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Abstract

In the Vershik-Okounkov approach to the complex irreducible representations

of Sn and G ∼ Sn we parametrize the irreducible representations and their bases

by spectral objects rather than combinatorial objects and then, at the end, give a

bijection between the spectral and combinatorial objects. The fundamental ideas are

similar in both cases but there are additional technicalities involved in the G ∼ Sn

case. This was carried out by Pushkarev.

The present work gives a fully detailed exposition of Pushkarev’s theory. For the

most part we follow the original but our definition of a Gelfand-Tsetlin subspace,

based on a multiplicity free chain of subgroups, is slightly different and leads to a

more natural development of the theory. We also work out in detail an example,

the generalized Johnson scheme, from this viewpoint.

1 Introduction

Let G be a finite group. The symmetric group Sn acts on Gn = G× · · · ×G (n factors)
by permuting the coordinates and this action defines the semidirect product Gn ⋊ Sn of
Gn by Sn. The group Gn ⋊ Sn is called the wreath product of G by Sn and is denoted
G ∼ Sn (our notation follows [7]). We set Gn = G ∼ Sn. The elements of Gn are the set
of all (n+1)-tuples (g1, . . . , gn, π), where π ∈ Sn, and gi ∈ G for all i. The multiplication
rule and inverse of an element in Gn are given by

(g1, . . . , gn, π)(h1, . . . , hn, τ) = (g1hπ−1(1), . . . , gnhπ−1(n), πτ),

(g1, . . . , gn, π)
−1 = (g−1

π(1), . . . , g
−1
π(n), π

−1).

The complex representation theory of Gn is a classical and well studied topic. Among
the many sources we mention James and Kerber [6], Macdonald [7], and the recent book
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of Ceccherini-Silberstein, Scarabotti, and Tolli [3]. The basic problem can be stated as
follows.

Let P denote the set of all partitions (there is a unique partition of zero with zero
parts) and let Pn denote the set of all partitions of n. For a finite set X , we define

P(X) = {µ | µ : X → P}.

For µ ∈ P(X), define ‖µ‖ =
∑

x∈X |µ(x)|, where |µ(x)| is the sum of the parts of the
partition µ(x) and define

Pn(X) = {µ ∈ P(X) | ‖µ‖ = n}.

Let G∗ denote the set of conjugacy classes in G. The conjugacy classes of Gn are
parametrized by Pn(G∗) ([6, 7, 3]).

Let Y denote the set of all Young diagrams (there is a unique Young diagram with
zero boxes) and Yn denote the set of all Young diagrams with n boxes. For a finite set
X , we define

Y(X) = {µ | µ : X → Y}.
For µ ∈ Y(X), define ‖µ‖ =

∑

x∈X |µ(x)|, where |µ(x)| is the number of boxes of the
Young diagram µ(x) and define

Yn(X) = {µ ∈ Y(X) | ‖µ‖ = n}.

Denote by G∧ the (finite) set of equivalence classes of finite dimensional complex
irreducible representations of G. Given σ ∈ G∧, we denote by V σ the corresponding
irreducible G-module. Elements of Y(G∧) are called Young G-diagrams and elements of
Yn(G

∧) are called Young G-diagrams with n boxes. Given µ ∈ Y(G∧) and σ ∈ G∧, we
denote by µ ↓ σ the set of all Young G-diagrams obtained from µ by removing one of the
inner corners in the Young diagram µ(σ).

Let µ ∈ Y . A Young tableau of shape µ is obtained by taking the Young diagram µ
and filling its |µ| boxes (bijectively) with the numbers 1, 2, . . . , |µ|. A Young tableau is
said to be standard if the numbers in the boxes strictly increase along each row and each
column of the Young diagram of µ. Let tab(n, µ), where µ ∈ Yn, denote the set of all
standard Young tableaux of shape µ and let tab(n) = ∪µ∈Yn

tab(n, µ).

Let µ ∈ Y(G∧). A Young G-tableau of shape µ is obtained by taking the Young
G-diagram µ and filling its ‖µ‖ boxes (bijectively) with the numbers 1, 2, . . . , ‖µ‖. A
Young G-tableau is said to be standard if the numbers in the boxes strictly increase
along each row and each column of all Young diagrams occuring in µ. Let tabG(n, µ),
where µ ∈ Yn(G

∧), denote the set of all standard Young G-tableaux of shape µ and let
tabG(n) = ∪µ∈Yn(G∧)tabG(n, µ).

Let T ∈ tabG(n) and i ∈ {1, . . . , n}. If i appears in the Young diagram µ(σ), where µ
is the shape of T and σ ∈ G∧, we write rT (i) = σ.
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The complex irreducible representations of Gn are parametrized by Yn(G
∧) and the

basic problem of the representation theory of Gn is to explain this correspondence between
irreducible representations of Gn and elements of Yn(G

∧). This is done in [7] using
symmetric functions and the characteristic map and in [6, 3] using Clifford theory and
the little group method.

In [9] Pushkarev, building on the Vershik-Okounkov approach in the Sn case [13, 14,
2], gave a spectral explanation for this correspondence, namely, an internal analysis of
the irreducible representations of Gn yields spectral objects parametrizing the irreducible
representations and then a bijection is given between these spectral objects and Yn(G

∧).
This approach is inductive in nature and has the following advantages:

(a) The group Gn can be identified with the subgroup

{(g1, . . . , gn, e, π) | π ∈ Sn+1 with π(n+ 1) = n+ 1 and gi ∈ G, 1 ≤ i ≤ n}

of Gn+1 (e = identity element of G) and we have an infinite chain of finite groups

G1 ⊆ G2 ⊆ · · · .

As a natural byproduct of the theory we get the branching rule from Gn+1 to Gn: denote
the irreducible Gn+1-module corresponding to µ ∈ Yn+1(G

∧) by V µ. Then we have Gn-
module isomorphisms

V µ ∼= ⊕σ∈G∧ dim(V σ)
(

⊕λ∈µ↓σV
λ
)

.

(b) Another natural byproduct of the theory yields a parametrization of the bases of
irreducible Gn-modules using standard Young G-tableaux and bases of irreducible Gn-
modules. More precisely, for µ ∈ Yn(G

∧), we have a canonical direct sum decomposition
of V µ into subspaces, called Gelfand-Tsetlin subspaces,

V µ = ⊕
T∈tabG(n,µ)

VT ,

where each VT is closed under the action of Gn = G × · · · × G (n factors) and, as a
Gn-module, is isomorphic to the irreducible Gn-module

V rT (1) ⊗ V rT (2) ⊗ · · · ⊗ V rT (n).

The present work gives a fully detailed exposition of Pushkarev’s theory. Our develop-
ment, based on a multiplicity free chain of subgroups, is slightly different from the original
and is along the following lines.

For g ∈ G and 1 ≤ i ≤ n we denote by g(i) the element (e, . . . , e, g, e, . . . , e, 1) ∈ Gn,
where g is in the ith spot, e denotes the identity element of G, and 1 denotes the identity
element of Sn. Denote by G(i) the subgroup {g(i)|g ∈ G} of Gn. Note that G(1), . . . , G(n)

commute. We may also think of Sn as the subgroup {(e, . . . , e, π)|π ∈ Sn}. We write
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the element (e, . . . , e, π) as π. We may thus write an element (g1, . . . , gn, π) ∈ Gn as

g
(1)
1 . . . g

(n)
n π = πg

(π−1(1))
1 . . . g

(π−1(n))
n = πg

(1)
π(1) . . . g

(n)
π(n).

For n ≥ 1, set Hn,n = Gn and consider the following chain of subgroups

H1,n ⊆ H2,n ⊆ · · · ⊆ Hn,n, (1)

where, for 1 ≤ i ≤ n,

Hi,n = {(g1, . . . , gn, π) ∈ Gn | π(j) = j for i+ 1 ≤ j ≤ n}.

Note that H1,n is isomorphic to Gn. The following are the main steps in the representation
theory of Gn.

(i) A direct argument shows that branching from Hi,n to Hi−1,n is simple, i.e., multiplicity
free.

(ii) Consider an irreducible Hm,n-module V . Since the branching is simple the decom-
position of V into irreducible Hm−1,n-modules is canonical. Each of these modules, in
turn, decompose canonically into irreducible Hm−2,n-modules. Iterating this construction
we get a canonical decomposition of V into irreducible Gn = H1,n-modules, called the
Gelfand-Tsetlin decomposition (GZ-decomposition) of V . The irreducible Gn-modules in
this decomposition are called the Gelfand-Tsetlin subspaces (GZ-subspaces) of V .

(iii) Let Zm,n denote the center of the group algebra C[Hm,n]. The Gelfand-Tsetlin algebra
(GZ-algebra), denoted GZm,n, is defined to be the (commutative) subalgebra of C[Hm,n]
generated by Z1,n ∪ Z2,n ∪ · · · ∪ Zm,n. It is shown that GZm,n consists of all elements in
C[Hm,n] that act by scalars on the GZ-subspaces in every irreducible representation of
Hm,n. It follows that if we have a finite generating set for GZm,n then the GZ-subspaces
are determined by the eigenvalues on this generating set.

(iv) Following Pushkarev, for i = 1, 2, . . . , n, we define the (generalized) YJM elements
X1, X2, . . . , Xn of C[Hn,n]:

Xi =

i−1
∑

k=1

∑

g∈G

(g−1)(k)g(i)(k, i).

Note that X1 = 0. For an algebra A, let Z[A] denote the center of A. It is shown that
GZm,n = 〈Z[C[Gn]], X1, X2, . . . , Xm〉.
(v) By a GZ-subspace of Gn we mean a GZ-subspace in some irreducible representation
of Gn. Let W be a GZ-subspace of Gn. Then W is an irreducible Gn-module and hence
is isomorphic to V ρ1 ⊗ · · · ⊗ V ρn , where ρi ∈ G∧, for all i. We call ρ = (ρ1, . . . , ρn) the
label of the GZ-subspace W .

It follows from steps (iii) and (iv) above that a GZ-subspace W of Gn is uniquely
determined by its label and the eigenvalues of X1, . . . , Xn on W . To a GZ-subspace W
we associate the tuple

α(W ) = (ρ, a1, a2, . . . , an),
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where ρ is the label of W and ai = eigenvalue of Xi on W . We call α(W ) the weight of
the GZ-subspace W . Define

specG(n) = {α(W ) : W is a GZ-subspace of Gn},

called the spectrum of Gn.

We have dim GZn,n = |specG(n)|. There is a natural equivalence relation ∼ on
specG(n): for α, β ∈ specG(n), α ∼ β iff the corresponding GZ-subspaces are in same
Gn-irreducible. Clearly, we have |specG(n)/ ∼ | = |G∧

n|.
The representation theory of Gn is governed by the spectral object specG(n).

(vi) In the final step we construct a bijection between specG(n) and tabG(n) such that
tuples in specG(n) related by ∼ go to standard Young G-tableaux of the same shape. This
step is carried out inductively using an analysis of the following commutation relations
that hold in Gn (where si = the Coxeter generator (i, i+ 1)):

(a) X1, . . . , Xn commute.

(b) Xig
(l) = g(l)Xi, g ∈ G, 1 ≤ i, l ≤ n.

(c) sig
(i)si = g(i+1), g ∈ G, 1 ≤ i ≤ n− 1. In particular, s2i = 1.

(d) sig
(l) = g(l)si, 1 ≤ i ≤ n− 1, 1 ≤ l ≤ n, l 6= i, i+ 1.

(e) siXisi +
∑

g∈G g(i+1)si(g
−1)(i+1) = Xi+1, 1 ≤ i ≤ n− 1.

(f) siXl = Xlsi, 1 ≤ i ≤ n− 1, 1 ≤ l ≤ n, l 6= i, i+ 1.

We now give a brief synopsis of the paper. Section 2 collects some preliminaries on
wreath products. Section 3 discusses Gelfand-Tsetlin subspaces, Gelfand-Tsetlin decom-
positions, and Gelfand-Tsetlin algebras for an inductive chain of finite groups with simple
branching. In Section 4 we first show that the chain (1) is multiplicity free and then
show that the corresponding Gelfand-Tsetlin algebras are generated over Z[C[Gn]] by the
YJM elements, thereby defining the weight of a GZ-subspace and the spectrum specG(n)
of Gn. Section 5 describes, using the commutation relations (a)-(f) above, the action of
the Coxeter generators on the Gelfand-Tsetlin subspaces in terms of transformations of
weights. In Section 6, using the results of Section 5, we give a bijection between specG(n)
and tabG(n) via the content vectors of standard Young G-tableaux. In Section 7 we study
the simplest nontrivial example of the Vershik-Okounkov theory, the classical “Johnson
schemes” and the “generalized Johnson schemes”. We consider multiplicity free Sn, Gn-
actions and explicitly write down the GZ-vectors (in the Sn case) and the GZ-subspaces
(in the Gn case) and also identify the irreducibles which occur.

2 Preliminaries

The positive integers are denoted P and the nonnegative integers are denoted N.

We enumerate the conjugacy classes of G as G∗ = {C1, . . . , Ct} and assume that
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C1 = {e}. We say that g ∈ G is of type j if g ∈ Cj. Define an involution I : {1, . . . , t} →
{1, . . . , t} as follows: I(j) = j′ if j′ is the type of g−1, for g ∈ Cj .

