mathbb{X} \cap (U_0 \times \mathbb{C}) = \mathbb{X} \setminus \mathbb{X}^{\infty} = X$ and \mathbb{X}^{∞} is covered by the charts $U_1 \times \mathbb{C}, \ldots, U_n \times \mathbb{C}$.

If g denotes the projection to the variable x_0 in some affine chart $U_i \times \mathbb{C}$, then the *relative conormal* $C_g(\mathbb{X}\setminus \mathbb{X}^\infty\cap U_j\times \mathbb{C})\subset \mathbb{X}\times \check{\mathbb{P}}^n$ is well defined (see e.g. [\[Ti3\]](#page-15-8), [\[Ti5\]](#page-15-9)), with the projection $\pi(y, H) = y$, where $\check{\mathbb{P}}^n$ is identified to the projective space of hyperplanes

in $U_j \times \mathbb{C}$. Let us then consider the space $\pi^{-1}(\mathbb{X}^{\infty})$ which is well defined for every chart $U_j \times \mathbb{C}$ as a subset of $C_g(\mathbb{X}\setminus \mathbb{X}^\infty \cap U_j \times \mathbb{C})$. By [\[Ti2,](#page-15-6) Lemma 3.3], the definitions coincide at the intersections of the charts.

Definition 2.3. We call *space of characteristic covectors at infinity* the well-defined set $\mathcal{C}^{\infty} := \pi^{-1}(\mathbb{X}^{\infty})$. For some $p_0 \in \mathbb{X}^{\infty}$, we denote $\mathcal{C}^{\infty}_{p_0} := \pi^{-1}(p_0)$.

Considering now the second projection $t : \mathbb{P}^n \times \mathbb{C} \to \mathbb{C}$ in place of the function g in the above consideration, we obtain the relative conormal space $C_t(\mathbb{P}^n \times \mathbb{C})$. Then we have:

Definition 2.4. [\[Ti2\]](#page-15-6) We say that f is t-regular at $p_0 \in \mathbb{X}^{\infty}$ if $C_t(\mathbb{P}^n \times \mathbb{C}) \cap C_{p_0}^{\infty} = \emptyset$ or, equivalently, d $t \notin C_{p_0}^{\infty}$.

Definition 2.5. We say that f has *isolated t-singularities at infinity* at the fibre $f^{-1}(t_0)$ if this fibre has isolated singularities in \mathbb{C}^n and if the set

$$
\text{Sing}^{\infty} f := \{ p \in \mathbb{X}^{\infty} \mid f^{-1}(t_0) \text{ is not } t\text{-regular at } p \}
$$

is a finite set.

It follows from the definition that $\text{Sing}^{\infty} f$ is a closed algebraic subset of \mathbb{X}^{∞} , see e.g. [\[Ti2\]](#page-15-6), [\[Ti5\]](#page-15-9), [\[DRT,](#page-14-10) §6.1]. By the algebraic Sard Theorem, the image $t(Sing^{\infty} f)$ consists of a finite number of points.

We need the following key equivalence in the localized setting (proved initially in ST , Proposition 5.5 and $[Pa1, Theorem 1.3]$, as explained in $[Ti4]$:

Theorem 2.6. [\[Ti5,](#page-15-9) Prop. 1.3.2] A polynomial $f: \mathbb{C}^n \to \mathbb{C}$ is t-regular at $p_0 \in \mathbb{X}^{\infty}$ if and only if f verifies the Malgrange condition at this point. \Box

More precisely we have the following relations, cf [\[Ti3\]](#page-15-8), [\[Ti5\]](#page-15-9):

(6) Malgrange regularity $\iff t$ -regularity $\implies \rho_E$ -regularity \implies topological triviality which also extend to polynomial maps $\mathbb{C}^n \to \mathbb{C}^p$ as shown in [\[DRT\]](#page-14-10).

2.3. Polar curves and *t*-regularity. We define the affine polar curves of f and show how they are related to the *t*-regularity condition, after [\[Ti3\]](#page-15-8).

Given a polynomial $f: \mathbb{C}^n \to \mathbb{C}$ and a linear function $l: \mathbb{C}^n \to \mathbb{C}$, the polar curve of f with respect to l, denoted by $\Gamma(l, f)$, is the closure in \mathbb{C}^n of the set $\text{Sing}(l, f)\setminus \text{Sing} f$, where Sing (l, f) is the critical locus of the map $(l, f) : \mathbb{C}^n \to \mathbb{C}^2$. Denoting by $l_H : \mathbb{C}^n \to \mathbb{C}$ the unique linear form (up to multiplication by a constant) which defines a hyperplane $H \in \mathbb{C}^n$ (also regarded as a point in the projective space $\check{\mathbb{P}}^{n-1}$ of linear hyperplanes in \mathbb{C}^n), we have the following genericity result of Bertini-type.

Lemma 2.7. [\[Ti2,](#page-15-6) Lemma 1.4]

There exists a Zariski-open set $\Omega_{f,a} \subset \check{\mathbb{P}}^{n-1}$ such that, for any $H \in \Omega_{f,a}$ and some fixed $a \in \mathbb{C}$, the polar set $\Gamma(l_H, f)$ is a curve or it is an empty set, and no component is contained in the fibre f^{-1} (a) .

Definition 2.8. For $H \in \Omega_{f,a}$, we call $\Gamma(l_H, f)$ the *generic affine polar curve* of f with respect to l_H . A system of coordinates (x_1, \ldots, x_n) in \mathbb{C}^n is called *generic* with respect to f iff $\{x_i = 0\} \in \Omega_{f,a}, \forall i$.

It follows from Lemma [2.7](#page-4-2) that such systems of coordinates are generic among all linear systems of coordinates.

Let $\overline{\Gamma(l_H, f)}$ and $\overline{\text{Sing }f}$ denote the algebraic closure in X of the respective sets. We then have:

Theorem 2.9. Let $f: \mathbb{C}^n \to \mathbb{C}$ be a polynomial function and let $p \in \mathbb{X}^{\infty}$, $a := \mathbf{t}(p)$.

- (a) If p is a t-regular point then $p \notin (\Gamma(l_H, f) \cup \overline{\text{Sing} f}) \cap \mathbb{X}^{\infty}$, for any $H \in \Omega_{f,a}$.
- (b) Let p be either t -regular or an isolated t -singularity at infinity. Then p is a t singularity at infinity if and only if $p \in \overline{\Gamma(l_H, f)}$ for some $H \in \Omega_{f,a}$.

