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DETECTING ASYMPTOTIC NON-REGULAR VALUES BY POLAR

CURVES

ZBIGNIEW JELONEK AND MIHAI TIBĂR

Abstract. We locate the Malgrange non-regular values of a given polynomial function
f : Cn → C by using a series of affine polar curves. We moreover show that all non-trivial
Malgrange non-regular values of f are indicated by a single “super-polar curve” which
we introduce here, providing also an effective algorithm of detection.

1. Introduction

Let f : Cn → C be a polynomial of degree d ≥ 2. René Thom proved that f is a
C∞−fibration outside a finite set, where the smallest such set is called the bifurcation set

of f and is denoted by B(f). Roughly speaking the set B∞(f) consists of points at which
f is not a locally trivial fibration at infinity (i.e., outside a large ball). Two fundamental
questions appear in a natural way: how to characterize the set B(f) and how to estimate
the number of points of this set.

Let us recall that the set B(f) contains the set f(Singf) of critical values of f and the
set B∞(f) of bifurcations points at infinity.

In case n = 2 there are well-known criteria to detect B(f), see e.g. [Ti4], [Du], and
there are also estimations of the upper bound of the number #B(f) in terms of the degree
or other data [Ha1], [Ha2], [Jel6], [LO], [Gw], [JT] etc.

Whenever n > 2 one has no exact criteria but one defines regularity conditions at
infinity that each yield some finite set of values containing B(f) and thus approaching
the problem of estimating #B(f). To control the set B∞(f) one can use the set of
asymptotic critical values of f :

K∞(f) := {y ∈ C | ∃ (xl)l∈N, ‖xl‖ → ∞, such that f(xl) → y and ‖xl‖‖df(xl)‖ → 0}.

If c /∈ K∞(f), then it is usual to say that f satisfies Malgrange’s condition at c ( or
c is Malgrange regular). The set K∞(f) naturally decomposes into two pieces: the set
TK∞(f) of trivial Malgrange non-regular values which come from the critical points of
f (i.e. there is a sequence xl → ∞ such that xl ∈ Sing(f) and f(xl) → y) and the
remaining set NK∞(f) := K∞(f) \ TK∞(f) of non-trival Malgrange non-regular values.
Of course TK∞(f) ⊂ f(Singf). Since the set f(Singf) is relatively easy to compute, the
problem which remains is how to compute the set NK∞(f).
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It was proved (cf [Pa2], [JK1], [Jel4]) that one has the inclusion B∞(f) ⊂ K∞(f).
Setting K(f) := f(Singf) ∪K∞(f), we get the inclusion B(f) ⊂ K(f). Estimations of
the number of the Malgrange non-regular values have been given in [JK1]. An algorithmic
method for recovering the set K∞(f) has been produced more recently [JK2].

We present here two new methods for detecting K∞(f) and for estimating the number
#K∞(f), together with an effective algorithm. Our first approach, based on the use of a
series of polar curves and their relation to Malgrange non-regularity via the t-regularity,
yields an exact characterisation of the set NK∞(f). We shall recall the notions and
the relevant preliminary results in §2, but let us introduce already here our first main
statement.

Let {x1, . . . , xn} be a generic system of coordinates of Cn, after Definition 2.8. Let us
consider the successive restrictions of f to the affine hyperplanes:

f0 := f, f1 := f|x1=0, . . . , fn−2 := f|x1=···=xn−2=0,

and the corresponding generic polar curves Γ(xi, fi−1), for i = 1, . . . , n− 1.
For a mapping g : X → Y , let Jg denote the non-properness set [Jel1], [Jel2] (also

called the Jelonek set) of the mapping g, see §4, Theorem 4.1. If A ⊂ X , then by Jg(A)
we denote the non-properness set of the restriction g|A.

We say that an irreducible algebraic variety S ⊂ C
n is horizontal if f(S) is not a

point (i.e. S is not included in some fibre of f). The union of all horizontal components
of the polar curve Γ(xi, fi−1) will be called the horizontal part and will be denoted by
HΓ(xi, fi−1).

We prove the following characterisation of the set NK∞(f):

Theorem 1.1. The set NK∞(f) of non-trivial Malgrange non-regular regular values of

f is included in the union of the non-properness sets of the mapping f restricted to a

horizontal part of the polar curves Γ(xi, fi−1), more precisely we have the equality:

(1) NK∞(f) =
n−1
⋃

i=1

Jf(HΓ(xi, fi−1)) \ Jf(Singf).

Note that Jf(Singf) equals the the set of critical values of f which are images of fibers
containing nonisolated singularities.

Let Singf = S0∪S1∪· · ·∪Sr be the decomposition of the singular locus into irreducible
components, where S0 denotes the union of all point-components (i.e. S0 is the set of
isolated singularities of f). For i > 1 we denote by di = deg Si the degree of the positive
dimensional component Si.

Corollary 1.2. For d > 2 we have:

(2) #NK∞(f) ≤
(d− 1)n − 1

d− 2
−

r
∑

i=1

di dimSi,

and for d = 2:

#NK∞(f) ≤ n− 1−
r

∑

i=1

di dimSi.

