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Abstract

We present a single, unified, multi-scale model to study the at-
tachment/detachment dynamics of two deforming, near spherical cells,
coated with binding ligands and subject to a slow, homogeneous shear
flow in a viscous fluid medium. The binding ligands on the surface of
the cells experience attractive and repulsive forces in an ionic medium
and exhibit finite resistance to rotation via bond tilting. The macroscale
drag forces and couples describing the fluid flow inside the small sep-
aration gap between the cells, are calculated using a combination of
methods in lubrication theory and previously published numerical re-
sults. For a select range of material and fluid parameters, a hysteretic
transition of the sticking probability curves between the adhesion and
fragmentation domain is attributed to a nonlinear relation between
the total microscale binding forces and the separation gap between
the cells. We show that adhesion is favored in highly ionic fluids, in-
creased deformability of the cells, elastic binders and a higher fluid
shear rate (until a critical value). Continuation of the limit points
predict a bistable region, indicating an abrupt switching between the
adhesion and fragmentation regimes at critical shear rates, and sug-
gesting that adhesion of two deformable surfaces in shearing fluids may
play a significant dynamical role in some cell adhesion applications.
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1 Introduction

The adhesion and fragmentation of cells in suspension is an ubiquitous and
biologically significant process. Examples include binding of bacterial clusters
to medical implants or host cell surfaces during infection [?], cancer cell
metastasis [?], coalescence of medical gels with functionalized particles or
micro-bubbles for targeted drug delivery [?] and the adherence of platelets and
monocytes to atherosclerotic plaques [?]. Cell adhesion is commonly mediated
by specific ligand interactions, e.g., the ligand-mediated surface adhesion is
an important case in the experimental studies of the P-selectin/PSGL-1 catch
bond interactions of leukocytes (a roughly spherical particle) with and without
fluid flow [?]. The adhesive properties of biological surfaces connected by
multiple independent tethers are also presently inspiring the development
of novel adhesives mimicking the remarkable properties of beetle and gecko
feet [?]. Several other applications as well as in vivo and in silico studies of
cell adhesion are listed in Lauffenburger et al. [?], Springer [?], Hammer et al.
[?], Jones et al. [?] and Zhu [?]. However, the models and the experiments
listed in these references fail to describe with a single unified theory the
several interrelated physical features associated with the adhesion process.
This article develops a unified theory and approach.

The theoretical modelling of the surface adhesion in a fluid-borne envi-
ronment presents significant challenges. The adhesive forces are composed
of numerous physical processes including ligand-receptor binding kinetics [?],
surface deformation and the related mechanical stresses due to the elastic
forces on the cell membrane [?], excluded volume effects [?], paramagnetism [?],
short range interactions [?], and flow past the surrounding surfaces [?, 7], all
of which determines the fate of the binding surfaces. Consequently, many
detailed kinetic models have successfully described the adhesion-fragmentation
processes from the microscopic perspective. Schwarz et al. [?] and more re-
cently Mahadevan et al. [?] studied the cellular adhesion between the ligand
coated wall and a rigid sphere moving in a shear flow. A similar model by
Seifert et al. [?] described the membrane adhesion via Langevin simulations.
On the contrary, the macro-scale phase-field models describe the geometry
of aggregates as a continuum mass of extracellular polymeric substance and
predict the stability of the anisotropic structures in a flowing medium [?, ?].
However, a link between the micro-scale and the macro-scale description
detailing the several interrelated phenomena in the adhesion process is still
missing [?], but is now proposed here.

Multi-scale models provide a powerful route to explore possible connections



between macroscopic physiological observations, such as the minimum shear
threshold for surface adhesion [?] and the microscale mechanochemical effects
operating within individual intermolecular bonds [?]. Sciortino et al. [7]
reported research in this direction, but their numerical studies were done with
chemically inert particles. Other examples of recent work includes developing
probabilistic extensions of the Smoluchowski’s multiplicative aggregation
kernel in one [?] and two dimensions [?], with kernels containing containing
one scaling parameter to be fit to data. Jia et al. [?] developed a method for
predicting critical coagulant concentration via deriving a kernel incorporating
surface charge density and potential as a function of the electrolyte. Gilbert
et al. [?] investigated and validated the forces and potentials for nanoparticles,
whereas Babler and Morbidelli [?] studied aggregation and fragmentation, but
only driven by diffusion and shear flow. In summary, each of these research
efforts have focused on the adhesion and fragmentation using separate theories
that we unify.

