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SOME NEW (Hp, Lp) TYPE INEQUALITIES OF MAXIMAL OPERATORS
OF VILENKIN-NÖRLUND MEANS WITH NON-DECREASING

COEFFICIENTS

L. E. PERSSON, G. TEPHNADZE, P. WALL

Abstract. In this paper we prove and discuss some new (Hp, Lp) type inequalities of
maximal operators of Vilenkin-Nörlund means with non-decreasing coefficients. We also
apply these inequalities to prove strong convergence theorems of such Vilenkin-Nörlund
means. These inequalities are the best possible in a special sense. As applications, both
some well-known and new results are pointed out.
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1. Introduction

The definitions and notations used in this introduction can be found in our next Section.
In the one-dimensional case the weak (1,1)-type inequality for the maximal operator of Fejér
means

σ∗f := sup
n∈N

|σnf |

can be found in Schipp [19] for Walsh series and in Pál, Simon [17] for bounded Vilenkin
series. Fujji [9] and Simon [21] verified that σ∗ is bounded from H1 to L1. Weisz [31]
generalized this result and proved boundedness of σ∗ from the martingale space Hp to the
space Lp, for p > 1/2. Simon [20] gave a counterexample, which shows that boundedness
does not hold for 0 < p < 1/2. A counterexample for p = 1/2 was given by Goginava [6] (see
also [23]). Moreover, Weisz [33] proved that the maximal operator of the Fejér means σ∗ is
bounded from the Hardy space H1/2 to the space weak−L1/2. In [24] and [25] it was proved
that the weighted maximal operator of Fejér means

σ̃∗
pf := sup

n∈N+

|σnf |

(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

is bounded from the Hardy space Hp to the space Lp, when 0 < p ≤ 1/2. Moreover, the rate

of the weights
{
1/ (n+ 1)1/p−2 log2[p+1/2] (n + 1)

}∞

n=1
in n-th Fejér mean was given exactly.

The research was supported by a Swedish Institute scholarship, provided within the framework of the SI
Baltic Sea Region Cooperation/Visby Programme.
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Móricz and Siddiqi [13] investigated the approximation properties of some special Nörlund
means of Walsh-Fourier series of Lp function in norm. In the two-dimensional case approx-
imation properties of Nörlund means was considered by Nagy (see [14]-[16]). In [18] it was
proved that the maximal operator of Nörlund means

t∗f := sup
n∈N

|tnf |

with non-decreasing coefficients is bounded from the Hardy space H1/2 to the space weak−
L1/2. Moreover, there exists a martingale and Nörlund means, with non-decreasing coeffi-
cients, such that it is not bounded from the Hardy space Hp to the space weak − Lp, when
0 < p < 1/2.

It is well-known that Vilenkin systems do not form bases in the space L1. Moreover, there
is a function in the Hardy space H1, such that the partial sums of f are not bounded in
L1-norm. Simon [22] proved that there exists an absolute constant cp, depending only on p,
such that the inequality

1

log[p] n

n∑

k=1

‖Skf‖
p
p

k2−p
≤ cp ‖f‖

p
Hp

(0 < p ≤ 1)

holds for all f ∈ Hp and n ∈ N+, where [p] denotes the integer part of p. For p = 1 analogous
results with respect to more general systems were proved in [2] and [4] and for 0 < p < 1
another proof can be found in [27].

In [3] it was proved that there exists an absolute constant cp, depending only on p, such
that the inequality

(1)
1

log[1/2+p] n

n∑

k=1

‖σkf‖
p
p

k2−2p
≤ cp ‖f‖

p
Hp

(0 < p ≤ 1/2, n = 2, 3, . . . ) .

holds. An analogous result for the Walsh system can be found in [28].

In this paper we derive some new (Hp, Lp)-type inequalities for weighted maximal operators
of Nörlund means with non-decreasing coefficients. Moreover, we prove strong convergence
theorems of such Nörlund means.