Let h = (g1, . . . , gn, π) ∈ Gn and let τ = (i1, i2, . . . , ik) be a k-cycle in π. The element
gikgik−1

· · · gi1 ∈ G is called the cycle product of h corresponding to the cycle τ of π and
its type is easily seen to be independent of the order in which the elements of τ are listed.
Thus we may define ρh : G∗ → P by

ρh(Ci) = Multiset of lengths of all cycles of π whose cycle product lies in Ci, 1 ≤ i ≤ t.

Clearly ρh ∈ Pn(G∗). We say that ρh is the type of h ∈ Gn.

Suppose two elements (g1, . . . , gn, π) and (f1, . . . , fn, τ) are conjugate in Gn. Then we
have

(h1, . . . , hn, σ)(g1, . . . , gn, π)(h
−1
σ(1), . . . , h

−1
σ(n), σ

−1) = (f1, . . . , fn, τ), (2)

for some h1, . . . , hn ∈ G and σ ∈ Sn. Thus τ = σπσ−1 and τ and π are conjugate in Sn.

We now want to consider the cycle products in (g1, . . . , gn, π) and (f1, . . . , fn, τ). For
simplicity we shall write the element (g1, . . . , gn, π) as (. . . , gi, . . . , π) (it being understood
that gi is in the ith spot). We have

(. . . , hi, . . . , σ)(. . . , gi, . . . , π)(. . . , h
−1
σ(i), . . . , σ

−1)

= (. . . , higσ−1(i), . . . , σπ)(. . . , h
−1
σ(i), . . . , σ

−1)

= (. . . , higσ−1(i)h
−1
σπ−1σ−1(i), . . . , σπσ

−1)

= (. . . , higσ−1(i)h
−1
τ−1(i), . . . , τ)

= (. . . , fi, . . . , τ)

Let (i1, . . . , ik) be a cycle in π. Then (σ(i1), . . . , σ(ik)) is a cycle in τ . We have, using the
calculation above,

fσ(ik) = hσ(ik)gσ−1(σ(ik))h
−1
τ−1(σ(ik))

(3)

= hσ(ik)gikh
−1
σ(ik−1)

. (4)

Thus we have (using τ−1(σ(i1)) = σ(ik))

fσ(ik)fσ(ik−1) · · ·fσ(i1)
= (hσ(ik)gikh

−1
σ(ik−1)

)(hσ(ik−1)gik−1
h−1
σ(ik−2)

) · · · (hσ(i1)gi1h
−1
σ(ik)

)

= hσ(ik)gik · · · gi1h−1
σ(ik)

.

Thus the type of the cycle products gik · · · gi1 and fσ(ik) · · · fσ(i1) are the same. It follows
that if two elements of Gn are conjugate then they have the same type.
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Conversely, suppose that (g1, . . . , gn, π), (f1, . . . , fn, τ) ∈ Gn have the same type. Then
we can easily write down a σ ∈ Sn such that σπσ−1 = τ and such that, for every cycle
(i1, . . . , ik) of π, the cycle products gik · · · gi1 and fσ(ik) · · · fσ(i1) have the same type. Now,
using (4), we can find h1, . . . , hn ∈ G such that (2) holds. It follows that two elements of
Gn are conjugate if and only if they have the same type.

An element g = (g1, . . . , gn, π) ∈ Gn is said to be a nontrivial cycle of type j if (exactly)
one of the following conditions hold:

(i) All cycles of π have length 1 (i.e., π is the identity permutation) and, for some
1 ≤ i ≤ n, gl = e for l 6= i, gi is of type j, and 2 ≤ j ≤ t. We say that {i} is the support
of g. We say that g is a nontrivial 1-cycle of type j.

(ii) There is exactly one cycle, say (i1, . . . , ik), in the cycle decomposition of π of length
≥ 2, the cycle product gik . . . gi1 is of type j, and gl = e, for l 6∈ {i1, . . . , ik}. We say that
{i1, . . . , ik} is the support of g. Note that in this case there is no restriction on j, i.e.,
1 ≤ j ≤ t. We say that g is a nontrivial k-cycle of type j.

Just as in the Sn case every element of Gn can be written as a product of commuting
nontrivial cycles with disjoint support.

By a nontrivial part of a partition we mean a part ≥ 2. For a partition µ ∈ P we
denote by #µ the sum of all the nontrivial parts (with multiplicity) of µ.

Let ρ ∈ Pn(G∗). By a part of ρ we mean a pair (k, j), where k ∈ P, j ∈ {1, . . . , t}, and
k is a part of ρ(Cj). We may specify ρ by giving its multiset of parts (for example, if k
appears m times in ρ(Cj) then the part (k, j) appears m times in the multiset of parts).
We say the part (k, j) is nontrivial if (k, j) 6= (1, 1). We define

#ρ =
t
∑

j=2

|ρ(Cj)|+#(ρ(C1)),

i.e., #ρ is the sum of the first components (with multiplicity) of all the nontrivial parts
of ρ.

For a permutation s ∈ Sn we denote by ℓ(s) the number of inversions in s. It is well
known that s can be written as a product of ℓ(s) Coxeter transpositions si = (i, i+1), i =
1, 2, . . . , n− 1 and that s cannot be written as a product of fewer Coxeter transpositions.

All our algebras are finite dimensional, over C, and have units. Subalgebras contain
the unit, and algebra homomorphisms preserve units. Given elements or subalgebras
A1, A2, . . . , An of an algebra A we denote by 〈A1, A2, . . . , An〉 the subalgebra of A gener-
ated by A1 ∪ A2 ∪ · · · ∪ An.

If A is an algebra and ρ : A → End(V ) is a representation then we use several notations
for the action of A on the elements of V . For a ∈ A and v ∈ V we set

ρ(a)(v) = a · v = av = a(v).
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Similarly, for a ∈ A and W ⊆ V we set

ρ(a)(W ) = a ·W = aW = a(W ).

3 Gelfand-Tsetlin subspaces, Gelfand-Tsetlin decomposition,

and Gelfand-Tsetlin algebras

The fundamental building blocks of the spectral approach to the representation theory of
Sn and Gn are the concepts of Gelfand-Tsetlin subspaces (GZ-subspaces), Gelfand-Tsetlin
decompositions (GZ-decompositions), and Gelfand-Tsetlin algebras (GZ-algebras), to-
gether with a convenient set of generators for the GZ algebras, for an inductive chain
of finite groups with simple branching. We discuss this in the present and next sections.

Let

F1 ⊆ F2 ⊆ · · · ⊆ Fn (5)

be an inductive chain of finite groups. Note that we have not assumed that F1 is the
trivial group with one element. We call F1 the base group. Define the following directed
graph, called the branching multigraph or Bratelli diagram of this chain: its vertices are
the elements of the set

n
∐

i=1

F∧
i (disjoint union)

and two vertices µ, λ are joined by k directed edges from µ to λ whenever µ ∈ F∧
i−1 and

λ ∈ F∧
i for some i, and the multiplicity of µ in the restriction of λ to Fi−1 is k. We say

that F∧
i is level i of the branching multigraph. We write µ ր λ if there is an edge from

µ to λ.

For the rest of this section assume that the branching multigraph defined above is
actually a graph, i.e., the multiplicities of all restrictions are 0 or 1. We say that the
branching or multiplicities are simple.

Consider the Fn-module V λ, where λ ∈ F∧
n . Since the branching is simple, the decom-

position

V λ =
⊕

µ

V µ,

where the sum is over all µ ∈ F∧
n−1 with µ ր λ, is canonical. Iterating this decomposition

we obtain a canonical decomposition of V λ into irreducible F1-modules, i.e.,

V λ =
⊕

T VT , (6)

where the sum is over all possible chains

T = λ1 ր λ2 ր · · · ր λn, (7)
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with λi ∈ F∧
i and λn = λ.

We call (6) the Gelfand-Tsetlin decomposition (GZ-decomposition) of V λ and we call
each VT in (6) a Gelfand-Tsetlin subspace (GZ-subspace) of V λ. By the definition of VT ,
we have, for vT ∈ VT ,

C[Fi] · vT = V λi , i = 1, 2, . . . , n.

Also note that chains in (7) are in bijection with directed paths in the branching graph
from an element λ1 of F∧

1 to λ.

Fix a distinguished basis Bµ for each V µ, λ ∈ F∧
1 . Considering the algebra isomorphism

C[Fn] ∼=
⊕

λ∈F∧
n

End(V λ), (8)

given by
g 7→ (V λ g→ V λ : λ ∈ F∧

n ), g ∈ Fn,

we can define three natural subalgebras of C[Fn] based on the GZ-decomposition (6).

A0(n) = {a ∈ C[Fn] : a acts by a scalar on each GZ-subspace of V λ, for all λ ∈ F∧
n },

A1(n) = {a ∈ C[Fn] : a acts diagonally in the distinguished basis Bλ of each

GZ-subspace of V λ, for all λ ∈ F∧
n },

A2(n) = {a ∈ C[Fn] : each GZ-subspace of V λ is a invariant, for all λ ∈ F∧
n }.

Clearly, A0(n) ⊆ A1(n) ⊆ A2(n), A0(1) = Z[C[F1]] and A2(1) = C[F1].

For each λ ∈ F∧
n and µ ∈ F∧

1 , letmλµ be the number of GZ-subspaces of V λ isomorphic
to V µ, i.e., mλµ is the number of directed paths from µ to λ in the branching graph. It is
easily seen that A1(n) is a maximal commutative subalgebra of C[Fn] and that

dim A0(n) =
∑

λ∈F∧
n

∑

µ∈F∧

1

mλµ, (9)

dim A1(n) =
∑

λ∈F∧
n

∑

µ∈F∧

1

mλµ dim V µ, (10)

dim A2(n) =
∑

λ∈F∧
n

∑

µ∈F∧

1

mλµ (dim V µ)2. (11)

We denote Z[C[Fi]] by Zi.

Theorem 3.1 We have

(i) A0(n) = 〈Z1, Z2, . . . , Zn〉.
(ii) A1(n) = 〈A1(1), Z1, Z2, . . . , Zn〉.
(iii) A2(n) = 〈C[F1], Z1, Z2, . . . , Zn〉.

9



Proof (i) Consider the chain T from (7) above. For i = 1, 2, . . . , n, let pλi
∈ Zi denote

the primitive central idempotent corresponding to the representation λi ∈ F∧
i . Define

pT ∈ 〈Z1, Z2, . . . , Zn〉 by
pT = pλ1pλ2 · · · pλn

.

A little reflection shows that the image of pT under the isomorphism (8) is (fµ : µ ∈ F∧
n ),

where fµ = 0, if µ 6= λ and fλ is the projection on VT (with respect to the decomposition
(6) of V λ). The result follows since the primitive central idempotents corresponding to
the irreducible representations of a finite group form a basis of the center of the group
algebra of the group.

(ii) Note that C[F1] commutes with Z1, . . . , Zn. The result now follows from part (i) and
the isomorphism (8) with n = 1.

(iii) Similar to part (ii). ✷

We call A0(n) the Gelfand-Tsetlin algebra (GZ-algebra) of the multiplicity free chain
of groups (5) and denote it by GZn. Following [9] we call A2(n) the generalized Gelfand-
Tsetlin algebra. By a GZ-subspace of Fn we mean a GZ-subspace of some irreducible
representation V λ of Fn, λ ∈ F∧

n . By a GZ-vector of Fn we mean a vector in some
GZ-subspace of some irreducible representation V λ of Fn, λ ∈ F∧

n . As an immediate
consequence of the theorem above we get the following result.

Lemma 3.2 (i) Let v ∈ V λ, λ ∈ F∧
n . If v is an eigenvector (for the action) of every

element of GZn, then v belongs to some GZ-subspace of V λ.

(ii) Let v, u be two GZ-vectors of Fn. If v and u have the same eigenvalues for every
element of GZn, then v and u belong to the same GZ-subspace of V λ, for some λ ∈ F∧

n .

In Section 4 we define a multiplicity free chain of subgroups of Gn and consider the
corresponding GZ-algebras.

4 Simplicity of branching and Young-Jucys-Murphy elements

Let M be a complex finite dimensional semisimple algebra and let N be a semisimple
subalgebra. Define the relative commutant of this pair to be the subalgebra

Z(M,N) = {m ∈ M | mn = nm for all n ∈ N},

consisting of all elements of M that commute with N .

The following result is well known. We include a proof for completeness.

Theorem 4.1 Let M be a complex finite dimensional semisimple algebra and let N be
a semisimple subalgebra. Then Z(M,N) is semisimple and the following conditions are
equivalent:

10



1. The restriction of any finite dimensional complex irreducible representation of M to
N is multiplicity free.

2. The relative commutant Z(M,N) is commutative.

Proof By Wedderburn’s theorem we may assume, without loss of generality, that M =
M1⊕· · ·⊕Mk, where eachMi is a matrix algebra. We write elements ofM as (m1, . . . , mk),
where mi ∈ Mi. For i = 1, . . . , k, let Ni denote the image of N under the natural
projection of M onto Mi. Being the homomorphic image of a semisimple algebra, Ni

itself is semisimple.