�
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According to their definition, the polar curves of the above statement are affine curves,
some of them are maybe empty, and they do not detect, in general, values from TK∞(f).
The first polar curve Γ(x1, f) detects some Malgrange non-regular value c ∈ NK∞(f)
whenever the fiber f−1(c) has only isolated singularities at infinity in the sense of Def-
inition 2.5, cf Theorem 2.9. However, the first polar curve may not detect all values
from NK∞(f) and that is why we need more polar curves. We explain this phenom-
enon by the existence of non-isolated t-singularities at infinity, cf §3. For example, if
f(x, y, x) = x + x2y then the polar curve of f is empty, but f has a non-trivial Mal-
grange non-regular value 0. This example also shows that Theorem 3.6 in [Sa] is not
correct. More precisely, if we use polar curves, then the problem of detecting non-trivial
Malgrange non-regular values cannot be done in a single step (as was wrongly claimed in
[Sa]), but turns out to fall into n− 1 steps as we describe now in our Theorem 1.1, each
step being the detection of the non-properness set of a certain generic polar curve.

However, the question “is it possible to recover all non-trivial Malgrange non-regular

values in just one single step” subsists as a chalenging problem. We solve it positively
in the second part of our paper by introducing a new and different device called “super-
polar curve”. Let us give here an outline of its construction. We consider the following
polynomials:

gi(a, b) =
∑

j

aij
∂f

∂xj

+
∑

j,k

bijkxk

∂f

∂xj

, i = 1, . . . , n− 1,

where aij , bijk are complex constants. Let:

(3) Γf(a, b) := closure{V (g1, . . . , gn−1) \ Sing(f)},

where we use here the Zariski closure. It turns out that, for general aij , bijk the set
Γf(a, b) is a non-empty curve, which we shall call super-polar curve of f . We say that
a component S ⊂ Γf (a, b) is horizontal if f(S) is not a single point. The union of all
horizontal components of Γf(a, b) will be called the horizontal part of Γf(a, b) and will be
denoted by HΓf(a, b). We obviously have the inclusion Jf(HΓf(a, b)) ⊂ Jf(Γf(a, b)). We
prove the following result:

Theorem 1.3. The set NK∞(f) of nontrivial Malgrange non-regular values of f is in-

cluded in the non-properness set of a mapping f restricted to the horizontal part of a

sufficiently general super-polar curve Γf(a, b), namely one has the following inclusion:

(4) NK∞(f) ⊂ Jf(HΓf(a, b)).

Corollary 1.4. If n > 2 and NK∞(f) 6= ∅ then:

#NK∞(f) ≤ dn−1 − 1−
r

∑

i=1

di.

In particular if NK∞(f) 6= ∅, then:

#K∞(f) ≤ dn−1 − 1−
r

∑

i=1

(di − 1).
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In case n = 2, if NK∞(f) 6= ∅, then:

#NK∞(f) ≤ d− 2−
r

∑

i=1

di, and #K∞(f) ≤ d− 2−
r

∑

i=1

(di − 1).

The plan of the paper goes as follows: in §2 and §4 we develop some preliminary
results in order to prepare the proofs of Theorem 1.1 in §3, and of Theorem 1.3 in §5,
together with their corollaries, respectively. In §6 we sketch the algorithm to detect the
set NK∞(f) effectively.

2. Regularity conditions at infinity

2.1. Malgrange regularity condition at a point at infinity. Pham formulated in
[Ph, 2.1] a regularity condition which he attributed to Malgrange. We recall the localized
version at infinity, after [Ti2], [Ti4].

We identify C
n to the graph of f , namely X := {(x, τ) ∈ C

n × C | f(x) = τ}, and
consider its algebraic closure in Pn × C, which is the hypersurface:

(5) X = {f̃(x0, x)− τxd
0 = 0} ⊂ P

n × C,

where x0 denotes the variable at infinity, d = deg f and f̃(x0, x) denotes the homoge-
nization of degree d of f by the variable x0. Let t : X → C denote the restriction to X

of the second projection P
n × C → C, a proper extension of the map f . We denote by

X∞ = X \X the divisor at infinity defined in each affine chart by the equation x0 = 0.

Definition 2.1. [Ti4] Let {xi}i∈N ⊂ Cn be a sequence of points with the following prop-
erties:

(L1) ‖xi‖ → ∞ and f(xi) → τ , as i → ∞.
(L2) xi → p ∈ X

∞, as i → ∞.

One says that the fibre f−1(τ) verifies the Malgrange condition if there is δ > 0 such that,
for any sequence of points with property (L1) one has

(M) ‖xi‖ · ‖ grad f(xi)‖ > δ.

We say that f verifies Malgrange condition at p ∈ X
∞ if there is δp > 0 such that one has

(M) for any sequence of points with property (L2).

Remark 2.2. It follows from the definition that f−1(τ) verifies the Malgrange condition
if and only if f verifies Malgrange condition (M) at any point p = (z, τ) ∈ X∞ ∩ t

−1(τ)
and for the same positive constant δp = δ.

2.2. Characteristic covectors and t-regularity. We recall the notion of t-regularity
from [Ti1], [Ti4]. Let H∞ = {[x0 : x1 : . . . : xn] ∈ Pn | x0 = 0} denote the hyperplane at
infinity and let X∞ := X ∩ (H∞ × C).

We consider the affine charts Uj × C of Pn × C, where Uj = {xj 6= 0}, j = 0, 1, . . . , n.
Identifying the chart U0 with the affine space C

n, we have X ∩ (U0 × C) = X \ X∞ = X
and X∞ is covered by the charts U1 × C, . . . , Un × C.

If g denotes the projection to the variable x0 in some affine chart Uj × C, then the

relative conormal Cg(X\X
∞∩Uj ×C) ⊂ X× P̌

n is well defined (see e.g. [Ti3], [Ti5]), with
the projection π(y,H) = y, where P̌n is identified to the projective space of hyperplanes
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in Uj × C. Let us then consider the space π−1(X∞) which is well defined for every chart
Uj ×C as a subset of Cg(X\X

∞ ∩ Uj ×C). By [Ti2, Lemma 3.3], the definitions coincide
at the intersections of the charts.