The aim of this article is to develop and investigate a single, unified, multi-
scale (i.e., at the micro-nano level) model for ligand mediated deformable
cell-cell adhesion dynamics in a slow, viscous, shear flow conditions. This
unique study considers several competing physical processes influencing si-
multaneous transition between the adhesion-fragmentation regimes, namely,
binding-unbinding of the ligands, surface deformation, fluid flow and interac-
tion between the charged surface and the liquid medium. In the next section,
we present the details of the new comprehensive model, including the bond
mechanics (§2.1)), the interaction of charged surface in a fluid medium (§2.2),
micro-scale binding forces on the cell surface (§2.3]), macro-scale drag forces
and couple arising due to the flow-hydrodynamics inside and outside the
narrow gap between the cell surface (§2.4]) and the calculation of the adhesion
area of deformed cells in slow, viscous shear flow (§2.6). The microscale forces
and the entire system of non-dimensionalized equations are listed in and
coupled with the macroscale hydrodynamics in §2.7] Section [3| highlights the
simulation results of the binder kinetics at steady state and the bifurcation
analysis in a select range of material and fluid parameters, and conclude (§4))
with a brief discussion of the implication of these new results and the focus of
our future directions.



Figure 1: An illustration of two spherical, deformable cells coated with binding
ligands and translating and rotating in uniform flow. The symbol (R,,) denotes
the moving frame of reference, with the origin O,, fixed on the surface of
sphere Sy at the centre of the adhesion region.

2 Mathematical model: binder kinetics, sur-
face deformation and hydrodynamics

This section derives the evolution equation governing the dynamics of the
binding ligands, attached on the charged surface of the cells and immersed
in an electrolytic solvent subject to slow shear flow. We model a cell as a
thin sphere with extensible membrane subject to tension but having negligible
bending stiffness, surrounding a fluid interior of fixed volume per unit length.
The viscosity of the cell’s interior is assumed to be low enough that it behaves
as if it were inviscid. The effects of gravity, non-specific forces acting on the
cell, as well as the roughness of the cell surface are neglected. Further, we
assume that, subject to a finite tilting, the ligands are fixed on the cell surface.
The spherical cells adhere through well-defined disc-like patches covered with
binding ligands (Figure . Due to their relatively large micron-size scale, the
binding kinetics of these cells are significantly different from the core-shell
nano-crystal interactions, which are applicable at much smaller scales [?]. The
next few subsections detailed aspect of this model.



2.1 Binder kinetics

Figure (1] illustrates the motion of two deformed spheres, with an identical
size of radius R (when undeformed). The spheres are moving in a fluid
undergoing planar shear flow. To simplify the visualisation of the dynamics,
consider a moving frame, (R,,), with origin O,,, fixed on the surface of the
sphere Sy at a point equidistant from the edge of the separation gap. The unit
vectors for this frame of reference are e, e, and e,. For a given spatial point
= (x,y, z) in this moving frame, the velocity of the fluid is Gze,, where G is
the shear rate. The total relative velocity (of the sphere S; with respect to
the sphere Sy) in this frame is V(G,x) = U,e, + U,e, , where U, and U, are,
respectively, shearing flow (along the plane perpendicular to the line joining
the centres), and the velocity of the squeezing motion of the spheres (along the
line joining the centres). Let D(z) be the distance between the two spheres.
Define Ar,g(x,t) dA as the number of bonds that are attached between the
surfaces dA at time t where Ary is the total number of binding ligands. In
established research on colloids, the function g is synonymous with the term
sticking probability. The total number of bonds formed is [ A Arorg(x,t) dA
where A, is the area of adhesion (§2.6] details the derivation of this area).
The forward and reverse reaction rates for the ligand binding are then
written as Boltzmann distributions, allowing highly stretched bonds to be
readily broken by thermal energy fluctuations. The kinetics are also influenced
by the surface potential of the two charged surfaces. Further, we cater for the
ligands tilting by a finite angle o with respect to the vertical direction. This
tilt is again expressed as a Boltzmann distribution, D(«y), such that a bond
may form between the two spheres for a given angle o € (=%, Z). With these
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degrees of freedom, the bond attachment/detachment rates are

K] — Ko o0 [—AS(L(:E) —2 g; W(D(x))] D(ao),
Kon(e) — Kopo o [()\0 - )\5)([/(513)2 k—Bljg) + W(D(x))} 7 (1)

where kp is the Boltzmann constant, 7" is the temperature, [y is the mean
rest length of the binders, \g is the binder stiffness coefficient, and A, is the
spring constant of the transition state used to distinguish catch (Ag < A)
from Slip (Ao > As) bonds [?]. W(D) is the total surface potential described
in In further description of the model we denote D(x) = D, without loss
of generahsatlon As depicted in Flgure L=./D?+ \zc|2 is the length of a
bond in a stretched configuration. The energy associated with tilting a bond



from its vertical position is (1/2)A\ga, (kg being the torsion constant) and [?]