We have Z(M,N) = Z(M1, N1)⊕· · ·⊕Z(Mk, Nk). By the double centralizer theorem
each Z(Mi, Ni), and thus Z(M,N), is semisimple.

For i = 1, . . . , k, let Vi denote the M-submodule consisting of all (m1, . . . , mk) ∈ M
with mj = 0 for j 6= i and with all entries of mi not in the first column equal to zero.
Note that V1, . . . , Vk are all the distinct inequivalent irreducible M-modules and that the
decomposition of Vi into irreducible N -modules is identical to the decomposition of Vi

into irreducible Ni-modules.

It now follows from the double centralizer theorem that Vi is multiplicity free as a
Ni-module, for all i if and only if all irreducible modules of Z(Mi, Ni) have dimension 1,
for all i if and only if Z(Mi, Ni) is abelian, for all i if and only if Z(M,N) is abelian. ✷

Define the following subalgebras of C[Hn,n]:

(i) For 2 ≤ m ≤ n, set Zm,m−1,n = Z[C[Hm,n],C[Hm−1,n]].

(ii) For 1 ≤ m ≤ n, set Zm,n = Z[C[Hm,n]].

In this section we show that the branching from Hm,n to Hm−1,n, 2 ≤ m ≤ n is mul-
tiplicity free and find a convenient set of generators, the Young-Jucys-Murphy elements,
of the Gelfand-Tsetlin algebra of the chain of groups,

H1,n ⊆ H2,n ⊆ · · · ⊆ Hn,n, (12)

over the center Z1,n of the group algebra of the base group H1,n = Gn.

For i = 1, . . . , n− 1 and j = 1, . . . , t define the following elements of C[Hn,n]:

Yi,j =
∑

τ

τ,

where the sum is over all elements τ ∈ Hn,n satisfying the following properties: τ is a
nontrivial i-cycle of type j and n does not belong to the nontrivial cycle. Note that
Y1,1 = 0 and that all other Yi,j are nonzero. We also set Yn,j = 0 for all 1 ≤ j ≤ t.

For i = 1, . . . , n and j = 1, . . . , t define the following elements of C[Hn,n]:

Y ′
i,j =

∑

τ

τ,

11



where the sum is over all elements τ ∈ Hn,n satisfying the following properties: τ is a
nontrivial i-cycle of type j and n belongs to the nontrivial cycle. Note that Y ′

1,1 = 0 and
that all other Y ′

i,j are nonzero.

Define

P ′
n(G∗) = {(ρ, λ, j)| ρ ∈ Pn(G∗), λ ∈ P, j ∈ {1, . . . , t} with λ ∈ ρ(Cj)}.

For (ρ, λ, j) ∈ P ′
n(G∗) define c(ρ,λ,j) ∈ C[Hn,n] to be the sum of all elements τ ∈ Hn,n

satisfying

(i) type(τ) = ρ.

(ii) size of the cycle of τ containing n is λ and the corresponding cycle product is of type
j.

Note that, for 1 ≤ i ≤ n, 1 ≤ j ≤ t, Yi,j and Y ′
i,j are equal to c(ρ,λ,j), for suitable

choice of ρ, λ, and j.

Lemma 4.2 (i) {c(ρ,λ,j) | (ρ, λ, j) ∈ P ′
n(G∗)} is a basis of Zn,n−1,n. It follows that

〈Yi,j, Y
′
i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ t〉 ⊆ Zn,n−1,n.

(ii) For (ρ, λ, j) ∈ P ′
n(G∗) we have

c(ρ,λ,j) ∈ 〈Yi,p, Y
′
i,p | 1 ≤ p ≤ t, 1 ≤ i ≤ k〉,

where k = #ρ.

(iii) Zn,n−1,n = 〈Yi,j, Y
′
i,j | 1 ≤ j ≤ t, 1 ≤ i ≤ n〉.

(iv) Zn−1,n = 〈Yi,j, Y
′
1,j | 1 ≤ j ≤ t, 1 ≤ i ≤ n− 1〉.

Proof (i) Let τ, τ ′ ∈ Hn,n. Then, using the same argument that characterized conjugacy in
Gn in Section 2, we can show that τ = στ ′σ−1 for some σ ∈ Hn−1,n iff type(τ) = type(τ ′),
the length of the cycle containing n is same in both τ and τ ′, and the cycle products of
the cycles containing n are of the same type in both τ and τ ′. The result follows.

(ii) By induction on #ρ. If #ρ = 0, then c(ρ,λ,j) is the identity element of C[Hn,n] and the
result is clearly true. Assume the result whenever #ρ ≤ l. Consider (ρ, λ, j) ∈ P ′

n(G∗)
with #ρ = l + 1.

Denote the multiset of nontrivial parts of ρ by {(λ1, j1), (λ2, j2), . . . , (λm, jm)}. Con-
sider the following two subcases:

(a) λ = 1 and j = 1: Consider the product Yλ1,j1Yλ2,j2 · · ·Yλm,jm. Using part (i) we see
that this product is in Zn,n−1,n and thus can be expanded in the basis given in part (i).
A little reflection shows that

Yλ1,j1Yλ2,j2 · · ·Yλm,jm = α(ρ,λ,j)c(ρ,λ,j) +
∑

(ρ′,λ′,j′)

α(ρ′,λ′,j′)c(ρ′,λ′,j′),

12



where α(ρ,λ,j) ∈ P, α(ρ′,λ′,j′) ∈ N and the sum is over all (ρ′, λ′, j′) with #ρ′ < #ρ. The
result follows by induction.

(b) λ 6= 1 or j 6= 1: Without loss of generality we may assume (λ, j) = (λ1, j1). Now
consider the product

Y ′
λ1,j1

Yλ2,j2 · · ·Yλm,jm = α(ρ,λ,j)c(ρ,λ,j) +
∑

(ρ′,λ′,j′)

α(ρ′,λ′,j′)c(ρ′,λ′,j′),

where α(ρ,λ,j) ∈ P, α(ρ′,λ′,j′) ∈ N and the sum is over all (ρ′, λ′, j′) with #ρ′ < #ρ. The
result follows by induction.

(iii) Follows from parts (i) and (ii).

(iv) Embed Hn−1,n−1 into Hn−1,n in the obvious way giving rise to an embedding φ :
Zn−1,n−1 → Zn−1,n. Note that Zn−1,n is isomorphic to the tensor product of φ(Zn−1,n−1)
and Z[C[G(n)]]. Now Z[C[G(n)]] is generated by Y ′

1,j, 1 ≤ j ≤ t and a proof similar to the
proof of part (iii) shows that φ(Zn−1,n−1) is generated by Yi,j, 1 ≤ j ≤ t, 1 ≤ i ≤ n − 1.
The result follows. ✷

For i = 1, . . . , n define the following elements of C[Hn,n]:

Xi =

i−1
∑

k=1

∑

g∈G

(g−1)(k)g(i)(k, i).

Note that X1 = 0. It is easy to see that Xi is the difference of an element in Zi,n and an
element in Zi−1,n. These elements are called the Young-Jucys-Murphy (YJM) elements.

Theorem 4.3 (i) Zm,m−1,n = 〈Zm−1,n, Xm〉, 2 ≤ m ≤ n.

(ii) Zm,m−1,n, 2 ≤ m ≤ n is commutative.

Proof (i) We first consider m = n. Clearly Zn,n−1,n ⊇ 〈Zn−1,n, Xn〉 (note that Xn =
Y ′
2,1). To show the converse we need to show (by Lemma 4.2 (iii) and (iv)) that Y ′

i,j ∈
〈Zn−1,n, Xn〉, for i = 2, . . . , n and j = 1, . . . , t.

Observe that, for 2 ≤ i ≤ n and 2 ≤ j ≤ t, we have

Y ′
i,j = Y ′

1,jY
′
i,1. (13)

Since Y ′
1,j ∈ Zn−1,n, for 1 ≤ j ≤ t it is enough to show that Y ′

i,1 ∈ 〈Zn−1,n, Xn〉, for
i = 2, . . . , n. We show this by induction on i.

Since Y ′
2,1 = Xn we have Y ′

2,1 ∈ 〈Zn−1,n, Xn〉. Suppose Y ′
2,1, . . . , Y

′
k+1,1 ∈ 〈Zn−1,n, Xn〉.

We shall now show that Y ′
k+2,1 ∈ 〈Zn−1,n, Xn〉.

We write Y ′
k+1,1 as

∑

i1,...,ik,g1,...,gk+1

g
(i1)
1 g

(i2)
2 · · · g(ik)k g

(n)
k+1(i1, . . . , ik, n),

13



where the sum is over all (i1, . . . , ik) ∈ {1, . . . , n − 1}k with distinct components and all
(g1, . . . , gk+1) ∈ Gk+1 with gk+1gk · · · g2g1 = e. In the following we use this summation
convention implicitly.

Now consider the product Y ′
k+1,1Xn ∈ 〈Zn−1,n, Xn〉:







∑

i1,...,ik,g1,...,gk+1

g
(i1)
1 g

(i2)
2 · · · g(ik)k g

(n)
k+1(i1, . . . , ik, n)







{

n−1
∑

i=1

∑

g

(g−1)(i)g(n)(i, n)

}

. (14)

Take a typical element

g
(i1)
1 g

(i2)
2 · · · g(ik)k g

(n)
k+1(i1, . . . , ik, n)(g

−1)(i)g(n)(i, n)

of this product. If i 6= il, for l = 1, . . . , k, this product is

(g−1)(i)(g1g)
(i1)g

(i2)
2 · · · g(ik)k g

(n)
k+1(i, i1, . . . , ik, n).

Note that gk+1 · · · g2(g1g)(g−1) = e.

On the other hand if i = il, for some 1 ≤ l ≤ k, this product becomes

(g1g)
(i1)g

(i2)
2 · · · g(il)l (gl+1g

−1)(il+1)g
(il+2)
l+2 · · · g(n)k+1(i1, . . . , il)(il+1, . . . , n).

Note that, since gk+1gk · · · g1 = e, we have

gk+1 · · · gl+2(gl+1g
−1) = g(gl · · · g2(g1g))−1g−1.

It follows that the element (14) above is equal to

∑

i,i1,...,ik,g,g1,...,gk+1

g(i)g
(i1)
1 · · · g(ik)k g

(n)
k+1(i, i1, . . . , ik, n) (15)

+
∑

i1,...,ik

k
∑

l=1

t
∑

j=1

∑

g1,...,gk+1

|G|
|Cj|

g
(i1)
1 · · · g(ik)k g

(n)
k+1(i1, . . . , il)(il+1, . . . , ik, n),

where the first sum is over all (i, i1, . . . , ik) ∈ {1, 2, . . . , n−1}k+1 with distinct components
and all (g, g1, . . . , gk+1) ∈ Gk+2 with gk+1 · · · g1g = e and the second sum is over all
(i1, . . . , ik) ∈ {1, 2, . . . , n − 1}k with distinct components and all (g1, . . . , gk+1) ∈ Gk+1

with type of gk+1 · · · gl+1 equal to j and the type of gl · · · g1 equal to I(j).
We can rewrite (15) as

Y ′
k+2,1 +

∑

(ρ,λ,j)

α(ρ,λ,j)c(ρ,λ,j),

where α(ρ,λ,j) ∈ N and the sum is over all (ρ, λ, j) with #ρ ≤ k + 1. By induction
hypothesis, (13), and part (ii) of Lemma 4.2 it follows that Y ′

k+2,1 ∈ 〈Zn−1,n, Xn〉.
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We have now shown Zn,n−1,n = 〈Zn−1,n, Xn〉. The case of general Zm,m−1,n can be
shown by embedding Zm,m−1,m in Zm,m−1,n (as in part (iv) of Lemma 4.2).

(ii) This follows from part (i) since Xm ∈ Zm,n − Zm−1,n. ✷

It follows from Theorem 4.1 and part (ii) of Theorem 4.3 that the chain (12) is mul-
tiplicity free. Set, for 1 ≤ m ≤ n,

GZm,n = 〈Z1,n, Z2,n, . . . , Zm,n〉,

so that GZn,n is the Gelfand-Tsetlin algebra of the chain (12). Note that Xi ∈ GZi,n ⊆
GZn,n.

Theorem 4.4 We have

GZm,n = 〈Z[C[Gn]], X1, X2, . . . , Xm〉, 1 ≤ m ≤ n.

Proof The proof is by induction on n and, for each n, by induction on m. The cases
n = 1, 2 are clear. Now consider general n. The case m = 1 is obvious. Assume
we have proved that GZm−1,n = 〈Z[C[Gn]], X1, X2, . . . , Xm−1〉. It remains to show that
GZm,n = 〈GZm−1,n, Xm〉. The left hand side clearly contains the right hand side so it
suffices to check that the left hand side is contained in the right hand side. For this it
suffices to check that Zm,n ⊆ 〈GZm−1,n, Xm〉. This follows from part (i) of Theorem 4.3
since Zm,n ⊆ Zm,m−1,n. ✷

Let V be a GZ-subspace of Gn. Then V is an irreducible Gn-module and is thus
isomorphic to ρ1 ⊗ · · · ⊗ ρn, ρi ∈ G∧ for all i. We call ρ = (ρ1, . . . , ρn) the label of V .