This paper is organized as follows: In order not to disturb our discussions later on some
definitions and notations are presented in Section 2. The main results and some of its
consequences can be found in Section 3. For the proofs of the main results we need some
auxiliary Lemmas, some of them are new and of independent interest. These results are
presented in Section 4. The detailed proofs are given in Section 5.

2. Definitions and Notation

Denote by N+ the set of the positive integers, N := N+ ∪ {0}. Let m := (m0, m1, ...) be a
sequence of the positive integers not less than 2. Denote by

Zmk
:= {0, 1, ..., mk − 1}

the additive group of integers modulo mk.

Define the group Gm as the complete direct product of the groups Zmi
with the product

of the discrete topologies of Zmj
‘s.
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The direct product µ of the measures

µk ({j}) := 1/mk (j ∈ Zmk
)

is the Haar measure on Gm with µ (Gm) = 1.

In this paper we discuss bounded Vilenkin groups, i.e. the case when supnmn <∞.

The elements of Gm are represented by sequences

x := (x0, x1, ..., xj, ...) ,
(
xj ∈ Zmj

)
.

Set en := (0, ..., 0, 1, 0, ...) ∈ G, the n−th coordinate of which is 1 and the rest are zeros
(n ∈ N) .

It is easy to give a basis for the neighborhoods of Gm :

I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, ..., yn−1 = xn−1},

where x ∈ Gm, n ∈ N.

If we define In := In (0) , for n ∈ N and In := Gm \ In, then

(2) IN =

(
N−2⋃

k=0

N−1⋃

l=k+1

Ik,lN

)
⋃
(

N−1⋃

k=1

Ik,NN

)
,

where

Ik,lN :=

{
IN(0, ..., 0, xk 6= 0, 0, ..., 0, xl 6= 0, xl+1 , ..., xN−1 , ...), for k < l < N,
IN(0, ..., 0, xk 6= 0, 0, ..., , xN−1 = 0, xN , ...), for l = N.

If we define the so-called generalized number system based on m in the following way :

M0 := 1, Mk+1 := mkMk (k ∈ N),

then every n ∈ N can be uniquely expressed as n =
∑∞

j=0 njMj , where nj ∈ Zmj
(j ∈ N+)

and only a finite number of nj ‘s differ from zero.

We introduce on Gm an orthonormal system which is called the Vilenkin system. At
first, we define the complex-valued function rk (x) : Gm → C, the generalized Rademacher
functions, by

rk (x) := exp (2πixk/mk) ,
(
i2 = −1, x ∈ Gm, k ∈ N

)
.

Next, we define the Vilenkin system ψ := (ψn : n ∈ N) on Gm by:

ψn(x) :=

∞∏

k=0

rnk
k (x) , (n ∈ N) .

Specifically, we call this system the Walsh-Paley system when m ≡ 2.

The norms (or quasi-norms) of the spaces Lp(Gm) and weak − Lp (Gm) (0 < p <∞) are
respectively defined by

‖f‖pp :=

∫

Gm

|f |p dµ, ‖f‖pweak−Lp
:= sup

λ>0
λpµ (f > λ) < +∞.

The Vilenkin system is orthonormal and complete in L2 (Gm) (see [29]).
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Now, we introduce analogues of the usual definitions in Fourier-analysis. If f ∈ L1 (Gm)
we can define Fourier coefficients, partial sums of the Fourier series and Dirichlet kernels
with respect to the Vilenkin system in the usual manner:

f̂ (n) :=

∫

Gm

fψndµ (n ∈ N) ,

Snf :=

n−1∑

k=0

f̂ (k)ψk, Dn :=

n−1∑

k=0

ψk , (n ∈ N+) ,

respectively.

The σ-algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted by ̥n (n ∈ N) .
Denote by f =

(
f (n), n ∈ N

)
a martingale with respect to ̥n (n ∈ N) . (for details see e.g.

[30]).

The maximal function of a martingale f is defined by

f ∗ = sup
n∈N

∣∣f (n)
∣∣ .

For 0 < p <∞ the Hardy martingale spaces Hp consist of all martingales f for which

‖f‖Hp
:= ‖f ∗‖p <∞.