Ao\ 1 LT
D = —_ e = t = 2
() exp( %nT ) Dy ap = tan™" -, (2)
where Dy = [~ 7{ /9 €XP [ S T} day is the normalization constant for all possible
tilt orientations along the ﬂow direction. In the limit of small binding affinity
and abundant ligands on the binding surface (i.e., Aot Kon, eq/Koff, eq <K 1),
the bond ligand density evolves in accordance with the PDE [?, 7, 7]

dg

= = A1t Kon — Kogg, ¢g=0 forxz > R,, (3)

dg __ Og
where the material derivative 37 = 7 +V - Vg.

2.2 Long range interactions

Derjaguin, Landau, Verwey and Overbeek theory is utilized to describe the
interaction between the charged cell surfaces as well as due to the ions dispersed
in the fluid medium, via a surface potential W (D) (equation (1])). Only the
effects of Coulombic repulsion and Van der Waals attraction are incorporated.
Other interactions including hydration effects, hydrophobic attraction, short
range steric repulsion, and polymer bridging, which are absent in the length
scales of our interest, are neglected [?]. For two charged spheres, with an
identical size of radius R, the potential due to the Coulombic forces in the
gap of size D is

We(D) = 2megepiRe P, (4)

where ¢ is the Debye length, € and ¢, are the dielectric constant of vacuum and

the medium, respectively, and )y is the average zeta potential or the electric

potential of the diffuse cloud of charged counterions. The potential due to the

Van der Waal forces for these spherical cells in the regime of close contact is
AR

WVW(D) = _ﬁ for D < R, (5)

where A is the Hamaker constant measuring the van der Waal ‘two-body
pair-wise interaction for macroscopic spherical objects.

Y

2.3 Micro-scale forces: bond mechanics

Consider one individual bond formed between the points O,, on sphere S,
(which is also the origin of the frame (R,,)) and P on sphere S; (Figure [1).



The instantaneous force it exerts on the two spheres has three components:
an extensional force related to bond stretching given by Hooke’s law, f, =
Xo(L —lp)er ; a force due to surface-charges, f = VIW(D)e. ; and a torsional
force proportional to the angle formed by the bond with the vertical, f, =
(AoF)er, , where ep, = —(ve, + De.)/L and e, = (—De, + xe.)/L are the
unit vectors tangential and perpendicular to the bond as shown in Figure [I}
The operator, V, in the expression of the force due to surface charges, f.,
denotes the derivative with respect to D. The total micro-scale force, due to
each component, arising from all such bonds inside the adhesion area is [?]

Fz’(m7t) = ATot/A g(wvt).fi(w7t) dA(iB,t), (S {E7 O? T} (6>

2.4 Macro-scale forces: hydrodynamics

Next, we present the hydrodynamic force resisting the relative motion of two
deformable cells moving along their lines of centres (i.e., along the direction e,,
Figure [1)) as well as the force and couple associated with the transverse
translation of these drops along the direction of the flow (i.e., along the
direction e;), in the Stokes regime. Haber [?] considered a very general
problem of two viscous drops with unequal sizes, velocities and viscosities,
translating along their lines of centres in bispherical coordinates. The drops
are in close proximity (D < 1, Figure[1]) so that the drag force is derived via
lubrication theory. For the case of two identical drops moving toward each
other with equal speed, Haber’s solution for the drag force reduces to [?]

. F. )+ MK (B)
F; = 67ruRU smhﬁ Z C’ T AQL(A) e, (7)

where the functions

K2(B) =2[(2n + 1)sinh 28 + 2 cosh 23 — 2¢~ " T1F] |
KL(8) = (2n + 1) cosh 28 — 2(2n + 1) sinh 23
— (2n43)(2n — 1) + e~ VB,
Q0 () = 4sinh(n — )Bsinh(n + 2)3,
Q,(8) = 2sinh(2n + 1)8 — (2n + 1) sinh 28,
n(n+1)
(2n—1)(2n +3)