Define

α(V ) = (ρ, α1, . . . , αn) ∈ C
n,

where αi = eigenvalue of Xi on V . We call α(v) the weight of V (note that α1 = 0 since
X1 = 0). Define the spectrum of Gn by

specG(n) = {α(V ) : V is a GZ-subspace of Gn} .

Let V be a GZ-subspace of Gn with label ρ. Then the primitive central idempotent in
Z[C[Gn]] corresponding to ρ will have eigenvalue 1 on V and eigenvalue 0 on GZ-subspaces
with different labels. It now follows from Lemma 3.2 and Theorem 4.4 that a GZ-subspace
is uniquely determined by its weight.

By definition of GZ-subspaces and Lemma 3.2, the set specG(n) is in natural bijection
with chains

T = λ1 ր λ2 ր · · · ր λn, (16)

where λi ∈ H∧
i,n, 1 ≤ i ≤ n, in the Bratelli diagram of (12).
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Given α ∈ specG(n) we denote by Vα the GZ-subspace with weight α and by Tα the
corresponding chain in the branching graph. Similarly, given a chain T as in (16) we
denote the correponding GZ-subspace by VT and the weight vector α(VT ) by α(T ). Thus
we have 1-1 correspondences

T 7→ α(VT ), α 7→ Tα

between chains (16) and specG(n). For λ ∈ H∧
n,n define

specG(n, λ) = {α ∈ specG(n)|Tα ends at λ}.

We have, from (9),

dim GZn,n = |specG(n)|,
dim V λ =

∑

α∈spec
G
(n,λ)

dim Vα, λ ∈ H∧
n,n.

There is a natural equivalence relation ∼ on specG(n): for α, β ∈ specG(n),

α ∼ β ⇔ α, β ∈ specG(n, λ) for some λ ∈ H∧
n,n.

Clearly we have |specG(n)/ ∼ | = |H∧
n,n|.

5 Action of Coxeter generators on GZ-subspaces

In this section we describe the action of the Coxeter generators on GZ-subspaces in terms
of transformations of weights.

Let λ ∈ H∧
n,n. We have the GZ-decomposition

V λ = ⊕α∈spec
G
(n,λ)Vα, (17)

of V λ into irreducible Gn-modules.

We now consider the action of the Coxeter generators si = (i, i+1) of Sn on V λ. Since
the Vα consist of common eigenvectors of X1, . . . , Xn and are Gn-invariant, it is useful to
know the commutation relations satisfied by the si, the Xj, and the g(l).

Lemma 5.1 The following relations hold in Gn:

(i) X1, . . . , Xn commute.

(ii) Xig
(l) = g(l)Xi, g ∈ G, 1 ≤ i, l ≤ n.

(iii) sig
(i)si = g(i+1), g ∈ G, 1 ≤ i ≤ n− 1. In particular, s2i = 1, 1 ≤ i ≤ n− 1.

(iv) sig
(l) = g(l)si, 1 ≤ i ≤ n− 1, 1 ≤ l ≤ n, l 6= i, i+ 1.

(v) siXisi +
∑

g∈G g(i+1)si(g
−1)(i+1) = Xi+1, 1 ≤ i ≤ n− 1.

(vi) siXl = Xlsi, 1 ≤ i ≤ n− 1, 1 ≤ l ≤ n, l 6= i, i+ 1.
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Proof (i) We have already seen this.

(ii) This can be checked directly. An alternative proof is as follows. On every GZ-subspace
of Gn, the actions of Xi and g(l) clearly commute. By considering the isomorphism

C[Gn] ∼=
⊕

λ∈G∧
n

End(V λ),

given by
g 7→ (V λ g→ V λ : λ ∈ G∧

n), g ∈ Gn,

we see that Xi and g(l) commute in Gn.

(iii) and (iv) This is clear.

(v) We have

siXisi = (i, i+ 1)

(

i−1
∑

k=1

∑

g∈G

(g−1)(k)g(i)(k, i)

)

(i, i+ 1)

=
i−1
∑

k=1

∑

g∈G

(g−1)(k)g(i+1)(k, i+ 1)

= Xi+1 −
∑

g∈G

(g−1)(i)g(i+1)(i, i+ 1).

(vi) First assume l ≤ i− 1. Then

siXl = (i, i+ 1)

(

l−1
∑

k=1

∑

g∈G

(g−1)(k)g(l)(k, l)

)

=

(

l−1
∑

k=1

∑

g∈G

(g−1)(k)g(l)(k, l)

)

(i, i+ 1)

= Xlsi.

Now assume l ≥ i+ 2. Then

siXl = (i, i+ 1)

(

i−1
∑

k=1

∑

g∈G

(g−1)(k)(g)(l)(k, l) +
l−1
∑

k=i+2

∑

g∈G

(g−1)(k)(g)(l)(k, l)

+
∑

g∈G

(g−1)(i)(g)(l)(i, l) +
∑

g∈G

(g−1)(i+1)(g)(l)(i+ 1, l)

)

=

(

i−1
∑

k=1

∑

g∈G

(g−1)(k)(g)(l)(k, l) +

l−1
∑

k=i+2

∑

g∈G

(g−1)(k)(g)(l)(k, l)

+
∑

g∈G

(g−1)(i+1)(g)(l)(i+ 1, l) +
∑

g∈G

(g−1)(i)(g)(l)(i, l)

)

(i, i+ 1)

= Xlsi. ✷
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Using part (iii) of Lemma 5.1 we can rewrite part (v) of Lemma 5.1 as

Xisi +
∑

g∈G

g(i)(g−1)(i+1) = siXi+1, 1 ≤ i ≤ n− 1. (18)

Consider the irreducible Gn-module Vα in the decomposition (17) above. Let V be the
subspace of V λ spanned by Vα and si · Vα. Lemma 5.1 shows that V is invariant under
the actions of si, Xi, Xi+1, and Gn. A study of this action will enable us to write down
matrices for the action of si on Vα.

Lemma 5.2 For i = 1, 2, . . . , n − 1, let Ai be the subalgebra of C[Gn] generated by
Gn, si, Xi, and Xi+1. Then Ai is semisimple and the actions of Xi and Xi+1 on any
Ai-module are simultaneously diagonalizable.

Proof Let Mat(n) denote the algebra of complex (|G|nn!) × (|G|nn!) matrices, with
rows and columns indexed by elements of Gn. Consider the left regular representation of
Gn. Writing this in matrix terms gives an embedding of C[Gn] into Mat(n). We write
γ : C[Gn] →֒ Mat(n).

Note that

(a) The left action of (i, i+ 1) on Gn is inverse to itself.

(b) For k < i, the left action of (g−1)(k)g(i)(k, i) on Gn is inverse to itself.

(c) For g ∈ G and 1 ≤ l ≤ n, the left action of g(l) on Gn is inverse to the action of
(g−1)(l).

It follows that the matrices γ(si), γ(Xi), γ(Xi+1) are real and symmetric and that the
generating set

{γ(si), γ(Xi), γ(Xi+1)} ∪ {γ(g(l)) : 1 ≤ l ≤ n, g ∈ G}

of γ(Ai) is closed under the matrix ∗ operation M 7→ (M̄)t. So γ(Ai) itself is closed under
the ∗ operation and a standard result on finite dimensional C∗-algebras now shows that
γ(Ai) (and hence Ai) is semisimple.

Part (ii) follows since γ(Xi) and γ(Xi+1) are commuting real, symmetric matrices and
thus the ∗-subalgebra of γ(Ai) generated by them is commutative. ✷

Before proceeding further we introduce some useful notation. For 1 ≤ i ≤ n − 1, let
ωi be the involution on {1, 2, . . . , n} defined by ωi(l) = l, if l 6= i, i + 1, ωi(i) = i + 1,
and ωi(i + 1) = i. Parts (iii) and (iv) of Lemma 5.1 may be written as follows. For
1 ≤ i ≤ n− 1 and 1 ≤ l ≤ n we have

g(l)si = sig
ωi(l). (19)

Let W1 and W2 be vector spaces and set W = W1 ⊗ W2. We can define a switch
operator on W that sends w1 ⊗ w2 to w2 ⊗ w1. Now let U be a vector space having
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the same dimension as W . We can fix an isomorphism between U and W and transfer
the switch operator on W to U via this isomorphism. However, since the isomorphism
between U and W is not canonical, there is no canonically defined switch operator on U .
This situation does not arise when we consider irreducible Gn-modules.

Let ρ = (ρ1, . . . , ρn), where ρi ∈ G∧ for all i and consider the irreducible Gn-module
V ρ1 ⊗ · · · ⊗ V ρn . Let 1 ≤ i ≤ n− 1. Define the involution, called the switch operator,

τi,ρ : V
ρ1 ⊗ · · · ⊗ V ρn → V ρ1 ⊗ · · · ⊗ V ρi−1 ⊗ V ρi+1 ⊗ V ρi ⊗ V ρi+2 ⊗ · · · ⊗ V ρn

by switching the i and i+ 1 factors:

τi,ρ(v1 ⊗ · · · ⊗ vn) = v1 ⊗ · · · ⊗ vi−1 ⊗ vi+1 ⊗ vi ⊗ vi+2 ⊗ · · · ⊗ vn.

We have, for g ∈ G, v ∈ V ρ1 ⊗ · · · ⊗ V ρn, 1 ≤ l ≤ n,

τi,ρ(g
(l)v) = g(ωi(l))τi,ρ(v). (20)

Now let V be an irreducible Gn-module isomorphic to V ρ1 ⊗ · · · ⊗ V ρn . Fix a Gn-linear
isomorphism f : V → V ρ1 ⊗ · · · ⊗ V ρn. Define an involution

τi,V : V → V

by τi,V = f−1τi,ρf . It is easily seen by Schur’s lemma that τi,V is independent of the
chosen f and therefore τi,V is canonically defined. We have, for g ∈ G, v ∈ V, 1 ≤ l ≤ n,

τi,V (g
(l)v) = g(ωi(l))τi,V (v). (21)

In what follows we shall use (19), (20), (21) (and (23), (24), (25), (26), (27) below) without
explicit mention.

Let Vα be a GZ-subspace of V λ, λ ∈ H∧
n,n with weight α = (ρ, α1, . . . , αn), where

ρ = (ρ1, . . . , ρn). Fix a Gn-linear isomorphism

f : Vα → V ρ1 ⊗ · · · ⊗ V ρn .

Let 1 ≤ i ≤ n − 1. Since s2i = 1 the map v 7→ si · v on V λ is an involution. Consider
the subspace siVα of V λ. Then, by Lemma 5.1 (iii) and (iv), siVα is also closed under the
Gn-action. The map

f τi : siVα → V ρ1 ⊗ · · · ⊗ V ρi−1 ⊗ V ρi+1 ⊗ V ρi ⊗ V ρi+2 ⊗ · · · ⊗ V ρn , (22)

given by f τi(siv) = τi,ρ(f(v)) is a Gn-linear isomorphism. To see this, let v ∈ Vα. Then,
for 1 ≤ l ≤ n, we have

g(l)f τi(siv) = g(l)(τi,ρ(f(v))),

f τi(g(l)siv) = f τi(sig
(ωi(l))v))

= τi,ρ(f(g
(ωi(l))v))

= τi,ρ(g
(ωi(l))(f(v)))

= g(l)(τi,ρ(f(v))).
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For 1 ≤ i ≤ n− 1, define an element bi =
∑

g∈G g(i)(g−1)(i+1) ∈ C[Gn]. For h ∈ G we

have h(l)bi = bih
(l), l 6= i, i+ 1 and

h(i)bi =
∑

g∈G(hg)
(i)(g−1)(i+1) =

∑

g∈G(hg)
(i)((hg)−1)(i+1)h(i+1) = bih

(i+1).

Similarly, we can show h(i+1)bi = bih
(i). We have, for 1 ≤ l ≤ n and h ∈ G,

h(l)bi = bih
(ωi(l)). (23)

Also note that we can rewrite (18) as follows

Xisi = siXi+1 − bi, Xi+1si = siXi + bi. (24)

The map Vα → siVα given by v 7→ sibiv is a Gn-linear map. This follows from, for
1 ≤ l ≤ n,

sibi(g
(l)v) = si(g

(ωi(l))biv) = g(l)sibiv. (25)

It follows that

ρi 6= ρi+1 implies biv = 0, v ∈ Vα. (26)

Now assume ρi = ρi+1. The map Vα → siVα given by v 7→ siτi,Vα
(v) is a Gn-linear

isomorphism. This follows from, for 1 ≤ l ≤ n,

siτi,Vα
(g(l)v) = si(g

(ωi(l))τi,Vα
(v)) = g(l)siτi,Vα

(v).