If f =
(
f (n), n ∈ N

)
is a martingale, then the Vilenkin-Fourier coefficients must be defined

in a slightly different manner:

f̂ (i) := lim
k→∞

∫

Gm

f (k)ψidµ.

Let {qk : k ≥ 0} be a sequence of nonnegative numbers. The n-th Nörlund mean tn for a
Fourier series of f is defined by

(3) tnf =
1

Qn

n∑

k=1

qn−kSkf,

where Qn :=
∑n−1

k=0 qk.

We always assume that q0 > 0 and limn→∞Qn = ∞. In this case it is well-known that
the summability method generated by {qk : k ≥ 0} is regular if and only if

lim
n→∞

qn−1

Qn

= 0.

Concerning this fact and related basic results we refer to [12]. In this paper we consider
regular Nörlund means only.

If qk ≡ 1, we respectively define the Fejér means σn and Kernels Kn as follows:

σnf :=
1

n

n∑

k=1

Skf , Kn :=
1

n

n∑

k=1

Dk.

It is well-known that (see [1])

(4) n |Kn| ≤ c

|n|∑

l=0

Ml |KMl
|



NÖRLUND MEANS 5

and

(5) ‖Kn‖1 ≤ c <∞.

Denote

log(0) x = x and log(β) x :=

β times︷ ︸︸ ︷
log ... logx, for β ∈ N+.

Let α ∈ R+, β ∈ N+ and
{
qk = log(β) kα : k ≥ 0

}
. Then we get the class of Nörlund means,

with non-decreasing coefficients:

θnf :=
1

Qn

n∑

k=1

log(β) (n− k)α Skf,

where

Qn =

n−1∑

k=1

log(β) (n− k)α =

n−1∑

k=1

log(β) kα = log

n−1∏

k=1

log(β−1) kα

≥ log

(
log(β−1)

(
n− 1

2

)α) (n−1)
2

≥
n

4
log log(β−1)

(
n− 1

2

)α

∼ n log(β) nα.

It follows that

qn−1

Qn
≤
c log(β) (n− 1)α

n logβ nα
= O

(
1

n

)
→ 0, as n→ ∞.

Finally, we say that a bounded measurable function a is a p-atom, if there exists a interval
I, such that ∫

I

adµ = 0, ‖a‖∞ ≤ µ (I)−1/p , supp (a) ⊂ I.

3. The Main Results and Applications

Our first main result reads:

Theorem 1. a) Let 0 < p < 1/2, f ∈ Hp and {qk : k ≥ 0} be a sequence of non-decreasing
numbers. Then there exists an absolute constant cp, depending only on p, such that the
inequality

∞∑

k=1

‖tkf‖
p
p

k2−2p
≤ cp ‖f‖

p
Hp

holds.

b)Let f ∈ H1/2 and {qk : k ≥ 0} be a sequence of non-decreasing numbers, satisfying the
condition

(6)
qn−1

Qn

= O

(
1

n

)
, as n→ ∞.

Then there exists an absolute constant c, such that the inequality

(7)
1

logn

n∑

k=1

‖tkf‖
1/2
1/2

k
≤ c ‖f‖

1/2
H1/2

holds.
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Example 1. Let 0 < p ≤ 1/2, f ∈ Hp and {qk : k ≥ 0} be a sequence of non-decreasing
numbers, such that

sup
n
qn < c <∞.

Then
qn−1

Qn

≤
c

Qn

≤
c

q0n
=
c1
n

= O

(
1

n

)
, as n→ 0,

i.e. condition (6) is satisfied and for such Nörlund means there exists an absolute constant
c, such that the inequality (7) holds.

Example 2. Let 0 < p ≤ 1/2 and f ∈ Hp. Then there exists absolute constant cp, depending
only on p, such that the following inequality holds:

1

log[1/2+p] n

n∑

k=1

‖σkf‖
p
p

k2−2p
≤ cp ‖f‖

p
Hp
.