 \Box

Proof. The result and its proof can be actually extracted from [\[Ti5,](#page-15-9) $\S 2.1$]. More precisely: (a) follows from [\[Ti5,](#page-15-9) Prop. 2.1.3] and $[T_15, (2.1),$ pag.17].

(b) follows by combining Thm. 2.1.7, Thm. 2.1.6 and Prop. 2.1.3 from $[T_15, \S_2.1]$.

The above theorem means that isolated t-singularities at infinity are precisely detected by the horizontal part of the generic polar curve. In case $p \in \mathbb{X}^{\infty}$ is a non-isolated tsingularity (which occurs whenever $n > 2$), the general affine polar curve $\Gamma(l_H, f)$ might not contain the chosen point p in its closure at infinity. We shall show in the next section how to deal with this situation.

3. Proof of Theorem [1.1](#page-1-0)

Let $B := \text{Sing}^{\infty} f \cap (\mathbb{X} \setminus \cup_{a \in f(\text{Sing } f)} \mathbb{X}_a)$. By Theorem [2.6,](#page-4-3) we have the equality:

 $NK_{\infty}(f) = t(B).$

By Theorem [2.9\(](#page-5-0)a) and Theorem [2.6,](#page-4-3) if the generic polar curve $\Gamma(l_H, f)$ is nonempty, then it intersects the hypersurface \mathbb{X}^{∞} at finitely many points and these points are tsingularities, hence Malgrange non-regular points at infinity.

Let us first assume that dim $B = 0$. Then, by Theorem [2.9,](#page-5-0) for $p \in B$ (which by our assumption is an isolated t -singularity), the generic polar curve passes through p , so this point is "detected" by the horizontal part of the polar curve $\overline{\Gamma(x_1, f)}$, for some generic choice of the coordinate x_1 (in the sense of Definition [2.8](#page-4-0) and Lemma [2.7\)](#page-4-2). Therefore, in the notations of the Introduction, the corresponding asymptotic non-regular value belongs to $J_f(H\Gamma(x_1,f)).$

Therefore, in our case dim $B = 0$, the equality [\(1\)](#page-1-1) follows from Theorem [2.9](#page-5-0) and Theorem [2.6.](#page-4-3)

Let us now treat the case dim $B > 0$. We will show [\(1\)](#page-1-1) by a double inclusion.

The inclusion " \supset ". Let us first prove the inclusion $J_f(H\Gamma(x_i,f_{i-1})) \setminus J_f(\text{Sing} f) \subset$ $NK_{\infty}(f)$ for each $i = 1, ..., n - 1$. We proceed by a "reductio ad absurdum" argument. Assume that $a \notin NK_\infty(f)$ and denote $\mathbb{X}_a^\infty := \mathbb{X}^\infty \cap t^{-1}(a)$.

(a). If $a \in J_f(H\Gamma(x_1, f_0)) \setminus J_f(\text{Sing} f)$, then there exist points $p \in \mathbb{X}_a^{\infty} \cap \overline{\Gamma(x_1, f_0)}$. By Theorem [2.9\(](#page-5-0)a), this means that p is a t-non-regular point, which implies in turn that $a \in NK_{\infty}(f)$, by Theorem [2.6.](#page-4-3)

(b). Assume that $a \notin J_f(H\Gamma(x_i, f_{i-1})) \setminus J_f(\text{Sing} f)$ for $i = 1, ..., k-1$ (for some $k \ge 2$), and that $a \in J_f(H\Gamma(x_k, f_{k-1})) \setminus J_f(\text{Sing} f)$.

We endow the hypersurface $\mathbb{X} \subset \mathbb{P}^n \times \mathbb{C}$ with a finite complex Whitney stratification \mathcal{W} such that $\mathbb{X}^{\infty} := \{f_d = 0\} \times \mathbb{C}$ is a union of strata. Our Whitney stratification at infinity is also Thom (a_{x_0}) -regular, by [\[Ti2,](#page-15-6) Theorem 2.9], where $x_0 = 0$ is some local equation for H^{∞} at p.

There exists a Zariski-open set $\Omega' \subset \check{\mathbb{P}}^{n-1}$ of linear forms $\mathbb{C}^n \to \mathbb{C}$ such that, if $H \in \Omega'$, then $(H^{\infty} \cap \overline{H}) \times \mathbb{C}$ is transversal in $H^{\infty} \times \mathbb{C}$ to all strata of W in the neighbourhood of \mathbb{X}_{a}^{∞} . Due to the Thom (a_{x_0}) -regularity of the stratification, it follows that slicing by $H \in \Omega'$ insures the t-regularity of the restriction $f_{|H}$ at any point $p \in (\overline{H} \times \mathbb{C}) \cap \mathbb{X}_a^{\infty}$. More precisely, from our hypothesis d $t \notin \mathcal{C}_p^{\infty}$ (see Definition [2.4\)](#page-4-4) we deduce that $dt' \notin \mathcal{C}_p'^{\infty}$ for $p \in \overline{H} \cap \mathbb{X}_{a}^{\infty}$, where $H \in \Omega'$, $t' := t|_{\overline{H} \times \mathbb{C}}$ and \mathcal{C}'^{∞} is the space of Definition [2.3](#page-4-5) starting with the restriction $f_{|H}$ instead of f. This implies that $a \notin NK_\infty(f_{|H})$.

By taking $H \in \Omega' \cap \Omega_{f,a}$ we get in addition that $a \notin J_f(\text{Sing} f_{|H})$. We denote $f_1 := f_{|H}$. Now, if $k = 2$ in our first assumption at point (b), we may apply the reasoning (a) to f_1 in place of f and obtain $a \in NK_\infty(f_1)$, hence a contradiction.

In case $k > 2$, after applying the slicing process (b) exactly $k - 2$ more times, namely successively to f_1, \ldots, f_{k-2} , we arrive to the similar contradiction for f_{k-1} .

The inclusion "⊂". Let $a \in t(B)$ be an asymptotic non-regular value such that the set of *t*-singularities in \mathbb{X}_a^{∞} is not isolated. More precisely, according to Definition [2.5,](#page-4-1) this set is equal to $\mathbb{X}_a^{\infty} \cap \text{Sing}^{\infty} f$. From the remark after Definition [2.5,](#page-4-1) it follows that $\mathbb{X}_{a}^{\infty} \cap \text{Sing}^{\infty} f$ is an algebraic set. Let therefore $k := \dim \mathbb{X}_{a}^{\infty} \cap \text{Sing}^{\infty} f$ be its dimension, where $k > 0$ by our assumption dim $B > 0$. We show how to reduce k one by one until zero.