It follows that biv = βτi,Vα
(v), v ∈ Vα, for some scalar β. Now the trace of the action of

bi on V ρ1 ⊗ · · · ⊗ V ρn is

dim(V ρ1) · · ·dim(V ρn)

dim(V ρi) dim(V ρi+1)

∑

g∈G

χ(g)χ(g−1) =
dim(V ρ1) · · ·dim(V ρn)

dim(V ρi) dim(V ρi+1)
|G|,

by the first orthogonality relation for characters (χ = character of V ρi). Since the trace
of τi,Vα

is
dim(V ρ1) · · ·dim(V ρn)

dim(V ρi)
,

it follows that β = |G|

dim(V ρi)
. We have

ρi = ρi+1 implies biv =
|G|

dim(V ρi)
τi,Vα

(v), v ∈ Vα. (27)

The following result relates the action of si on GZ-subspaces to transformations on
the corresponding weights.
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Theorem 5.3 Let α = ((ρ1, . . . , ρn), α1, . . . , αn) ∈ specG(n, λ) and consider the GZ-
subspace Vα of V λ. Then

(i) For 1 ≤ i ≤ n− 1, si · Vα = Vα iff ρi = ρi+1 and αi+1 = αi ± |G|

dim(V ρi)
.

(ii) For 1 ≤ i ≤ n− 1 we have

(a) ρi = ρi+1 and αi+1 = αi +
|G|

dim(V ρi)
implies siv = τi,Vα

(v), v ∈ Vα.

(b) ρi = ρi+1 and αi+1 = αi − |G|

dim(V ρi )
implies siv = −τi,Vα

(v), v ∈ Vα.

(iii) If ρi = ρi+1 then αi 6= αi+1, 1 ≤ i ≤ n− 1.

(iv) For i = 1, . . . , n− 2 the following statements are not true.

(a) ρi = ρi+1 = ρi+2 and αi = αi+1 +
|G|

dim(V ρi)
= αi+2.

(b) ρi = ρi+1 = ρi+2 and αi = αi+1 − |G|

dim(V ρi )
= αi+2.

(v) For 1 ≤ i ≤ n− 1, if ρi 6= ρi+1 then U = si · Vα is a GZ-subspace of V λ with weight

si · α = ((ρ1, . . . , ρi−1, ρi+1, ρi, ρi+2, . . . , ρn), α1, . . . , αi−1, αi+1, αi, αi+2, . . . , αn).

(vi) For 1 ≤ i ≤ n− 1, if ρi = ρi+1 and αi+1 6= αi ± |G|

dim(V ρi)
then, setting

U =

(

si −
|G|

(αi+1 − αi)dim(V ρi)
τi,Vα

)

Vα,

we have that U is a GZ-subspace V λ with weight

si · α = ((ρ1, . . . , ρn), α1, . . . , αi−1, αi+1, αi, αi+2, . . . , αn).

Proof (i) (only if) That ρi = ρi+1 is clear from (22). The maps Vα → Vα given by v 7→ siv
and v 7→ τi,Vα

(v) are both involutions. Therefore the possible eigenvalues are 1 and -1.

Let u, v ∈ Vα, u, v 6= 0 with siv = v and siu = −u. Then

αiv = Xi(v) = Xi(siv) = (siXi+1 − bi)v = αi+1v − |G|

dim(V ρi)
τi,Vα

(v), (28)

αiu = Xi(u) = Xi(−siu) = −(siXi+1 − bi)u = αi+1u+ |G|

dim(V ρi)
τi,Vα

(u). (29)

It follows that τi,Vα
(v) is a multiple of v and is thus either v or −v. Similarly, τi,Vα

(u) is a
multiple of u and is thus either u or −u. Since there exists an eigenvector of si : Vα → Vα,
the result follows.

(if) Since siVα is also an irreducible Gn-module (by (22)) either Vα = siVα or siVα∩Vα =
{0}. Assume that siVα ∩ Vα = {0}. We shall derive a contradiction.

We assume that αi+1 = αi +
|G|

dim(V ρi )
. The case αi+1 = αi − |G|

dim(V ρi)
is similar.
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The subspace Vα ⊕ siVα of V λ is an Ai-module, by Lemma 5.1. Define a subspace

M = {v − si · τi,Vα
(v)|v ∈ Vα} ⊆ Vα ⊕ siVα.

We check that M is an Ai-submodule, i.e., is closed under the action of si, Xi, Xi+1, and
g(l), l = 1, . . . , n. We have, for v ∈ Vα,

si(v − siτi,Vα
(v)) = siv − τi,Vα

(v)

= −τi,Vα
(v)− si(τi,Vα

(−τi,Vα
(v))) ∈ M,

g(l)(v − siτi,Vα
(v)) = g(l)v − g(l)siτi,Vα

(v)

= g(l)v − sig
(ωi(l))τi,Vα

(v)

= g(l)v − siτi,Vα
(g(l)v) ∈ M,

Xi(v − siτi,Vα
(v)) = αiv − (siXi+1 − bi)(τi,Vα

(v))

= αiv − αi+1siτi,Vα
(v) +

|G|
dim(V ρi)

v

= αi+1(v − siτi,Vα
(v)) ∈ M,

Xi+1(v − siτi,Vα
(v)) = αi+1v − (siXi + bi)(τi,Vα

(v))

= αi+1v − αisiτi,Vα
(v)− |G|

dim(V ρi)
v

= αi(v − siτi,Vα
(v)) ∈ M.

We shall now show that M is the only nonempty, proper Ai-submodule of Vα ⊕ siVα.
Since dim(M) < dim(Vα ⊕ siVα), this contradicts the fact that Vα ⊕ siVα is a semisimple
Ai-module (since Ai is a semisimple algebra by Lemma 5.2).

Let M ′ be a nonempty, proper Ai-submodule of Vα⊕siVα. Since M
′ is closed under si

we have M ′ 6⊆ Vα and M ′ 6⊆ siVα. Also, M
′ is in particular a Gn-submodule of Vα ⊕ siVα.

Since Vα and siVα are isomorphic irreducible Gn-modules and v 7→ siτi,Vα
(v) is a Gn-linear

isomorphism between them, it follows by Schur’s lemma that

M ′ = {v + γsiτi,Vα
(v)|v ∈ Vα},

for some 0 6= γ ∈ C. We shall show that γ = −1.

Now

si(v + γsiτi,Vα
(v)) = siv + γτi,Vα

(v) = γτi,Vα
(v) +

γsiτi,Vα
(γτi,Vα

(v))

γ2
,

which yields γ2 = 1 and hence γ = ±1.
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We have

Xi(v + siτi,Vα
(v)) = αiv + αi+1siτi,Vα

(v)− biτi,Vα
(v)

=

(

αi −
|G|

dim(V ρi)

)

v + αi+1siτi,Vα
(v),

Xi(v − siτi,Vα
(v)) = αiv − αi+1siτi,Vα

(v) + biτi,Vα
(v)

=

(

αi +
|G|

dim(V ρi)

)

v − αi+1siτi,Vα
(v).

and thus γ = −1. Thus M ′ = M and the proof of the if part is complete.

(ii) This follows from (28) and (29).

(iii) Either siVα = Vα or siVα∩Vα = {0}. If siVα = Vα then by part (i) αi+1 = αi± |G|

dim(V ρi)
,

so αi 6= αi+1.

Now assume siVα ∩ Vα = {0}. Then, as checked before, Vα ⊕ siVα is Ai-invariant.
Choose a basis B of Vα and consider the basis B ∪ siB of Vα ⊕ siVα. Let N be the
matrix of τi,Vα

with respect to the basis B and set κ = |G|

dim(V ρi )
. Using the relation

Xisi = siXi+1 − bi we see that the matrices of Xi and Xi+1 (respectively) with respect to
B ∪ sB are given in block form as follows

[

αiI −κN
0 αi+1I

]

,

[

αi+1I κN
0 αiI

]

The actions of Xi and Xi+1 on Vα ⊕ siVα are diagonalizable by Lemma 5.2 and thus
αi 6= αi+1 (since N 6= 0).

(iv) Suppose statement (a) is true. Since, as a Gn-module, Vα is isomorphic to V ρ1 ⊗· · ·⊗
V ρn, we can choose a v ∈ Vα such that τi,Vα

(v) = τi+1,Vα
(v) = v. By part (ii) we have

siv = −v and si+1v = v. Now consider the Coxeter relation

sisi+1si = si+1sisi+1

and let both sides act on v. The left hand side yields v and the right hand side yields −v,
a contradiction. So, statement (a) must be false. The proof for the falsity of statement
(b) is similar.

(v) When ρi 6= ρi+1 then, by (26), biv = 0 for v ∈ Vα. The result now follows from (22)
and the relation Xisi = siXi+1 − bi.

(vi) By part (i) siVα ∩ Vα = {0} and by part (iii) αi 6= αi+1. Clearly, U is a subspace
of Vα ⊕ siVα and since v 7→ siτi,Vα

(v) (or, equivalently, τi,Vα
(v) 7→ siv) is a Gn-linear

isomorphism between Vα and siVα it follows that U is also an irreducible Gn-module with
label (ρ1, . . . , ρn). It remains to check that Xi, Xi+1 act on U by appropriate scalars.
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Setting κ = |G|

dim(V ρi)
, we have, using (27),

Xi

(

siv −
κ

αi+1 − αi
τi,Vα

(v)

)

= αi+1(siv)− biv −
αiκ

αi+1 − αi
τi,Vα

(v)

= αi+1

(

siv −
κ

αi+1 − αi

τi,Vα
(v)

)

,

Xi+1

(

siv −
κ

αi+1 − αi
τi,Vα

(v)

)

= αi(siv) + biv −
αi+1κ

αi+1 − αi
τi,Vα

(v)

= αi

(

siv −
κ

αi+1 − αi
τi,Vα

(v)

)

.

That completes the proof. ✷

Let α = ((ρ1, . . . , ρn), α1, . . . , αn) ∈ specG(n). We say that the transposition si is
admissible for α if one of the following conditions holds:

(i) ρi 6= ρi+1 or

(ii) ρi = ρi+1 and αi 6= αi+1 ± |G|
dim(V ρi)

.

The following two observations are easy to see:

(a) For α, β ∈ specG(n), we have α ∼ β if α is obtained from β by a sequence of admissible
transpositions.

(b) We have

((ρ1, . . . , ρn), α1, . . . , αn) ∈ specG(n) implies

((ρ1, . . . , ρn−1), α1, . . . , αn−1) ∈ specG(n− 1). (30)

6 Content vectors and Young G-tableaux

In the Vershik-Okounkov theory Young G-tableaux are related to irreducible representa-
tions of Gn via their content vectors. Let us define these first.

Let α = (a1, a2, . . . , an) ∈ Zn. We say that α is a content vector if

(i) a1 = 0.

(ii) {ai − 1, ai + 1} ∩ {a1, a2, . . . , ai−1} 6= ∅, for all i > 1.

(iii) if ai = aj = a for some i < j then {a− 1, a+1} ⊆ {ai+1, . . . , aj−1} (i.e., between two
occurrences of a there should also be occurrences of a− 1 and a+ 1).

Condition (ii) in the definition above can be replaced (in the presence of conditions
(i) and (iii)) by condition (ii’) below.

(ii’) For all i > 1, if ai > 0 then aj = ai − 1 for some j < i and if ai < 0 then aj = ai + 1
for some j < i.
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The set of all content vectors of length n is denoted cont(n) ⊆ Z
n. It is convenient to

assume that the empty sequence is a content vector of length 0 and is the unique element
of cont(0).

Let α = ((ρ1, . . . , ρn), a1, . . . , an), where ρi ∈ G∧ for all i, and (a1, . . . , an) ∈ Cn. For
σ ∈ G∧, let σ(J) = {j1 < j2 < · · · < jnσ,α

} ⊆ {1, 2, . . . , n} be the set of indices satisfying
ρji = σ, i = 1, . . . , nσ,α and ρl 6= σ for l ∈ {1, 2, . . . , n} − σ(J). Let σ(α) be the sequence

(

dim(V σ)

|G| aj1, . . . ,
dim(V σ)

|G| ajnσ,α

)

.

We say that α is a content vector with respect to G of length n if σ(α) ∈ cont(nσ,α)
for all σ ∈ G∧. Since dim(V σ) divides |G| it follows that ai ∈ Z for all i. Denote by
contG(n) ⊆ Zn the set of all content vectors with respect to G of length n.

Theorem 6.1 We have specG(n) ⊆ contG(n).

Proof Let α = (ρ, a1, . . . , an) ∈ specG(n), where ρ = (σ, . . . , σ), σ ∈ G∧. We will show
that

(

dim(V σ)

|G| a1, . . . ,
dim(V σ)

|G| an

)

∈ cont(n).

Using Theorem 5.3(v) and (30) we see that this proves the result.

Clearly a1 = 0 as X1 = 0. We verify conditions (ii) and (iii) in the definition of content

vectors by induction on n. Since X2 = b1 we have, from (27), that dim(V σ)
|G|

a2 = ±1 and

thus condition (ii) is verified (and condition (iii) does not apply). Now assume n ≥ 3.

We first verify condition (ii). If an−1 = an ± |G|
dim(V σ)

there is nothing to prove, so

assume this does not hold. Then the transposition (n− 1, n) is admissible for α and, by
Theorem 5.3(vi), (ρ, a1, . . . , an−2, an, an−1) ∈ specG(n). Now, by (30) and the induction

hypothesis, {an− |G|
dim(V σ)

, an+
|G|

dim(V σ)
}∩{a1, . . . , an−2} 6= ∅. Thus condition (ii) is verified.