Remark 1. This result for the Walsh system can be found in [28] and for any bounbed
Vilenkin system in [3].

We have already considered the case when the sequence {qk : k ≥ 0} is bounded. Now, we
consider some Nörlund means, which are generated by a unbounded sequence {qk : k ≥ 0}.

Example 3. Let 0 < p ≤ 1/2 and f ∈ Hp. Then there exists an absolute constant cp,
depending only on p, such that the following inequality holds:

1

log[1/2+p] n

n∑

k=1

‖θkf‖
p
p

k2−2p
≤ cp ‖f‖

p
Hp
.

Up to now we have considered strong convergence theorems in the case 0 < p ≤ 1/2, but
in our next main result we consider boundedness of weighed maximal operators of Nörlund
means when 0 < p ≤ 1/2, and now without any restriction like (6).

Theorem 2. Let 0 < p ≤ 1/2, f ∈ Hp and {qk : k ≥ 0} be a sequence of non-decreasing
numbers. Then the maximal operator

t̃∗pf := sup
n∈N+

|tnf |

(n+ 1)1/p−2 log2[1/2+p] (n + 1)

is bounded from the Hardy space Hp to the space Lp.

Example 4. Let 0 < p ≤ 1/2, f ∈ Hp and {qk : k ≥ 0} be a sequence of non-decreasing
numbers. Then the maximal operator

σ̃∗
pf := sup

n∈N+

|σnf |

(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

is bounded from the Hardy space Hp to the space Lp.

Remark 2. This result for the Walsh system when p = 1/2 can be found in [7]. Later on, it
was generalized for bounded Vilenkin systems in [24]. The case 0 < p < 1/2 can be found in
[25]. Analogous results with respect to Walsh-Kachmarz systems were considered in [8] for
p = 1/2 and in [26] for 0 < p < 1/2.
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Example 5. Let 0 < p ≤ 1/2, f ∈ Hp and {qk : k ≥ 0} be a sequence of non-decreasing
numbers. Then the maximal operator

θ̃∗pf := sup
n∈N+

|θnf |

(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

is bounded from the Hardy space Hp to the space Lp.

4. Auxiliary lemmas

We need the following auxiliary Lemmas:

Lemma 1 (see e.g. [32]). A martingale f =
(
f (n), n ∈ N

)
is in Hp (0 < p ≤ 1) if and only

if there exists a sequence (ak, k ∈ N) of p-atoms and a sequence (µk, k ∈ N) of real numbers
such that, for every n ∈ N,

(8)

∞∑

k=0

µkSMnak = f (n), a.e.

and
∞∑

k=0

|µk|
p <∞.

Moreover,

‖f‖Hp
∽ inf

(
∞∑

k=0

|µk|
p

)1/p

where the infimum is taken over all decompositions of f of the form (8).

Lemma 2 (see e.g. [32]). Suppose that an operator T is σ-sublinear and for some 0 < p ≤ 1
∫

−

I

|Ta|p dµ ≤ cp <∞,

for every p-atom a, where I denotes the support of the atom. If T is bounded from L∞ to
L∞, then

‖Tf‖p ≤ cp ‖f‖Hp
, 0 < p ≤ 1.

Lemma 3 (see [5]). Let n > t, t, n ∈ N. Then

KMn (x) =





Mt

1−rt(x)
, x ∈ It\It+1, x− xtet ∈ In,

Mn−1
2

, x ∈ In,
0, otherwise.

For the proof of our main results we also need the following new Lemmas of independent
interest:

Lemma 4. Let {qk : k ≥ 0} be a sequence of non-decreasing numbers, satisfying condition
(6). Then

|Fn| ≤
c

n





|n|∑

j=0

Mj

∣∣KMj

∣∣


 ,

for some positive constant c.
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Proof. By using Abel transformation we obtain that

(9) Qn :=
n−1∑

j=0

qj =
n∑

j=1

qn−j · 1 =
n−1∑

j=1

(qn−j − qn−j−1) j + q0n

and

(10) Fn =
1

Qn

(
n−1∑

j=1

(qn−j − qn−j−1) jKj + q0nKn

)
.