For that we use two facts:

(a). From the above proof of the first inclusion we extract the fact that if $d\mathbf{t} \notin C_p^{\infty}$ then $\mathrm{d}t' \notin \mathcal{C}_{p}^{\prime\infty}$, for any $H \in \Omega'$, where $t' := t_{|\overline{H}\times\mathbb{C}}$.

(b). Moreover, by a Bertini type argument^{[1](#page-6-0)}, there exists a Zariski-open set $\Omega'' \subset \check{\mathbb{P}}^{n-1}$ such that if $H \in \Omega''$ then $H \times \mathbb{C}$ is transversal to any stratum $\mathcal{W}_i \subset \mathbb{X}^\infty$ of the Whitney stratification except at finitely many points.

For some $H \in \Omega' \cap \Omega''$ we consider the restriction $f_{|H}$ and the space similar to X defined at [\(5\)](#page-3-1) attached to the polynomial function $f_{|H}$, which we denote by Y. These two facts imply the equality:

$$
\dim(\mathbb{Y}_a^{\infty} \cap \mathcal{S}\text{ing}^{\infty} f_{|H}) = \dim(\mathbb{X}_a^{\infty} \cap \mathcal{S}\text{ing}^{\infty} f) - 1,
$$

as long as $k > 0$ (which is our assumption). This shows the reduction to $k - 1$.

We thus continue to slice by generic hyperplanes and lower one by one the dimension of the set Sing^{∞} f until we reach zero, thus we slice a total number of k times. The restriction of f to these iterated slices identifies to the restriction f_k defined in the Introduction.

After this iterated slicing we have f_k with a nonempty set of isolated t-singularities at infinity over a, each of which are detected by the horizontal part of the polar curve $\Gamma(x_{k+1}, f_k)$, like shown in the first part of the above proof. We therefore get $a \in$ $J_f(H\Gamma(x_{k+1},f_k)).$

¹based on the fact that the relative conormal $T^*_{t|W_i}$ is of dimension $n-1$, the same as $\check{\mathbb{P}}^{n-1}$.

Altogether this shows the inclusion: $NK_{\infty}(f) \subset \bigcup_{i=1}^{n-1} J_f(HT(x_i, f_{i-1})) \setminus J_f(\text{Sing}f)$. Our proof of Theorem [1.1](#page-1-0) is now complete. \Box

3.1. Proof of Corollary [1.2.](#page-1-2) We estimate the number of Malgrange non-regular values $K_{\infty}(f)$ given by Theorem [1.1.](#page-1-0) Let us fix a generic system of coordinates (x_1, \ldots, x_n) . The following equations:

(7)
$$
\frac{\partial f_d}{\partial x_2} = 0, \dots, \frac{\partial f_d}{\partial x_n} = 0
$$

define the algebraic set $\Gamma(x_1, f) \cup \text{Sing } f \subset \mathbb{C}^n$ of degree $(d-1)^{n-1}$. Therefore, if nonempty, $\Gamma(x_1, f)$ is a curve of degree $\leq (d-1)^{n-1}$. After Bezout, the curve $\overline{\Gamma(x_1, f)}$ will meet a non-degenerate hyperplane, and in particular the hyperplane at infinity, at a number of points which is bounded from above by $(d-1)^{n-1} - \sum_{i=1}^{r} d_i$. Repeating this procedure after successively slicing by general hyperplanes like explained in the above proof, we finally add up the numbers of solutions. This gives the following sum:

(8)
$$
(d-1)^{n-1} + (d-1)^{n-2} + \dots + (d-1) = \frac{(d-1)^n - 1}{d-2}
$$

to which we have to substract the sums of degrees of the positive dimensional irreducible components of Singf and their successive slices. It follows that we substract the degree d_i a number of dim S_i times which corresponds to the number of times we slice S_i and drop its dimension one-by-one until we reach dimension 0. This proves Corollary [1.2.](#page-1-2) \Box

3.2. New bound for the number of atypical values at infinity. In [\[JK2,](#page-14-7) Corollary 1.1] one finds the following upper bound for Malgrange non-regular values:

(9)
$$
\#K_{\infty}(f) \leq \frac{d^{n}-1}{d+1}.
$$

Our estimation [\(2\)](#page-1-3) yields to the following one for $K_{\infty}(f)$:

(10)
$$
\#K_{\infty}(f) \leq \frac{(d-1)^{n}-1}{d-2} - \sum_{i=1}^{r} d_{i} \dim S_{i} + r.
$$

This is somewhat sharper than (9) . Both have the highest degree term d^{n-1} and the coefficient of the term d^{n-2} in our formula is smaller for high values of n.

4. The non-properness set and the generalized Noether lemma

In this section we give the preliminary material which will lead to the definition in §[5](#page-10-0) of the "super-polar curve".

If $f : X \to Y$ is a dominant, generically finite polynomial map of smooth affine varieties, we denote by $\mu(f)$ the number of points in a generic fiber of f. If $\{x\}$ is an isolated component of the fiber $f^{-1}(f(x))$, then we denote by mult_x(f) the multiplicity of f at x.

Let X, Y be affine varieties, recall that a mapping $f: X \to Y$ is not proper at a point $y \in Y$ if there is no neighborhood U of y such that $f^{-1}(\overline{U})$ is compact. In other words, f is not proper at y if there is a sequence $x_l \to \infty$ such that $f(x_l) \to y$. Let J_f denote the set of points at which the mapping f is not proper. The set J_f has the following properties (see [\[Jel1\]](#page-14-8), [\[Jel2\]](#page-14-9), [\[Jel3\]](#page-14-11)):

Theorem 4.1. Let $X \subset \mathbb{C}^k$ be an irreducible variety of dimension n and let $f =$ $(f_1, \ldots, f_m): X \to \mathbb{C}^m$ be a generically-finite polynomial mapping. Then the set J_f is an algebraic subset of \mathbb{C}^m and it is either empty or it has pure dimension $n-1$. Moreover, if $n = m$ then

$$
\deg J_f \le \frac{\deg X(\prod_{i=1}^n \deg f_i) - \mu(f)}{\min_{1 \le i \le n} \deg f_i}.
$$