C, =




The starred quantity in equation ([7)) is the non-dimensional counterpart of
the force F',. The product (Au) is the viscosity of the fluid inside the drop
(1 being the viscosity of the fluid outside the drop). Parameter f is related to
the distance between the centres of the cell by 2D.+ D = 2R cosh 3 (Figure/[l).
The scalar U, = ||U.|| (where || - || denotes the magnitude of a vector). For
inviscid cells, we set A = 0 in equation (7)) and, following Cox [?], break the
summation into an “mner sum” 3 and an “outer sum” 3°° 41 (with the
breakpoint N determined by requiring SN ~ 1) and simplify the expression
for large N to obtain the drag force on either cell,

F 1 R 2
Fr=——"2 —|-In(=)+Z(y+mn2)]e. 9

where v = 0.57722 is Euler’s constant. The flow in between the inviscid cells,
along a plane perpendicular to the line joining the centers of the cell, is not
dominated by the gap region and thus lubrication theory does not apply [?].
However, in a slow shear flow regime, we use the leading order results obtained
by Zinchenko [?] for the forces and the couples:

* FS Ts

Fr=—"°  — 115, T'=-—"2"=1l1le,, 10
* = 6ruRU, c * 7 SruReU, ey (10)
where U, = ||U,||. By principle of linear super-position, the total forces and

the torques on the two moving cells in slow shear flow conditions are the sum
of the contributions from equations @]; F=F,+F,,andT=T,.

2.5 Non-dimensionalized system

We non-dimensionalize the length scales with respect to the undisturbed radius
of the cell, R, the tension on cell surface with a reference tension, 7, and
introduce the following dimensionless variables denoted by stars

¢ = Rs*, D=RD*, L=RL"
KOI’I - K::nKon’eq 9 KOH - K*HKOH,GQ 9 g = g*Keq ?

O

t=t"/G, U,.=U; RKueq, and V*'=U;+U], (11)

where Keq = Aot Kon, eq/ Koft, oq - TWo time-scales are introduced, one associ-
ated with the fluid shear rate, G~!, and the other with the rate constant of
the binding-unbinding reaction, Kogeq. This is done to neglect the lower order



terms in the non-dimensional form of equations (and in the limit of slow time-
scales), as shown in Further, we introduce the following non-dimensional
parameters,

Y Ao As

"TaT T kT T Ny €

(12)

The non-dimensional form of the reaction rates, equation , bond-density
evolution, equation , and the boundary conditions are

*

A
Koy =exp | = Xis (L = o = a2 + W' (D)| /Ry,

22 2
Kip = exp [(1= N)55 (L' = 2 + W (D), (13)
€
G 0g* ag*
Koreg 06 | e ron ~ fonds

g =0 |27 = R;, (14)

where W*(D) = W(D)/(2kgT). Similarly, the non-dimensional form of the
micro-scale forces arising from all bonds are

FiL(U,D) — —/ (1= 1/L%)[a"e, + D*e.] dA",
Az
, ) SRRy [ ., A )
FiL(U,D) = —(1/lyr)e. /Azg {Weoezﬁgmﬁ <€ D _ @)} dA*,
F3.(U,D) = (K;/T)/ (g*/L*Q)(xo[—D*ez—i-:U*ez} dA*, (15)
At

where F';, F'i, and F7. are the non-dimensional forces due to extension, surface
charges and torsion, respectively, and F; = F;/(Ago Keqtio R®).

2.6 Adhesion area: A,

The adhesion of the two cells occur inside a circular patch of area of A, = 7R,
where R, is the radius of the patch (as shown in Figure [1I). To determine
this radius, we split the computational domain into two distinct regions: an
inner region (which is the gap between the two cells) and an outer region,
outside the gap (in the horizontal sense). We define the variables (p,c) as
the excess pressure inside the cell and the surface tension in the inner region,
respectively. The variables (P, C) are the corresponding variables in the outer



region. The membrane curvature is denoted by (). Inside the inner region,
the cells (with undisturbed circular radius R, Figure ; deforms under the
action of adhesive forces and the shear flow. For slow shear rates (G < 5s7!),
Jensen found that the stress balance on one of the cell surface (Figure [1)), at
the leading order in the separation gap between the two cell surfaces, is [?]

At Kon(x) (fp+ fo + fr) + poe. = QCOBZ - Cgex ; (16)
whereas the stress balance, at the next order of approximation, is
pie. = Qc'e. — cle, + uGe, (17)

where the superscripts, 0 and 1, denote variables at the leading order and the
next order approximation, respectively, and the variable c. denote derivative of
the surface tension in the moving frame. The cell membrane is flat (with ()=0)
along the majority of the inner region, except at the edge of the gap where it
connects with the outer region (point K, Figure [I). The leading order and
the next order approximation in the stress balance on the cell surface, in the
outer region, is

Pler = QC%r — Chey, (18)
Plep = QC'er — Cjey + uGe, (19)

where e and ey are the unit vectors along the directions normal and tangential
to the cell surface, and the subscript 6 denotes the derivative of a quantity
along a tangent to the surface.