We now verify condition (iii). Now assume that ai = an = a for some i < n. We may
assume that i is the largest possible index, i.e., a does not occur between ai and an, so
a 6∈ {ai+1, . . . , an−1}. Now assume that a− |G|

dim(V σ)
6∈ {ai+1, . . . , an−1}. We shall derive a

contradiction (the case where a+ |G|
dim(V σ)

6∈ {ai+1, . . . , an−1} is similar).

By induction hypothesis the number a+ |G|
dim(V σ)

occurs in {ai+1, . . . , an−1} at most once

(for, if it occured twice, then by the induction hypothesis a would also occur contradicting
our choice of i). Thus there are two possibilities:

(ai, . . . , an) = (a, ∗, . . . , ∗, a) or (ai, . . . , an) = (a, ∗, . . . , ∗, a+ |G|
dim(V σ)

, ∗, . . . , ∗, a),

where ∗ stands for a number different from a− |G|
dim(V σ)

, a, a+ |G|
dim(V σ)

.
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In the first case we can apply a sequence of admissible transpositions to infer that
(ρ, . . . , a, a, . . .) ∈ specG(n), contradicting Theorem 5.3(iii) and in the second case we can

apply a sequence of admissible transpositions to infer that (ρ, . . . , a, a + |G|
dim(V σ)

, a, . . .) ∈
specG(n), contradicting Theorem 5.3(iv)(b). ✷

Let α = ((ρ1, . . . , ρn), a1, . . . , an) ∈ contG(n) We say that the transposition si is ad-

missible for α if ρi 6= ρi+1, or ρi = ρi+1 and ai 6= ai+1 ± |G|
dim(V ρi)

. We define the following

equivalence relation on contG(n): α ≈ β if β can be obtained from α by a sequence of
(zero or more) admissible transpositions.

We now introduce Young G-tableaux into the picture.

Let T1 ∈ tabG(n) and assume that either i and i+1 do not appear in the same Young
diagram of T1 or that they are in the same Young diagram of T1 but do not appear in
the same row or same column of this Young diagram. Then exchanging i and i+ 1 in T1

produces another standard Young G-tableau T2 ∈ tabG(n). We say that T2 is obtained
from T1 by an admissible transposition. For T1, T2 ∈ tabG(n), define T1 ≈ T2 if T2 can be
obtained from T1 by a sequence of (zero or more) admissible transpositions (it is easily
seen that ≈ is an equivalence relation).

Lemma 6.2 Let T1, T2 ∈ tabG(n). Then T1 ≈ T2 if and only T1 and T2 have the same
shape.

Proof The only if part is obvious. To prove the if part we proceed as follows. Let
µ ∈ Yn(G

∧). Enumerate the elements of G∧ as σ1, . . . , σt. Let ni be the number of boxes
in the Young diagram µ(σi). Then n1 + · · ·+ nt = n.

Define the following element R of tabG(n, µ): fill the Young diagram of µ(σ1) with the
numbers 1, 2, . . . , n1 in row major order, i.e., the first row with the numbers 1, 2, . . . , l1
(in increasing order, here l1 = length of first row), the second row with l1 + 1, . . . , l1 + l2
(in increasing order, here l2 = length of second row) and so on till the last row of µ(σ1).
Now fill the Young diagram of µ(σ2) with the numbers n1 + 1, . . . , n1 + n2 in row major
order and so on till the last Young diagram µ(σt).

We show that any T ∈ tabG(n, µ) satisfies T ≈ R. This will prove the if part. Consider
the last box of the last row of the last Young diagram µ(σt). Let i be written in this box
of T . Exchange i and i+1 in T (which is clearly an admissible transposition). Now repeat
this procedure with i+ 1 and i+ 2, then i+ 2 and i+ 3, and finally n− 1 and n. At the
end of this sequence of admissible transpositions we have the number n written in the last
box of the last row of µ(σt). Now repeat the same procedure for n− 1, n− 2, . . . , 2. ✷

Let us make a remark about the proof of Lemma 6.2. Let s denote the permutation
that maps R to T . Then the proof shows that R can be obtained from T by a sequence
of ℓ(s) admissible transpositions. Thus T can be obtained from R by a sequence of ℓ(s)
admissible transpositions.

The content c(b) of a box b of a Young diagram is its y-coordinate − its x-coordinate
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(our convention for drawing Young diagrams is akin to writing down matrices with x-axis
running downwards and y axis running to the right).

Lemma 6.3 Let Φ : tabG(n) → contG(n) be defined as follows. Given T ∈ tabG(n) and
1 ≤ i ≤ n, let bT (i) be the box (in one of the Young diagrams of T ) where the number i
resides. Define

Φ(T ) = ((rT (1), . . . , rT (n)),
|G|

dim(V rT (1))
c(bT (1)), . . . ,

|G|
dim(V rT (n))

c(bT (n))).

Then Φ is a bijection which takes ≈-equivalent standard Young G-tableaux to ≈-equivalent
content vectors with respect to G.

Proof The general case clearly follows from the |G| = 1 case for which we need to give a
bijection between content vectors of length n and standard Young tableaux with n boxes.
This is well known. The content vector of any standard Young tableau clearly satisfies
conditions (i), (ii), and (iii) in the definition of a content vector and these conditions
uniquely determine the numbers to be filled in the boxes of the Young diagram. This
bijection clearly preserves the ≈ relation. ✷

Theorem 6.4 (i) specG(n) = contG(n) and the equivalence relations ∼ and ≈ coincide.

(ii) The map Φ−1 : specG(n) → tabG(n) is a bijection and, for α, β ∈ specG(n), we have
α ∼ β if and only if Φ−1(α) and Φ−1(β) have the same shape.

Proof We have

(a) specG(n) ⊆ contG(n).

(b) If α ∈ specG(n), β ∈ contG(n), and α ≈ β then it is easily seen that β ∈ specG(n) and
α ∼ β. It follows that given an ∼-equivalence class A of specG(n) and an ≈-equivalence
class B of contG(n), either A∩ B = ∅ or B ⊆ A.

(c) |(specG(n)/ ∼)| = |G∧
n| = |Pn(G∗)| = |Yn(G

∧)|, since the number of irreducible
Gn-representations is equal to the number of conjugacy classes in Gn and similarly for G.

(d) |(contG(n)/ ≈)| = |Yn(G
∧)|, by Lemmas 6.3 and 6.2.

The four statements above imply part (i). Part (ii) is now clear. ✷

Using Theorem 6.4 we may parametrize the irreducible representations of Gn by el-
ements of Yn(G

∧). The following result is a reformulation of the GZ-decomposition in
terms of standard Young G-tableaux.

Theorem 6.5 Let µ ∈ Yn(G
∧). Then we may index the GZ-subspaces of V µ by standard

Young G-tableaux of shape µ and write the GZ-decomposition (17) as

V µ = ⊕
T∈tabG(n,µ)

VT , (31)
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where each VT is closed under the action of Gn = G × · · · × G (n factors) and, as a
Gn-module, is isomorphic to the irreducible Gn-module

V rT (1) ⊗ V rT (2) ⊗ · · · ⊗ V rT (n).

For i = 1, . . . , n, the eigenvalue of Xi on VT is given by |G|

dim(V rT (i))
c(bT (i)). ✷

The branching rule for the pair Gn−1 ⊆ Gn is now clear.

Theorem 6.6 Let µ ∈ Yn+1(G
∧). Then we have a Gn-module isomorphism

V µ ∼= ⊕σ∈G∧ dim(V σ)
(

⊕λ∈µ↓σV
λ
)

. ✷

The dimension of an irreducible representation of Gn easily follows from Theorem 6.5.
For a Young diagram µ let fµ denote the number of standard Young tableaux of shape µ.

Theorem 6.7 Let µ ∈ Yn(G
∧). Write the elements of G∧ as {σ1, . . . , σt} and set

µi = µ(σi), ni = |µi|, di = dim(V σi), i = 1, . . . , t.

Then

dim(V µ) =

(

n

n1, . . . , nt

)

fµ1 · · ·fµt dn1
1 · · · dnt

t .✷

We now discuss the choice of a basis of V µ, µ ∈ Yn(G
∧), with respect to which we

may write down the matrices for the action of the Coxeter generators s1, . . . , sn−1. We
begin with an observation.

Fix µ ∈ Yn(G
∧) and consider the irreducible Gn-module V µ. Let T ∈ tabG(n, µ) and

let pT denote the projection of V µ onto VT determined by the decomposition (31). Let si
be an admissible transposition for T . Two cases arise:

(a) i and i+1 are in different Young diagrams of T : It follows from Theorem 5.3 (v) that
psi·T (si · B) is a basis of Vsi·T for any basis B of VT .

(b) i and i + 1 are in the same Young diagram of T but are not in the same row or the
same column of this Young diagram: Let 0 6= v ∈ VT . It follows from (the proof of)
Theorem 5.3 (vi) that si · v is the sum of a nonzero rational multiple of τi,VT

(v) and a
nonzero vector in Vsi·T and that the map VT → Vsi·T given by v 7→ psi·T (si · v) is a linear
isomorphism. In particular, psi·T (si ·B) is a basis of Vsi·T for any basis B of VT .

Now let R be the tableau defined in the proof of Lemma 6.2. Fix a basis BR of VR.
Consider a standard G-tableau T ∈ tabG(n, µ). Let s be the permutation that maps R
to T . Define

BT = {pT (s · v) | v ∈ BR}, (32)

and define ℓ(T ), the length of T , to be ℓ(s). The following result now easily follows, by
induction on the length of T ∈ tabG(n, µ), using observations (a), (b) above and the fact,
remarked after the proof of Lemma 6.2, that T ∈ tabG(n, µ) can be obtained from R by
a sequence of ℓ(T ) admissible transpositions and no fewer Coxeter transpositions.
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Lemma 6.8 (i) BT is a basis of VT , for all T ∈ tabG(n, µ).

(ii) Let T ∈ tabG(n, µ) and let si be an admissible transposition for T . Then

(a) If i and i+ 1 are in different Young diagrams of T we have

Bsi·T = {psi·T (si · v) | v ∈ BT}.

(b) If i and i+1 are in the same Young diagram of T but not in the same row or same
column of this Young diagram we have

Bsi·T = {psi·T (si · v) | v ∈ BT}, if ℓ(si · T ) = ℓ(T ) + 1,

Bsi·T = {(1− r−2)psi·T (si · v) | v ∈ BT}, if ℓ(si · T ) = ℓ(T )− 1,

where r = (c(bT (i+1))−c(bT (i)))
|G|

dim(V rT (i)).

We now choose a basis of VR in a certain way and then apply the method above to
get bases of all the GZ-subspaces. For σ ∈ G∧, fix a basis Bσ of V σ. Then, for ρ =
(ρ1, . . . , ρn), where ρi ∈ G∧ for all i, we have that Bρ = Bρ1 ⊗ · · · ⊗ Bρn is a basis of
V ρ = V ρ1 ⊗· · ·⊗V ρn. Thus, for T ∈ tabG(n, µ), we have that B

rT is a basis of V rT , where
rT = (rT (1), . . . , rT (n)). Let Ni,rT be the matrix of the switch operator τi,rT on V rT with
respect to the basis BrT .

Let R be the standard G-tableau defined above and fix a G-linear isomorphism

f : V rR(1) ⊗ · · · ⊗ V rR(n) → VR.

Define the basis
BR = f(BrR(1) ⊗ · · · ⊗ BrR(n))

of VR. Now use (32) to define a basis BT of VT for all T ∈ tabG(n, µ).

Let T ∈ tabG(n, µ) and s be the permutation that maps R to T . Now Sn acts on
V rT by permuting the coordinates and the image of the action of s−1 on V rT is V rR. The
following result now follows.

Lemma 6.9 The map V rT → VT given by v 7→ pT (sfs
−1(v)) is a Gn-linear isomorphism

that takes the basis BrT of V rT to the basis BT of VT . Thus the matrix Ni,T of τi,VT
with

respect to BT is equal to Ni,rT .

We now have the following result.

Theorem 6.10 Consider the basis ∪
T∈tabG(n,µ)

BT of V µ. Fix T ∈ tabG(n, µ) and let

Φ(T ) = ((ρ1, . . . , ρn), a1, . . . , an). Let si be a Coxeter generator. Let I denote the |BT | ×
|BT | identity matrix. Set r = (ai+1−ai)dim(V ρi)

|G|
and N = Ni,T .

The action of si on VT is as follows.
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(i) If i and i + 1 are in the same column of the same Young diagram of T then VT is
closed under the action of si and the matrix of this action with respect to the basis BT is
N .

(ii) If i and i+ 1 are in the same row of the same Young diagram of T then VT is closed
under the action of si and the matrix of this action with respect to the basis BT is −N .

(iii) Suppose i and i + 1 are not in the same Young diagram of T . Let S = si · T . Then
VT ⊕ VS is closed under the action of si and the matrix of this action, with respect to the
basis BT ∪ BS, is given by

[

0 I
I 0

]

.

(iv) Suppose i and i+ 1 are in the same Young diagram of T but not in the same row or
same column of this Young diagram. Let S = si · T . Then N = Ni,S.

If ℓ(S) = ℓ(T ) + 1 then VT ⊕ VS is closed under the action of si and the matrix of this
action, with respect to the basis BT ∪BS, is given by

[

r−1N (1− r−2)I
I −r−1N

]

.