In the case of a polynomial map of normal affine varieties it is easy to show the following:

Proposition 4.2. Let $f: X \rightarrow Y$ be a dominant and quasi-finite polynomial map of normal affine varieties. Let $Z \subset Y$ be an irreducible subvariety which is not contained in J_f . Then every component of the set $f^{-1}(Z)$ has dimension dim Z, and if g denotes the restriction of f to $f^{-1}(Z)$, then

$$
J_g = J_f \cap Z.
$$

Proof. By the Zariski Main Theorem in version of Grothendieck, there is an affine variety \overline{X} , which contains X as a dense subset and a regular finite mapping $F : \overline{X} \to Y$ such that $F_{|X} = f$. Since the mapping F is finite, all components of $F^{-1}(Z)$ have dimension dim Z. Now the condition $Z \not\subset J_f$ implies that all components of $f^{-1}(Z)$ have dimension dim Z. Let $S := \overline{X} \setminus X$. Observe that $J_f = F(S)$. Moreover, $J_g = F(S \cap F^{-1}(Z)) = F(S) \cap Z$. \Box

Let M_m^n denotes the set of all linear forms $L: \mathbb{C}^m \to \mathbb{C}^n$. We need the following result, which is a modification of [\[Jel5,](#page-14-12) Lemma 4.1]:

Proposition 4.3. (Generalized Noether Lemma)

Let $X \subset \mathbb{C}^m$ be an affine variety of dimension n. Let $A \subset \mathbb{C}^m$ be a line and $B \subset X$ be a subvariety such that $A \not\subset B$. Let $x_1 : \mathbb{C}^m \to \mathbb{C}$ be a linear projection and assume that x_1 is non-constant on X and on A. Let $a_1, \ldots, a_s \in A \cap X$ be some fixed set of points.

There exist a Zariski open dense subset $U \subset M_{m}^{n-1}$ such that for every $(n-1)$ -tuple $(L_1, \ldots, L_{n-1}) \in U$ the mapping $\Pi = (x_1, L_1, \ldots, L_{n-1}) : X \to \mathbb{C}^n$ satisfies the following conditions:

- (a) the fibers of Π have dimension at most one,
- (b) there is a polynomial $\rho \in \mathbb{C}[t_1]$ such that

$$
J_{\Pi} = \{ (t_1, \ldots, t_n) \in \mathbb{C}^n \mid \rho(t_1) = 0 \},\
$$

- (c) $\Pi(A) \not\subset \Pi(B)$,
- (d) all fibers $\Pi^{-1}(\Pi(a_i))$, $i = 1, \ldots, s$ are finite and non-empty.

Proof. For any $Z \subset \mathbb{C}^m$, denote by \tilde{Z} the projective closure of Z in \mathbb{P}^m , and let H^∞ denote the hyperplane at infinity. Then dim $\tilde{X} \cap H^{\infty} = n - 1$.

Hence there is a non-empty Zariski open subset $U_1 \subset M_{m}^{n-1}$ of $(n-1)$ -tuples of linear forms such that for any $L = (l_1, \ldots, l_{n-1}) \in U_1$ we have $\dim \tilde{X} \cap H^{\infty} \cap \text{ker } L \leq 0$.

Let l_n be a general linear form. Since the $(n + 1)$ linear forms (x_1, l_1, \ldots, l_n) are algebraically dependent on X, there exists a non-zero polynomial $W \in \mathbb{C}[T, T_1, \ldots, T_n]$ such that we have $W(x_1, l_1, \ldots, l_n) = 0$ on X. Let us define:

 \Box

(11)
$$
L_i := l_i - \alpha_i l_n
$$
, for $i = 1, ..., n-1$; $\alpha_i \in \mathbb{C}^*$.

Operating on W the linear change of coordinates $l_i \mapsto L_i$, for sufficiently general coefficients $\alpha_i \in \mathbb{C}$, we then get a relation:

(12)
$$
l_n^N \rho(x_1) + \sum_{j=1}^N l_n^{N-j} A_j(x_1, L_1, \dots, L_{n-1}) = 0,
$$

where N is some positive integer, ρ and A_i are polynomials, such that $\rho \neq 0$.

The map $P = (x_1, L_1, \ldots, L_{n-1}, l_n) : X \to \mathbb{C}^{n+1}$ is finite and proper, since $(L_1, \ldots, L_{n-1}, l_n)$ is so. Let $X' := P(X)$ and consider the projection:

$$
\pi: X' \to \mathbb{C}^n, \quad (x_1, \ldots, x_{n+1}) \mapsto (x_1, \ldots, x_n).
$$

Note that the mapping π has fibers of dimension at most one. From the above constructions it follows that the non-properness locus of the projection π is:

$$
J_{\pi} = \{ (t_1, \ldots, t_n) \in \mathbb{C}^n \mid \rho(t_1) = 0 \},\
$$

for the polynomial $\rho \in \mathbb{C}[t_1]$ defined by the relation [\(12\)](#page-9-0), since J_π is precisely the locus of the values of $(x_1, L_1, \ldots, L_{n-1})$ such that the equation [\(12\)](#page-9-0) has less than N solutions for l_n , counted with multiplicities.

Let us remark that the genericity conditions on $(l_1, \ldots, l_{n-1}, l_n) \in M_m^n$ and the condition that $(\alpha_1, \ldots, \alpha_{n-1})$ ensure the non-triviality of the polynomial ρ in [\(12\)](#page-9-0), yield a constructible subset S of $\mathbb{C}^{n-1} \times M_m^n$. The algebraic mapping:

$$
\Psi: S \to M_m^{n-1}, \quad (\alpha_1, \ldots, \alpha_{n-1}; l_1, \ldots, l_{n-1}, l_n) \mapsto (L_1, \ldots, L_{n-1})
$$

where L_i are defined in [\(11\)](#page-9-1), has a constructible image $\Psi(S) \subset M_m^{n-1}$ which contains U_1 in its closure, thus $\Psi(S)$ contains a non-empty Zariski-open subset U_2 of M_m^{n-1} .

We thus obtain (a) and (b) for $U := U_2$ and for $\Pi := \pi \circ P$.

Next, let us show that there is a non-empty Zariski open subset included in U_2 such that condition (c) is also satisfied.