Definition 2.3. We call space of characteristic covectors at infinity the well-defined set
C∞ := π−1(X∞). For some p0 ∈ X∞, we denote C∞

p0
:= π−1(p0).

Considering now the second projection t : Pn×C → C in place of the function g in the
above consideration, we obtain the relative conormal space Ct(P

n × C). Then we have:

Definition 2.4. [Ti2] We say that f is t-regular at p0 ∈ X∞ if Ct(P
n × C) ∩ C∞

p0
= ∅ or,

equivalently, dt 6∈ C∞
p0
.

Definition 2.5. We say that f has isolated t-singularities at infinity at the fibre f−1(t0)
if this fibre has isolated singularities in Cn and if the set

Sing∞f := {p ∈ X
∞ | f−1(t0) is not t-regular at p}

is a finite set.

It follows from the definition that Sing∞f is a closed algebraic subset of X∞, see e.g.
[Ti2], [Ti5], [DRT, §6.1]. By the algebraic Sard Theorem, the image t(Sing∞f) consists
of a finite number of points.

We need the following key equivalence in the localized setting (proved initially in [ST,
Proposition 5.5] and [Pa1, Theorem 1.3], as explained in [Ti4]):

Theorem 2.6. [Ti5, Prop. 1.3.2] A polynomial f : Cn → C is t-regular at p0 ∈ X∞ if

and only if f verifies the Malgrange condition at this point. �

More precisely we have the following relations, cf [Ti3], [Ti5]:

(6) Malgrange regularity ⇐⇒ t-regularity =⇒ ρE-regularity =⇒ topological triviality

which also extend to polynomial maps Cn → Cp as shown in [DRT].

2.3. Polar curves and t-regularity. We define the affine polar curves of f and show
how they are related to the t-regularity condition, after [Ti3].

Given a polynomial f : Cn → C and a linear function l : Cn → C, the polar curve of f
with respect to l, denoted by Γ(l, f), is the closure in Cn of the set Sing(l, f)\Singf , where
Sing(l, f) is the critical locus of the map (l, f) : Cn → C2. Denoting by lH : Cn → C

the unique linear form (up to multiplication by a constant) which defines a hyperplane
H ∈ C

n (also regarded as a point in the projective space P̌
n−1 of linear hyperplanes in

Cn), we have the following genericity result of Bertini-type.

Lemma 2.7. [Ti2, Lemma 1.4]
There exists a Zariski-open set Ωf,a ⊂ P̌n−1 such that, for any H ∈ Ωf,a and some fixed

a ∈ C, the polar set Γ(lH , f) is a curve or it is an empty set, and no component is

contained in the fibre f−1(a). �

Definition 2.8. For H ∈ Ωf,a, we call Γ(lH , f) the generic affine polar curve of f with
respect to lH . A system of coordinates (x1, . . . , xn) in Cn is called generic with respect to
f iff {xi = 0} ∈ Ωf,a, ∀i.
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It follows from Lemma 2.7 that such systems of coordinates are generic among all linear
systems of coordinates.

Let Γ(lH , f) and Singf denote the algebraic closure in X of the respective sets. We
then have:

Theorem 2.9. Let f : Cn → C be a polynomial function and let p ∈ X
∞, a := t(p).

(a) If p is a t-regular point then p 6∈ (Γ(lH , f) ∪ Singf) ∩ X∞, for any H ∈ Ωf,a.

(b) Let p be either t-regular or an isolated t-singularity at infinity. Then p is a t-

singularity at infinity if and only if p ∈ Γ(lH , f) for some H ∈ Ωf,a.

Proof. The result and its proof can be actually extracted from [Ti5, §2.1]. More precisely:
(a) follows from [Ti5, Prop. 2.1.3] and [Ti5, (2.1), pag.17].
(b) follows by combining Thm. 2.1.7, Thm. 2.1.6 and Prop. 2.1.3 from [Ti5, §2.1].

�

The above theorem means that isolated t-singularities at infinity are precisely detected
by the horizontal part of the generic polar curve. In case p ∈ X∞ is a non-isolated t-
singularity (which occurs whenever n > 2), the general affine polar curve Γ(lH , f) might
not contain the chosen point p in its closure at infinity. We shall show in the next section
how to deal with this situation.

3. Proof of Theorem 1.1

Let B := Sing∞f ∩ (X \ ∪a∈f(Singf)Xa). By Theorem 2.6, we have the equality:

NK∞(f) = t(B).

By Theorem 2.9(a) and Theorem 2.6, if the generic polar curve Γ(lH , f) is nonempty,
then it intersects the hypersurface X∞ at finitely many points and these points are t-
singularities, hence Malgrange non-regular points at infinity.

Let us first assume that dimB = 0. Then, by Theorem 2.9, for p ∈ B (which by our
assumption is an isolated t-singularity), the generic polar curve passes through p, so this

point is “detected” by the horizontal part of the polar curve Γ(x1, f), for some generic
choice of the coordinate x1 (in the sense of Definition 2.8 and Lemma 2.7). Therefore, in
the notations of the Introduction, the corresponding asymptotic non-regular value belongs
to Jf (HΓ(x1, f)).

Therefore, in our case dimB = 0, the equality (1) follows from Theorem 2.9 and
Theorem 2.6.

Let us now treat the case dimB > 0. We will show (1) by a double inclusion.