Since {qk : k ≥ 0} be a non-decreasing sequence, satisfying condition (6) we obtain that

(11)
1

Qn

(
n−1∑

j=1

|qn−j − qn−j−1|+ q0

)
≤

1

Qn

(
n−1∑

j=1

(qn−j − qn−j−1) + q0

)

=
qn−1

Qn
≤
c

n
.

By combining (4) with equalities (10) and (11) we immediately get that

|Fn| ≤

(
1

Qn

(
n−1∑

j=1

|qn−j − qn−j−1|+ q0

))
|n|∑

i=0

Mi |KMi
| ≤

c

n

|n|∑

i=0

Mi |KMi
| .

The proof is complete by combining the estimates above. �

Lemma 5. Let n ≥MN and {qk : k ≥ 0} be a sequence of non-decreasing numbers. Then
∣∣∣∣∣
1

Qn

n∑

j=MN

qn−jDj

∣∣∣∣∣ ≤
c

MN





|n|∑

j=0

Mj

∣∣KMj

∣∣


 ,

for some positive constant c.

Proof. Let MN ≤ j ≤ n. By using (4) we get that

|Kj| ≤
1

j

|j|∑

l=0

Ml |KMl
| ≤

1

MN

|n|∑

l=0

Ml |KMl
| .

Let the sequence {qk : k ≥ 0} be non-decreasing. Then

MNqn−MN−1 ≤ qn−MN−1 + qn−MN
+ ...+ qn−1 ≤ Qn.

If we apply (9) we obtain that

n−1∑

j=MN

|qn−j − qn−j−1| j + q0n ≤
n−1∑

j=0

|qn−j − qn−j−1| j + q0n

=
n−1∑

j=1

(qn−j − qn−j−1) j + q0n = Qn.

By using Abel transformation we find that∣∣∣∣∣
1

Qn

n∑

j=MN

qn−jDj

∣∣∣∣∣ =
∣∣∣∣∣
1

Qn

(
n−1∑

j=MN

(qn−j − qn−j−1) jKj + q0nKn −MNqn−MN−1

)∣∣∣∣∣



NÖRLUND MEANS 9

(
1

Qn

(
n−1∑

j=MN

|qn−j − qn−j−1| j + q0n +MNqn−MN−1

))
1

MN

|n|∑

i=0

Mi |KMi
| ≤

1

MN

|n|∑

i=0

Mi |KMi
| .

The proof is complete. �

Lemma 6. Let {qk : k ≥ 0} be a sequence of non-decreasing numbers, satisfying condition

(6). Let x ∈ Ik,lN , k = 0, . . . , N − 2, l = k + 1, . . . , N − 1. Then
∫

IN

|Fn (x− t)| dµ (t) ≤
cMlMk

nMN

.

Let x ∈ Ik,NN , k = 0, . . . , N − 1. Then
∫

IN

|Fn (x− t)| dµ (t) ≤
cMk

MN
.

Here c is a positive constant.

Proof. Let x ∈ Ik,lN . Then, by applying Lemma 3, we have that

(12) KMn (x) = 0, when n > l.

Let k < n ≤ l. Then we get that

(13) |KMn (x)| ≤ cMk.

Let x ∈ Ik,lN , for 0 ≤ k < l ≤ N − 1 and t ∈ IN . Since x − t ∈ Ik,lN and n ≥ MN , by
combining Lemma 4 with (12) and (13), we obtain that

(14)

∫

IN

|Fn (x− t)| dµ (t) ≤
c

n

|n|∑

i=0

Mi

∫

IN

|KMi
(x− t)| dµ (t)

≤
c

n

∫

IN

Mi

l∑

i=0

Mkdµ (t) ≤
cMkMl

nMN

and the first astimate is proved.

Now, let x ∈ Ik,NN . Since x− t ∈ Ik,NN for t ∈ IN , by applying Lemma 3, we obtain that

|KMi
(x− t)| ≤ cMk, (k ∈ N) .