Note that dim $B \leq n-1$. Moreover, there is a point $a \in A \setminus B$, such that the dimension of $B_a := B \cap x_1^{-1}(x_1(a))$ is $\lt n - 1$. Let $\Lambda \subset \mathbb{C}^m$ be the Zariski closure of the cone over B_a with vertex $a, C_a B_a := \bigcup_{x \in B_a} \overline{ax}$, which is of dimension $\leq n-1$. Hence

$$
\dim \tilde{\Lambda} \cap H^{\infty} < n - 1.
$$

Consequently, there is a Zariski open subset $U_3 \subset U_2$ such that for $L = (L_1, \ldots, L_{n-1}) \in U_3$ we have dim $\tilde{\Lambda} \cap H^{\infty} \cap \ker L = \emptyset$. This means that for $\Pi := (x_1, L_1, \ldots, L_{n-1})$ we have $\Pi(a) \notin \Pi(B)$, which finishes the proof of (c).

Let us finally show that there is an eventually smaller non-empty Zariski open subset $U \subset U_3$ such that (d) is satisfied too. Let $D_i := x_1^{-1}(x_1(a_i))$, for $i = 1, \ldots, s$. Since $\dim D_i = n-1$, the Zariski closure D of $\bigcup_{i=1}^s D_i$ has dimension $n-1$. Hence

$$
\dim H^{\infty} \cap \tilde{D} < n - 1.
$$

Like in the above argument, there is a Zariski open subset $U \subset U_3$ such that for $L =$ $(L_1, \ldots, L_{n-1}) \in U$ we have dim $\tilde{D} \cap H^{\infty} \cap \text{ker } L = \emptyset$. Consequently, for any $i = 1, \ldots, s$, the fiber $\Pi^{-1}(\Pi(a_i))$ is finite and non-empty.

Definition 4.4. In the notations of Proposition [4.3,](#page-8-1) we call base-set of non-properness of linear projections of X with respect to x_1 , the set:

$$
B(x_1,X):=\bigcap_{L\in U}J_{(x_1,L)}.
$$

REMARK 4.5. If non-empty, the set $B(x_1, X)$ is a finite union of hyperplanes of the form ${b_i} \times \mathbb{C}^{n-1}$, by Proposition [4.3\(](#page-8-1)b).

5. Super-polar curve and proof of Theorem [1.3](#page-2-0)

We have defined at [\(3\)](#page-2-1) the *super-polar curve* $\Gamma_f(a, b)$ as the Zariski closure of $V(g_1, \ldots, g_{n-1})\setminus$ $\operatorname{Sing}(f)$, where

(13)
$$
g_i(a,b) := \sum_{j=1}^n a_{ij} \frac{\partial f}{\partial x_j} + \sum_{j,k=1}^n b_{ijk} x_k \frac{\partial f}{\partial x_j}, \quad i = 1, \dots, n-1.
$$

That for general $a_{ij}, b_{ijk} \in \mathbb{C}$ this is indeed a non-degenerate curve follows in particular from the next result, which is equivalent to Theorem [1.3.](#page-2-0) Let us recall that $H\Gamma_f(a,b)$ denotes the horizontal part of $\Gamma_f(a, b)$.

Theorem 5.1. There is a Zariski open non-empty set Ω in the space of parameters $(a, b) \in \mathbb{C}^{n(n+1)}$ such that:

- (a) for $(a, b) \in \Omega$ the set $\Gamma_f(a, b)$ is a non-empty curve,
- (b) $NK_{\infty}(f) \subset J_f(H\Gamma_f(a,b)).$

Proof. Let $\Phi : \mathbb{C}^n \to \mathbb{C} \times \mathbb{C}^{n(n+1)}$ be the polynomial mapping defined by:

$$
\Phi = \left(f, \frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}, h_{11}, h_{12}, \dots, h_{nn}\right),
$$

where $h_{ij} = x_i \frac{\partial f}{\partial x_i}$ $\frac{\partial f}{\partial x_j}, i = 1, \ldots, n, j = 1, \ldots, n.$

Let us observe that Φ is a birational mapping (onto its image), in particular it is generically finite, since Φ is injective outside the critical set of f.

Let $A := \mathbb{C} \times \{(0, \ldots, 0)\} \subset \mathbb{C} \times \mathbb{C}^{n(n+1)}$. By the definitions of $K_{\infty}(f)$ and of Φ , we have the equality:

(14)
$$
K_{\infty}(f) = A \cap J_{\Phi},
$$

where J_{Φ} denotes the set of points at which the mapping Φ is not proper. Recall that $K_{\infty}(f)$ is finite, hence the set $A \cap J_{\Phi}$ is finite too.

Let $X := \overline{\Phi(\mathbb{C}^n)} \subset \mathbb{C} \times \mathbb{C}^{n(n+1)}$ and $B := J_{\Phi}$. Let $B(x_1, X)$ be a base-set of nonproperness of linear projections of X with respect to x_1 (cf Definition [4.4\)](#page-10-1).

In the following we identify the target $\mathbb C$ of f with the line $A \subset \mathbb C \times \mathbb C^{n(n+1)}$.

Let then $\{p_1, \ldots, p_s\} := NK_\infty(f) \cup (B(x_1, X) \cap A) \setminus f(\text{Sing} f) \subset A \cap X$. By Proposition [4.3](#page-8-1) and using its notations, for general $(L_1, \ldots, L_{n-1}) \in U \subset M^{n-1}_{1+n(n+1)}$, the mapping:

$$
\Pi = (x_1, L_1, \dots, L_{n-1}) : X \to \mathbb{C}^n
$$

satisfies the following conditions:

- (a) the fibers of Π have dimension at most one,
- (b) there is a polynomial $\rho \in \mathbb{C}[t_1]$ such that

$$
J_{\Pi} = \{ (t_1, \ldots, t_n) \in \mathbb{C}^n \mid \rho(t_1) = 0 \},\
$$

(c) $\Pi(A) \not\subset \Pi(B)$,

(d) all fibers $\Pi^{-1}(\Pi(p_j)), j = 1, \ldots, s$ are finite and non-empty.