The inclusion “⊃”. Let us first prove the inclusion Jf(HΓ(xi, fi−1)) \ Jf(Singf) ⊂
NK∞(f) for each i = 1, . . . , n− 1. We proceed by a “reductio ad absurdum” argument.
Assume that a 6∈ NK∞(f) and denote X∞

a := X∞ ∩ t
−1(a).

(a). If a ∈ Jf(HΓ(x1, f0)) \ Jf(Singf), then there exist points p ∈ X∞
a ∩ Γ(x1, f0). By

Theorem 2.9(a), this means that p is a t-non-regular point, which implies in turn that
a ∈ NK∞(f), by Theorem 2.6.

(b). Assume that a 6∈ Jf (HΓ(xi, fi−1))\Jf(Singf) for i = 1, . . . , k−1 (for some k ≥ 2),
and that a ∈ Jf(HΓ(xk, fk−1)) \ Jf (Singf).
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We endow the hypersurface X ⊂ Pn×C with a finite complex Whitney stratification W
such that X∞ := {fd = 0}×C is a union of strata. Our Whitney stratification at infinity
is also Thom (ax0

)-regular, by [Ti2, Theorem 2.9], where x0 = 0 is some local equation
for H∞ at p.

There exists a Zariski-open set Ω′ ⊂ P̌n−1 of linear forms Cn → C such that, if H ∈ Ω′,
then (H∞ ∩ H) × C is transversal in H∞ × C to all strata of W in the neighbourhood
of X∞

a . Due to the Thom (ax0
)-regularity of the stratification, it follows that slicing by

H ∈ Ω′ insures the t-regularity of the restriction f|H at any point p ∈ (H×C)∩X∞
a . More

precisely, from our hypothesis dt 6∈ C∞
p (see Definition 2.4) we deduce that dt′ 6∈ C′∞

p for

p ∈ H ∩ X∞
a , where H ∈ Ω′, t′ := t|H×C

and C′∞ is the space of Definition 2.3 starting

with the restriction f|H instead of f . This implies that a 6∈ NK∞(f|H).
By taking H ∈ Ω′ ∩Ωf,a we get in addition that a 6∈ Jf(Singf|H). We denote f1 := f|H.
Now, if k = 2 in our first assumption at point (b), we may apply the reasoning (a) to

f1 in place of f and obtain a ∈ NK∞(f1), hence a contradiction.
In case k > 2, after applying the slicing process (b) exactly k − 2 more times, namely

successively to f1, . . . , fk−2, we arrive to the similar contradiction for fk−1.

The inclusion “⊂”. Let a ∈ t(B) be an asymptotic non-regular value such that the
set of t-singularities in X

∞
a is not isolated. More precisely, according to Definition 2.5,

this set is equal to X∞
a ∩ Sing∞f . From the remark after Definition 2.5, it follows that

X∞
a ∩ Sing∞f is an algebraic set. Let therefore k := dimX∞

a ∩ Sing∞f be its dimension,
where k > 0 by our assumption dimB > 0. We show how to reduce k one by one until
zero.

For that we use two facts:
(a). From the above proof of the first inclusion we extract the fact that if dt 6∈ C∞

p then
dt′ 6∈ C′∞

p , for any H ∈ Ω′, where t
′ := t|H×C

.

(b). Moreover, by a Bertini type argument1, there exists a Zariski-open set Ω′′ ⊂ P̌n−1

such that if H ∈ Ω′′ then H × C is transversal to any stratum Wi ⊂ X∞ of the Whitney
stratification except at finitely many points.

For some H ∈ Ω′∩Ω′′ we consider the restriction f|H and the space similar to X defined
at (5) attached to the polynomial function f|H , which we denote by Y. These two facts
imply the equality:

dim(Y∞
a ∩ Sing∞f|H) = dim(X∞

a ∩ Sing∞f)− 1,

as long as k > 0 (which is our assumption). This shows the reduction to k − 1.
We thus continue to slice by generic hyperplanes and lower one by one the dimension of

the set Sing∞f until we reach zero, thus we slice a total number of k times. The restriction
of f to these iterated slices identifies to the restriction fk defined in the Introduction.

After this iterated slicing we have fk with a nonempty set of isolated t-singularities at
infinity over a, each of which are detected by the horizontal part of the polar curve
Γ(xk+1, fk), like shown in the first part of the above proof. We therefore get a ∈
Jf(HΓ(xk+1, fk).

1based on the fact that the relative conormal T ∗

t|Wi

is of dimension n− 1, the same as P̌n−1.
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Altogether this shows the inclusion: NK∞(f) ⊂
⋃n−1

i=1 Jf(HΓ(xi, fi−1))\Jf (Singf). Our
proof of Theorem 1.1 is now complete. �

3.1. Proof of Corollary 1.2. We estimate the number of Malgrange non-regular values
K∞(f) given by Theorem 1.1. Let us fix a generic system of coordinates (x1, . . . , xn). The
following equations:

(7)
∂fd
∂x2

= 0, . . . ,
∂fd
∂xn

= 0

define the algebraic set Γ(x1, f)∪Singf ⊂ Cn of degree (d−1)n−1. Therefore, if nonempty,

Γ(x1, f) is a curve of degree ≤ (d − 1)n−1. After Bezout, the curve Γ(x1, f) will meet a
non-degenerate hyperplane, and in particular the hyperplane at infinity, at a number of
points which is bounded from above by (d − 1)n−1 −

∑r

i=1 di. Repeating this procedure
after successively slicing by general hyperplanes like explained in the above proof, we
finally add up the numbers of solutions. This gives the following sum:

(8) (d− 1)n−1 + (d− 1)n−2 + · · ·+ (d− 1) =
(d− 1)n − 1

d− 2

to which we have to substract the sums of degrees of the positive dimensional irreducible
components of Singf and their successive slices. It follows that we substract the degree
di a number of dimSi times which corresponds to the number of times we slice Si and
drop its dimension one-by-one until we reach dimension 0. This proves Corollary 1.2. �

3.2. New bound for the number of atypical values at infinity. In [JK2, Corollary
1.1] one finds the following upper bound for Malgrange non-regular values:

(9) #K∞(f) ≤
dn − 1

d+ 1
.