For an undisturbed cell (satisfying stress balance at leading order),
Jenson [?] found an asymptotic expression for the patch radius in the limit
of small separation gap, with no sharp corners and with a uniform tension
and curvature in the outer region of the cell. In the slow shear rate regime,
we account for the first order correction to the surface tension and the net
pressure (equations ), match the solution in the inner and the outer
region with matching conditions at the juncture (point K, Figure [1)), and
derive the expression of the patch radius

RCZRw_{l_ﬂ(uﬁ)r_&_w*(m, )

r r T

where M = \g Aot Koneq R2€/7 (7 is the uniform tension of the undisturbed
cell) is a dimensionless parameter related to the strength of the cell surface;



that is, reducing M corresponds to making the cell less deformable and vice-
versa. Finally, for neutral cells in static equilibrium (G = N\, = W*(D) = 0),
the expression of the patch radius derived by Jenson [?, relation 2.10] is
recovered from (20).

2.7 Micro-Macro coupling

Under the assumption that the bonds are formed and broken at a rate
sufficiently rapid for them to remain in equilibrium, ie., G/Kgeq < 1,
the unsteady binding effects (i.e., the time-dependent term in equation ((14]))
are neglected and the evolution equation for the sticking probability is solved
at steady-state

ag*
Vi —=— =K — Kxg" 21
ax* on oftd s ( )
whose steady-state, analytical solution is
1 e I
g (z%) = e K (s2)exp [_W/ K 4(s1) dsl] dss . (22)

The coupling between the macro-scale and the micro-scale description is
obtained via the global force balance on the spheres in the horizontal and
vertical directions, and the torque balance about the center of mass of the
spheres. Assembling the forces and couples from the fluid hydrodynamics,
equations @L , and the total forces due to bond-extension, surface charges
and bond-torsion, arising from all bonds, equation @, we obtain

(Fp+F,+F})-e.+F =0,
(Fp+F,+F%}) e, +F =0,

S(Fyt Fot Fi) oot T7 =0, (23)
where the factor R/2 denotes the effective radius for a system of two spheres of
equal radius. F7, F, T are the scalar values of the forces and couples outlined
in equations @, . The micro-macro force balance is utilized to solve for the
unknowns, the translational speeds U, and U, and the separation gap between
the spheres D. Finally, equations , , form the system of equations
that fully describes the binding kinetics of two deforming spheres moving in a
slow shear flow fluid conditions. The next section describes numerical results
and the biophysical implications of this system.



3 Binder kinetics at steady state

Table [I]lists the parameters used in our numerical calculations. The parameter
values are chosen so that they closely replicate the adhesion-fragmentation of
neutrophiles in slow viscous shear flow conditions. For example, the P-selectine
molecule extends about 40 nm from the endothelial cell membrane, so when
combined with its ligand PSGL-1 it is reasonable to take [j =~ 100nm as an
estimate of the length of the unstressed bond [?]. Typically, neutrophils have
a size of R ~ 4 um which gives the length ratio ¢ ~ 0.025 (equation ([12))).
Hichmuth [?] measured variations of up to three orders of magnitude in vivo in
measuring the values of the microvillus stiffness, \g, as well as the membrane
tension of an undisturbed cell. Direct measurements of the parameters, A,
Koneq and Kogeoq are scarce, although values in several thousands have been
used in previous models [?]. Since we do not wish to study the effects of
finite rotation of the ligands [?] or the effect of catch-versus-slip bonds [?],
the corresponding parameters related to these material properties are fixed at
Ay = 1.0 and A} = 0.5, respectively. The dielectric constant in vacuum is g =
8.854x 10712 Farad m~!, whereas the permittivity of water at temperature 25°C
is £ = 78.5 (not to be confused with e which is a length ratio, equation (12])).
The dissolved salt (furnishing the ions in the fluid) is assumed to be a 1-
1 electrolyte with a zeta potential of ¥y = 25mV (corresponding to the
surface potential studies by Gregory [?, Chap. 3]). We assume that the solute
concentration in the fluid only effects the Debye length, §. The Boltzmann
factor is taken as kpT =4 x 10721 J.