Let us write $L_i = c_i x_1 + l_i(a, b), i = 1, ..., n - 1$, where the linear form $l_i(a, b)$ does not depend on variable x_1 . Note that:

$$
\Pi(A) = \{ x \in \mathbb{C}^n \mid x_1 = t, x_2 = c_1 t, \dots, x_n = c_{n-1} t, \quad t \in \mathbb{C} \}.
$$

For $\Psi := \Pi \circ \Phi$, we have (see [\(14\)](#page-10-2)):

$$
\Pi(K_{\infty}(f)) = \Pi(A \cap J_{\Phi}) \subset \Pi(A) \cap J_{\Psi}.
$$

Let $V := \{y \in \mathbb{C}^n \mid \dim \Psi^{-1}(y) > 0\}$. Since the fibers $\Psi^{-1}(\Pi(p_j)), j = 1, \ldots, s$, are finite and non-empty we have $\Pi(p_i) \notin \overline{V}$ for $j = 1, \ldots, s$. So let S be a hypersurface in \mathbb{C}^n which contains \overline{V} but does not contain the set of points $\{\Pi(p_1), \ldots, \Pi(p_s)\}\$ and let

$$
R := S \cup \{ y \in \mathbb{C}^n \mid \prod_{c \in \Pi(f(\text{Sing}f))}^r (y_1 - c) = 0 \}.
$$

With these notations, the mapping

$$
\Psi': \mathbb{C}^n \setminus \Psi^{-1}(R) \to \mathbb{C}^n \setminus R, \quad x \mapsto \Psi(x)
$$

is quasi-finite, and moreover $\Pi(NK_{\infty}(f)) \subset J_{\Psi'}$.

Let $\Gamma' := \Psi'^{-1}(\Pi(A))$. By Proposition [4.2,](#page-8-2) Γ' is a curve and $\Pi(NK_{\infty}(f))$ is contained in the non-properness set of the mapping $\Psi|_{\Gamma'} : \Gamma' \to \Pi(A) \setminus R$. Consequently, the set $\Pi(NK_{\infty}(f))$ is also contained in the non properness set of the mapping Ψ restricted to $\Psi^{-1}(\Pi(A) \setminus \Pi(f(\mathrm{Sing} f)).$

By the definition of Ψ we have $\Psi^{-1}(\Pi(A)) = \Phi^{-1}(\Pi^{-1}(\Pi(A))),$ where:

$$
\Pi^{-1}(\Pi(A)) = \{x \in X \mid l_1(a,b)(x_2,\ldots,x_{n(n+1)}) = 0,\ldots,l_{n-1}(a,b)(x_2,\ldots,x_{n(n+1)}) = 0\}.
$$

Comparing to the definition [\(13\)](#page-10-3), we see that the set $\Phi^{-1}(\Pi^{-1}(\Pi(A))) \setminus Sing(f)$ coincides with the super-polar curve $\Gamma_f(a, b)$.

The set $\Gamma_f(a, b)$ is a curve since it is union of the curve Γ', which actually coincide with the horizontal part $H\Gamma_f(a, b)$, and, eventually, some of the one dimensional fibers of Ψ .

Let us now consider a linear isomorphism:

$$
T: \mathbb{C}^n \to \mathbb{C}^n, \quad (x_1, \ldots, x_n) \mapsto (x_1, x_2 - c_2 x_1, \ldots, x_n - c_n x_1).
$$

From the above construction we know that $\Pi(NK_{\infty}(f)) \subset J_{\Psi_{|\Gamma'}}$. We then have the inclusion $T(\Pi(NK_{\infty}(f))) \subset J_{T \circ \Psi_{|\Gamma'}}$. But $T \circ \Psi_{|\Gamma'}$ coincides with f on $\Gamma' = H\Gamma_f(a, b)$, and $T(\Pi(NK_{\infty}(f)))$ coincides with $NK_{\infty}(f)$. This shows the inclusion $NK_{\infty}(f) \subset J_f(H\Gamma_f(a,b))$ and ends the proof of point (b) of our theorem. \Box

5.1. Proof of Corollary [1.4.](#page-2-2)

We use the terminology of the above proof. We have actually shown that if $NK_{\infty}(f) \neq \emptyset$ then the curve $\overline{\Gamma'}$ is non-empty, and that the set $NK_{\infty}(f)$ is contained in the nonproperness set of the restriction $f_{|\Gamma'}$. The curve Γ' is a subset of the super-polar curve $\Gamma_f(a, b)$ for general coefficients a and b, and moreover, f is constant on all other components of $\Gamma_f(a, b)$. By the generalized Bezout Theorem we have deg $\Gamma_f(a, b) \leq d^{n-1}$ $\sum_{i=1}^r d_i$, thus deg $\overline{\Gamma'} \leq d^{n-1} - \sum_{i=1}^r d_i$. Note that the cardinality of the non-properness set of $f_{|\Gamma'}$ is estimated by the number of these points at infinity of a curve Γ' which are transformed by f into $\mathbb C$. Consequently, the cardinality of the non-properness set of $f_{|\Gamma'}$ is bounded from above by the number $d^{n-1} - 1 - \sum_{i=1}^{r} d_i$. We can substract 1 in this formula since actually each branch of Γ′ intersects the hyperplane at infinity also at the value infinity of f. Thus we also have $\#NK_{\infty}(f) \leq d^{n-1} - 1 - \sum_{i=1}^{r} d_i$. Since every connected positive-dimensional component of the critical set $Singf$ is contained in one fiber of f thus indicates a trivial non-regular value, we obtain:

#K∞(f) ≤ d ⁿ−¹ − 1 − Xr i=1 (dⁱ − 1).

For $n = 2$, it turns out that the Malgrange condition can be recovered (see [\[Ha1\]](#page-14-1), [\[Ha2\]](#page-14-2), [\[LO\]](#page-15-1)) by the asymptotic behavior of the derivatives of f only. We thus consider, instead of the mapping Φ of the proof of Theorem [5.1,](#page-10-4) the new mapping $\Phi(x, y) = (f(x, y), \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})$. This mapping is generically finite if $NK_{\infty}(f) \neq \emptyset$. In this case, arguing as above we get the last inequalities of our Corollary [1.4.](#page-2-2)

6. Algorithm

We present here a fast algorithm which yields a finite set $S \subset \mathbb{C}$ such that $NK_{\infty}(f) \subset S$, for a given polynomial $f: \mathbb{C}^n \to \mathbb{C}$. By our results, this problem reduces to computing the non-properness set of the mapping $f_{|\Gamma} : \Gamma \to \mathbb{C}$ where Γ is a super-polar curve of f.