Our estimation (2) yields to the following one for K∞(f):

(10) #K∞(f) ≤
(d− 1)n − 1

d− 2
−

r
∑

i=1

di dimSi + r.

This is somewhat sharper than (9). Both have the highest degree term dn−1 and the
coefficient of the term dn−2 in our formula is smaller for high values of n.

4. The non-properness set and the generalized Noether lemma

In this section we give the preliminary material which will lead to the definition in §5
of the “super-polar curve”.

If f : X → Y is a dominant, generically finite polynomial map of smooth affine varieties,
we denote by µ(f) the number of points in a generic fiber of f . If {x} is an isolated
component of the fiber f−1(f(x)), then we denote by multx(f) the multiplicity of f at x.

Let X, Y be affine varieties, recall that a mapping f : X → Y is not proper at a point
y ∈ Y if there is no neighborhood U of y such that f−1(U)) is compact. In other words,
f is not proper at y if there is a sequence xl → ∞ such that f(xl) → y. Let Jf denote
the set of points at which the mapping f is not proper. The set Jf has the following
properties (see [Jel1], [Jel2], [Jel3]):
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Theorem 4.1. Let X ⊂ Ck be an irreducible variety of dimension n and let f =
(f1, . . . , fm) : X → Cm be a generically-finite polynomial mapping. Then the set Jf is an

algebraic subset of Cm and it is either empty or it has pure dimension n − 1. Moreover,

if n = m then

deg Jf ≤
degX(

∏n

i=1 deg fi)− µ(f)

min1≤i≤n deg fi
.

In the case of a polynomial map of normal affine varieties it is easy to show the following:

Proposition 4.2. Let f : X → Y be a dominant and quasi-finite polynomial map of

normal affine varieties. Let Z ⊂ Y be an irreducible subvariety which is not contained in

Jf . Then every component of the set f−1(Z) has dimension dim Z, and if g denotes the

restriction of f to f−1(Z), then

Jg = Jf ∩ Z.

�

Proof. By the Zariski Main Theorem in version of Grothendieck, there is an affine variety
X , which contains X as a dense subset and a regular finite mapping F : X → Y such that
F|X = f. Since the mapping F is finite, all components of F−1(Z) have dimension dim Z.
Now the condition Z 6⊂ Jf implies that all components of f−1(Z) have dimension dim Z.
Let S := X \X. Observe that Jf = F (S). Moreover, Jg = F (S∩F−1(Z)) = F (S)∩Z. �

Let Mn
m denotes the set of all linear forms L : Cm → Cn. We need the following result,

which is a modification of [Jel5, Lemma 4.1]:

Proposition 4.3. (Generalized Noether Lemma)
Let X ⊂ Cm be an affine variety of dimension n. Let A ⊂ Cm be a line and B ⊂ X be a

subvariety such that A 6⊂ B. Let x1 : C
m → C be a linear projection and assume that x1

is non-constant on X and on A. Let a1, . . . , as ∈ A ∩X be some fixed set of points.

There exist a Zariski open dense subset U ⊂ Mn−1
m such that for every (n − 1)-tuple

(L1, . . . , Ln−1) ∈ U the mapping Π = (x1, L1, . . . , Ln−1) : X → Cn satisfies the following

conditions:

(a) the fibers of Π have dimension at most one,

(b) there is a polynomial ρ ∈ C[t1] such that

JΠ = {(t1, . . . , tn) ∈ C
n | ρ(t1) = 0},

(c) Π(A) 6⊂ Π(B),
(d) all fibers Π−1(Π(ai)), i = 1, . . . , s are finite and non-empty.

Proof. For any Z ⊂ Cm, denote by Z̃ the projective closure of Z in Pm, and let H∞

denote the hyperplane at infinity. Then dim X̃ ∩H∞ = n− 1.
Hence there is a non-empty Zariski open subset U1 ⊂ Mn−1

m of (n− 1)-tuples of linear
forms such that for any L = (l1, . . . , ln−1) ∈ U1 we have dim X̃ ∩H∞ ∩ ker L ≤ 0.

Let ln be a general linear form. Since the (n + 1) linear forms (x1, l1, . . . , ln) are alge-
braically dependent on X , there exists a non-zero polynomial W ∈ C[T, T1, . . . , Tn] such
that we have W (x1, l1, . . . , ln) = 0 on X . Let us define:
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(11) Li := li − αiln, for i = 1, . . . , n− 1; αi ∈ C
∗.

Operating on W the linear change of coordinates li 7→ Li, for sufficiently general coef-
ficients αi ∈ C, we then get a relation:

(12) lNn ρ(x1) +
N
∑

j=1

lN−j
n Aj(x1, L1, . . . , Ln−1) = 0,

where N is some positive integer, ρ and Aj are polynomials, such that ρ 6≡ 0.
The map P = (x1, L1, . . . , Ln−1, ln) : X → C

n+1 is finite and proper, since (L1, . . . , Ln−1, ln)
is so. Let X ′ := P (X) and consider the projection:

π : X ′ → C
n, (x1, . . . , xn+1) 7→ (x1, . . . , xn).