Hence, according to Lemma 4, we have that

(15)

∫

IN

|Fn (x− t)| dµ (t) ≤
c

n

|n|∑

i=0

Mi

∫

IN

|KMi
(x− t)| dµ (t)

≤
c

n

|n|−1∑

i=0

Mi

∫

IN

Mkdµ (t) ≤
cMk

MN
.

By combining (14) and (15) we complete the proof of Lemma 6. �

Analogously we can prove the similar estimation, but now without any restriction like (6).
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Lemma 7. Let x ∈ Ik,lN , k = 0, . . . , N − 1, l = k + 1, . . . , N and {qk : k ≥ 0} be a sequence
of non-decreasing sequence. Then

∫

IN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn−jDj (x− t)

∣∣∣∣∣ dµ (t) ≤
cMlMk

M2
N

,

for some positive constant c.

5. Proofs of the Theorems

Proof of Theorem 1. By Lemma 1, the proof of Theorem 1 will be complete, if we show that

(16)
1

log[1/2+p] n

n∑

m=1

‖tma‖
p
Hp

m2−2p
≤ cp,

for every p-atom a, with support I, µ (I) =M−1
N . We may assume that I = IN . It is easy to

see that Sn (a) = tn (a) = 0, when n ≤MN . Therefore, we can suppose that n > MN .

Let x ∈ IN . Since tn is bounded from L∞ to L∞ (the boundedness follows from (5)) and

‖a‖∞ ≤M
1/p
N we obtain that

∫

IN

|tma|
p dµ ≤

‖a‖p∞
MN

≤ c <∞, 0 < p ≤ 1/2.

Hence,

(17)
1

log[1/2+p] n

n∑

m=1

∫
IN

|tma|
p dµ

m2−2p
≤

1

log[1/2+p] n

n∑

k=1

1

m2−2p
≤ c <∞.

It is easy to see that

(18) |tma (x)| =

∫

IN

|a (t)Fn (x− t)| dµ (t) =

∫

IN

∣∣∣∣∣a (t)
1

Qn

n∑

j=MN

qn−jDj (x− t)

∣∣∣∣∣ dµ (t)

≤ ‖a‖∞

∫

IN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn−jDj (x− t)

∣∣∣∣∣ dµ (t) ≤M
1/p
N

∫

IN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn−jDj (x− t)

∣∣∣∣∣ dµ (t)

Let tn be Nörlund means, with non-decreasing coefficients {qk : k ≥ 0} and x ∈ Ik,lN , 0 ≤
k < l ≤ N. Then, in the view of Lemma 7 we get that

(19) |tma (x)| ≤ cMlMkM
1/p−2
N , for 0 < p ≤ 1/2.

First, we consider the case 0 < p < 1/2. By using (2), (18), (19) we find that

(20)

∫

IN

|tma|
p dµ =

N−2∑

k=0

N−1∑

l=k+1

mj−1∑

xj=0, j∈{l+1,...,N−1}

∫

Ik,lN

|tma|
p dµ+

N−1∑

k=0

∫

Ik,NN

|tma|
p dµ

≤ c
N−2∑

k=0

N−1∑

l=k+1

ml+1 · · ·mN−1

MN
(MlMk)

pM1−2p
N +

N−1∑

k=0

1

MN
Mp

kM
1−p
N

≤ cM1−2p
N

N−2∑

k=0

N−1∑

l=k+1

(MlMk)
p

Ml
+

N−1∑

k=0

Mp
k

Mp
N

≤ cM1−2p
N .
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Moreover, according to (20), we get that

∞∑

m=MN+1

∫
IN

|tma|
p dµ

m2−2p
≤

∞∑

m=MN+1

cM1−2p
N

m2−2p
< c <∞, (0 < p < 1/2) .

Now, by combining this estimate with (17) we obtain (16) so the proof of part a) is complete.