We numerically solve the multi-scale model using the adaptive Lobatto
quadrature (via Matlab function quadl) to evaluate the integral in equa-
tion (22), which is then coupled with the system of algebraic equations,
equation , to calculate the unknown macroscale speeds at steady state,
U.(G) and U,(G), the separation distance, D, and, subsequently, the sticking
probability, ¢*(U,, U,, D).

As a preliminary step, the model was validated by estimating the net
hydrodynamic speed, V' = [|[U, + U.||, of two noninteracting, nearly rigid
spheres as a function of shear rate. For this purpose, spherical capsules
with a membrane stiffness coefficient of nearly rigid spheres, M = 0.01, and
high ligand stiffness, A\g = 1072 Nm™!, was used. Simulations indicate that
the hydrodynamic velocity increases linearly with shear rate from 0.5 um/s
at 0.25s7! to 2pum/s at 1.0s™! (Figure . These values are in excellent
agreement (with < 0.1% difference in [*°-norm) with the velocity calculated
by O’Neill and Majumdar [?] for the motion of two hard spheres of the same



Table 1: Parameters common to all numerical results and used in studies of

the system of equations , , .

Parameter Value Units  Source
ATOt ]_09 m_2 [?]
Kon, eq 10? st 7]
Ko, eq 10 s7! 7]
Ao 1075 — 1072 Nm™  [?]
I 1073 Nsm™2 [7]
G 1-5 st (7]
lo 10~ m [?]
R 4 x 107 m 7]
T 25x107°-25x107% Nm™*'  [7]
2.5
—— O’Neill Theory
2 © M=0.01
“15
g
> 1
0.5
0 . - .
0 0.25 G(s ) 1 1.25

Figure 2: Hydrodynamic speed of two identical, hard spheres of same size and
at the same separation distance along the line joining the centres (o) with the
results calculated using the theory of O’Neill and Majumdar [?].



size and at the same separation distance in a linear shear field.

Next, we explored the flow/binding kinematics of the deforming spheres
in a uniform shear flow. Figure depicts the steady-state solution in the
sticking probability-shear flow (¢g*,G) phase space at a horizontal distance
x* = 0.5 from the origin of the moving frame, and for variable surface
deformabilities, M. An adhesion phase is defined when the majority of
the binders (inside the adhesion area, A.) are hooked with each other, i.e.,
g* > 0.5; otherwise the spheres are in the fragmentation phase. A third,
bistable phase, in which the spheres exhibit a stable steady-state adhesion
and fragmentation, simultaneously coexists on the phase plane. Figure
presents the boundaries of the adhesion and fragmentation region which are
computationally tracked as a continuation of the limit points of g*. In another
numerical experiment, we found that changing the limits of the values of g*
which defines these regions, has very little impact on the boundaries of these
regions. The results of these experiments are not shown here for conciseness.

In the present study, three different types of adhesion-fragmentation kine-
matics are found. For example, for nearly rigid cells (Figure , M =0.01),
the transition from adhesion to fragmentation phase (and vice-versa) is ir-
reversible and discontinuous. For this curve, the adhesive effects are strong
for low shear rates (i.e., g* has a stable steady-state branch with ¢* > 0.5 in
the shear rate range G < 0.5s7'). As the shear rate increases to the critical
value, G = 0.5, the system abruptly jumps to a steady-state value in the
fragmentation phase (i.e., g* < 0.5) and remains in this phase even if the
fluid shear rate is reduced below this critical value. For deformable cells
(Figure B, M = 0.1,0.9), this transition is reversible with flow, and either
changes continuously (M = 0.9 curve) or discontinuously through the bistable
region (M = 0.1 curve).

Figure [3b, ¢, respectively, presents the effects of the different ionic con-
ditions in the surrounding fluid affecting the screening length, §, and the
binder stiffness coefficient, on the flow-kinematic phase space. Strong surface
adhesion is observed in highly ionic fluids (i.e., fluids represented by shorter
screening lengths, d, Figure 3b) and with elastic binders (i.e., binders with
lower stiffness coefficient, Figure ) A shorter screening length implies a
smaller separation distance between the interacting surfaces, and hence a
strong adhesion. Similarly, elastic binders aid bond formation which favors
surface adhesion. Another observation is the absence of any qualitative dif-
ferences within the curves in Figure Bp,c, a finding which is consistent with
previous theoretical predictions [?].