Note that the mapping π has fibers of dimension at most one. From the above construc-
tions it follows that the non-properness locus of the projection π is:

Jπ = {(t1, . . . , tn) ∈ C
n | ρ(t1) = 0},

for the polynomial ρ ∈ C[t1] defined by the relation (12), since Jπ is precisely the locus
of the values of (x1, L1, . . . , Ln−1) such that the equation (12) has less than N solutions
for ln, counted with multiplicities.

Let us remark that the genericity conditions on (l1, . . . , ln−1, ln) ∈ Mn
m and the con-

dition that (α1, . . . , αn−1) ensure the non-triviality of the polynomial ρ in (12), yield a
constructible subset S of Cn−1 ×Mn

m. The algebraic mapping:

Ψ : S → Mn−1
m , (α1, . . . , αn−1; l1, . . . , ln−1, ln) 7→ (L1, . . . , Ln−1)

where Li are defined in (11), has a constructible image Ψ(S) ⊂ Mn−1
m which contains U1

in its closure, thus Ψ(S) contains a non-empty Zariski-open subset U2 of Mn−1
m .

We thus obtain (a) and (b) for U := U2 and for Π := π ◦ P .

Next, let us show that there is a non-empty Zariski open subset included in U2 such
that condition (c) is also satisfied.

Note that dim B ≤ n−1. Moreover, there is a point a ∈ A\B, such that the dimension
of Ba := B ∩ x−1

1 (x1(a)) is < n − 1. Let Λ ⊂ Cm be the Zariski closure of the cone over
Ba with vertex a, CaBa :=

⋃

x∈Ba
ax, which is of dimension ≤ n− 1. Hence

dim Λ̃ ∩H∞ < n− 1.

Consequently, there is a Zariski open subset U3 ⊂ U2 such that for L = (L1, . . . , Ln−1) ∈ U3

we have dim Λ̃ ∩ H∞ ∩ kerL = ∅. This means that for Π := (x1, L1, . . . , Ln−1) we have
Π(a) 6∈ Π(B), which finishes the proof of (c).

Let us finally show that there is an eventually smaller non-empty Zariski open subset
U ⊂ U3 such that (d) is satisfied too. Let Di := x−1

1 (x1(ai)), for i = 1, . . . , s. Since
dimDi = n− 1, the Zariski closure D of

⋃s

i=1Di has dimension n− 1. Hence

dimH∞ ∩ D̃ < n− 1.
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Like in the above argument, there is a Zariski open subset U ⊂ U3 such that for L =
(L1, . . . , Ln−1) ∈ U we have dim D̃ ∩H∞ ∩ kerL = ∅. Consequently, for any i = 1, . . . , s,
the fiber Π−1(Π(ai)) is finite and non-empty. �

Definition 4.4. In the notations of Proposition 4.3, we call base-set of non-properness
of linear projections of X with respect to x1, the set:

B(x1, X) :=
⋂

L∈U

J(x1,L).

Remark 4.5. If non-empty, the set B(x1, X) is a finite union of hyperplanes of the form
{bi} × Cn−1, by Proposition 4.3(b).

5. Super-polar curve and proof of Theorem 1.3

We have defined at (3) the super-polar curve Γf(a, b) as the Zariski closure of V (g1, . . . , gn−1)\
Sing(f), where

(13) gi(a, b) :=

n
∑

j=1

aij
∂f

∂xj

+

n
∑

j,k=1

bijkxk

∂f

∂xj

, i = 1, . . . , n− 1.

That for general aij , bijk ∈ C this is indeed a non-degenerate curve follows in particular
from the next result, which is equivalent to Theorem 1.3. Let us recall that HΓf(a, b)
denotes the horizontal part of Γf (a, b).

Theorem 5.1. There is a Zariski open non-empty set Ω in the space of parameters

(a, b) ∈ Cn(n+1) such that:

(a) for (a, b) ∈ Ω the set Γf(a, b) is a non-empty curve,
(b) NK∞(f) ⊂ Jf(HΓf(a, b)).

Proof. Let Φ : Cn → C× Cn(n+1) be the polynomial mapping defined by:

Φ =

(

f,
∂f

∂x1

, . . . ,
∂f

∂xn

, h11, h12, . . . , hnn

)

,

where hij = xi
∂f

∂xj
, i = 1, . . . , n, j = 1, . . . , n.

Let us observe that Φ is a birational mapping (onto its image), in particular it is
generically finite, since Φ is injective outside the critical set of f .

Let A := C × {(0, . . . , 0)} ⊂ C × Cn(n+1). By the definitions of K∞(f) and of Φ, we
have the equality:

(14) K∞(f) = A ∩ JΦ,

where JΦ denotes the set of points at which the mapping Φ is not proper. Recall that
K∞(f) is finite, hence the set A ∩ JΦ is finite too.

Let X := Φ(Cn) ⊂ C × Cn(n+1) and B := JΦ. Let B(x1, X) be a base-set of non-
properness of linear projections of X with respect to x1 (cf Definition 4.4).