If ℓ(S) = ℓ(T ) − 1 then the matrix of the action of si on the subspace VT ⊕ VS with
respect to the basis basis BT ∪ BS is given by the transpose of the matrix above.

Proof Parts (i), (ii), (iii) and part (iv) with ℓ(S) = ℓ(T ) + 1 follow from Theorem 5.3,
Lemma 6.8, and Lemma 6.9 above. To prove the case ℓ(S) = ℓ(T )− 1 of part (iv), switch
T and S in the ℓ(S) = ℓ(T ) + 1 case along with switching ai and ai+1. This is equivalent
to transposing the matrix. ✷

The basis of V µ and the action of si described above correspond to Young’s seminormal
form in the case of the symmetric groups. Now let us consider the analog of Young’s
orthogonal form. Since V µ is irreducible there is a unique (upto scalars) Gn-invariant inner
product on V µ. Choose and fix one such inner product. Since the branching from Hi,n to
Hi−1,n is multiplicity free we have that the decomposition of an irreducible Hi,n-module
into irreducibles Hi−1,n-modules is orthogonal. It follows that the GZ-decomposition (31)
of V µ is orthogonal.

For σ ∈ G∧, fix a G-invariant inner product (unique upto scalars) on V σ, and fix
an orthonormal basis Cσ of V σ. Then, for ρ = (ρ1, . . . , ρn), where ρi ∈ G∧ for all
i, we have that Cρ = Cρ1 ⊗ · · · ⊗ Cρn is an orthonormal basis of V ρ = V ρ1 ⊗ · · · ⊗
V ρn (under the inner product obtained by multiplying the component inner products).
Thus, for T ∈ tabG(n, µ), we have that CrT is an orthonormal basis of V rT , where
rT = (rT (1), . . . , rT (n)). Let Mi,rT be the matrix of the switch operator τi,rT on V rT

with respect to the basis CrT .

Let R be the standard G-tableau defined above and fix a Gn-linear isometry

f : V rR(1) ⊗ · · · ⊗ V rR(n) → VR.
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Define the orthonormal basis

CR = f(CrR(1) ⊗ · · · ⊗ CrR(n))

of VR. Now use (32) to define a basis CT of VT for all T ∈ tabG(n, µ).

Let T ∈ tabG(n, µ) and s be the permutation that maps R to T . We have

Lemma 6.11 The map V rT → VT given by v 7→ pT (sfs
−1(v)) is a Gn-linear isometry

that takes the basis CrT of V rT to the basis CT of VT . Thus the matrix Mi,T of τi,VT
with

respect to CT is equal to Mi,rT .

The following result can be proved along the lines of the previous result.

Theorem 6.12 Consider the orthonormal basis ∪
T∈tabG(n,µ)

CT of V µ defined above. Fix

T ∈ tabG(n, µ) and let Φ(T ) = ((ρ1, . . . , ρn), a1, . . . , an). Let si be a Coxeter generator.
Let I denote the |CT | × |CT | identity matrix and let Mi,T denote the matrix of τi,VT

with

respect to the basis CT . Set r = (ai+1−ai)dim(V ρi)
|G|

and M = Mi,T .

The action of si on VT is as follows.

(i) If i and i + 1 are in the same column of the same Young diagram of T then VT is
closed under the action of si and the matrix of this action with respect to the basis CT is
M .

(ii) If i and i+ 1 are in the same row of the same Young diagram of T then VT is closed
under the action of si and the matrix of this action with respect to the basis CT is −M .

(iii) Suppose i and i + 1 are not in the same Young diagram of T . Let S = si · T . Then
VT ⊕ VS is closed under the action of si and the matrix of this action, with respect to the
basis CT ∪ CS, is given by

[

0 I
I 0

]

.

(iv) Suppose i and i+ 1 are in the same Young diagram of T but not in the same row or
same column of this Young diagram. Let S = si · T . Then M = Mi,S.

Then VT ⊕VS is closed under the action of si and the matrix of this action, with respect
to the basis CT ∪ CS, is given by

[

r−1M
√
1− r−2 I√

1− r−2 I −r−1M

]

.

7 Generalized Johnson scheme

The simplest nontrivial examples of the Vershik-Okounkov theory are the classical “John-
son schemes” and the “generalized Johnson schemes” of Ceccherini-Silberstein, Scarabotti,
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and Tolli [1, 2] (also see [8]). We consider multiplicity free Sn, Gn-actions and explicitly
write down the GZ-vectors (in the Sn case) and the GZ-subspaces (in the Gn case) and
also identify the irreducibles which occur.

We begin with the Sn action. Let B(n) denote the set of all subsets of [n] =
{1, 2, . . . , n} and, for 0 ≤ i ≤ n, let B(n)i denote the set of all subsets of [n] with
cardinality i. There is a natural action of Sn on B(n)i and B(n). For a finite set S, let
V (S) denote the complex vector space with S as basis.

We have the following direct sum decomposition into Sn-submodules of the permuta-
tion representation of Sn on V (B(n)):

V (B(n)) = V (B(n)0)⊕ V (B(n)1)⊕ · · · ⊕ V (B(n)n). (33)

The following result is classical ([2, 12]). We give a constructive proof that produces
an explicit Gelfand-Tsetlin basis.

Theorem 7.1 For 0 ≤ i ≤ n, V (B(n)i) is a multiplicity free Sn-module with Sn-module
isomorphism

V (B(n)i) ∼=
⊕

k

V (n−k,k),

where the sum is over all partitions (n − k, k) of n with atmost two parts satisfying k ≤
i ≤ n− k.

An element v ∈ V (B(n)) is homogeneous if v ∈ V (B(n)k) for some k. We say that a
nonzero homogeneous element v is of rank k, and we write r(v) = k, if v ∈ V (B(n)k).
The up operator Un : V (B(n)) → V (B(n)) is defined, for X ∈ B(n), by

Un(X) =
∑

Y

Y,

where the sum is over all Y ∈ B(n) covering X , i.e., X ⊆ Y and |Y | = |X|+ 1.

A symmetric Jordan chain (SJC) in V (B(n)) is a sequence v = (v1, . . . , vh) of nonzero
homogeneous elements of V (B(n)) such that Un(vi−1) = vi, for i = 2, . . . h, Un(vh) = 0,
and r(v1) + r(vh) = n, if h ≥ 2, or else 2r(v1) = n, if h = 1. Note that the elements
of the sequence v are linearly independent, being nonzero and of different ranks. We say
that v starts at rank r(v1) and ends at rank n − r(v1). We do not distinguish between
the sequence (v1, . . . , vh) and the underlying set {v1, . . . , vh}. A symmetric Jordan basis
(SJB) of V (B(n)) is a basis of V (B(n)) consisting of a disjoint union of SJC’s in V (B(n)).
Given an SJB J(n) of V (B(n)) and 0 ≤ k ≤ n/2, let J (n, k) denote the set of all SJC’s
in J(n) starting at rank k and ending at rank n − k and let J(n, k) denote the union of
all SJC’s in J (n, k).

Given T ∈ tab(n, µ), where µ has atmost two rows, we denote by T +1 (n + 1)
the standard Young tableaux obtained from T by adding n + 1 at the end of the first
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row. Similarly, given T ∈ tab(n, µ), where µ has atmost two rows with the second row
containing fewer elements than the first row, we denote by T +2 (n + 1) the standard
Young tableaux obtained from T by adding n+1 at the end of the second row. The basic
idea of the following algorithm is from [10], though we have added new elements here,
namely, Theorems 7.4 and 7.5.

Theorem 7.2 There exists an inductive procedure to explicitly construct an SJB J(n) of
V (B(n)) and, for 0 ≤ k ≤ n/2, a bijection

Bn,k : tab(n, (n− k, k)) → J (n, k). (34)

Proof The case n = 1 is clear.

Let V = V (B(n + 1)). Define V (0) to be the subspace of V generated by all subsets
of [n + 1] not containing n + 1 and define V (1) to be the subspace of V generated by
all subsets of [n + 1] containing n + 1. We have V = V (0) ⊕ V (1). The linear map
R : V (0) → V (1), given by X 7→ X ∪ {n + 1}, X ⊆ [n] is an isomorphism. We write
R(v) = v. We write U for the up operator Un+1 on V and we write U0 for the up operator
on V (0) (= V (B(n))). We have, for v ∈ V (0),

U(v) = U0(v) + v, U(v) = U0(v). (35)

By induction hypothesis there is an SJB J(n) of V (B(n)) = V (0) and bijections Bn,k

as in (34) above. We shall now produce an SJB J(n+1) of V by producing, for each SJC
in J(n), either one or two SJC’s in V such that the collection of all these SJC’s is a basis.

Let 0 ≤ k ≤ n/2. Consider T ∈ tab(n, (n − k, k)) and consider the SJC Bn,k(T ) =
(xk, . . . , xn−k) ∈ J (n, k), where r(xk) = k.

We now consider two cases.

(a) k = n − k : From (35) we have U(xk) = xk and U(xk) = U0(xk) = 0. Since R is
an isomorphism xk 6= 0. Define

Bn+1,k(T +1 (n+ 1)) = (xk, xk). (36)

(b) k < n− k : Set xk−1 = xn+1−k = 0 and define

y = (yk, . . . , yn+1−k), and z = (zk+1, . . . , zn−k), (37)

by

yl = xl + (l − k) xl−1, k ≤ l ≤ n+ 1− k. (38)

zl = (n− k − l + 1) xl−1 − xl, k + 1 ≤ l ≤ n− k. (39)

From (35) we have

U(xl) = U0(xl) = xl+1, k ≤ l ≤ n− k (40)
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It thus follows from (35) and (40) that, for k ≤ l < n+ 1− k, we have

U(yl) = U(xl + (l − k)xl−1) = xl+1 + xl + (l − k)xl = xl+1 + (l − k + 1)xl = yl+1.

Note that when l = k the second step above is justified because of the presence of the
(l−k) factor even though U(xk−1) = 0 6= xk. We also have U(yn+1−k) = U((n+1)xn−k) =
(n+ 1)U0(xn−k) = 0.

Similarly, for k + 1 ≤ l < n− k, we have

U(zl) = U((n−k−l+1)xl−1−xl) = (n−k−l+1)xl−xl+1−xl = (n−k−l)xl−xl+1 = zl+1.

and U(zn−k) = U(xn−k−1 − xn−k) = xn−k − xn−k = 0.

Since yk = xk 6= 0, yn+1−k = (n + 1)xn−k 6= 0, xl and xl−1 are linearly independent,
for k + 1 ≤ l ≤ n− k and the 2× 2 matrix

(

1 l − k
−1 n− k − l + 1

)

is nonsingular for k + 1 ≤ l ≤ n − k, it follows that (37) gives two independent SJC’s in
V . Define

Bn+1,k(T +1 (n+ 1)) = y,

Bn+1.k+1(T +2 (n+ 1)) = z,

and set J(n+ 1) to be the union of all SJC’s obtained in steps (36) and (37) above.

Since V = V (0)⊕ V (1) and R is an isomorphism it follows that J(n+1) is an SJB of
V . That the maps Bn+1,k are bijections is also clear. ✷

Example 7.3 In this example we work out the SJB’s of V (B(n)), for n = 2, 3, starting
with the SJB of V (B(1)), using the formulas (36, 37, 38, 39) given in the proof of Theorem
7.2.

(i) The SJB of V (B(1)) is given by

( ∅ , {1} )

(ii) The SJB of V (B(2)) consists of

( ∅ , {1}+ {2} , 2{1, 2} )

( {2} − {1} )

(iii) The SJB of V (B(3)) consists of

( ∅ , {1}+ {2}+ {3} , 2({1, 2}+ {1, 3}+ {2, 3}) , 6{1, 2, 3} )

( 2{3} − {1} − {2} , {1, 3}+ {2, 3} − 2{1, 2} )

( {2} − {1} , {2, 3} − {1, 3} )
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For 0 ≤ k ≤ i ≤ n− k ≤ n define

J(n, k, i) = {v ∈ J(n, k) : r(v) = i}.

Let W (n, k, i) be the subspace of V (B(n)i) spanned by J(n, k, i). Then we have the direct
sum decomposition

V (B(n)i) =

min{i,n−i}
⊕

k=0

W (n, k, i), 0 ≤ i ≤ n. (41)

We claim that each W (n, k, i) is a Sn-submodule of V (B(n)i). We prove this by induction
on i, the case i = 0 being clear. Assume inductively thatW (n, 0, i−1), . . . ,W (n, i−1, i−1)
are submodules, where i < ⌊n/2⌋. Since Un is Sn-linear, Un(W (n, j, i − 1)) = W (n, j, i),
0 ≤ j ≤ i − 1 are submodules. Now consider W (n, i, i). Let u ∈ W (n, i, i) and π ∈ Sn.
Since Un is Sn-linear we have Un+1−2i

n (πu) = πUn+1−2i
n (u) = 0. It follows that πu ∈

W (n, i, i). So the claim is proven for 0 ≤ i ≤ n/2 and it follows for i > n/2 since Un is
Sn-linear.

Theorem 7.4 As Sn-modules we have

W (n, k, i) ∼= V (n−k,k), 0 ≤ k ≤ i ≤ n− k ≤ n. (42)

Proof By induction on n. The cases n = 1, 2, 3 can be directly verified from Example 7.3
(the main point to check is that W (3, 1, 1) is the standard representation of S3).