Let us first show how to compute the non-properness set J_q of the mapping $g: X \to \mathbb{C}$, where $X \subset \mathbb{C}^n$ is a curve. The following result can be found in [\[PP\]](#page-15-12):

Theorem 6.1. If $\mathcal{B} = (b_1, \ldots, b_t)$ is the Gröbner basis of the ideal $I \subset k[x_1, \ldots, x_n]$ with the lexicographic order in which $x_1 > x_2 > ... > x_n$, then for every $0 \leq m \leq n$ the set $\mathcal{B} \cap k[x_{m+1}, \ldots, x_n]$ is the Gröbner basis of the ideal $I \cap k[x_{m+1}, \ldots, x_n]$.

Corollary 6.2. Consider the ring $\mathbb{C}[x_1,\ldots,x_n; y_1,\ldots,y_m]$. Let $V \subset \mathbb{C}^n \times \mathbb{C}^m$ be an algebraic set and let $p: \mathbb{C}^n \times \mathbb{C}^m \to \mathbb{C}^m$ denote the projection. Assume that $\mathcal B$ is a Gröbner basis of the ideal $I(V)$ with the lexicographic order. Then $\mathcal{B} \cap \mathbb{C}[y_1,\ldots,y_m]$ is a Gröbner basis of the ideal $I(p(V))$.

Proof. Observe that $I(p(V)) = I(V) \cap \mathbb{C}[y_1, \ldots, y_m]$ and then use Theorem [6.1.](#page-12-1)

Let then $I(X) := (h_1, \ldots, h_r)$ be the ideal of our curve X. The graph $G \subset \mathbb{C}^n \times \mathbb{C}$ of the non-constant mapping $f: X \to \mathbb{C}$ is given by the ideal $I = (h_i = 0, i = 1, \ldots, r; f(x)$ $z) \subset \mathbb{C}[x_1,\ldots,x_n,z].$

Let O be the order in $\mathbb{C}[x_1,\ldots,x_n,z]$ such that $x_1 > x_2 > \ldots > x_i > x_{i+1} > \ldots > x_n >$ z. Let B denote the Gröbner basis of I with respect to the order O. Let $f_i \in \mathcal{B} \cap \mathbb{C}[x_i, z]$ be a non-zero polynomial which depends on x_i . Then:

$$
f_i = x_i^{n_i} a_0^i(z) + x_i^{n_i-1} a_1^i(z) + \ldots + a_{n_i}^i(z).
$$

By [\[Jel1,](#page-14-8) Prop. 7], [\[Jel2,](#page-14-9) Th. 3.10], for our mapping $f: X \to \mathbb{C}$ we have:

$$
J_f = \bigcup_{i=1}^n \{ z \in \mathbb{C} \mid a_0^i(z) = 0 \}.
$$

With this preparation, we now state the algorithm:

Special case: $\text{Sing}(f)$ is a finite set.

INPUT: the polynomial $f: \mathbb{C}^n \to \mathbb{C}$

- (1) choose random coefficients $\alpha_i^k, \alpha_{ij}^k, k = 1, \ldots, n-1; i, j = 1, \ldots, n$.
- (2) put $g_k = \sum_j \alpha_j^k$ ∂f $\frac{\partial f}{\partial x_j} + \sum_{i,j} \alpha^k_{ij} x_i \frac{\partial f}{\partial x_j}$ $\frac{\partial f}{\partial x_j}$.
- (3) put $W := (g_1, ..., g_{n-1}) \subset \mathbb{C}[x_1, ..., x_n]$, if dim $W > 1$ then go back to (1).
- (4) compute a Gröbner basis B of the ideal $I = (g_1, \ldots, g_{n-1}, f z) \subset \mathbb{C}[x_1, \ldots, x_n, z]$ with respect to order O (as defined above).
- (5) let $f_i = x_i^{n_i} a_0^i(z) + x_i^{n_i-1} a_1^i(z) + \ldots + a_{n_i}^i(z) \in \mathcal{B}_i \cap \mathbb{C}[x_i, z]$ be a non zero polynomial which depends on x_i .
- (6) let $S := \bigcup_{i=1}^n \{z \in \mathbb{C} \mid a_0^i(z) = 0\}.$ The set S is the non-properness set of the mapping f restricted to $\{g_1 = 0, \ldots, g_{n-1} = 0\}$.

OUTPUT: a finite set $S \subset \mathbb{C}$ such that $NK_{\infty}(f) \subset S$.

In the general case, in order to grip the super-polar curve, we have to remove from the set $\{g_1 = 0, \ldots, g_{n-1} = 0\}$ the singular set $\text{Sing}(f)$. To do this, it is enough to remove the hypersurface $\{\sum \beta_j \frac{\partial f}{\partial x}$ $\frac{\partial f}{\partial x_j} = 0$, where the coefficients β_j are sufficiently general. Indeed such a hypersurface does contain $\text{Sing}(f)$ but does not contain any component of $\Gamma(a, b)$.

General case:

INPUT: the polynomial $f: \mathbb{C}^n \to \mathbb{C}$

- (1) choose random coefficients $\alpha_i^k, \alpha_{ij}^k, \beta_i, k = 1, ..., n-1, i, j = 1, ..., n$.
- (2) put $g_k = \sum_j \alpha_j^k$ ∂f $\frac{\partial f}{\partial x_j} + \sum_{i,j} \alpha^k_{ij} x_i \frac{\partial f}{\partial x_j}$ $\frac{\partial f}{\partial x_j}$.
- (3) put $h = \sum_{j=1}^n \beta_j \frac{\partial f}{\partial x_j}$ $\frac{\partial f}{\partial x_j}$.
- (4) put $W := (g_1, \ldots, g_{n-1}, th-1) \subset \mathbb{C}[t, x_1, \ldots, x_n];$ if dim $W > 1$, then go back to (1).
- (5) compute a Gröbner basis B of the ideal $I = (th-1, g_1, \ldots, g_{n-1}, f-z) \subset \mathbb{C}[t, x_1, \ldots, x_n, z]$ with respect to the order O such that $t > x_1 > x_2 > \ldots > \hat{x}_i > x_{i+1} > \cdots >$ $x_n >> z$.
- (6) let $f_i = x_i^{n_i} a_0^i(z) + x_i^{n_i-1} a_1^i(z) + \cdots + a_{n_i}^i(z) \in \mathcal{B} \cap \mathbb{C}[x_i, z]$ be a non zero polynomial which depends on x_i .
- (7) let $S = \overline{\bigcup_{i=1}^{n} \{z \in \mathbb{C} \mid a_0^i(z) = 0\}}$. Here S is the non-properness set of the mapping f restricted to $\{g_1 = 0, \ldots, g_{n-1} = 0\} \setminus \{h = 0\}.$

OUTPUT: a finite set $S \subset \mathbb{C}$ such that $NK_{\infty}(f) \subset S$.