In the following we identify the target C of f with the line A ⊂ C× Cn(n+1).
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Let then {p1, . . . , ps} := NK∞(f)∪ (B(x1, X)∩A)\f(Singf) ⊂ A∩X . By Proposition
4.3 and using its notations, for general (L1, . . . , Ln−1) ∈ U ⊂ Mn−1

1+n(n+1), the mapping:

Π = (x1, L1, . . . , Ln−1) : X → C
n

satisfies the following conditions:

(a) the fibers of Π have dimension at most one,
(b) there is a polynomial ρ ∈ C[t1] such that

JΠ = {(t1, . . . , tn) ∈ C
n | ρ(t1) = 0},

(c) Π(A) 6⊂ Π(B),
(d) all fibers Π−1(Π(pj)), j = 1, . . . , s are finite and non-empty.

Let us write Li = cix1 + li(a, b), i = 1, . . . , n− 1, where the linear form li(a, b) does not
depend on variable x1. Note that:

Π(A) = {x ∈ C
n | x1 = t, x2 = c1t, . . . , xn = cn−1t, t ∈ C}.

For Ψ := Π ◦ Φ, we have (see (14)):

Π(K∞(f)) = Π(A ∩ JΦ) ⊂ Π(A) ∩ JΨ.

Let V := {y ∈ Cn | dimΨ−1(y) > 0}. Since the fibers Ψ−1(Π(pj)), j = 1, . . . , s, are
finite and non-empty we have Π(pj) 6∈ V for j = 1, . . . , s. So let S be a hypersurface in
Cn which contains V but does not contain the set of points {Π(p1), . . . ,Π(ps)} and let

R := S ∪ {y ∈ C
n |

r
∏

c∈Π(f(Singf))

(y1 − c) = 0}.

With these notations, the mapping

Ψ′ : Cn \Ψ−1(R) → C
n \R, x 7→ Ψ(x)

is quasi-finite, and moreover Π(NK∞(f)) ⊂ JΨ′ .
Let Γ′ := Ψ′−1(Π(A)). By Proposition 4.2, Γ′ is a curve and Π(NK∞(f)) is contained

in the non-properness set of the mapping Ψ|Γ′ : Γ′ → Π(A) \ R. Consequently, the set
Π(NK∞(f)) is also contained in the non properness set of the mapping Ψ restricted to

Ψ−1(Π(A) \ Π(f(Singf)).
By the definition of Ψ we have Ψ−1(Π(A)) = Φ−1(Π−1(Π(A))), where:

Π−1(Π(A)) = {x ∈ X | l1(a, b)(x2, . . . , xn(n+1)) = 0, . . . , ln−1(a, b)(x2, . . . , xn(n+1)) = 0}.

Comparing to the definition (13), we see that the set Φ−1(Π−1(Π(A))) \ Sing(f) coin-
cides with the super-polar curve Γf(a, b).

The set Γf(a, b) is a curve since it is union of the curve Γ′, which actually coincide with
the horizontal part HΓf(a, b), and, eventually, some of the one dimensional fibers of Ψ.

Let us now consider a linear isomorphism:

T : Cn → C
n, (x1, . . . , xn) 7→ (x1, x2 − c2x1, . . . , xn − cnx1).

From the above construction we know that Π(NK∞(f)) ⊂ JΨ|Γ′ . We then have the

inclusion T (Π(NK∞(f))) ⊂ JT◦Ψ|Γ′ . But T ◦Ψ|Γ′ coincides with f on Γ′ = HΓf(a, b), and
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T (Π(NK∞(f))) coincides withNK∞(f). This shows the inclusionNK∞(f) ⊂ Jf(HΓf(a, b))
and ends the proof of point (b) of our theorem. �

5.1. Proof of Corollary 1.4.

We use the terminology of the above proof. We have actually shown that ifNK∞(f) 6= ∅
then the curve Γ′ is non-empty, and that the set NK∞(f) is contained in the non-
properness set of the restriction f|Γ′. The curve Γ′ is a subset of the super-polar curve
Γf(a, b) for general coefficients a and b, and moreover, f is constant on all other com-
ponents of Γf (a, b). By the generalized Bezout Theorem we have deg Γf(a, b) ≤ dn−1 −
∑r

i=1 di, thus deg Γ′ ≤ dn−1 −
∑r

i=1 di. Note that the cardinality of the non-properness
set of f|Γ′ is estimated by the number of these points at infinity of a curve Γ′ which are
transformed by f into C. Consequently, the cardinality of the non-properness set of f|Γ′

is bounded from above by the number dn−1 − 1 −
∑r

i=1 di. We can substract 1 in this

formula since actually each branch of Γ′ intersects the hyperplane at infinity also at the
value infinity of f . Thus we also have #NK∞(f) ≤ dn−1 − 1 −

∑r

i=1 di. Since every
connected positive-dimensional component of the critical set Singf is contained in one
fiber of f thus indicates a trivial non-regular value, we obtain:

#K∞(f) ≤ dn−1 − 1−
r

∑

i=1

(di − 1).

For n = 2, it turns out that the Malgrange condition can be recovered (see [Ha1], [Ha2],
[LO]) by the asymptotic behavior of the derivatives of f only. We thus consider, instead of
the mapping Φ of the proof of Theorem 5.1, the new mapping Φ(x, y) = (f(x, y), ∂f

∂x
, ∂f
∂y
).

This mapping is generically finite if NK∞(f) 6= ∅. In this case, arguing as above we get
the last inequalities of our Corollary 1.4.

6. Algorithm

We present here a fast algorithm which yields a finite set S ⊂ C such thatNK∞(f) ⊂ S,
for a given polynomial f : Cn → C. By our results, this problem reduces to computing
the non-properness set of the mapping f|Γ : Γ → C where Γ is a super-polar curve of f.