Now assume we have proven the result upto n ≥ 3. By the algorithm of Theorem 7.2
we have, for 0 ≤ i ≤ n + 1,

W (n+ 1, k, i) = W (n, k, i)⊕W (n, k − 1, i− 1), (43)

where W = {v | v ∈ W (n, k − 1, i − 1)} (in the notation used in the proof of Theorem
7.2) and where W (n, k, i) is taken to be the zero subspace if i < k or i > n− k.

Now, W (n+1, k, i) is a Sn+1-module and it is easily seen that W (n, k, i) and W (n, k−
1, i − 1) are Sn-submodules of W (n + 1, k, i). By induction hyphothesis we have, as
Sn-modules,

W (n, k, i) = V (n−k,k), (44)

W (n, k − 1, i− 1) = V (n−k+1,k−1). (45)

Suppose an Sn+1-irreducible V λ, where the Young diagram λ has 3 or more rows, occurs
in W (n+1, k, i). Since n+1 ≥ 4, it follows that λ has an inner corner whose removal still
leaves 3 or more rows. By the branching rule this contradicts (43), (44), and (45). So, for
any Sn+1-irreducible V λ occuring in W (n + 1, k, i), there are atmost two rows in λ. It is
now easy to see using the branching rule and (44) and (45) thatW (n+1, k, i) ∼= V (n+1−k,k).
✷
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Theorem 7.1 now follows from (41) and Theorem 7.4. We also have that

dim(V (n−k,k)) =

(

n

k

)

−
(

n

k − 1

)

. (46)

Summing (41) over i and taking dimensions we get

2n =

⌊n/2⌋
∑

k=0

(n− 2k + 1)

{(

n

k

)

−
(

n

k − 1

)}

. (47)

We denote the YJM elements of Sn by Y1, . . . , Yn.

Theorem 7.5 For T ∈ tab(n, (n− k, k)) and every vector v in the SJC Bn,k(T ) we have

Yj(v) = c(bT (j))v, j = 1, 2, . . . , n. (48)

Proof We first show inductively that each element of J(n) is a simultaneous eigenvector
of Y1, . . . , Yn, the case n = 1 being clear.

Note that if v ∈ V (B(n)k) is an eigenvector for Yi, for some 1 ≤ i ≤ n, then v ∈
V (B(n + 1)k+1) is also an eigenvector for Yi with the same eigenvalue. Thus it follows
from (36, 37, 38, 39) that each element of J(n + 1) is an eigenvector for Y1, . . . , Yn. It
remains to show that each element of J(n+ 1) is an eigenvector for Yn+1.

We now have from Theorem 7.4 that, for 0 ≤ i ≤ n+1
2
, W (n+1, 0, i), . . . ,W (n+1, i, i)

are mutually nonisomorphic irreducibles. Consider the Sn+1-linear map f : V (B(n +
1)i) → V (B(n + 1)i) given by f(v) = av, where

a = sum of all transpositions in Sn+1 = Y1 + · · ·+ Yn+1.

It follows by Schur’s lemma that there exist scalars α0, . . . , αi such that f(u) = αku, for
u ∈ W (n+1, k, i). Thus each element of J(n+1, k, i) is an eigenvector for Y1+ · · ·+Yn+1

(and also for Y1, . . . , Yn). It follows that each element of J(n + 1, k, i) is an eigenvector
for Yn+1.

The paragraph above has shown that the first element of each symmetric Jordan chain
in J(n + 1) is a simultaneous eigenvector for Y1, . . . , Yn+1. It now follows (since Un+1 is
Sn+1-linear) that each element of J(n+ 1) is a simultaneous eigenvector for Y1, . . . , Yn+1.

We are left to show that, for each v ∈ Bn,k(T ), the eigenvalues of Y1, . . . , Yn on v are
given by (48). We can show this by induction, the case n = 1 being trivial.

Just like above the eigenvalues of Y1, . . . , Yn on v ∈ Bn+1,k(T ) will continue to satisfy
(48). Now, since v is an eigenvector for Yn+1 and v lies in an Sn+1-irreducible isomorphic
to V (n+1−k,k), it follows that the eigenvalue of Yn+1 on v also satisfies (48). That completes
the proof. ✷
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See [4] for an elegant direct construction of the GZ-basis given above and see [5] for
an application to complexity theory.

Now we study the Gn analog of the Sn-action considered above, defined in [1, 2]. Let
G be a finite group acting on the finite set X . Assume that the corresponding permutation
representation on V (X) is multiplicity free. This implies, in particular, that the action is
transitive.

Let L0 be a symbol not in X and let Y denote the alphabet Y = {L0}∪X . We call the
elements of X the nonzero letters in Y . Define BX(n) = {(a1, . . . , an) : ai ∈ Y for all i},
the set of all n-tuples of elements of Y (we use L0 instead of 0 for the zero letter for
later convenience. We do not want to confuse the letter 0 with the vector 0). Given
a = (a1, . . . , an) ∈ BX(n), define the support of a by S(a) = {i ∈ [n] : ai 6= L0}. For
0 ≤ i ≤ n, BX(n)i denotes the set of all elements a ∈ BX(n) with |S(a)| = i. We have

|BX(n)| = (|X|+ 1)n, |BX(n)i| =
(

n

i

)

|X|i.

(We take the binomial coefficient
(

n
k

)

to be 0 if n < 0 or k < 0).

There is a natural action of the wreath product Gn on BX(n) and BX(n)i: permute
the n coordinates followed by independently acting on the nonzero letters by elements
of G. In detail, given (g1, g2, . . . , gn, π) ∈ Gn and a = (a1, . . . , an) ∈ BX(n), we have
(g1, . . . , gn, π)(a1, . . . , an) = (b1, . . . , bn), where bi = giaπ−1(i), if aπ−1(i) is a nonzero letter
and bi = L0, if aπ−1(i) = L0. We have the following direct sum decomposition into Gn-
submodules of the permutation representation of Gn on V (BX(n)):

V (BX(n)) = V (BX(n)0)⊕ V (BX(n)1)⊕ · · · ⊕ V (BX(n)n). (49)

We now introduce some notation. Let σ1, . . . , σm, σi ∈ G∧, be the distinct irreducible
G-representations occuring in the multiplicity free G-module V (X). We assume that σ1

is the trivial representation. Now enumerate all the elements of G∧ as σ1, . . . , σt, so that
σm+1, . . . , σt do not appear in V (X). For i = 1, . . . , m, set di = dim(V σi), so that d1 = 1
and d1 + · · ·+ dm = |X|.

Denote by Y2,n(G
∧) the set of all µ ∈ Yn(G

∧) such that

(i) µ(σi) is the empty partition, for i = m+ 1, . . . , t.

(ii) µ(σi) has atmost one part, denoted pi(µ), for i = 2, . . . , m. We have pi(µ) = 0 if µ(σi)
is the empty partition. We set s(µ) = p2(µ) + · · ·+ pm(µ).

(iii) µ(σ1) has atmost two parts, denoted a(µ), b(µ), with a(µ) ≥ b(µ). Just like in item
(ii) above, one or both of a(µ), b(µ) may be 0.

We have the following combinatorial identity (recall that V µ denotes the irreducible
Gn-module parametrized by µ ∈ Yn(G

∧)).

Theorem 7.6 We have

(|X|+ 1)n =
∑

µ∈Y2,n(G∧)

(1 + a(µ)− b(µ)) dim(V µ). (50)
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Proof The proof is in two steps.

(a) Let C(n,m) denote the set of all m-tuples of nonnegative integers with sum n. We
have, using the multinomial theorem and (47) above,

(|X|+ 1)n

= (d1 + d2 + · · ·+ dm + 1)n

= (d2 + · · ·+ dm + 2)n

=
∑

(p1,...,pm)∈C(n,m)

(

n

p1, . . . , pm

)

dp22 · · · dpmm 2p1

=
∑

(p1,...,pm)∈C(n,m)

⌊p1/2⌋
∑

k=0

(p1 − 2k + 1)

(

n

p1, . . . , pm

)

dp22 · · · dpmm
{(

p1
k

)

−
(

p1
k − 1

)}

.

(b) Let µ ∈ Y2,n(G
∧). We have

V µ = ⊕
T∈tabG(n,µ)

VT .

The dimension of the GZ-subspace VT of V µ is clearly d
p2(µ)
2 · · · dpm(µ)

m . With µ bijectively
associate the pair of elements

(a(µ) + b(µ), p2(µ), . . . , pm(µ)) ∈ C(n,m) and b(µ) ∈ N with b(µ) ≤ ⌊(a(µ) + b(µ))/2⌋.

It is easy to see, using (46) above, that the cardinality of tabG(n, µ) is
(

n

a(µ) + b(µ), p2(µ) . . . , pm(µ)

) {(

a(µ) + b(µ)

b(µ)

)

−
(

a(µ) + b(µ)

b(µ)− 1

)}

.

The result now follows from steps (a) and (b) above. ✷

We shall now give a representation theoretic interpretation to Theorem 7.6 above.

Consider the tensor product

⊗n
i=1V (Y ) = V (Y )⊗ · · · ⊗ V (Y ) (n factors),

with the natural Gn-action (permute the factors and then independently act on the factors
by elements of G). There is a Gn-linear isomorphism

V (BX(n)) ∼= ⊗n
i=1V (Y ) (51)

given by a = (a1, . . . , an) 7→ a1 ⊗ · · · ⊗ an, a ∈ BX(n). From now onwards, we shall
not distinguish between V (BX(n)) and ⊗n

i=1V (Y ). The image of V (BX(n)i) is denoted
(⊗n

i=1V (Y ))i.

Consider the canonical decomposition

V (X) = W1 ⊕ · · · ⊕Wm,
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of V (X) into distinct irreducible G-submodules, where Wi is isomorphic to V σi , for 1 ≤
i ≤ m. Thus di = dim Wi, i = 1, . . . , m.

Define the vector z ∈ V (Y ) by z =
∑

x∈X x.

For 0 ≤ i ≤ n set

Y2,n(G
∧)i = {µ ∈ Y2,n(G

∧) | b(µ) + s(µ) ≤ i ≤ a(µ) + s(µ)} .

Theorem 7.7 For 0 ≤ i ≤ n, V (BX(n)i) is a multiplicity free Gn-module with Gn-module
isomorphism

V (BX(n)i) ∼=
⊕

µ∈Y2,n(G∧)i

V µ.

Proof Let µ ∈ Y2,n(G
∧) and a(µ) + s(µ) ≤ i ≤ b(µ) + s(µ). Let R ∈ tabG(n, µ) be as

defined in the proof of Lemma 6.2. We shall exhibit a GZ-subspace W of (⊗n
j=1V (Y ))i

of type VR, i.e, W is closed under the Gn-action and, as a Gn-module, is isomorphic to
V rR(1) ⊗ · · · ⊗ V rR(n) and, for v ∈ W and j = 1, 2, . . . , n, we have

Xj(v) =
|G|

dim(V rR(j))
c(bR(j))v. (52)

This will show that V µ appears in V (BX(n)i). The dimension count given by Theorem
7.6 then completes the proof.

(a) Set q = a(µ) + b(µ). There is an injection

Γ : V (B(q)) → ⊗q
j=1V (Y )

given as follows: for X ⊆ [q], we have Γ(X) = u1 ⊗ · · ·⊗ uq, where uk = L0, if k 6∈ X and
uk = z, if k ∈ X .

Since b(µ) ≤ i − s(µ) ≤ a(µ) and b(µ) ≤ ⌊(a(µ) + b(µ))/2⌋, it follows from Theorem
7.1 that there is a vector u ∈ V (B(q)i−s(µ)) (determined uniquely upto scalars) such that

Yj(u) = c(bR(j))u, j = 1, . . . , q. (53)

(b) Let σ ∈ G∧ and consider the Gk-module V σ ⊗ · · · ⊗ V σ (k factors). It follows from
Theorem 5.3(i) and (ii)(a) that, for all v ∈ V σ ⊗ · · · ⊗ V σ,

Xj(v) = (j − 1)
|G|

dim(V σ)
v, j = 1, . . . , k. (54)

Consider the subspace W of (⊗n
j=1V (Y ))i given by

W = Span(Γ(u))⊗W2 ⊗ · · · ⊗W2 ⊗W3 ⊗ · · · ⊗W3 ⊗ · · · ⊗Wm ⊗ · · · ⊗Wm,
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where W2 is repeated p2(µ) times, W3 is repeated p3(µ) times, and so on until Wm is
repeated pm(µ) times.

Since g · L0 = L0 and g · z = z, for all g ∈ G, it follows that W is closed under the
Gn-action and, as a Gn-module, is isomorphic to V rR(1)⊗· · ·⊗V rR(n). Moreover, it follows
from (53) above that, for v ∈ W ,

Xj(v) =
|G|

dim(V rR(j))
c(bR(j))v, j = 1, . . . , q.

From (54) above and Theorem 5.3(v) we see that, for v ∈ W ,

Xj(v) =
|G|

dim(V rR(j))
c(bR(j))v, j = q + 1, . . . , n.

That completes the proof. ✷
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