REMARK 6.3. The above algorithm is probabilistic (without certification), hence for really random coefficients α and β it gives a good subset $S(\alpha, \beta)$, but for some choices it can produce a bad answer. However generically it produces subsets $S(\alpha, \beta)$ which contains $NK_{\infty}(f)$ Therefore in practice we must repeat the algorithm several times and select only the subset $S(\alpha, \beta)$ which contains the same fixed subset all times. The final answer should then be the intersection $S := \bigcap_{\alpha,\beta} S(\alpha,\beta)$.

At step (5) (and (4) in the isolated singularity case, respectively) we compute Gröbner bases in polynomial rings of at most $n + 2$ variables.

It is possible to construct also a version of this algorithm with a certification, however in that case we have to compute Gröbner bases in polynomial rings of $2n + 1$ variables.

REMARK 6.4. A similar algorithm can be constructed for the iterated polar curves method that we use in the first part of our paper; more steps will be needed. We leave the details to the reader.

REFERENCES

- [DRT] L.R.G. Dias, M.A.S. Ruas, M. Tibăr, Regularity at infinity of real mappings and a Morse-Sard theorem. J. Topol. 5 (2012), no 2, 323–340.
- [Du] Durfee, Alan H. Five definitions of critical point at infinity. Singularities (Oberwolfach, 1996), 345–360, Progr. Math., 162, Birkhüser, Basel, 1998.
- [Fe] M.V. Fedoryuk, The asymptotics of the Fourier transform of the exponential function of a polynomial, Docl. Acad. Nauk 227 (1976), 580–583; Soviet Math. Dokl. (2) 17 (1976), 486–490.
- $[Gw]$ J. Gwoździewicz, *Ephraim's pencils*, Int. Math. Res. Notices 15 (2013), 3371–3385.
- [Ha1] Hà Huy Vui, Sur la fibration globale des polynômes de deux variables complexes. C. R. Acad. Sci. Paris Sér. I Math. 309 (1989), no. 4, 231–234.
- [Ha2] Hà Huy Vui, Nombres de Lojasiewicz et singularités l'infini des polynômes de deux variables complexes. C. R. Acad. Sci. Paris S´er. I Math. 311 (1990), no. 7, 429–432.
- [Jel1] Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259–266.
- [Jel2] Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1–35.
- [Jel3] Z. Jelonek, On the Lojasiewicz exponent, Hokkaido Journal of Math. 35 (2006), 471–485.
- [Jel4] Z. Jelonek, On asymptotic critical values and the Rabier theorem, Banach Center Publications 65 (2005), 125–133.
- [Jel5] Z. Jelonek, On the effective Nullstellensatz, Inventiones Mathematicae 162 (2005), 1–17.
- [Jel6] On bifurcation points of a complex polynomial, Proc. AMS. 131, (2003), 1361 - 1367.
- [JK1] Z. Jelonek, K. Kurdyka, On asymptotic critical values of a complex polynomial. J. Reine Angew. Math. 565 (2003), 1–11.
- [JK2] Z. Jelonek, K. Kurdyka, *Reaching generalized critical values of a polynomial*, Math. Z. 276 (2014), no. 1-2, 557–570.

16 ZBIGNIEW JELONEK AND MIHAI TIBĂR

- [JK3] Z. Jelonek, K. Kurdyka, Quantitative Generalized Bertini-Sard Theorem for smooth affine varieties, Discrete and Computational Geometry 34, (2005), 659–678.
- [JT] Z. Jelonek, M. Tibăr, Bifurcation locus and branches at infinity of a polynomial $f: \mathbb{C}^2 \to \mathbb{C}$. Math. Ann. 361 (2015), no. 3-4, 1049–1054.
- [LO] Le Van Thanh, M. Oka, Note on estimation of the number of the critical values at infinity. Kodai Math. J. 17 (1994), no. 3, 409–419.
- [Pa1] A. Parusinski, A note on singularities at infinity of complex polynomials, in: "Simplectic singularities and geometry of gauge fields", Banach Center Publ. vol. 39 (1997), 131–141.
- $[Pa2]$ A. Parusinski, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369–384.
- [PP] F. Pauer, M. Pfeifhofer, The theory of Gröbner basis, L'Enseignement Mathematique 34 (1988), 215–232.
- [Ph] F. Pham, Vanishing homologies and the n variable saddlepoint method, Arcata Proc. of Symp. in Pure Math., vol. 40, II (1983), 319–333.
- [Sa] M. Safey El Din, Testing sign conditions on a multivariate polynomial and applications, Math. Comput. Sci. 1 (2007), no. 1, 177–207.
- [ST] D. Siersma, M. Tibăr, Singularities at infinity and their vanishing cycles, Duke Math. Journal 80:3 (1995), 771–783.
- [Th] R. Thom, Ensembles et morphismes stratifi´es, Bull. Amer. Math. Soc. 75 (1969), 249–312.
- [Ti1] M. Tibăr, On the monodromy fibration of polynomial functions with singularities at infinity. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 9, 1031-1035.
- [Ti2] M. Tibăr, Topology at infinity of polynomial mappings and Thom condition, Compositio Math. 111 (1998), 89–109.
- [Ti3] M. Tibăr, Asymptotic equisingularity and topology of complex hypersurfaces. Internat. Math. Res. Notices 1998, no. 18, 979–990.
- [Ti4] M. Tibăr, Regularity at infinity of real and complex polynomial maps, Singularity Theory, The C.T.C Wall Anniversary Volume, LMS Lecture Notes Series 263 (1999), 249–264. Cambridge University Press.
- [Ti5] M. Tib˘ar, Polynomials and vanishing cycles. Cambridge Tracts in Mathematics, 170. Cambridge University Press, Cambridge, 2007.
- [Ve] J.-L. Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Inventiones Math. 36 (1976), 295–312.

Instytut Matematyczny, Polska Akademia Nauk, Sniadeckich 8, 00-956 Warszawa, Poland. ´ E-mail address: najelone@cyf-kr.edu.pl

MATHÉMATIQUES, UMR 8524 CNRS, UNIVERSITÉ DE LILLE 1, 59655 VILLENEUVE D'AscQ, France.

E-mail address: tibar@math.univ-lille1.fr