Let us first show how to compute the non-properness set Jg of the mapping g : X → C,
where X ⊂ Cn is a curve. The following result can be found in [PP]:

Theorem 6.1. If B = (b1, . . . , bt) is the Gröbner basis of the ideal I ⊂ k[x1, . . . , xn] with
the lexicographic order in which x1 > x2 > . . . > xn, then for every 0 ≤ m ≤ n the set

B ∩ k[xm+1, . . . , xn] is the Gröbner basis of the ideal I ∩ k[xm+1, . . . , xn]. �

Corollary 6.2. Consider the ring C[x1, . . . , xn; y1, . . . , ym]. Let V ⊂ Cn × Cm be an

algebraic set and let p : Cn × Cm → Cm denote the projection. Assume that B is a

Gröbner basis of the ideal I(V ) with the lexicographic order. Then B ∩ C[y1, . . . , ym] is a

Gröbner basis of the ideal I(p(V )).

Proof. Observe that I(p(V )) = I(V ) ∩ C[y1, . . . , ym] and then use Theorem 6.1. �
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Let then I(X) := (h1, . . . , hr) be the ideal of our curve X . The graph G ⊂ Cn×C of the
non-constant mapping f : X → C is given by the ideal I = (hi = 0, i = 1, . . . , r; f(x)−
z) ⊂ C[x1, . . . , xn, z].

Let O be the order in C[x1, . . . , xn, z] such that x1 > x2 > . . . > xi > xi+1 > . . . > xn >
z . Let B denote the Gröbner basis of I with respect to the order O. Let fi ∈ B ∩C[xi, z]
be a non-zero polynomial which depends on xi. Then:

fi = xni

i ai0(z) + xni−1
i ai1(z) + . . .+ aini

(z).

By [Jel1, Prop. 7], [Jel2, Th. 3.10], for our mapping f : X → C we have:

Jf =

n
⋃

i=1

{z ∈ C | ai0(z) = 0}.

With this preparation, we now state the algorithm:

Special case: Sing(f) is a finite set.

INPUT: the polynomial f : Cn → C

(1) choose random coefficients αk
i , α

k
ij, k = 1, . . . , n− 1; i, j = 1, . . . , n.

(2) put gk =
∑

j α
k
j

∂f

∂xj
+
∑

i,j α
k
ijxi

∂f

∂xj
.

(3) put W := (g1, ..., gn−1) ⊂ C[x1, ..., xn], if dim W > 1 then go back to (1).
(4) compute a Gröbner basis B of the ideal I = (g1, . . . , gn−1, f − z) ⊂ C[x1, . . . , xn, z]

with respect to order O (as defined above).
(5) let fi = xni

i ai0(z)+xni−1
i ai1(z)+ . . .+aini

(z) ∈ Bi∩C[xi, z] be a non zero polynomial
which depends on xi.

(6) let S :=
⋃n

i=1{z ∈ C | ai0(z) = 0}. The set S is the non-properness set of the
mapping f restricted to {g1 = 0, . . . , gn−1 = 0}).

OUTPUT: a finite set S ⊂ C such that NK∞(f) ⊂ S.

In the general case, in order to grip the super-polar curve, we have to remove from the
set {g1 = 0, . . . , gn−1 = 0} the singular set Sing(f). To do this, it is enough to remove
the hypersurface {

∑

βj
∂f

∂xj
= 0}, where the coefficients βj are sufficiently general. Indeed

such a hypersurface does contain Sing(f) but does not contain any component of Γ(a, b).

General case:

INPUT: the polynomial f : Cn → C

(1) choose random coefficients αk
i , α

k
ij, βi, k = 1, ..., n− 1, i, j = 1, . . . , n.

(2) put gk =
∑

j α
k
j

∂f

∂xj
+
∑

i,j α
k
ijxi

∂f

∂xj
.

(3) put h =
∑n

j=1 βj
∂f

∂xj
.

(4) put W := (g1, . . . , gn−1, th − 1) ⊂ C[t, x1, . . . , xn]; if dim W > 1, then go back to
(1).
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(5) compute a Gröbner basis B of the ideal I = (th−1, g1, . . . , gn−1, f−z) ⊂ C[t, x1, . . . , xn, z]
with respect to the order O such that t > x1 > x2 > . . . > x̂i > xi+1 > · · · >
xn >> z.

(6) let fi = xni

i ai0(z)+xni−1
i ai1(z)+ · · ·+ainl

(z) ∈ B∩C[xi, z] be a non zero polynomial
which depends on xi.

(7) let S =
⋃n

i=1{z ∈ C | ai0(z) = 0}. Here S is the non-properness set of the mapping
f restricted to {g1 = 0, . . . , gn−1 = 0} \ {h = 0}.

OUTPUT: a finite set S ⊂ C such that NK∞(f) ⊂ S.

Remark 6.3. The above algorithm is probabilistic (without certification), hence for really
random coefficients α and β it gives a good subset S(α, β), but for some choices it can
produce a bad answer. However generically it produces subsets S(α, β) which contains
NK∞(f) Therefore in practice we must repeat the algorithm several times and select only
the subset S(α, β) which contains the same fixed subset all times. The final answer should
then be the intersection S :=

⋂

α,β S(α, β).

At step (5) (and (4) in the isolated singularity case, respectively) we compute Gröbner
bases in polynomial rings of at most n+ 2 variables.

It is possible to construct also a version of this algorithm with a certification, however
in that case we have to compute Gröbner bases in polynomial rings of 2n+ 1 variables.

Remark 6.4. A similar algorithm can be constructed for the iterated polar curves method
that we use in the first part of our paper; more steps will be needed. We leave the details
to the reader.
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