Physically, the abrupt hysteretic transitions in the sticking probability
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Figure 3: Steady state transition curves of the sticking probability, g*(z* = 0.5),
versus shear rate, G, for different (a) membrane stiffness, M, (b) screening
lengths, 0, and (c¢) binder stiffness, \g. Three different adhesion-fragmentation
transitions are detected when the membrane stiffness is changed: (1) continu-
ous reversible transition (dash-dot curve); (2) continuous reversible transition
(dashed curve); and (3) discontinuous irreversible transition (solid curve). No
qualitative changes in the transition curves are observed if the screening length
or the binder stiffness is changed, within the limits listed in Table [I]
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Figure 4: Effect of (a) cell surface deformability and (b) fluid ionic conditions,
on the hydrodynamic speed of the cells in shear flow. The material parameter
for these simulations is fixed at \g = 107> Nm™".

1 0.2
— M =0.01
TN e M=0.1
0.75 . oo M =09 0.15
. PN S A —
wfost [/ L Q01
',' \\ \_‘ mim i e e
’f LA -
0.25) » N 0.05{, — M =0.01
T M =01
- M= 0.9
0 . 0 -
(a) Magnitude of the total microscale forces (b) Minimum vertical separation distance

Figure 5: Total microscale force, Fry, and the separation distance, D*, at a
horizontal distance, z* = 0.5 from the origin of the reference frame, versus
the fluid shear rate, G. Material parameters for these simulations are fixed
at \p = 107> Nm~! and § = 1.0. The nonlinear relation between the total
microscale forces and the fluid shear rate is due to a nonlinear dependence of
the forces on the minimum separation distance, which is a variable.



between the adhesion and the fragmentation regimes (i.e., the transition
curves in Figure [3) is explained by the relation between the magnitude of the
total micro-scale binding force, Frrot = ||F'y + F¢. + F;||, and the fluid shear
rate (Figure [5a). In general, at low non-dimensional shear rates (G < 1.0)
the total force due to the stretching and tilting of the ligands along the flow
direction increases with the shear rate. However, in strong flow conditions
(G > 2.0), the bonds rupture and there is a rapid decay in the total binding
force. As the shear rate is increased, the bound ligands are unable to prevent
some degree of fragmentation between the two surfaces and start to yield.
Consequently, the total adhesive forces decrease, eventually leading to a state
where the cells are free from nearly all adhesive bonds. However, the strength
of the total microscale forces, depends on the membrane surface tension (i.e.,
the stiffness coefficient, M).

The nonlinear relation between the microscale forces and the fluid shear
rate as well as the cell deformability is tentatively justified as follows. With
increasing shear rate the binders are advected away from the vertical alignment,
the z-component of the torsion force, F'r, as well as the surface force, F¢,
pushes the cells farther away. However, for sufficiently large separation
distances, the bonds stretch and the extension forces, Fp (< D*), tend to
pull the cells close to each other. All these forces depend on the minimum
separation, D* = D*(G, M,0), (Figure [5b), which varies nonlinearly with
fluid shear rate, cell surface deformability and the ionic conditions in the fluid,
and thus account for the non-linear variation versus the separation distance.

Further, we investigated the effects of the cell surface deformability (Fig-
ure [4h) as well as the Debye length (Figure [db) on the hydrodynamic speed of
the cells, V* = ||U. +U?||. At nearly zero shear rate, the hydrodynamic speed
does not vary significantly with the deformability coefficient, M. In contrast,
pronounced differences were observed at higher shear rates. In particular,
the hydrodynamic speed for nearly rigid cells (M = 0.01, Figure [4a) and
cells immersed in weakly ionic fluids (6§ = 2.0, Figure [4p) increased appre-
ciably. Conversely, only a modest increase in the hydrodynamic speed of
more complaint cells (M = 0.01,0.1 curves in Figure [4a) or cells immersed
in strong electrolytic solvent (§ = 0.5,1.0 curves in Figure 4b) occurred with
increasing shear.