Let p = 1/2 and tn be Nörlund means, with non-decreasing coefficients {qk : k ≥ 0},
satisfying condition (6). We can write that

(21) |tma (x)| ≤

∫

IN

|a (t)| |Fm (x− t)| dµ (t)

≤ ‖a‖∞

∫

IN

|Fm (x− t)| dµ (t) ≤M2
N

∫

IN

|Fm (x− t)| dµ (t) .

Let x ∈ Ik,lN , 0 ≤ k < l < N. Then, in the view of Lemma 6 we get that

(22) |tma (x)| ≤
cMlMkMN

m
.

Let x ∈ Ik,NN . Then, according to Lemma 6 we obtain that

(23) |tma (x)| ≤ cMkMN .

By combining (2), (21), (22) and (23) we obtain that
∫

IN

|tma (x)|
1/2 dµ (x)

≤ c

N−2∑

k=0

N−1∑

l=k+1

ml+1 · · ·mN−1

MN

(MlMk)
1/2M

1/2
N

m1/2
+

N−1∑

k=0

1

MN
M

1/2
k M

1/2
N

≤M
1/2
N

N−2∑

k=0

N−1∑

l=k+1

(MlMk)
1/2

m1/2Ml
+

N−1∑

k=0

M
1/2
k

M
1/2
N

≤
cM

1/2
N N

m1/2
+ c.

It follows that

(24)
1

log n

n∑

m=MN+1

∫
IN

|tma (x)|
1/2 dµ (x)

m
≤

1

logn

n∑

m=MN+1

(
cM

1/2
N N

m3/2
+

c

m

)
< c <∞.

The proof of part b) is completed by just combining (17) and (24). �

Proof of Theorem 2. Since tn is bounded from L∞ to L∞ (the boundedness follows from
(5)), by Lemma 2, the proof of Theorem 2 will be complete, if we show that

∫

IN

(
sup
n∈N

|tna|

log2[1/2+p] (n+ 1) (n + 1)1/p−2

)p

dµ ≤ c <∞

for every p-atom a, where I denotes the support of the atom. Let a be an arbitrary p-atom,
with support I and µ (I) =M−1

N . Analogously to in the proof of Theorem 1 we may assume
that I = IN and n > MN .
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Let x ∈ Ik,lN , 0 ≤ k < l ≤ N. Then, by combining (18) and Lemma 7, (see also (19)) we
get that

(25)
|tn (a (x))|

(n + 1)1/p−2 log2[1/2+p] (n+ 1)
≤

M
1/p
N

M
1/p−2
N N2[1/2+p]

∫

IN

∣∣∣∣∣
1

Qn

n∑

j=MN

qn−jDj (x− t)

∣∣∣∣∣ dµ (t)

≤
cM

1/p
N

M
1/p−2
N N2[1/2+p]

MlMk

M2
N

=
cMlMk

N2[1/2+p]
.

By combining (2) and (25) we obtain that (see [24] and [25])
∫

IN

|t∗a|p dµ =
N−2∑

k=0

N−1∑

l=k+1

mj−1∑

xj=0,j∈{l+1,...,N−1}

∫

Ik,lN

|t∗a|p dµ+
N−1∑

k=0

∫

Ik,NN

|t∗a|p dµ

≤
N−2∑

k=0

N−1∑

l=k+1

ml+1...mN−1

MN

(
MlMk

N2[1/2+p]

)p

+
N−1∑

k=0

1

MN

(
MNMk

N2[1/2+p]

)p

≤
c

N2[1/2+p]

N−2∑

k=0

N−1∑

l=k+1

(MlMk)
p

Ml

+
c

M1−2p
N N2p[1/2+p]

N−1∑

k=0

Mp
k

Mp
N

<∞.

The proof is complete. �

A final remark: Several of the operators considered in this paper, e.g. those described
by the Nörlund means are called Hardy type operators in the literature. The mapping
properties of such operators, especially between weighted Lebegue spaces, is much studied in
the literature, see e.g. the books [10] and [11] and the references there. Such complimentary
information can be of interest for further studies of the inequalities considered in this paper.
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