Altogether, cell deformation induced by the hydrodynamic forces due to
fluid flow modulates the ligand-mediated cell adhesion kinetics. Deformable
cells (i.e., cells with higher stiffness coefficient, M) exhibit compact binding
with a higher magnitude of the total microscale binding forces, (Figure ),
remain closer to each other (Figure [pb) and move slowly (Figure [4a). Dri
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Figure 6: \o-G phase plane highlighting regions of adhesion (I), bistabity (II)
and fragmentation (III) for different (a) cell surface stiffness coefficient, M,
and (b) Debye length, ¢, at a horizontal distance, * = 0.5, from the origin of
the reference frame. The adhesion/fragmentation regions are characterized by
g* > 0.5 and ¢g* < 0.5, respectively. The boundary of the bistable region is
the locus of the limit points of the hysteretic g*-G curves in Figure [3

and colleagues [?] attributed these features due to an increased adhesion
contact area (equation ([20])) as well as the reduction in the overall magnitude
of hydrodynamic forces in the gap between the cells (hydrodynamic forces
are proportional to the hydrodynamic speed in slow viscous fluid-flow limit,
Figure ) experienced by the more complaint cells. Since the total hydrody-
namic forces are proportional to the speed, a reduced hydrodynamic speed in a
highly ionic aqueous environment (comparing the curves in Figure 4p) results
in a strong surface adhesion, an observation corroborated with experimental
findings [?].

Figure [0] identifies the domain of adhesion (region I), bistability (region II)
and fragmentation (region IIT), within a select range of materials parameters
used in our numerical calculations (Table . Bistability is an intrinsic prop-
erty of any biophysical system exhibiting hysteretic transitions, such as the
adhesion-fragmentation transitions shown in Figure [3] As the flow shear rate
increases from zero, the initially attached cell surfaces, detach at a critical
shear rate (i.e., g* drops below 0.5). If the shear rate decreases below this
critical value the process is reversed, then cells surfaces reattach (i.e., the value
of g* rises above 0.5) but at a critical shear rate different than the previous
threshold. Figure [6] highlights, with solid lines, the locus of all such (g%, G)
critical-points enclose the bistable region in the material parameter space.



The dashed lines correspond to the nullcline g* = 0.5.

Cell adhesion bistability occurs from a tug-of-war between two kinetic
processes taking place within the contact area, bond formation which aids
adhesion and bond rupture [?]. As seen in Figure [0 the factors affecting
adhesion are low fluid shear rate and elastic binders (i.e., lower stiffness
coefficient, \g) which assists bond formation, deformable membrane surface
(or larger value of the membrane stiffness coefficient, M) which leads to
increased attachment area and lower the magnitude of total hydrodynamic
force (proportional to the hydrodynamic speed, Figure [5), and strong ionic
conditions (i.e., lower screening length, ) which reduces the separation distance
between the cell surfaces.

Bistability has been reported in a variety of experiments, especially those
involving cell-wall and cell-cell adhesion. Brunk and Hammer [?] detected
bistability in an in vitro set-up of cell-free assay characterized by a single bond
type (E-selectin and its ligands), mimicking rolling neutrophils over stimulated
endothelial surface. Yago et al. [?] gave further evidence of bistability via
numerical simulations of neutrophils rolling on a carbohydrate selectin-ligand
substrate under flow—a phenomenon later corroborated by King [?].

4 Conclusions and discussion

Section presented a new unified, exhaustive, multi-scale model for the
adhesion of two spherical, deforming cells via tiltable, elastic ligands in an
ionic fluid subject to a homogeneous shear flow. Section §3| demonstrated
that the transition between the adhesion and the fragmentation phases can
be reversibly continuous, reversibly discontinuous, or irreversible, depending
on the deformability of the cell surface, the strength of the ionic fluid medium
and the stiffness of the binding ligands. In particular, deformable cells exhibit
strong adhesion. We attributed this partly due to the increased cell-cell
contact area as well as reduction in the magnitude of the hydrodynamic forces
experienced inside the gap between the cells. Strong ionic fluid conditions favor
adhesion through lowering of the hydrodynamic forces as well as reduction in
the cell separation gap. A bistable region signifying the coexistence of both
aggregation and fragmentation domains, was numerically detected for a select
range of material and fluid parameters (Figure [6).

Although the proposed model is able to describe key features in cell adhe-
sion, several issues still need to be addressed [?]. For example, nonlinearity of
the micro-scale forces can significantly modify the micro-macro hydrodynamic



force balance thereby modifying the adhesion region. Our approach also
excludes spatial inhomogeneity arising through the material parameters, the
effects of catch behavior (k% > 1.0), non-equilibrium binding effects, stochas-
ticity and the discrete number of bonds [?], the cellular viscoelasticity (needed
to fully describe the cell rheology [?]), the electro-viscous drag on the spherical
surfaces surrounded by ionic solution [?] (which modifies the fluid velocity
across the channel between the cells), as well as shearing forces large enough
to tear the binding ligands from their anchoring surface [?]. All these effects
can lead to several non-trivial behavior (including the possible absence of
hysteretic behaviour in flow-phase transition) that deserves a full numerical
investigation in the near future.
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